
ElstonStewart package vignette

Version 1.0

Hervé Perdry

June 9, 2014

1 Introduction

The Elston-Stewart algorithm allows to compute probability functions in pedigrees.

Consider individuals indexed by i = 1, 2, . . . , with genotype Gi and phenotype Xi. The set of possible
genotypes for individual i is gi and the phenotype is xi. The algorithm allows to compute probabilities of
the form

Pθ

(⋂
i

(Gi ∈ gi, Xi = xi)

)
.

It needs the specification of a model, consisting in

1. genotype probabilities for founder Pθ(G = g)

2. genotype transition probabilities from parents to offspring

Pθ(Gof = gof|Gfa = gfa, Gmo = gmo)

3. phenotype probabilities, conditional to genotype Pθ(X = x|G = g).

This package implements Elston-Stewart algorithm, including for pedigrees with imbreding, allowing the
user to specify the model of her choice. It uses memoization (aka known as dynamic programming), allows
vectorization, and, when various pedigrees are considered at the same time, allows parallel computing.

2 An example model

The functions Elston and Likelihood have a parameter model, which is a list specifying the model. Its
composnents are

� name: the model name, used in the memoization: if you use different models, be sure to give them
different names

1

� proba.g: a function giving genotypes probabilities

� trans: a function giving transition probabilities from parent to offspring

� p.pheno: a function giving phenotype probabilities, conditional to genotype

The package provides an example model, model.di which can be a template for other models. It’s a model
for a di-allelic loci, the genotypes being coded additively (0, 1, 2 according to the number of the alternate
allele). Let’s examine the model components.

modele.di$proba.g gives Hardy-Weinberg probabilities, using theta$p which is the reference allele fre-
quency:

> modele.di$proba.g

function (g, theta)

{

if (g == 0)

return(theta$p^2)

if (g == 1)

return(2 * theta$p * (1 - theta$p))

if (g == 2)

return((1 - theta$p)^2)

stop("Unknown Genotype")

}

<environment: namespace:ElstonStewart>

modele.di$trans gives transition probabilities, according to Mendel’s rules:

> modele.di$trans

function (of, fa, mo)

{

if (fa == 0) {

if (mo == 0 & of == 0)

return(1)

if (mo == 1 & (of == 0 | of == 1))

return(0.5)

if (mo == 2 & of == 1)

return(1)

}

if (fa == 1) {

if (mo == 0 & (of == 0 | of == 1))

return(0.5)

if (mo == 1 & (of == 0 | of == 2))

return(0.25)

if (mo == 1 & of == 1)

return(0.5)

if (mo == 2 & (of == 1 | of == 2))

return(0.5)

}

if (fa == 2) {

if (mo == 0 & of == 1)

return(1)

if (mo == 1 & (of == 1 | of == 2))

return(0.5)

if (mo == 2 & of == 2)

return(1)

}

return(0)

}

<environment: namespace:ElstonStewart>

In this model, the phenotype will be ignored. More general functions can use any component of theta:

> modele.di$p.pheno

function (x, g, theta)

1

<environment: namespace:ElstonStewart>

3 Example: probabilities for an imbred pedigree

This is the pedigree of Conrad II, Holy Roman Emperor. The names on this pedigree appear in french.

Conrad II du
Saint-Empire

Henri de Franconie Adelaïde d’Alsace

Gérard de
Metz

Ève de Luxembourg

Sigefroid
de Luxembourg

Hedwige

Eberhard IV
de Nordgau

Luitgarde

Wigéric
de Bidgau

Cunégonde
de France Ricuin de Verdun

Ermentrude

Louis II
le bègue

Ansgarde
de Bourgogne

Gothelon

Othon

Judith de Bavière

Henri de
Bavière

1 2

3 4

5 6 7

8 9 10 11

12

13
14 15

16 17 18 19

20 21

22

Conrad has an imbreding coefficient f = 1/64. For example, his probability to have a recessive disease due
to a mutation with frequency q = 0.02 is (1− f)q2 + fq = 0.00070625, to be compared with q2 = 0, 0004 for
non-imbred individuals.

The data set conrad2 provides the pedigree structure.

> data(conrad2)

> conrad2

id father mother sex

1 1 0 0 2

2 2 0 0 1

3 3 2 1 2

4 4 0 0 1

5 5 0 0 1

6 6 4 3 2

7 7 0 0 1

8 8 0 0 2

9 9 5 6 1

10 10 5 6 2

11 11 0 0 1

12 12 0 0 2

13 13 9 8 1

14 14 11 10 2

15 15 7 6 1

16 16 13 12 2

17 17 0 0 1

18 18 11 10 1

19 19 15 14 2

20 20 17 16 1

21 21 18 19 2

22 22 20 21 1

3.1 A computation with modele.di

Creation of an es.pedigree object with genotype = 2 for Conrad, and 0, 1 or 2 for all other members of the
family.

> genotypes <- c(rep(list(0:2), 21), 2)

> X <- es.pedigree(id = conrad2$id, father = conrad2$father, mother = conrad2$mother,

+ sex = conrad2$sex, pheno = rep(0, 22), geno = genotypes)

> X

An es.pedigree object with 22 individuals

We can plot it.

> plot(X)

2 1

4 3

5 6 7

9 8 11 10 15

13 12 15 14 18

17 16 18 19

20 21

22

And we can compute the probability of this pedigree

> r <- Elston(X, modele.di, list(p = 0.98))

> r$result

[1] 0.00070625

The second component of r is an environment, containing intermediate results of the computation. Providing
it to Elston as parameter mem will speed up subsequent computations, even with a different parameter p.

> # using the memoization...

> system.time(r <- Elston(X, modele.di, list(p = 0.98)))

user system elapsed

0.939 0.000 0.941

> system.time(r <- Elston(X, modele.di, list(p = 0.98), r$mem))

user system elapsed

0.001 0.000 0.001

> system.time(r <- Elston(X, modele.di, list(p = 0.99), r$mem))

user system elapsed

0.636 0.007 0.646

3.2 A computation with a model for recessive diseases

We create a model for recessive traits:

> modele.rec <- list(name = "recessive", proba.g = modele.di$proba.g,

+ trans = modele.di$trans,

+ p.pheno = function(x, g, theta)

+ ifelse(is.na(x) | (x == 1 & g == 2) | (x == 0 & g < 2) , 1, 0)

+)

Setting all genotypes to unknown, we can compute the probability for Conrad II to have the recessive
phenotype:

> genotypes <- rep(list(0:2), 22)

> X <- es.pedigree(id = conrad2$id, father = conrad2$father, mother = conrad2$mother,

+ sex = conrad2$sex, pheno = c(rep(NA, 21), 1), geno = genotypes)

> r <- Elston(X, modele.rec, list(p = 0.98), r$mem)

> r$result

[1] 0.00070625

An other interesting result is the probability of disease for Conrad II, knowing that no other individuals in
the pedigree is diseased:

> X <- es.pedigree(id = conrad2$id, father = conrad2$father, mother = conrad2$mother,

+ sex = conrad2$sex, pheno = c(rep(0, 21), 1), geno = genotypes)

> r <- Elston(X, modele.rec, list(p = 0.98), r$mem)

> r$result

[1] 0.0004563312

This could have been computed with model.di too, setting the possible genotypes to the appropriate values:

> genotypes <- c(rep(list(0:1), 21), 2)

> X <- es.pedigree(id = conrad2$id, father = conrad2$father, mother = conrad2$mother,

+ sex = conrad2$sex, pheno = rep(0, 22), geno = genotypes)

> r <- Elston(X, modele.di, list(p = 0.98), r$mem)

> r$result

[1] 0.0004563312

4 Example: likelihood maximization for a set of pedigrees

The data frame fams contains 50 pedigrees. The genotypes for a di-allelic locus are known only for a subset
of individuals.

> data(fams)

> head(fams,15)

fam id father mother sex genotype

1 1 1 0 0 1 NA

2 1 2 0 0 2 NA

3 1 3 1 2 2 NA

4 1 4 0 0 1 NA

5 1 9 4 3 2 2

6 1 10 0 0 1 NA

7 1 11 4 3 2 NA

8 1 12 0 0 1 2

9 1 19 10 9 2 2

10 1 22 12 11 2 1

11 1 24 12 11 2 1

12 1 25 1 2 1 NA

13 1 26 0 0 2 NA

14 1 27 25 26 1 1

15 1 33 25 26 2 0

We will estimate the allele frequencies in this locus by likelihood maximization. We start by creating a list
of es.pedigree objects.

> fam.ids <- unique(fams$fam);

> # creating a list of genotypes corresponding to individuals in fam.ids

> # genotype is NA -> 0, 1 or 2

> genotypes <- lapply(fams$genotype, function(x) if(is.na(x)) 0:2 else x)

> X <- vector("list", length(fam.ids))

> for(i in seq_along(fam.ids))

+ {

+ w <- which(fams$fam == fam.ids[i])

+ X[[i]] <- es.pedigree(id = fams$id[w], father = fams$father[w],

+ mother = fams$mother[w], sex = fams$sex[w], pheno = rep(0, length(w)),

+ geno = genotypes[w], famid = fam.ids[i])

+ }

When we use the function Likelihood, we don’t have to take care of memoization anymore.

> # computing the log-likelihood for a single value p

> Likelihood(X, modele.di, theta = list(p=0.5), n.cores=1)

[1] -303.006

Vectorization is possible! With the code below, the algorithm is ran only once to compute the 501 log-
likelihoods.

> # computing the likelihood for a vector p

> p <- seq(0,1,length=501)

> L <- Likelihood(X, modele.di, theta = list(p=p), n.cores=1)

> plot(p, exp(L), type="l")

0.0 0.2 0.4 0.6 0.8 1.0

0e
+

00
4e

−
12

9
8e

−
12

9

p

ex
p(

L)

We can run an optimization algorithm. Here Elston-Stewart is ran several times, on a computation cluster
of 2 nodes. The cluster is created at first run, and left open for the next computations.

> # running an optimization algorithm

> # Elston-Stewart is ran several times

> # here we run the algorithm with 2 cores

> optimize(function(p) -Likelihood(X, modele.di, theta = list(p=p), n.cores=2) , c(0.35,0.45))

$minimum

[1] 0.389929

$objective

[1] 294.668

If you don’t need it any more, close the cluster... (you will lose the memoization, which is specific to each
cluster node).

> es.stopCluster()

stopping one cluster with 2 nodes

