Package 'ESGtoolkit'

June 8, 2020

Type Package Title Toolkit for Monte Carlo Simulations Version 0.2.0 Date 2020-05-29 Author Thierry Moudiki Maintainer Thierry Moudiki <thierry.moudiki@gmail.com> Description A toolkit for Monte Carlo Simulations in Finance, Economics, Insurance, Physics. Multiple simulation models can be created by combining building blocks provided in the package. License file LICENSE Depends CDVine, ggplot2, gridExtra, reshape2, ycinterextra **Imports** Rcpp(>= 0.11.0) Suggests knitr, fOptions LinkingTo Rcpp Collate 'RcppExports.R' 'fwdrates.R' 'plots.R' 'simulations.R' 'tests.R' 'tools.R' NeedsCompilation yes **Repository** CRAN RoxygenNote 7.1.0 Date/Publication 2020-06-07 23:30:02 UTC

R topics documented:

gcortest	2
gdiscountfactor	. 3
gfwdrates	4
gmartingaletest	. 6
gmccv	. 7
gmcprices	8
gplotbands	9
gplotshocks	11

esgcortest

Index																							1	20
	simdiff simshocks																							
	esgplotts .																							

esgcortest

Correlation tests for the shocks

Description

This function performs correlation tests for the shocks generated by simshocks.

Usage

```
esgcortest(
    x,
    alternative = c("two.sided", "less", "greater"),
    method = c("pearson", "kendall", "spearman"),
    conf.level = 0.95
)
```

Arguments

х	gaussian (bivariate) shocks, with correlation, generated by simshocks.
alternative	indicates the alternative hypothesis and must be one of "two.sided", "greater" or "less".
method	which correlation coefficient is to be used for the test : "pearson", "kendall", or "spearman".
conf.level	confidence level.

Value

a list with 2 components : estimated correlation coefficients, and confidence intervals for the estimated correlations.

Author(s)

Thierry Moudiki + stats package

References

D. J. Best & D. E. Roberts (1975), Algorithm AS 89: The Upper Tail Probabilities of Spearman's rho. Applied Statistics, 24, 377-379.

Myles Hollander & Douglas A. Wolfe (1973), Nonparametric Statistical Methods. New York: John Wiley & Sons. Pages 185-194 (Kendall and Spearman tests).

esgdiscountfactor

See Also

esgplotbands

Examples

```
nb <- 500
s0.par1 <- simshocks(n = nb, horizon = 3, frequency = "semi",
family = 1, par = 0.2)
s0.par2 <- simshocks(n = nb, horizon = 3, frequency = "semi",
family = 1, par = 0.8)
(test1 <- esgcortest(s0.par1))
(test2 <- esgcortest(s0.par2))
par(mfrow=c(2, 1))
esgplotbands(test1)
esgplotbands(test2)
```

esgdiscountfactor Stochastic discount factors or discounted values

Description

This function provides calculation of stochastic discount factors or discounted values

Usage

```
esgdiscountfactor(r, X)
```

Arguments

r	the short rate, a numeric (constant rate) or a time series object
Х	the asset's price, a numeric (constant payoff or asset price) or a time series object

Details

The function result is :

$$X_t exp(-\int_0^t r_s ds)$$

where X_t is an asset value at a given maturity t, and $(r_s)_s$ is the risk-free rate.

Author(s)

Thierry Moudiki

See Also

esgmcprices, esgmccv

Examples

```
esgdiscountfactor(r, 1)
```

esgfwdrates Instantaneous forward rates

Description

This function provides instantaneous forward rates. They can be used in no-arbitrage short rate models, to fit the yield curve exactly.

Usage

```
esgfwdrates(
    in.maturities,
    in.zerorates,
    n,
    horizon,
    out.frequency = c("annual", "semi-annual", "quarterly", "monthly", "weekly", "daily"),
    ...
)
```

esgfwdrates

Arguments

in.maturities	input maturities
in.zerorates	input zero rates
n	number of independent observations
horizon	horizon of projection
out.frequency	either "annual", "semi-annual", "quarterly", "monthly", "weekly", or "daily" (1, 1/2, 1/4, 1/12, 1/52, 1/252)
	additional parameters provided to ycinter

Author(s)

Thierry Moudiki

References

Thierry Moudiki (2013). ycinterextra: Yield curve or zero-coupon prices interpolation and extrapolation. R package version 0.1. URL https://CRAN.R-project.org/package=ycinterextra

Examples

```
# Yield to maturities
txZC <- c(0.01422,0.01309,0.01380,0.01549,0.01747,0.01940,0.02104,0.02236,0.02348,
         0.02446,0.02535,0.02614,0.02679,0.02727,0.02760,0.02779,0.02787,0.02786,0.02776
      ,0.02762,0.02745,0.02727,0.02707,0.02686,0.02663,0.02640,0.02618,0.02597,0.02578,0.02563)
# Observed maturities
u <- 1:30
## Not run:
par(mfrow=c(2,2))
fwdNS <- esgfwdrates(in.maturities = u, in.zerorates = txZC,</pre>
                    n = 10, horizon = 20,
                    out.frequency = "semi-annual", method = "NS")
matplot(time(fwdNS), fwdNS, type = 'l')
fwdSV <- esgfwdrates(in.maturities = u, in.zerorates = txZC,</pre>
                    n = 10, horizon = 20,
                    out.frequency = "semi-annual", method = "SV")
matplot(time(fwdSV), fwdSV, type = 'l')
fwdSW <- esgfwdrates(in.maturities = u, in.zerorates = txZC,</pre>
                    n = 10, horizon = 20,
                    out.frequency = "semi-annual", method = "SW")
matplot(time(fwdSW), fwdSW, type = 'l')
fwdHCSPL <- esgfwdrates(in.maturities = u, in.zerorates = txZC,</pre>
                       n = 10, horizon = 20,
                       out.frequency = "semi-annual", method = "HCSPL")
matplot(time(fwdHCSPL), fwdHCSPL, type = 'l')
```

End(Not run)

esgmartingaletest Martingale and market consistency tests

Description

This function performs martingale and market consistency (t-)tests.

Usage

```
esgmartingaletest(r, X, p0, alpha = 0.05)
```

Arguments

r	a numeric or a time series object, the risk-free rate(s).
Х	a time series object, containing payoffs or projected asset values.
p0	a numeric or a vector or a univariate time series containing initial price(s) of an asset.
alpha	1 - confidence level for the test. Default value is 0.05.

Value

The function result can be just displayed. Otherwise, you can get a list by an assignation, containing (for each maturity) :

- the Student t values
- the p-values
- the estimated mean of the martingale difference
- Monte Carlo prices

Author(s)

Thierry Moudiki

See Also

esgplotbands

esgmccv

Examples

```
esgmccv
```

Convergence of Monte Carlo prices

Description

This function computes and plots confidence intervals around the estimated average price, as functions of the number of simulations.

Usage

```
esgmccv(r, X, maturity, plot = TRUE, ...)
```

Arguments

r	a numeric or a time series object, the risk-free rate(s).
Х	asset prices obtained with simdiff
maturity	the corresponding maturity (optional). If missing, all the maturities available in X are used.
plot	if TRUE (default), a plot of the convergence is displayed.
	additional parameters provided to matplot

Details

Studying the convergence of the sample mean of :

$$E[X_T exp(-\int_0^T r_s ds)]$$

towards its true value.

a list with estimated average prices and the confidence intervals around them.

Author(s)

Thierry Moudiki

Examples

esgmcprices Estimation of discounted asset prices

Description

This function computes estimators (sample mean) of

$$E[X_T exp(-\int_0^T r_s ds)]$$

where X_T is an asset value at given maturities T, and $(r_s)_s$ is the risk-free rate.

Usage

```
esgmcprices(r, X, maturity = NULL)
```

Arguments

r	a numeric or a time series object, the risk-free rate(s).
Х	asset prices obtained with simdiff
maturity	the corresponding maturity (optional). If missing, all the maturities available in X are used.

esgplotbands

Author(s)

Thierry Moudiki

See Also

esgdiscountfactor, esgmccv

Examples

```
esgplotbands
```

Plot time series percentiles and confidence intervals

Description

This function plots colored bands for time series percentiles and confidence intervals. You can use it for outputs from link{simdiff}, link{esgmartingaletest}, link{esgcortest}.

Usage

esgplotbands(x, ...)

Arguments

х	a times series object
	additionnal (optional) parameters provided to plot

Author(s)

Thierry Moudiki

See Also

esgplotts

Examples

```
# Times series
kappa <- 1.5
V0 <- theta <- 0.04
sigma <- 0.2
theta1 <- kappa*theta
theta2 <- kappa
theta3 <- sigma
x \le  simdiff(n = 100, horizon = 5,
frequency = "quart",
model = "OU",
x0 = V0, theta1 = theta1, theta2 = theta2, theta3 = theta3)
par(mfrow=c(2,1))
esgplotbands(x, xlab = "time", ylab = "values")
matplot(time(x), x, type = 'l', xlab = "time", ylab = "series values")
# Martingale test
r0 <- 0.03
S0 <- 100
sigma0 <- 0.1
nbScenarios <- 100
horizon0 <- 10
eps0 <- simshocks(n = nbScenarios, horizon = horizon0, frequency = "quart",</pre>
method = "anti")
sim.GBM <- simdiff(n = nbScenarios, horizon = horizon0, frequency = "quart",</pre>
                  model = "GBM",
                  x0 = S0, theta1 = r0, theta2 = sigma0,
                  eps = eps0)
mc.test <- esgmartingaletest(r = r0, X = sim.GBM, p0 = S0, alpha = 0.05)</pre>
esgplotbands(mc.test)
# Correlation test
nb <- 500
s0.par1 <- simshocks(n = nb, horizon = 3, frequency = "semi",</pre>
family = 1, par = 0.2)
s0.par2 <- simshocks(n = nb, horizon = 3, frequency = "semi",</pre>
family = 1, par = 0.8)
(test1 <- esgcortest(s0.par1))</pre>
(test2 <- esgcortest(s0.par2))</pre>
```

esgplotshocks

```
par(mfrow=c(2, 1))
esgplotbands(test1)
esgplotbands(test2)
```

esgplotshocks Visualize the dependence between 2 gaussian shocks

Description

This function helps you in visualizing the dependence between 2 gaussian shocks.

Usage

```
esgplotshocks(x, y = NULL)
```

Arguments

х	an output from simshocks, a list with 2 components.
У	an output from simshocks, a list with 2 components (Optional).

Author(s)

Thierry Moudiki + some nice blogs :)

References

H. Wickham (2009), ggplot2: elegant graphics for data analysis. Springer New York.

See Also

simshocks

Examples

```
# Number of risk factors
d <- 2</pre>
```

Number of possible combinations of the risk factors dd <- d*(d-1)/2

```
# Family : Gaussian copula
fam1 <- rep(1,dd)
# Correlation coefficients between the risk factors (d*(d-1)/2)
par0.1 <- 0.1
par0.2 <- -0.9
# Family : Rotated Clayton (180 degrees)
fam2 <- 13</pre>
```

esgplotts

```
par0.3 <- 2
# Family : Rotated Clayton (90 degrees)
fam3 <- 23
par0.4 <- -2
# number of simulations
nb <- 500
# Simulation of shocks for the d risk factors
s0.par1 <- simshocks(n = nb, horizon = 4,</pre>
family = fam1, par = par0.1)
s0.par2 <- simshocks(n = nb, horizon = 4,</pre>
family = fam1, par = par0.2)
s0.par3 <- simshocks(n = nb, horizon = 4,</pre>
family = fam2, par = par0.3)
s0.par4 <- simshocks(n = nb, horizon = 4,</pre>
family = fam3, par = par0.4)
## Not run:
esgplotshocks(s0.par1, s0.par2)
esgplotshocks(s0.par2, s0.par3)
esgplotshocks(s0.par2, s0.par4)
esgplotshocks(s0.par1, s0.par4)
## End(Not run)
```

esgplotts

Plot time series objects

Description

This function plots outputs from simdiff.

Usage

```
esgplotts(x)
```

Arguments

Х

a time series object, an output from simdiff.

Details

For a large number of simulations, it's preferable to use esgplotbands for a synthetic view by percentiles.

simdiff

Author(s)

Thierry Moudiki

References

H. Wickham (2009), ggplot2: elegant graphics for data analysis. Springer New York.

See Also

simdiff, esgplotbands

Examples

```
kappa <- 1.5
V0 <- theta <- 0.04
sigma <- 0.2
theta1 <- kappa*theta
theta2 <- kappa
theta3 <- sigma
x <- simdiff(n = 10, horizon = 5, frequency = "quart",
model = "OU",
x0 = V0, theta1 = theta1, theta2 = theta2, theta3 = theta3)
esgplotts(x)
```

simdiff

Simulation of diffusion processes.

Description

This function makes simulations of diffusion processes, that are building blocks for various risk factors' models.

Usage

```
simdiff(
    n,
    horizon,
    frequency = c("annual", "semi-annual", "quarterly", "monthly", "weekly", "daily"),
    model = c("GBM", "CIR", "OU"),
    x0,
    theta1 = NULL,
    theta2 = NULL,
    theta3 = NULL,
    lambda = NULL,
    sigma_z = NULL,
```

simdiff

```
p = NULL,
eta_up = NULL,
eta_down = NULL,
eps = NULL,
seed = 123
```

Arguments

)

n	number of independent observations.
horizon	horizon of projection.
frequency	either "annual", "semi-annual", "quarterly", "monthly", "weekly", or "daily" (1, 1/2, 1/4, 1/12, 1/52, 1/252).
model	either Geometric Brownian motion-like ("GBM"), Cox-Ingersoll-Ross ("CIR"), or Ornstein-Uhlenbeck ("OU"). GBM-like (GBM, Merton, Kou, Heston, Bates)

$$dX_t = \theta_1(t)X_t dt + \theta_2(t)X_t dW_t + X_t J dN_t$$

CIR

$$dX_t = (\theta_1 - \theta_2 X_t)dt + \theta_3 \sqrt{(X_t)}dW_t$$

Ornstein-Uhlenbeck

$$dX_t = (\theta_1 - \theta_2 X_t)dt + \theta_3 dW_t$$

Where $(W_t)_t$ is a standard brownian motion :

$$dW_t \ \epsilon \sqrt{(dt)}$$

 $\epsilon N(0,1)$

and

The
$$\epsilon$$
 is a gaussian increment that can be an output from simshocks.For 'GBM-like', θ_1 and θ_2 can be held constant, and the jumps part JdN_t is
optional. In case the jumps are used, they arise following a Poisson process
 (N_t) , with intensities J drawn either from lognormal or asymmetric double-
exponential distribution.x0starting value of the process.theta1a numeric for model = "GBM", model = "CIR", model = "OU". Can also be a
time series object (an output from simdiff with the same number of scenarios,
horizon and frequency) for model = "GBM", and time-varying parameters.theta2a numeric for model = "GBM", model = "CIR", model = "OU". Can also be a
time series object (an output from simdiff with the same number of scenarios,
horizon and frequency) for model = "GBM", and time-varying parameters.theta2a numeric for model = "GBM", model = "CIR", model = "OU".theta3a numeric, volatility for model = "CIR" and model = "OU".

simdiff

lambda	intensity of the Poisson process counting the jumps. Optional.
mu_z	mean parameter for the lognormal jumps size. Optional.
sigma_z	standard deviation parameter for the lognormal jumps size. Optional.
р	probability of positive jumps. Must belong to]0, 1[. Optional.
eta_up	mean of positive jumps in Kou's model. Must belong to]0, 1[. Optional.
eta_down	mean of negative jumps. Must belong to]0, 1[. Optional.
eps	gaussian shocks. If not provided, independent shocks are generated internally by the function. Otherwise, for custom shocks, must be an output from simshocks.
seed	reproducibility seed

Value

a time series object.

Author(s)

Thierry Moudiki

References

Black, F., Scholes, M.S. (1973) The pricing of options and corporate liabilities, Journal of Political Economy, 81, 637-654.

Cox, J.C., Ingersoll, J.E., Ross, S.A. (1985) A theory of the term structure of interest rates, Econometrica, 53, 385-408.

Iacus, S. M. (2009). Simulation and inference for stochastic differential equations: with R examples (Vol. 1). Springer.

Glasserman, P. (2004). Monte Carlo methods in financial engineering (Vol. 53). Springer.

Kou S, (2002), A jump diffusion model for option pricing, Management Sci- ence Vol. 48, 1086-1101.

Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous. Journal of financial economics, 3(1), 125-144.

Uhlenbeck, G. E., Ornstein, L. S. (1930) On the theory of Brownian motion, Phys. Rev., 36, 823-841.

Vasicek, O. (1977) An Equilibrium Characterization of the Term Structure, Journal of Financial Economics, 5, 177-188.

See Also

simshocks, esgplotts

Examples

```
kappa <- 1.5
V0 <- theta <- 0.04
sigma_v <- 0.2
theta1 <- kappa*theta
theta2 <- kappa
theta3 <- sigma_v
# OU
sim.OU <- simdiff(n = 10, horizon = 5,</pre>
               frequency = "quart",
               model = "OU",
               x0 = V0, theta1 = theta1, theta2 = theta2, theta3 = theta3)
head(sim.OU)
par(mfrow=c(2,1))
esgplotbands(sim.OU, xlab = "time", ylab = "values", main = "with esgplotbands")
matplot(time(sim.OU), sim.OU, type = 'l', main = "with matplot")
# OU with simulated shocks (check the dimensions)
eps0 <- simshocks(n = 50, horizon = 5, frequency = "quart", method = "anti")</pre>
sim.OU <- simdiff(n = 50, horizon = 5, frequency = "quart",</pre>
               model = "OU",
               x0 = V0, theta1 = theta1, theta2 = theta2, theta3 = theta3,
               eps = eps0)
par(mfrow=c(2,1))
esgplotbands(sim.OU, xlab = "time", ylab = "values", main = "with esgplotbands")
matplot(time(sim.OU), sim.OU, type = 'l', main = "with matplot")
# a different plot
esgplotts(sim.OU)
# CIR
sim.CIR <- simdiff(n = 50, horizon = 5,</pre>
               frequency = "quart",
               model = "CIR",
               x0 = V0, theta1 = theta1, theta2 = theta2, theta3 = 0.05)
esgplotbands(sim.CIR, xlab = "time", ylab = "values", main = "with esgplotbands")
matplot(time(sim.CIR), sim.CIR, type = 'l', main = "with matplot")
# GBM
eps0 <- simshocks(n = 100, horizon = 5, frequency = "quart")</pre>
sim.GBM <- simdiff(n = 100, horizon = 5, frequency = "quart",</pre>
               model = "GBM",
               x0 = 100, theta1 = 0.03, theta2 = 0.1,
```

simshocks

simshocks

Underlying gaussian shocks for risk factors' simulation.

Description

This function makes simulations of correlated or dependent gaussian shocks for risk factors.

Usage

```
simshocks(
    n,
    horizon,
    frequency = c("annual", "semi-annual", "quarterly", "monthly", "weekly", "daily"),
    method = c("classic", "antithetic", "mm", "hybridantimm", "TAG"),
    family = NULL,
    par = NULL,
    par = NULL,
    type = c("CVine", "DVine"),
    seed = 123
)
```

Arguments

n	number of independent observations for each risk factor.
horizon	horizon of projection.
frequency	either "annual", "semi-annual", "quarterly", "monthly", "weekly", or "daily" (1, 1/2, 1/4, 1/12, 1/52, 1/252).
method	either classic monte carlo, antithetic variates, moment matching, hybrid anti- thetic variates + moment matching or "TAG" (see the 4th reference for the lat- ter).
family	the same as CDVineSim from package CDVine. A $d^{*}(d-1)/2$ integer vector of C-/D-vine pair-copula families with values 0 = independence copula, 1 = Gaussian copula, 2 = Student t copula (t-copula), 3 = Clayton copula, 4 = Gumbel copula, 5 = Frank copula, 6 = Joe copula, 7 = BB1 copula, 8 = BB6 copula, 9 = BB7

	copula, 10 = BB8 copula, 13 = rotated Clayton copula (180 degrees; "survival Clayton"), 14 = rotated Gumbel copula (180 degrees; "survival Gumbel"), 16 = rotated Joe copula (180 degrees; "survival Joe"), 17 = rotated BB1 copula (180 degrees; "survival BB1"), 18 = rotated BB6 copula (180 degrees; "survival BB6"), 19 = rotated BB7 copula (180 degrees; "survival BB7"), 20 = rotated BB8 copula (180 degrees; "survival BB8"), 23 = rotated Clayton copula (90 degrees), 24 = rotated Gumbel copula (90 degrees), 26 = rotated BB6 copula (90 degrees), 27 = rotated BB1 copula (90 degrees), 28 = rotated BB8 copula (90 degrees), 33 = rotated Clayton copula (270 degrees), 34 = rotated Gumbel copula (270 degrees), 37 = rotated BB1 copula (270 degrees), 39 = rotated B
	copula (270 degrees), 40 = rotated BB8 copula (270 degrees)
par	the same as CDVineSim from package CDVine. A $d^{*}(d-1)/2$ vector of pair-copula parameters.
par2	the same as CDVineSim from package CDVine. A $d^{*}(d-1)/2$ vector of second parameters for pair-copula families with two parameters (t, BB1, BB6, BB7, BB8; no default).
type	type of the vine model: 1 : C-vine 2 : D-vine
seed	reproducibility seed

Details

The function shall be used along with simdiff, in order to embed correlated or dependent random gaussian shocks into simulated diffusions. esgplotshocks can help in visualizing the type of dependence between the shocks.

Value

If family and par are not provided, a univariate time series object with simulated gaussian shocks for one risk factor. Otherwise, a list of time series objects, containing gaussian shocks for each risk factor.

Author(s)

Thierry Moudiki

References

Brechmann, E., Schepsmeier, U. (2013). Modeling Dependence with C- and D-Vine Copulas: The R Package CDVine. Journal of Statistical Software, 52(3), 1-27. URL http://www.jstatsoft.org/v52/i03/.

Genz, A. Bretz, F., Miwa, T. Mi, X., Leisch, F., Scheipl, F., Hothorn, T. (2013). mvtnorm: Multivariate Normal and t Distributions. R package version 0.9-9996.

Genz, A. Bretz, F. (2009), Computation of Multivariate Normal and t Probabilities. Lecture Notes in Statistics, Vol. 195., Springer-Verlag, Heidelberg. ISBN 978-3-642-01688-2.

simshocks

Nteukam T, O., & Planchet, F. (2012). Stochastic evaluation of life insurance contracts: Model point on asset trajectories and measurement of the error related to aggregation. Insurance: Mathematics and Economics, 51(3), 624-631. URL http://www.ressources-actuarielles.net/EXT/ISFA/ 1226.nsf/0/ab539dcebcc4e77ac12576c6004afa67/\$FILE/Article_US_v1.5.pdf

See Also

simdiff, esgplotshocks

apply(s0[[4]], 2, sd)

Examples

```
# Number of risk factors
d <- 6
# Number of possible combinations of the risk factors
dd <- d*(d-1)/2
# Family : Gaussian copula for all
fam1 <- rep(1, dd)
# Correlation coefficients between the risk factors (d*(d-1)/2)
par1 <- c(0.2,0.69,0.73,0.22,-0.09,0.51,0.32,0.01,0.82,0.01,
        -0.2, -0.32, -0.19, -0.17, -0.06)
# Simulation of shocks for the 6 risk factors
simshocks(n = 10, horizon = 5, family = fam1, par = par1)
# Simulation of shocks for the 6 risk factors
# on a quarterly basis
simshocks(n = 10, frequency = "quarterly", horizon = 2, family = fam1,
par = par1)
# Simulation of shocks for the 6 risk factors simulation
# on a quarterly basis, with antithetic variates and moment matching.
s0 <- simshocks(n = 10, method = "hyb", horizon = 4,</pre>
family = fam1, par = par1)
s0[[2]]
colMeans(s0[[1]])
colMeans(s0[[5]])
apply(s0[[3]], 2, sd)
```

Index

CDVineSim, *17*, *18*

esgcortest, 2 esgdiscountfactor, 3, 9 esgfwdrates, 4 esgmartingaletest, 6 esgmccv, 4, 7, 9 esgmcprices, 4, 8 esgplotbands, 3, 6, 9, 12, 13 esgplotshocks, 11, 18, 19 esgplotts, 10, 12, 15

matplot, 7

simdiff, 7, 8, 12, 13, 13, 18, 19 simshocks, 2, 11, 14, 15, 17

ycinter, 5