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1 Introduction
Observational studies are prone to bias, but unfortunately this bias is often brushed aside with a single
comment in the discussion of a paper and is never quantified. Elsewhere we have proposed using negative
controls (exposure-outcome pairs where the true relative risk is believed to be one) to produce an empirical
bias distribution, and subsequently calibrate p-values. Here we extend this approach to calibrated confidence
intervals (CIs). However, this requires us to specify how systematic error changes with true effect size. We
currently support two approaches:

The first is for the researcher to specify an assumption, for example to specify that systematic error doesn’t
change as a function of true effect size. Although this is likely to be correct in many instances, if an estimation
method is for example biased towards the null the assumption will be violated, and the calibrated confidence
intervals will have a lower than nominal coverage.

The second approach is to us positive controls to empirically derive how systematic error changes with true
effect size. Since real positive controls are problematic, we typically generate synthetic positive controls by
injection additional (simulated) outcomes on top of negative controls.

In this document we use an example study to illustrate how CIs can be calibrated using the
EmpiricalCalibration R package. In the example, we have replicated a previously published new-
user cohort study comparing dabigatran to warfarin for the risk of GI bleeding. The study does not apply
any adjustment for confounding.

The results from this study are available in the package, and can be loaded using the data() command:
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data(southworthReplication)

The estimate for the outcome of interest can in this dataset be identified because trueLogRr is NA:
outcomeOfInterest <- southworthReplication[is.na(southworthReplication$trueLogRr), ]
outcomeOfInterest

## outcomeName trueLogRr logRr seLogRr
## 1 GiBleed NA -0.3575234 0.06668903
computeTraditionalCi(outcomeOfInterest$logRr, outcomeOfInterest$seLogRr)

## rr lb ub
## 1 0.6994063 0.6137108 0.797068

Here we see that the effect estimate for GI bleed for dabigatran versus warfarin is 0.7, with a very tight CI.

2 Negative controls
Negative controls are drug-outcome pairs where we believe the drug does not cause (or prevent) the outcome.
In other words, we believe the true effect size to be a relative risk of 1. We would prefer our negative controls
to have some resemblance with out hypothesis of interest (in our example dabigatran vs warfarin and GI
bleed), and we therefore typically pick negative controls where the outcome is the same (exposure controls), or
the exposure is the same (outcome controls). In this example, we have opted for outcome controls, and have
identified a set of outcomes not believed to be caused by either dabigatran or warfarin. We have executed
exactly the same analysis for these outcomes, resulting in a set of effect size estimates, one per negative
control:
negatives <- southworthReplication[southworthReplication$trueLogRr == 0 &

!is.na(southworthReplication$trueLogRr), ]
head(negatives)

## outcomeName trueLogRr logRr seLogRr
## 4 Neck pain 0 -0.10015508 0.05005106
## 6 Curvature of spine 0 0.01854604 0.08024194
## 10 Dislocation of joint 0 -0.14348342 0.11084576
## 14 Peripheral vertigo 0 -0.03627483 0.08998388
## 21 Effusion of joint 0 -0.20650211 0.06302084
## 25 Urinary tract infectious disease 0 -0.25308826 0.03858693

3 Positive controls
Positive controls are drug-outcome pairs where we believe the drug does cause (or prevent) the outcome. In
this case we have generated synthetic positive controls with various true effect sizes. Similar to the negative
controls we have executed exactly the same analysis for these outcomes, resulting in a set of effect size
estimates, one per positive control:
data(southworthReplication)
positives <- southworthReplication[southworthReplication$trueLogRr != 0 &

!is.na(southworthReplication$trueLogRr), ]
head(positives)

## outcomeName trueLogRr logRr seLogRr
## 2 Neck pain 1.3862944 1.1466961 0.03324708
## 3 Neck pain 0.6931472 0.5539283 0.03959980
## 5 Neck pain 0.4054651 0.2888025 0.04344616
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## 7 Curvature of spine 1.3862944 1.3519970 0.05327228
## 8 Curvature of spine 0.6931472 0.6918903 0.06357177
## 9 Curvature of spine 0.4054651 0.4272736 0.06932738

3.1 Plot control effect sizes
We can start by creating a forest plot of our controls:
controls <- southworthReplication[!is.na(southworthReplication$trueLogRr), ]
plotTrueAndObserved(controls$logRr, controls$seLogRr, controls$trueLogRr)

0.25 0.5 1 2 4 6 8 10

The thick black lines indicate the true effect size, and the blue and orange dots and lines represent the effect
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size estimate and 95% confidence intervals of the controls. We see that many controls have a confidence
interval that does not include the true effect size (orange lines), certainly more than the expected 5%. This
indicates the analysis has systematic error.

4 Systematic error model
4.1 Fitting the empirical null, and specifying an assumption
If we only have negative controls and no positive controls, we might still want to calibrate CIs. This requires
us to make an assumption how systematic error changes as a function of the true effect size. The most
obvious (and therefore default) assumption is that the systematic error does not change as a function of true
effect size. We can fit the empirical null distribution, and convert it to a systematic error model:
null <- fitNull(negatives$logRr, negatives$seLogRr)
model <- convertNullToErrorModel(null)

See ?convertNullToErrorModel for how to use a different assumption.

4.2 Fitting the systematic error model using positive controls
If we do have positive controls, like in this example, we do not have to make an assumption, but instead can
estimate the full systematic error model using the estimates for both negative and positive controls:
model <- fitSystematicErrorModel(controls$logRr, controls$seLogRr, controls$trueLogRr)
model

## meanIntercept meanSlope sdIntercept sdSlope
## -0.066550795 0.933292141 0.187468405 0.002979502
## attr(,"class")
## [1] "systematicErrorModel"

We see that the intercept of the mean (meanIntercept) is slightly lower than 0, indicating the analysis is
negatively biased when the null is true. Also note that the slope for the mean (meanSlope) is slightly lower
than 1, meaning that the method appears to be somewhat biased towards the null; the negative bias tends to
become larger as the true effect size increases.

We can also visualize the model:
plotErrorModel(controls$logRr, controls$seLogRr, controls$trueLogRr)
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Here we see how systematic error changes as a function of the true effect size. As visible, the model assumes
the mean and standard deviation (SD) of the error distribution are linearly related to the true effect size. For
this plot, the mean and SD are also estimated at each true effect size independently, allowing us to evaluate
whether the linearity assumption is far off.

There is also another way to plot the error model, and its subsequent calibration:
plotCiCalibrationEffect(controls$logRr, controls$seLogRr, controls$trueLogRr)
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4.3 Evaluating the calibration
To evaluate whether our estimation of the systematic error distribution is a good one, we can test whether
the calibrated CI is truly calibrated, meaning the fraction of controls where truth is inside the calibrated CI
is approximately the specified width of the CI. We also evaluate ‘centeredness’, whether truth outside of the
CI is equally distributed above and below the CI:
plotCiCoverage(controls$logRr,

controls$seLogRr,
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controls$trueLogRr,
crossValidationGroup = controls$outcomeName)

## Fitting error models within leave-one-out cross-validation
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The data shown here is produced using a leave-one-out cross-validation. It is important to remember that for
this dataset positive controls were generated based on negative controls and will therefore be correlated. To
perform an unbiased evaluation the ‘one’ in the leave-one-out should therefore be the group of a negative
control and its derived positive controls, and this is achieved by specifying the crossValidationGroup
argument. Thus, in this evaluation for each negative control and the positive controls derived from that
negative control, we fit systematic error models using all other controls, and compute calibrated CIs for the
left-out controls across a wide range of widths.

In the graph the dashed lines indicate a perfectly calibrated study. We see that the calibrated CIs are much
closer to the ideal than the uncalibrated CIs.

5 Confidence interval calibration
5.1 Calibrating the confidence interval
We can now use the estimated systematic error model to compute the calibrated CI for our outcome of
interest:
ci <- calibrateConfidenceInterval(outcomeOfInterest$logRr, outcomeOfInterest$seLogRr, model)
ci

## logRr logLb95Rr logUb95Rr seLogRr
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## 1 -0.3117702 -0.733957 0.1067054 0.2144587
exp(ci[,1:3])

## logRr logLb95Rr logUb95Rr
## 1 0.7321498 0.4800058 1.112606

In this case, even though the point estimate has not changed much, the calibrated CI is much wider than the
uncalibrated one to take in to account the residual error due to lack of any adjustment for confounding.

6 References

citation("EmpiricalCalibration")

##
## To cite EmpiricalCalibration in publications use:
##
## Schuemie MJ, Ryan PB, DuMouchel W, Suchard MA, Madigan D (2014).
## "Interpreting observational studies: why empirical calibration is
## needed to correct p-values." _Statistics in Medicine_, *33*(2),
## 209-218. <URL: http://dx.doi.org/10.1002/sim.5925>.
##
## Schuemie MJ, Hripcsak G, Ryan PB, Madigan D, Suchard MA (2018).
## "Empirical confidence interval calibration for population-level effect
## estimation studies in observational healthcare data." _Proc. Natl.
## Acad. Sci. U.S.A._, *115*(11), 2571-2577. <URL:
## https://doi.org/10.1073/pnas.1708282114>.
##
## To see these entries in BibTeX format, use 'print(<citation>,
## bibtex=TRUE)', 'toBibtex(.)', or set
## 'options(citation.bibtex.max=999)'.
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