Contains two functions that are intended to make tuning supervised learning methods easy. The eztune function uses a genetic algorithm or Hooke-Jeeves optimizer to find the best set of tuning parameters. The user can choose the optimizer, the learning method, and if optimization will be based on accuracy obtained through validation error, cross validation, or resubstitution. The function eztune.cv will compute a cross validated error rate. The purpose of eztune_cv is to provide a cross validated accuracy or MSE when resubstitution or validation data are used for optimization because error measures from both approaches can be misleading.
Version: | 2.0.0 |
Depends: | R (≥ 3.1.0) |
Imports: | ada, e1071, GA, gbm, optimx, rpart |
Suggests: | knitr, rmarkdown, mlbench, doParallel, parallel |
Published: | 2019-06-29 |
Author: | Jill Lundell [aut, cre] |
Maintainer: | Jill Lundell <jflundell at gmail.com> |
License: | GPL-3 |
NeedsCompilation: | no |
Citation: | EZtune citation info |
CRAN checks: | EZtune results |
Reference manual: | EZtune.pdf |
Vignettes: |
EZtune |
Package source: | EZtune_2.0.0.tar.gz |
Windows binaries: | r-devel: EZtune_2.0.0.zip, r-release: EZtune_2.0.0.zip, r-oldrel: EZtune_2.0.0.zip |
macOS binaries: | r-release: EZtune_2.0.0.tgz, r-oldrel: EZtune_2.0.0.tgz |
Old sources: | EZtune archive |
Please use the canonical form https://CRAN.R-project.org/package=EZtune to link to this page.