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bootCRM Computing Standard Errors for Item Parameter Estimates using Boot-
strap Sampling

Description

Computes the standard errors of item parameter estimates using a non-parametric bootstrapping
approach

Usage

bootCRM(data,max.item,min.item,max.EMCycle=500,converge=.01,
type="Shojima",BFGS=TRUE,nsample=50)

Arguments

data a data frame with N rows and m columns, with N denoting the number of sub-
jects and m denoting the number of items.

max.item a vector of length m indicating the maximum possible score for each item.
min.item a vector of length m indicating the minimum possible score for each item.
max.EMCycle a number of maximum EM Cycles used in the iteration. Default is 500.
converge a criteria value indicating the difference between loglikelihoods of two consec-

utive EM cycles to stop the iteration. Default is .01
type type of optimization. Default is the non-iterative EM developed by Shojima(2005).
BFGS a valid argument when type is equal to "Wang&Zeng". If TRUE, the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm is used to update Hessian.
nsample a number of bootstrap samples used in estimating the standard errors. Default is

50

Details

bootCRM computes the standard errors of item parameter estimates using a non-parametric bootstrap
sampling approach.

Value

bootCRM returns a list with three elements. Each element of the list is an mx3 matrix where m is the
number of items. The first column includes the item parameter estimates from the original sample,
the second column includes the average item parameter estimates from R bootstrap samples (the
mean of the empirical sampling distribution), and the third column includes the standard errors of
the item parameter estimates obtained from bootstrap samples (standard deviation of the empirical
sampling distribution).

Discrimination Estimates for item discriminations
Difficulty Estimates for item difficulties
Alpha Estimates for alpha parameters
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Note

It may make take too long to get the results if you request a large number of bootstrap samples. By
default, the number of bootstrap samples is 50, and it takes a couple minutes for the sample datasets
provided in the package. It would be a good idea to try 100 or 500 bootstrap samples if you have
enough time.

Author(s)

Cengiz Zopluoglu

See Also

EstCRMitem for estimating item parameters, EstCRMperson for estimating person parameters, fitCRM
for computing item-fit statistics and drawing empirical 3D item response curves, plotCRM for draw-
ing theoretical 3D item category response curves,

Examples

##load the dataset EPIA
data(EPIA)

#Please assign a larger number (e.g.,50,100) to "R" in the code below.

bootCRM(data=EPIA,
max.item=c(112,112,112,112,112),
min.item=c(0,0,0,0,0),
max.EMCycle=200,
converge=.01,
nsample=3)

##load the dataset SelfEff
data(SelfEff)

#Please assign a larger number (e.g.,50,100) to "R" in the code below.

bootCRM(data=SelfEff,
max.item=c(11,11,11,11,11,11,11,11,11,11),
min.item=c(0,0,0,0,0,0,0,0,0,0),
max.EMCycle=200,
converge=.01,
nsample=3)
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EPIA The Eysenck Personality Inventory Impulsivity Subscale

Description

The data came from a published study and was kindly provided by Dr. Ferrando. A group of 1,033
undergraduate students were asked to check on a 112 mm line segment with two end points (almost
never, almost always) using their own judgement for the five items taken from the Spanish version
of the EPI-A impulsivity subscale. The direct item score was the distance in mm of the check mark
from the left end point (Ferrando, 2002).

Usage

data(EPIA)

Format

A data frame with 1033 observations on the following 5 variables.

Item 1 Longs for excitement
Item 2 Does not stop and think things over before doing anything
Item 3 Often shouts back when shouted at
Item 4 Likes doing things in which he/she has to act quickly
Item 5 Tends to do many things at the same time

Source

Ferrando, P.J.(2002). Theoretical and Empirical Comparison between Two Models for Continuous
Item Responses. Multivariate Behavioral Research, 37(4), 521-542.

References

Ferrando, P.J.(2002). Theoretical and Empirical Comparison between Two Models for Continuous
Item Responses. Multivariate Behavioral Research, 37(4), 521-542.

EstCRM Calibrating Parameters for the Samejima’s Continuous Response
Model

Description

This package includes the tools to estimate model parameters for the Samejima’s Continuous Re-
sponse Model (CRM) via marginal maximum likelihood estimation and EM algorithm, to compute
item fit residual statistics, to draw empirical 3D item category response curves, to draw theoretical
3D item category response curves, and to generate data under the CRM for simulation studies.

Details
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Package: EstCRM
Type: Package
Version: 1.4
Date: 2015-07-11
License: GPL-2
LazyLoad: yes

The package can be used to estimate item parameters by using EstCRMitem, to estimate person
ability parameters by using EstCRMperson, to compute the item fit residual statistics after parameter
calibration by using fitCRM, to draw empirical 3D item category response curves by using fitCRM,
to draw theoretical 3D item category response curves by using plotCRM, and to generate data under
the Continuous Response Model for the simulation studies by using simCRM.

Author(s)

Cengiz Zopluoglu

Maintainer: Cengiz Zopluoglu <c.zopluoglu@miami.edu>

References

Kan, A.(2009). Effect of scale response format on psychometric properties in teaching self-efficacy.
Euroasian Journal of Educational Research, 34, 215-228.

Ferrando, P.J.(2002). Theoretical and Empirical Comparison between Two Models for Continuous
Item Responses. Multivariate Behavioral Research, 37(4), 521-542.

Samejima, F.(1973). Homogeneous Case of the Continuous Response Model. Psychometrika,
38(2), 203-219.

Shojima, K.(2005). A Noniterative Item Parameter Solution in Each EM Cycyle of the Continuous
Response Model. Educational Technology Research, 28, 11-22.

Wang, T. & Zeng, L.(1998). Item Parameter Estimation for a Continuous Response Model Using
an EM Algorithm. Applied Psychological Measurement, 22(4), 333-343.

See Also

EstCRMitem for estimating item parameters, EstCRMperson for estimating person parameters, fitCRM
for computing item-fit residual statistics and drawing empirical 3D item category response curves,
plotCRM for drawing theoretical 3D item category response curves, simCRM for simulating data
under CRM.
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EstCRMitem Estimating Item Parameters for the Continuous Response Model

Description

Estimate item parameters for the Continuous Response Model (Samejima,1973)

Usage

EstCRMitem(data, max.item, min.item, max.EMCycle = 500, converge = 0.01,
type="Shojima",BFGS=TRUE)

Arguments

data a data frame with N rows and m columns, with N denoting the number of sub-
jects and m denoting the number of items.

max.item a vector of length m indicating the maximum possible score for each item.

min.item a vector of length m indicating the minimum possible score for each item.

max.EMCycle a number of maximum EM Cycles used in the iteration. Default 500.

converge a criteria value indicating the difference between loglikelihoods of two consec-
utive EM cycles to stop the iteration. Default .01

type type of optimization. Takes two values, either "Shojima" or "Wang&Zeng".
Default is the non-iterative EM developed by Shojima(2005). See details.

BFGS a valid argument when type is equal to "Wang&Zeng". If TRUE, the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm is used to update Hessian.

Details

Samejima (1973) proposed an IRT model for continuous item scores as a limiting form of the
graded response model. Even though the Continuous Response Model (CRM) is as old as the well-
known and popular binary and polytomous IRT models, it is not commonly used in practice. This
may be due to the lack of accessible computer software to estimate the parameters for the CRM.
Another reason might be that the continuous outcome is not a type of response format commonly
observed in the field of education and psychology. There are few published studies that used the
CRM (Ferrando, 2002; Wang & Zeng, 1998). In the field of education, the model may have useful
applications for estimating a single reading ability from a set of reading passages in the Curriculum
Based Measurement context. Also, this type of continuous response format may be more frequently
observed in the future as the use of computerized testing increases. For instance, the examinees or
raters may check anywhere on the line between extremely positive and extremely negative in a
computerized testing environment rather than responding to a likert type item.

Wang & Zeng (1998) proposed a re-parameterized version of the CRM. In this re-parameterization,
the probability of an examinee i with a spesific θ obtaining a score of x or higher on a particular
item j with a continuous measurement scale ranging from 0 to k and with the parameters a, b, and
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α is defined as the following:

P (Xij ≥ x|θi, aj , bj , αj) =
1√
2π

v∫
−∞

e
−t2
2 dt

v = aj(θi − bj − 1
αj
ln

xij
kj−xij )

where a is a discrimination parameter, b is a difficulty parameter, and α represents a scaling param-
eter that defines some scale transformation linking the original observed score scale to the θ scale
(Wang & Zeng, 1998). k is the maximum possible score for the item. a and b in this model have
practical meaning and are interpreted same as in the binary and polytomous IRT models. α is a
scaling parameter and does not have a practical meaning.

In the model fitting process, the observed X scores are first transformed to a random variable Z by
using the following equation:

Zij = ln(
Xij

kj −Xij
)

Then, the conditional probability density function of the random variable Z is equal to:

f(zij |θi, aj , bj , αj) =
aj√
2παj

exp−
[aj(θi−bj−

zij
αj

)]2

2

The conditional pdf of Z is a normal density function with a mean of α(θ-b) and a variance of α2/ a2.

Wang & Zeng (1998) proposed an algorithm to estimate the CRM parameters via marginal max-
imum likelihood and Expectation-Maximization (EM) algorithm. In the Expectation step, the ex-
pected log-likelihood function is obtained based on the integration over the posterior θ distribution
by using the Gaussian quadrature points. In the Maximization step, the parameters are estimated
by solving the first and second derivatives of the expected log-likelihood function with rescpect
to a, b, and α parameters via Newton-Raphson procedure. A sequence of E-step and M-step re-
peats until the difference between the two consecutive loglikelihoods is smaller than a convergence
criteria. This procedure is available through type="Wang&Zeng" argument. If type is equal to
"Wang&Zeng", then user can specify BFGS argument as either TRUE or FALSE. If BFGS argument
is TRUE, then the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is used to approximate
Hessian. If BFGS argument is FALSE, then the Hessian is directly computed.

Shojima (2005) simplified the EM algorithm proposed by Wang & Zeng(1998). He derived the
closed formulas for computing the loglikelihood in the E-step and estimating the parameters in the
M-step (please see the reference paper below for equations). He showed that the equations of the
first derivatives in the M-step can be solved algebraically by assuming flat (non-informative) priors
for the item parameters. This procedure is available through type="Shojima" argument.

Value

EstCRMitem() returns an object of class "CRM". An object of class "CRM" is a list containing the
following components:
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data original data

descriptive descriptive statistics for the original data and the transformed z scores

param estimated item parameters in the last EM Cycle

iterations a list that reports the information for each EM cycle

dif The difference of loglikelihoods between the last two EM cycles

Note

* The ID variable ,if included, has to be excluded from the data before the analysis. If the format
of the data is not a "data frame", the function does not work. Please use "as.data.frame()" to change
the format of the input data.

* A previous published simulation study (Shojima, 2005) was replicated as an example to check the
performance of EstCRMitem().Please see the examples of simCRM in this package.

*The example below is a reproduction of the results from another published study (Ferrando, 2002).
Dr. Ferrando kindly provided the dataset used in the published study. The dataset was previously
analyzed by using EM2 program and the estimated CRM item parameters were reported in Table
2 in the paper. The estimates from EstCRMitem() is comparable to the item parameter estimates
reported in Table 2.

Author(s)

Cengiz Zopluoglu

References

Ferrando, P.J.(2002). Theoretical and Empirical Comparison between Two Models for Continuous
Item Responses. Multivariate Behavioral Research, 37(4), 521-542.

Samejima, F.(1973). Homogeneous Case of the Continuous Response Model. Psychometrika,
38(2), 203-219.

Shojima, K.(2005). A Noniterative Item Parameter Solution in Each EM Cycyle of the Continuous
Response Model. Educational Technology Research, 28, 11-22.

Wang, T. & Zeng, L.(1998). Item Parameter Estimation for a Continuous Response Model Using
an EM Algorithm. Applied Psychological Measurement, 22(4), 333-343.

See Also

EstCRMperson for estimating person parameters, fitCRM for computing item-fit residual statistics
and drawing empirical 3D item category response curves, plotCRM for drawing theoretical 3D item
category response curves, simCRM for generating data under CRM.
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Examples

##load the dataset EPIA
data(EPIA)

##Check the class. "data.frame" is required.
class(EPIA)

##Define the vectors "max.item" and "min.item". The maximum possible
##score was 112 and the minimum possible score was 0 for all items

max.item <- c(112,112,112,112,112)
min.item <- c(0,0,0,0,0)

##The maximum number of EM Cycle and the convergence criteria can be
##specified

max.EMCycle=200
converge=.01

##Estimate the item parameters
CRM <- EstCRMitem(EPIA, max.item, min.item, max.EMCycle, converge)
CRM

##Other details

CRM$descriptive
CRM$param
CRM$iterations
CRM$dif

##load the dataset SelfEff

data(SelfEff)

##Check the class. "data.frame" is required.

class(SelfEff)

##Define the vectors "max.item" and "min.item". The maximum possible
##score was 11 and the minimum possible score was 0 for all items

max.item <- c(11,11,11,11,11,11,11,11,11,11)
min.item <- c(0,0,0,0,0,0,0,0,0,0)

##Estimate the item parameters
CRM2 <- EstCRMitem(SelfEff, max.item, min.item, max.EMCycle=200, converge=.01)
CRM2

##Other details

CRM2$descriptive
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CRM2$param
CRM2$iterations
CRM2$dif

EstCRMperson Estimating Person Parameters for the Continuous Response Model

Description

Estimate person parameters for the Continuous Response Model(Samejima,1973)

Usage

EstCRMperson(data,ipar,min.item,max.item)

Arguments

data a data frame with N rows and m columns, with N denoting the number of sub-
jects and m denoting the number of items.

ipar a matrix with m rows and three columns, with m denoting the number of items.
The first column is the a parameters, the second column is the b parameters, and
the third column is the alpha parameters

min.item a vector of length m indicating the minimum possible score for each item.

max.item a vector of length m indicating the maximum possible score for each item.

Details

Samejima(1973) derived the closed formula for the maximum likelihood estimate (MLE) of the per-
son parameters (ability levels) under Continuous Response Model. Given that the item parameters
are known, the parameter for person i (ability level) can be estimated from the following equation:

MLE(θi) =

∑m
j=1[a2j (bj +

zij
αj

)]∑m
j=1 α

2
j

As suggested in Ferrando (2002), the ability level estimates are re-scaled once they are obtained
from the equation above. So, the mean and the variance of the sample estimates equal those of the
latent distribution on which the estimation is based.

Samejima (1973) also derived that the item information is equal to:

I(θi) = a2

So, the item information is constant along the theta continuum in the Continuous Response Model.

The asymptotic standard error of the MLE ability level estimate is the square root of the reciprocal
of the total test information:



EstCRMperson 11

SE(θ̂i) =

√
1∑m
j=1 a

2
j

In the Continuous Response Model, the standard error of the ability estimate is same for all ex-
aminees unless an examinee has missing data. If the examinee has missing data, the ability level
estimate and its standard error is obtained from the available item scores.

Value

EstCRMperson() returns an object of class "CRMtheta". An object of class "CRMtheta" contains
the following component:

thetas a three column matrix, the first column is the examinee ID, the second column
is the re-scaled theta estimate, the third column is the standard error of the theta
estimate.

Note

See the examples of simCRM for an R code that runs a simulation to examine the recovery of person
parameter estimates by EstCRMperson.

Author(s)

Cengiz Zopluoglu

References

Ferrando, P.J.(2002). Theoretical and Empirical Comparison between Two Models for Continuous
Item Responses. Multivariate Behavioral Research, 37(4), 521-542.

Samejima, F.(1973). Homogeneous Case of the Continuous Response Model. Psychometrika,
38(2), 203-219.

Wang, T. & Zeng, L.(1998). Item Parameter Estimation for a Continuous Response Model Using
an EM Algorithm. Applied Psychological Measurement, 22(4), 333-343.

See Also

EstCRMitem for estimating item parameters, fitCRM for computing item-fit residual statistics and
drawing empirical 3D item category response curves, plotCRM for drawing theoretical 3D item
category response curves, simCRM for generating data under CRM.

Examples

#Load the dataset EPIA

data(EPIA)



12 fitCRM

##Define the vectors "max.item" and "min.item". The maximum possible
##score was 112 and the minimum possible score was 0 for all items
max.item <- c(112,112,112,112,112)
min.item <- c(0,0,0,0,0)

##Estimate item parameeters
CRM <- EstCRMitem(EPIA, max.item, min.item, max.EMCycle = 500, converge = 0.01)
par <- CRM$param

##Estimate the person parameters

CRMthetas <- EstCRMperson(EPIA,par,min.item,max.item)
theta.par <- CRMthetas$thetas
theta.par

#Load the dataset SelfEff
data(SelfEff)

##Define the vectors "max.item" and "min.item". The maximum possible
##score was 11 and the minimum possible score was 0 for all items

max.item <- c(11,11,11,11,11,11,11,11,11,11)
min.item <- c(0,0,0,0,0,0,0,0,0,0)

##Estimate the item parameters
CRM2 <- EstCRMitem(SelfEff, max.item, min.item, max.EMCycle=200, converge=.01)
par2 <- CRM2$param

##Estimate the person parameters

CRMthetas2 <- EstCRMperson(SelfEff,par2,min.item,max.item)
theta.par2 <- CRMthetas2$thetas
theta.par2

fitCRM Compute item fit residual statistics for the Continuous Response Model

Description

Compute item fit residual statistics for the Continuous Response Model as described in Ferrando
(2002)

Usage

fitCRM(data, ipar, est.thetas, max.item,group)
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Arguments

data a data frame with N rows and m columns, with N denoting the number of sub-
jects and m denoting the number of items.

ipar a matrix with m rows and three columns, with m denoting the number of items.
The first column is the a parameters, the second column is the b parameters, and
the third column is the alpha parameters

est.thetas object of class "CRMtheta" obtained by using EstCRMperson()

max.item a vector of length m indicating the maximum possible score for each item.

group an integer, number of ability groups to compute item fit residual statistics. De-
fault 20.

Details

The function computes the item fit residual statistics as decribed in Ferrando (2002). The steps in
the procedure are as the following:

1- Re-scaled θ estimates are obtained.

2- θ estimates are sorted and assigned to k intervals on the θ continuum.

3- The mean item score X̄mk is computed in each interval for each of the items.

4- The expected item score and the conditional variance in each interval are obtained with the item
parameter estimates and taking the median theta estimate for the interval.

5- An approximate standardized residual for item m at ability interval k is obtained as:

zmk =
X̄mk − E(Xm|θk)√

σ2(Xm|θk)
Nk

Value

fit.stat a data frame with k rows and m+1 columns with k denoting the number of ability
intervals and m denoting the number of items. The first column is the ability in-
terval. Other elements are the standardized residuals of item m in ability interval
k.

emp.irf a list of length m with m denoting the number of items. Each element is a
3D plot representing the item category response curve based on the empirical
probabilities. See examples below.

Author(s)

Cengiz Zopluoglu

References

Ferrando, P.J.(2002). Theoretical and Empirical Comparison between Two Models for Continuous
Item Responses. Multivariate Behavioral Research, 37(4), 521-542.
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See Also

EstCRMperson for estimating person parameters, EstCRMitem for estimating item parameters plotCRM
for drawing theoretical 3D item category response curves, simCRM for generating data under CRM.

Examples

##load the dataset EPIA

data(EPIA)

##Due to the run time issues for examples during the package building
##I had to reduce the run time. So, I run the fit analysis for a subset
##of the whole data, the first 100 examinees. You can ignore the
##following line and just run the analysis for the whole dataset.
##Normally, it is not a good idea to run the analysis for a 100
##subjects

EPIA <- EPIA[1:100,] #Please ignore this line

##Define the vectors "max.item" and "min.item". The maximum possible
##score was 112 and the minimum possible score was 0 for all items

max.item <- c(112,112,112,112,112)
min.item <- c(0,0,0,0,0)

##Estimate item parameters

CRM <- EstCRMitem(EPIA, max.item, min.item, max.EMCycle = 500, converge = 0.01)
par <- CRM$param

##Estimate the person parameters

CRMthetas <- EstCRMperson(EPIA,par,min.item,max.item)

##Compute the item fit residual statistics and empirical item category
##response curves

fit <- fitCRM(EPIA, par, CRMthetas, max.item,group=10)

##Item-fit residual statistics

fit$fit.stat

##Empirical item category response curves
fit$emp.irf[[1]] #Item 1

plotCRM Draw Three-Dimensional Item Category Response Curves
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Description

This function draws the 3D item category response curves given the item parameter matrix and
the maximum and minimum possible values that examinees can get as a score for the item. This
3D representation is an extension of 2D item category response curves in binary and polytomous
IRT models. Due to the fact that there are many possible response categories, another dimension is
drawn for the response categories in the 3D representation.

Usage

plotCRM(ipar, item, min.item, max.item)

Arguments

ipar a matrix with m rows and three columns, with m denoting the number of items.
The first column is the a parameters, the second column is the b parameters, and
the third column is the alpha parameters

item item number, an integer between 1 and m with m denoting the number of items

min.item a vector of length m indicating the minimum possible score for each item.

max.item a vector of length m indicating the maximum possible score for each item.

Value

irf a 3D theoretical item category response curves

Author(s)

Cengiz Zopluoglu

See Also

EstCRMitem for estimating item parameters, EstCRMperson for estimating person parameters, fitCRM
for computing item-fit residual statistics and drawing empirical 3D item category response curves,
simCRM for generating data under CRM.

Examples

##load the dataset EPIA

data(EPIA)

##Define the vectors "max.item" and "min.item". The maximum possible
##score was 112 and the minimum possible score was 0 for all items

min.item <- c(0,0,0,0,0)
max.item <- c(112,112,112,112,112)

##Estimate item parameters
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CRM <- EstCRMitem(EPIA, max.item, min.item, max.EMCycle = 500, converge = 0.01)
par <- CRM$param

##Draw theoretical item category response curves for Item 2
plotCRM(par,2,min.item, max.item)

print.CRM Summary output for the object of class CRM

Description

Print the output for the object of class CRM

Usage

## S3 method for class 'CRM'
print(x, ...)

Arguments

x an object of class CRM obtained from EstCRMitem

... More options to pass to summary and print

Value

The summary output includes the information from the last EM Cycle, final parameter estimates,
and the descriptive statistics of the original data and the transformed data.

SelfEff Teaching Self Efficacy Scale

Description

The data came from a published study and was kindly provided by Dr. Adnan Kan. A group of 307
pre-service teachers graduated from various departments in the college of education were asked to
check on a 11 cm line segment with two end points (can not do at all, highly certain can do) using
their own judgement for the 10 items that measure teacher self-efficacy on different activities. The
direct item score was the distance in cm of the check mark from the left end point (Kan, 2009).

Usage

data(SelfEff)
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Format

A data frame with 307 observations on the following 10 items.

Item1 Implementing variety of teaching strategies

Item2 Creating learning environments for the effective participation of students

Item3 Providing the acquisition of learning experiences according to the students’ physical, emo-
tional, and psychomotor characteristics

Item4 Creating learning environments in which students can effectively express themselves

Item5 Implementing a variety of assessment strategies (formal, informal)

Item6 Understanding differences in students’ learning styles and providing learning opportunities
in compliance with these differences

Item7 Using teaching methods and techniques within the framework of educational plans and aims

Item8 Discovering students’ interests and skills and guiding them accordingly

Item9 Using educational technology effectively in classrooms to support teaching

Item10 Designing and implementing educational variables such as motivation, reinforcement, feed-
back, etc.

Source

Kan, A.(2009). Effect of scale response format on psychometric properties in teaching self-efficacy.
Euroasian Journal of Educational Research, 34, 215-228.

References

Kan, A.(2009). Effect of scale response format on psychometric properties in teaching self-efficacy.
Euroasian Journal of Educational Research, 34, 215-228.

simCRM Generating Data under the Continuous Response Model

Description

Generating data under the Continuous Response Model

Usage

simCRM(thetas, true.param, max.item)



18 simCRM

Arguments

thetas a vector of length N with N denoting the number of examinees. Each element
of the vector is the true ability level for an examinee

true.param a matrix of true item parameters with m rows and three columns, with m denoting
the number of items. The first column is the a parameters, the second column is
the b parameters, and the third column is the alpha parameters

max.item a vector of length m indicating the maximum possible score for each hypotheti-
cal item.

Details

The simCRM generates data under Continuous Response Model as described in Shojima(2005).
Given the true ability level for person i and the true item parameters for item j, the transformed
response zij of person i for item j follows a normal distribution with a mean of αj(θi − βj) and a

standard deviation of
α2
j

a2
j

.

Value

a data frame with N rows and m columns with N denoting the number of observations and m
denoting the number of items.

Author(s)

Cengiz Zopluoglu

References

Shojima, K.(2005). A Noniterative Item Parameter Solution in Each EM Cycyle of the Continuous
Response Model. Educational Technology Research, 28, 11-22.

See Also

EstCRMitem for estimating item parameters, EstCRMperson for estimating person parameters, fitCRM
for computing item-fit statistics and drawing empirical 3D item response curves, plotCRM for draw-
ing theoretical 3D item category response curves,

Examples

#####################################################
# Example 1: #
# Basic data generation and parameter recovery #
#####################################################

#Generate true person ability parameters for 1000 examinees from
#a standard normal distribution

true.thetas <- rnorm(1000,0,1)
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#Generate the true item parameter matrix for the hypothetical items

true.par <- matrix(c(.5,1,1.5,2,2.5,
-1,-.5,0,.5,1,1,.8,1.5,.9,1.2),
nrow=5,ncol=3)
true.par

#Generate the vector maximum possible scores that students can
#get for the items

max.item <- c(30,30,30,30,30)

#Generate the response matrix

simulated.data <- simCRM(true.thetas,true.par,max.item)

#Let's examine the simulated data

head(simulated.data)
summary(simulated.data)

#Let's try to recover the item parameters

min.item <- c(0,0,0,0,0)

CRM <- EstCRMitem(simulated.data,max.item, min.item,
max.EMCycle=500,converge=0.01)

#Compare the true item parameters with the estimated item parameters.
#The first three column is the true item parameters, and the second
#three column is the estimated item parameters

cbind(true.par,CRM$param)

#Let's recover the person parameters

par <- CRM$param
CRMthetas <- EstCRMperson(simulated.data,par,min.item,max.item)
theta.par <- CRMthetas$thetas

#Compare the true person ability parameters to the estimated person
##ability parameters.The first column is the true parameters and the
##second column is the estimated parameters

thetas <- cbind(true.thetas,theta.par[,2])
head(thetas)
cor(thetas)
plot(thetas[,1],thetas[,2])

#RMSE for the estimated person parameters

sqrt(sum((thetas[,1]-thetas[,2])^2)/nrow(thetas))
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#RMSE is comparable and similar to the standard error of the
#theta estimates. Standard error of the theta estimate is the square
#root of the reciprocal of the total test information which is the sum
#of square of the "a" parameters

sqrt(1/sum(CRM$param[,1]^2))

#####################################################
# Example 2: #
# Item fit Residuals, Empirical and Theoretical #
# Item Category Response Curves for the Simulated #
# Data Above #
#####################################################

#Because of the run time issues during the package development,
#I run the fit analysis for a subset of simulated data above.
#The simulated data has 1000 examinees, but I run the fit analysis
#for the first 100 subjects of the simulated data. Please ignore the
#following line and run the analysis for whole data

simulated.data <- simulated.data[1:100,] #Ignore this line

par <- CRM$param
max.item <- c(30,30,30,30,30)
min.item <- c(0,0,0,0,0)
CRMthetas <- EstCRMperson(simulated.data,par,min.item,max.item)
theta.par <- CRMthetas$thetas
mean(theta.par[,2])
sd(theta.par[,2])
hist(theta.par[,2])

fit <- fitCRM(simulated.data,par, CRMthetas, max.item, group=10)

#Item-Fit Residuals

fit$fit.stat

#Empirical Item Category Response Curves
fit$emp.irf[[1]] #Item 1
fit$emp.irf[[5]] #Item 5

#Theoretical Item Category Response Curves
plotCRM(par,1,min.item, max.item) #Item 1

#####################################################
# Example 3: #
# The replication of Shojima's simulation study #
# 2005 #
#####################################################

#In Shojima's simulation study published in 2005
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#true person parameters were generated from a standard normal distribution.
#The natural logarithm of the true "a" parameters were generated from a N(0,0.09)
#The true "b" parameters were generated from a N(0,1)
#The natural logarithm of the true "alpha" parameters were generated from a N(0,0.09)

#The independent variables were the number of items and sample size
#in the simulation study

#There were 9 different conditions and 100 replications for each condition.

#In Table 1 (Shojima,2005), the RMSD statistics were reported for each condition.

#The code below replicates the same study. The results are comparable to the Table 1.
#The user
#should only specify the sample size and the number of items. Then, the user should
#run the rest of the code.
#At the end, RMSEa, RMSEb, RMSEalp are the item parameter recovery statistics which is
#comparable to Table 1

#Set the conditions for the simulation study.
#It takes longer to run for big number of replications

N=500 #sample size
n=10 #number of items
replication=1 #number if replications for each condition

############################################################
# Run the rest of the code from START to END #
############################################################

#START

true.person <- vector("list",replication)
true.item <- vector("list",replication)
est.person <- vector("list",replication)
est.item <- vector("list",replication)
simulated.datas <- vector("list",replication)

for(i in 1:replication) {
true.person[[i]] <- rnorm(N,0,1)
true.item[[i]] <- cbind(exp(rnorm(n,0,.09)),rnorm(n,0,1),1/exp(rnorm(n,0,.09)))
}

max.item <- rep(50,n)
min.item <- rep(0,n)

for(i in 1:replication) {
simulated.datas[[i]] <- simCRM(true.person[[i]],true.item[[i]],max.item)
}

for(i in 1:replication) {



22 simCRM

CRM<-EstCRMitem(simulated.datas[[i]],max.item,min.item,max.EMCycle= 500,converge=0.01)
est.item[[i]]=CRM$par
}
for(i in 1:replication) {
persontheta <- EstCRMperson(simulated.datas[[i]],est.item[[i]],min.item,max.item)
est.person[[i]]<- persontheta$thetas[,2]
}

#END
############################################################

#RMSE for parameter "a"

RMSEa <- c()
for(i in 1:replication) {
RMSEa[i]=sqrt(sum((true.item[[i]][,1]-est.item[[i]][,1])^2)/n)
}

mean(RMSEa)

#RMSE for parameter "b"

RMSEb <- c()
for(i in 1:replication) {
RMSEb[i]=sqrt(sum((true.item[[i]][,2]-est.item[[i]][,2])^2)/n)
}

mean(RMSEb)

#RMSE for parameter "alpha"
RMSEalp <- c()
for(i in 1:replication) {
RMSEalp[i]=sqrt(sum((true.item[[i]][,3]-est.item[[i]][,3])^2)/n)
}

mean(RMSEalp)

#RMSE for person parameter

RMSEtheta <- c()
for(i in 1:replication) {
RMSEtheta[i]=sqrt(sum((true.person[[i]]-est.person[[i]])^2)/N)
}

mean(RMSEtheta)



Index

∗Topic package
EstCRM, 4

bootCRM, 2

EPIA, 4
EstCRM, 4
EstCRMitem, 3, 5, 6, 11, 14, 15, 18
EstCRMperson, 3, 5, 8, 10, 14, 15, 18

fitCRM, 3, 5, 8, 11, 12, 15, 18

plotCRM, 3, 5, 8, 11, 14, 14, 18
print.CRM, 16

SelfEff, 16
simCRM, 5, 8, 11, 14, 15, 17

23


	bootCRM
	EPIA
	EstCRM
	EstCRMitem
	EstCRMperson
	fitCRM
	plotCRM
	print.CRM
	SelfEff
	simCRM
	Index

