Package 'EloOptimized'

September 17, 2018
Title Optimized Elo Rating Method for Obtaining Dominance Ranks
Version 0.3.0
Date 2018-09-05
Description Provides an implementation of the maximum likelihood methods for deriving Elo scores as published in Foerster, Franz et al. (2016) <doi:10.1038 srep35404="">.</doi:10.1038>
Depends R (>= $3.3.0$)
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 6.1.0
Imports dplyr, reshape2, BAMMtools, tcltk, rlist, magrittr, lubridate, rlang
<pre>URL https://github.com/jtfeld/EloOptimized</pre>
BugReports https://github.com/jtfeld/EloOptimized/issues
NeedsCompilation no
Author Joseph Feldblum [aut, cre], Steffen Foerster [aut], Mathias Franz [aut]
Maintainer Joseph Feldblum < feldblum@umich.edu>
Repository CRAN
Date/Publication 2018-09-17 11:50:08 UTC
R topics documented:
chimpagg_f chimpagg_m chimppres_f chimppres_m elo.m3_lik_vect elo.model1

2 chimpagg_m

elo.model3 .																				
EloOptimized																				
eloratingfixed																				
oratingopt .																				
nba																				

Index 11

chimpagg_f

Anonymized female chimpanzee pant-grunt data from Gombe

Description

Female data from Gombe National Park, Tanzania from 1969 to 2013. Data are submissive pant-grunt vocalizations.

Usage

chimpagg_f

Format

A data frame with 1015 rows and 3 variables:

Date date of interaction

Winner winning individual

Loser losing individual

Source

Supplemental data published with Foerster, Franz et al. (2016). https://datadryad.org/resource/doi:10.5061/dryad.r4g74

chimpagg_m

Anonymized male chimpanzee pant-grunt data from Gombe

Description

Data from Gombe National Park, Tanzania from 1978 to 2011. Data are submissive pant-grunt vocalizations.

Usage

chimpagg_m

chimppres_f 3

Format

A data frame with 2741 rows and 3 variables:

Date date of interaction

Winner winning individual

Loser losing individual

Source

Supplemental data published with Foerster, Franz et al. (2016). https://datadryad.org/resource/doi:10.5061/dryad.r4g74

chimppres_f

Anonymized female chimpanzee presence data from Gombe

Description

Female presence data from Gombe National Park, Tanzania from 1969 to 2013. Presence criteria are given in Foerster, Franz et al. (2016)

Usage

```
chimppres_f
```

Format

A data frame with 44 rows and 3 variables:

id female code

start_date start date

end_date date of departure

Source

```
Supplemental data published with Foerster, Franz et al. (2016). https://datadryad.org/resource/doi:10.5061/dryad.r4g74
```

elo.m3_lik_vect

- 1	•					
ch	7	mr	าท	'n	മഠ	m
~ · · ·	_	1111	JΝ		-	'''

Anonymized male chimpanzee presence data from Gombe

Description

Male presence data from Gombe National Park, Tanzania from 1978 to 2011. Presence criteria are given in Foerster, Franz et al. (2016)

Usage

```
chimppres_m
```

Format

A data frame with 22 rows and 3 variables:

```
id male code
start_date start date
end_date date of departure
```

Source

Supplemental data published with Foerster, Franz et al. (2016). https://datadryad.org/resource/doi:10.5061/dryad.r4g74

elo.m3_lik_vect

optimize k parameter and entry Elo scores, vectorized

Description

Function to optimize k parameter and entry Elo scores

Usage

```
elo.m3_lik_vect(par, IA_data, all_ids)
```

Arguments

par list of parameters, with par[1] being log(k), and par[2:length(par)] being the

initial elo scores of individuals

IA_data list of interaction data, with columns "Date", "Winner", and "Loser" (in that

order)

all_ids list of all ids to rank

Examples

```
# for internal use
```

elo.model1 5

elo.model1	Optimize k parameter in Elo rating method	

Description

Function to optimize k parameter in Elo Rating Method

Usage

```
elo.model1(par, burn_in=100, init_elo = 1000, IA_data, all_ids, p_function = "sigmoid",
    return_likelihood = T)
```

Arguments

par	initial value of log(k)
burn_in	burn in period for establishing initial elo scores. Defaults to 100
init_elo	Initial Elo score for all individuals. Defaults to 1000
IA_data	Data frame with Date, Winner, and Loser
all_ids	list of all IDs in sample
p_function	function used to calculate probability of winning. Defaults to sinusoidal function, but use "pnorm" to use the pnorm-based method implemented in the Elo-Rating package.
return_likeliho	ood

Logical; if TRUE, returns log likelihood based on given par, if FALSE returns agonistic interactions table with elo scores based on given value of par

Examples

#for internal use

elo.model3	optimize k parameter and entry Elo scores	

Description

Function to optimize k parameter and entry Elo scores

Usage

```
elo.model3(par, IA_data, all_ids, return_likelihood = T)
```

6 EloOptimized

Arguments

par list of parameters, with par[1] being log(k), and par[2:length(par)] being the

initial elo scores of individuals

IA_data list of interaction data, with columns "Date", "Winner", and "Loser" (in that

order)

all_ids list of all ids to rank

return_likelihood

If TRUE, returns the total likelihood based on all interactions given a particular set of parameters. If FALSE, returns a table of Elo scores based on a given set

of parameters.

Examples

for internal use

EloOptimized

EloOptimized: ML fitting of Elo Scores

Description

This package implements the maximum likelihood methods for deriving Elo scores as published in Foerster, Franz et al. (2016). Chimpanzee females queue but males compete for social status. Scientific Reports 6, 35404, doi:10.1038/srep35404

Primary functions

- eloratingopt: main function
- eloratingfixed: traditional Elo scores function
- elo.model1: internal function for fitting model type 1
- elo.model3: internal function for fitting model type 3
- elo.m3_lik_vect: vectorized internal function for fitting mod type 3

Plans for future development

- Make package more modular, with a more flexible wrapper function.
- Option to specify K during burn-in period when fitting only K
- · Add additional example data
- · Create vignette, other package doohickies
- Add additional user control of the optimization procedure, allowing for specification of the burn in period, optimization algorithm, and initial values for optimization.
- Add functionality to plot Elo trajectories from within package.

elorating fixed 7

eloratingfixed	Create daily elo ranks and multiple derivatives with user-defined parameter values

Description

Conducts traditional elo rating analyses using specified K value and outputs raw, normalized, cardinal, and categorical ranks as a list object in R or in an output file. For optimized Elo parameters, use eloratingopt.

Usage

```
eloratingfixed(agon_data, pres_data, k = 100, init_elo = 1000, outputfile = NULL,
  returnR = TRUE, p_function = "sigmoid")
```

Arguments

agon_data	Input data frame with dominance interactions, should only contain Date, Winner, Loser. Date should be formatted as MONTH/DAY/YEAR, or already as Date class.
pres_data	Input data frame with columns "id", "start_date" and "end_date". Date columns should be formatted as MONTH/DAY/YEAR, or already as Date class. If all IDs are present the whole time, you ignore this and a pres_data table will be automatically generated.
k	Specified value of the k parameter, default is 100
init_elo	The starting Elo value for all individuals, default is 1000
outputfile	Name of csv file to save ranks to. Default is NULL, in which case the function will only return a table in R. If you supply an output file name the function will save the results as a csv file in your working directory.
returnR	whether to return an R object from the function call. Default is TRUE
p_function	function defining probability of winning. Default "sigmoid" is equation (1) from Foerster, Franz et al 2016. Use "pnorm" to use the pnorm-based method implemented in the EloRating package.

Details

This function accepts a data frame of date-stamped dominance interactions and (optionally) a data frame of start and end dates for each individual to be ranked, and outputs daily Elo scores with parameters specified by the user. The default function used to determine probability of winning is equation (1) from Foerster, Franz et al. 2016, but for ease of comparison with the EloRating package, we also added the option to use the pnorm-based method implemented in the EloRating package, and future development will add the option to use the original function from Elo 1978 (as implemented in the elo package). This function does not require large presence matrices, and efficiently calculates a series of additional indices (described below).

8 eloratingopt

As opposed to the eloratingopt function, this procedure only requires that included individuals have at least one win *or* one loss.

A detailed description of the function output is given in the **Value** section of this help file:

Value

Returns a list with six elements:

- elo Data frame with all IDs and dates they were present, with the following columns:
 - Date: Dates of study period
 - Individual: the names of each ranked individual, for each date they were present
 - Elo: fitted Elo scores for each individual on each day
 - EloOrdinal: Daily ordinal rank based on Elo scores
 - EloScaled: Daily Elo scores rescaled between 0 and 1 according to ([individual Elo] min([daily Elo scores
 - ExpNumBeaten: expected number of individuals in the group beaten, which is the sum of winning probabilities based on relative Elo scores of an individual and all others, following equation (4) in Foerster, Franz et al. 2016
 - EloCardinal: ExpNumBeaten values rescaled as a percentage of the total number of ranked individuals present in the group on the day of ranking. We encourage the use of this measure.
 - JenksEloCardinal: Categorical rank (high, mid, or low) using the Jenks natural breaks classification method implemented in the R package BAMMtools. See getJenksBreaks
- k User-defined value of the k parameter
- init_elo User-defined initial Elo score when individuals enter the hierarchy
- pred_accuracy Proportion of correctly predicted interactions
- logL The overall log-likelihood of the observed data given the user-supplied parameter values based on winning probabilities (as calculated in equation (1) of Foerster, Franz et al 2016) for all interactions

Examples

```
nbadata = EloOptimized::nba #nba wins and losses from the 1995-96 season
nbaelo = eloratingfixed(agon_data = nbadata)
# generates traditional Elo scores (with init_elo = 1000 & k = 100) and saves
# them as "nbaelo"
```

eloratingopt

Create daily ML fitted Elo ranks and multiple derivatives

Description

Conducts **optimized** elo rating analyses as per Foerster, Franz et al and outputs raw, normalized, cardinal, and categorical ranks as a list object in R or in an output file. For non-optimized Elo score calculation, use **eloratingfixed**.

eloratingopt 9

Usage

```
eloratingopt(agon_data, pres_data, fit_init_elo = FALSE, outputfile = NULL,
    returnR = TRUE)
```

Arguments

agon_data	Input data frame with dominance interactions, should only contain Date, Winner, Loser. Date should be formatted as MONTH/DAY/YEAR, or already as Date class.
pres_data	Input data frame with columns "id", "start_date" and "end_date". Date columns should be formatted as MONTH/DAY/YEAR, or already as Date class. If all IDs are present the whole time, you can ignore this and a pres_data table will be automatically generated.
fit_init_elo	If FALSE (the default), fits only the K parameter, with a default starting Elo score of 1000 for each individual. If TRUE, fits K and starting Elo for each individual. The latter option is <i>much</i> slower.
outputfile	Name of csv file to save ranks to. Default is NULL, in which case the function will only return a table in R. If you supply an output file name the function will save the results as a csv file in your working directory.
returnR	whether to return an R object from the function call. Default is TRUE

Details

This function accepts a data frame of date-stamped dominance interactions and (optionally) a data frame of start and end dates for each individual to be ranked, and outputs daily Elo scores with K parameter, and optionally initial elo scores, fitted using a maximum likelihood approach. The optimization procedure uses the optim() function, with a burn in period of 100 interactions. We use the "Brent" method when fitting only the K parameter, and the "BFGS" method for fitting both K and initial Elo scores. See optim for more details. Future package development will add additional user control of the optimization procedure, allowing for specification of the burn in period, optimization algorithm, and initial values for optimization.

Note also that the fitting procedure requires each individual to have at least one win and one loss, so any individual that doesn't meet those criteria is automatically removed. Additionally, any instance of an individual winning against itself is cleaned from the data, and several other checks of the data are performed before the optimization procedure is run.

A detailed description of the function output is given in the **Value** section of this help file:

Value

Returns a list with five or six elements (depending on input):

- elo Data frame with all IDs and dates they were present, with the following columns:
 - Date: Dates of study period
 - Individual: the names of each ranked individual, for each date they were present
 - Elo: fitted Elo scores for each individual on each day
 - EloOrdinal: Daily ordinal rank based on Elo scores

10 nba

- EloScaled: Daily Elo scores rescaled between 0 and 1 according to ([individual Elo] - min([daily Elo scores

- ExpNumBeaten: expected number of individuals in the group beaten, which is the sum of winning probabilities based on relative Elo scores of an individual and all others, following equation (4) in Foerster, Franz et al. 2016
- EloCardinal: ExpNumBeaten values rescaled as a percentage of the total number of ranked individuals present in the group on the day of ranking. We encourage the use of this measure.
- JenksEloCardinal: Categorical rank (high, mid, or low) using the Jenks natural breaks classification method implemented in the R package BAMMtools. See getJenksBreaks
- k The maximum-likelihood fitted k parameter value
- pred_accuracy Proportion of correctly predicted interactions
- maxLogL The overall log-likelihood of the observed data given the fitted parameter values based on winning probabilities (as calculated in equation (1) of Foerster, Franz et al 2016) for all interactions
- AIC Akaike's Information Criterion value as a measure of model fit
- init_elo (Only returned if you fit initial Elo scores) initial Elo for each individual

Examples

```
nbadata = EloOptimized::nba #nba wins and losses from the 1995-96 season
nbaelo = eloratingopt(agon_data = nbadata, fit_init_elo = FALSE)
# generates optimized elo scores (optimizing only K) and saves them as "nbaelo"
```

nba

NBA games 1995-96

Description

Outcome of NBA games during the 1995-1996 regular season, adapted from a dataset from fivethirtyeight

Usage

nba

Format

A data frame with 1189 rows and 3 variables:

Date date of game
Winner winning team
Loser losing team

Source

https://github.com/fivethirtyeight/data/blob/master/nba-elo/nbaallelo.csv

Index

```
*Topic datasets
     {\tt chimpagg\_f}, {\tt 2}
     chimpagg_m, 2
     chimppres_f, 3
     chimppres_m, 4
     nba, 10
{\tt chimpagg\_f}, {\tt 2}
{\tt chimpagg\_m, 2}
chimppres\_f, \\ 3
{\tt chimppres\_m, 4}
elo.m3\_lik\_vect, 4, 6
elo.model1, 5, 6
elo.model3, 5, 6
EloOptimized, 6
EloOptimized-package (EloOptimized), 6
eloratingfixed, 6, 7, 8
eloratingopt, 6-8, 8
getJenksBreaks, 8, 10
nba, 10
{\tt optim}, {\color{red} 9}
pnorm, 5, 7
```