Package 'EQUIVNONINF'

September 19, 2017
Type PackageTitle Testing for Equivalence and NoninferiorityVersion 1.0
Date 2017-09-12
Author Stefan Wellek,
Peter Ziegler
Maintainer Stefan Wellek stefan.wellek@zi-mannheim.de
DescriptionMaking available in R the complete set of programs accompanying S. Wellek's (2010) monograph"Testing Statistical Hypotheses of Equivalence and Noninferiority. Second Edition"(Chapman\&Hall/CRC).
License CC0
Depends R (>= 3.0.0), stats, BiasedUrn
NeedsCompilation no
Repository CRAN
Date/Publication 2017-09-19 10:23:41 UTC
R topics documented:
EQUIVNONINF-package 2
bi1st 3
bi2aeq1 4
bi2aeq2 5
bi2aeq3 7
bi2by_ni_del 8
bi2by_ni_OR 10
bi2diffac 11
bi2dipow 12
bi2rlv1 14
bi2rlv2 15
bi2st 16
bi2ste1 17
bi2ste2 18
bi2ste3 19
bi2wld_ni_del 21
cf_reh_exact 22
cf_reh_midp 24
exp1st 25
fstretch 26
gofhwex 28
gofhwex_1s 29
gofind_t 30
gofsimpt 32
mawi 33
mcnasc_ni 34
mcnby_ni 36
mcnby_ni_pp 37
menemasc 38
mcnempow 40
mwtie_fr 41
mwtie_xy 42
postmys 44
powsign 45
pow_abe 46
po_pbibe 47
sgnrk 49
srktie_d 50
srktie_m 51
tt1st 53
tt2st 54
Index 56
EQUIVNONINF-package Testing for equivalence and noninferiority

Description

The package makes available in R the complete set of programs accompanying S. Wellek's (2010) monograph "Testing Statistical Hypotheses of Equivalence and Noninferiority. Second Edition" (Chapman\&Hall/CRC).

Note

In order to keep execution time of all examples below the limit set by the CRAN administration, in a number of cases the function calls shown in the documentation contain specifications which are insufficient for real applications. This holds in particular true for the width sw of search grids, which should be chosen to be .001 or smaller. Similarly, the maximum number of interval halving steps to be carried out in finding maximally admissible significance levels should be set to values $>=10$.

Author(s)

Stefan Wellek stefan.wellek@zi-mannheim.de
Peter Ziegler peter.ziegler@zi-mannheim.de
Maintainer: Stefan Wellek stefan.wellek@zi-mannheim.de

References

Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2015.

Examples

```
bi2ste1(397,397,0.0,0.025,0.511,0.384)
bi2ste2(0.0,0.025,0.95,0.8,0.80,1.0)
```

```
bi1st
```

Critical constants and power of the UMP test for equivalence of a single binomial proportion to some given reference value

Description

The function computes the critical constants defining the uniformly most powerful (randomized) test for the problem $p \leq p_{1}$ or $p \geq p_{2}$ versus $p_{1}<p<p_{2}$, with p denoting the parameter of a binomial distribution from which a single sample of size n is available. In the output, one also finds the power against the alternative that the true value of p falls on the midpoint of the hypothetical equivalence interval $\left(p_{1}, p_{2}\right)$.

Usage

bi1st(alpha, n, P1, P2)

Arguments

alpha significance level
$\mathrm{n} \quad$ sample size
P1 lower limit of the hypothetical equivalence range for the binomial parameter p
P2 upper limit of the hypothetical equivalence range for p

Value

alpha significance level
$\mathrm{n} \quad$ sample size
P1 lower limit of the hypothetical equivalence range for the binomial parameter p
P2 upper limit of the hypothetical equivalence range for p

C1 left-hand limit of the critical interval for the observed number X of successes
C2 right-hand limit of the critical interval for X
GAM1 probability of rejecting the null hypothesis when it turns out that $X=C_{1}$
GAM2 probability of rejecting the null hypothesis for $X=C_{2}$
POWNONRD Power of the nonrandomized version of the test against the alternative $p=\left(p_{1}+\right.$ $\left.p_{2}\right) / 2$
POW \quad Power of the randomized UMP test against the alternative $p=\left(p_{1}+p_{2}\right) / 2$

Author(s)

Stefan Wellek stefan.wellek@zi-mannheim.de
Peter Ziegler peter.ziegler@zi-mannheim.de

References

Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2010, § 4.3.

Examples

bi1st(.05,273, .65,.75)
bi2aeq1 Power of the exact Fisher type test for equivalence

Description

The function computes exact values of the power of the randomized UMPU test for equivalence in the strict (i.e. two-sided) sense of two binomial distributions and the conservative nonrandomized version of that test. It is assumed that the samples being available from both distributions are independent.

Usage

bi2aeq1 (m, n, rho1, rho2, alpha, p1, p2)

Arguments

m	size of Sample 1
n	size of Sample 2
rho1	lower limit of the hypothetical equivalence range for the odds ratio
rho2	upper limit of the hypothetical equivalence range for the odds ratio
alpha	significance level
p1	true success rate in Population 1
p2	true success rate in Population 2

Value

m size of Sample 1
$\mathrm{n} \quad$ size of Sample 2
rho1 lower limit of the hypothetical equivalence range for the odds ratio
rho2 upper limit of the hypothetical equivalence range for the odds ratio
alpha significance level
p1 true success rate in Population 1
p2 true success rate in Population 2
POWNR Power of the nonrandomized version of the test
POW Power of the randomized UMPU test

Author(s)

Stefan Wellek stefan.wellek@zi-mannheim.de
Peter Ziegler peter.ziegler@zi-mannheim.de

References

Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2010, § 6.6.4.

Examples

bi2aeq1(302, $302,0.6667,1.5,0.05,0.5,0.5)$

```
bi2aeq2 Sample sizes for the exact Fisher type test for equivalence
```


Description

The function computes minimum sample sizes required in the randomized UMPU test for equivalence of two binomial distributions with respect to the odds ratio. Computation is done under the side condition that the ratio m / n has some predefined value λ.

Usage

bi2aeq2(rho1, rho2, alpha, p1, p2, beta, qlambd)

Arguments

rho1	lower limit of the hypothetical equivalence range for the odds ratio
rho2	upper limit of the hypothetical equivalence range for the odds ratio
alpha	significance level
p1	true success rate in Population 1
p2	true success rate in Population 2
beta	target value of power
qlambd	sample size ratio m / n

Value

rho1	lower limit of the hypothetical equivalence range for the odds ratio
rho2	upper limit of the hypothetical equivalence range for the odds ratio
alpha	significance level
p1	true success rate in Population 1
p2	true success rate in Population 2
beta	target value of power
qlambd	sample size ratio m / n
M	minimum size of Sample 1
N	minimum size of Sample 2
POW	Power of the randomized UMPU test attained with the computed values of m, n

Author(s)

Stefan Wellek stefan.wellek@zi-mannheim.de
Peter Ziegler peter.ziegler@zi-mannheim.de

References

Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2010, § 6.6.4.

Examples

```
bi2aeq2(0.5,2.0,0.05,0.5,0.5,0.60,1.0)
```

bi2aeq3
Determination of a maximally raised nominal significance level for the nonrandomized version of the exact Fisher type test for equivalence

Description

The objective is to raise the nominal significance level as far as possible without exceeding the target significance level in the nonrandomized version of the test. The approach goes back to R.D. Boschloo (1970) who used the same technique for reducing the conservatism of the traditional nonrandomized Fisher test for superiority.

Usage

bi2aeq3(m, n, rho1, rho2, alpha, sw, tolrd, tol, maxh)

Arguments

m
size of Sample 1
$\mathrm{n} \quad$ size of Sample 2
rho1 lower limit of the hypothetical equivalence range for the odds ratio
rho2 upper limit of the hypothetical equivalence range for the odds ratio
alpha significance level
sw width of the search grid for determining the maximum of the rejection probability on the common boundary of the hypotheses
tolrd horizontal distance from 0 and 1 , respectively of the left- and right-most boundary point to be included in the search grid
tol upper bound to the absolute difference between size and target level below which the search for a corrected nominal level terminates
maxh maximum number of interval halving steps to be carried out in finding the maximally raised nominal level

Details

It should be noted that, as the function of the nominal level, the size of the nonrandomized test is piecewise constant. Accordingly, there is a nondegenerate interval of "candidate" nominal levels serving the purpose. The limits of such an interval can be read from the output. In terms of execution time, bi2aeq3 is the most demanding program of the whole package.

Value
m size of Sample 1
n \quad size of Sample 2
rho1 lower limit of the hypothetical equivalence range for the odds ratio
rho2 upper limit of the hypothetical equivalence range for the odds ratio
\(\left.\left.$$
\begin{array}{ll}\text { alpha } & \begin{array}{l}\text { significance level } \\
\text { sw }\end{array} \\
\text { width of the search grid for determining the maximum of the rejection probabil- } \\
\text { ity on the common boundary of the hypotheses }\end{array}
$$\right] \begin{array}{l}horizontal distance from 0 and 1, respectively of the left- and right-most bound-

ary point to be included in the search grid

upper bound to the absolute difference between size and target level below which

the search for a corrected nominal level terminates\end{array}\right\}\)| maximum number of interval halving steps to be carried out in finding the max- |
| :--- |
| imally raised nominal level |

Author(s)

Stefan Wellek stefan.wellek@zi-mannheim.de
Peter Ziegler peter.ziegler@zi-mannheim.de

References

Boschloo RD: Raised conditional level of significance for the 2×2 - table when testing the equality of two probabilities. Statistica Neerlandica 24 (1970), 1-35.

Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2010, § 6.6.5.

Examples

bi2aeq3 $(50,50,0.6667,1.5000,0.05,0.01,0.000001,0.0001,5)$
bi2by_ni_del Objective Bayesian test for noninferiority in the two-sample setting with binary data and the difference of the two proportions as the parameter of interest

Description

Implementation of the construction described on pp. 185-6 of Wellek S (2010) Testing statistical hypotheses of equivalence and noninferiority. Second edition.

Usage

bi2by_ni_del(N1,N2,EPS, SW,NSUB, ALPHA, MAXH)

Arguments

N1
size of Sample 1
N2 size of sample 2
noninferiority margin to the difference of success probabilities
SW width of the search grid for determining the maximum of the rejection probability on the common boundary of the hypotheses
NSUB number of subintervals for partitioning the range of integration
ALPHA
MAXH target significance level maximum number of interval halving steps to be carried out in finding the max- imally admissible nominal level

Details

The program uses 96-point Gauss-Legendre quadrature on each of the NSUB intervals into which the range of integration is partitioned.

Value

N1 size of Sample 1
N2 size of sample 2
EPS noninferiority margin to the difference of success probabilities
NSUB number of subintervals for partitioning the range of integration
SW width of the search grid for determining the maximum of the rejection probability on the common boundary of the hypotheses

ALPHA0 result of the search for the largest admissible nominal level
SIZE0 size of the critical region corresponding to α_{0}
SIZE_UNC size of the critical region of the test at uncorrected nominal level

Author(s)

Stefan Wellek stefan.wellek@zi-mannheim.de
Peter Ziegler peter.ziegler@zi-mannheim.de

References

Wellek S: Statistical methods for the analysis of two-armed non-inferiority trials with binary outcomes. Biometrical Journal 47 (2005), 48-61.

Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2010, § 6.6.3.

Examples

bi2by_ni_del $(20,20, .10, .01,10, .05,5)$
bi2by_ni_OR Objective Bayesian test for noninferiority in the two-sample setting with binary data and the odds ratio as the parameter of interest

Description

Implementation of the construction described on pp. 179-181 of Wellek S (2010) Testing statistical hypotheses of equivalence and noninferiority. Second edition.

Usage

bi2by_ni_OR(N1,N2,EPS, SW,NSUB, ALPHA, MAXH)

Arguments

N1 size of sample 1
N2 size of sample 2
EPS noninferiority margin to the deviation of the odds ratio from unity
SW width of the search grid for determining the maximum of the rejection probability on the common boundary of the hypotheses
NSUB number of subintervals for partitioning the range of integration
ALPHA target significance level
MAXH maximum number of interval halving steps to be carried out in finding the maximally admissible nominal level

Details

The program uses 96-point Gauss-Legendre quadrature on each of the NSUB intervals into which the range of integration is partitioned.
Value

N1	size of sample 1
N2	size of sample 2
EPS	noninferiority margin to the deviation of the odds ratio from unity
NSUB	number of subintervals for partitioning the range of integration
SW	width of the search grid for determining the maximum of the rejection probabil- ity on the common boundary of the hypotheses
ALPHA0	result of the search for the largest admissible nominal level SIZe of the critical region corresponding to α_{0}
SIZE_UNC	size of the critical region of the test at uncorrected nominal level

Author(s)

Stefan Wellek stefan.wellek@zi-mannheim.de
Peter Ziegler peter.ziegler@zi-mannheim.de

References

Wellek S: Statistical methods for the analysis of two-arm non-inferiority trials with binary outcomes. Biometrical Journal 47 (2005), 48-61.
Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2010, § 6.6.2.

Examples

bi2by_ni_OR(10,10,1/3,.0005,10,.05,12)
bi2diffac Determination of a corrected nominal significance level for the asymptotic test for equivalence of two unrelated binomial proportions with respect to the difference δ of their population counterparts

Description

The program computes the largest nominal significance level which can be substituted for the target level α without making the exact size of the asymptotic testing procedure larger than α.

Usage

bi2diffac(alpha, m, n, del1, del2, sw, tolrd, tol, maxh)

Arguments

alpha
m
significance level
size of Sample 1
$\mathrm{n} \quad$ size of Sample 2
del1 absolute value of the lower limit of the hypothetical equivalence range for $p_{1}-p_{2}$
del2 upper limit of the hypothetical equivalence range for $p_{1}-p_{2}$
sw
tolrd horizontal distance of the left- and right-most boundary point to be included in the search grid
tol upper bound to the absolute difference between size and target level below which the search for a corrected nominal level terminates
maxh maximum number of interval halving steps to be carried out in finding the maximally raised nominal level

Value

alpha	significance level
m	size of Sample 1
n	size of Sample 2
del1	absolute value of the lower limit of the hypothetical equivalence range for $p_{1}-p_{2}$
del2	upper limit of the hypothetical equivalence range for $p_{1}-p_{2}$
sw	width of the search grid for determining the maximum of the rejection probability on the common boundary of the hypotheses
tolrd	horizontal distance of the left- and right-most boundary point to be included in the search grid
tol	upper bound to the absolute difference between size and target level below which the search for a corrected nominal level terminates
maxh	maximum number of interval halving steps to be carried out in finding the maximally raised nominal level
NH	number of interval-halving steps actually performed
ALPH_0	value of the raised nominal level obtained after NH steps
SIZE0	size of the critical region corresponding to α_{0}
ERROR	error indicator answering the question of whether or not the sufficient condition for the correctness of the result output by the program, was satisfied

Author(s)

Stefan Wellek stefan.wellek@zi-mannheim.de
Peter Ziegler peter.ziegler@zi-mannheim.de

References

Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2010, § 6.6.6.

Examples

bi2diffac ($0.05,20,20,0.40,0.40,0.1,1 e-6,1 e-4,3)$
bi2dipow Exact rejection probability of the asymptotic test for equivalence of two unrelated binomial proportions with respect to the difference of their expectations at any nominal level under an arbitrary parameter configuration

Description

The program computes exact values of the rejection probability of the asymptotic test for equivalence in the sense of $-\delta_{1}<p_{1}-p_{2}<\delta_{2}$, at any nominal level α_{0}. [The largest α_{0} for which the test is valid in terms of the significance level, can be computed by means of the program bi2diffac.]

Usage

bi2dipow(alpha0, m, n, del1, del2, p1, p2)

Arguments

alpha0 nominal significance level
$m \quad$ size of Sample 1
$\mathrm{n} \quad$ size of Sample 2
del1 absolute value of the lower limit of the hypothetical equivalence range for $p_{1}-p_{2}$
del2 upper limit of the hypothetical equivalence range for $p_{1}-p_{2}$
p1 true value of the success probability in Population 1
p2 true value of the success probability in Population 2

Value

alpha0 nominal significance level
m
size of Sample 1
$\mathrm{n} \quad$ size of Sample 2
del1 absolute value of the lower limit of the hypothetical equivalence range for $p_{1}-p_{2}$
del2 upper limit of the hypothetical equivalence range for $p_{1}-p_{2}$
p1 true value of the success probability in Population 1
p2 true value of the success probability in Population 2
POWEX0 exact rejection probability under $\left(p_{1}, p_{2}\right)$ of the test at nominal level α_{0} for equivalence of two binomial distributions with respect to the difference of the success probabilities
ERROR error indicator answering the question of whether or not the sufficient condition for the correctness of the result output by the program, was satisfied

Author(s)

Stefan Wellek stefan.wellek@zi-mannheim.de
Peter Ziegler peter.ziegler@zi-mannheim.de

References

Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2010, § 6.6.6.

Examples

bi2dipow(0.0228,50,50,0.20,0.20,0.50,0.50)

Description

The function computes exact values of the power of the randomized UMPU test for relevant differences between two binomial distributions and the conservative nonrandomized version of that test. It is assumed that the samples being available from both distributions are independent.

Usage

bi2rlv1(m, n, rho1, rho2, alpha, p1, p2)

Arguments

m	size of Sample 1
n	size of Sample 2
rho1	lower limit of the hypothetical equivalence range for the odds ratio
rho2	upper limit of the hypothetical equivalence range for the odds ratio
alpha	significance level
p1	true success rate in Population 1
p2	true success rate in Population 2

Value

m size of Sample 1
n size of Sample 2
rho1 lower limit of the hypothetical equivalence range for the odds ratio
rho2 upper limit of the hypothetical equivalence range for the odds ratio
alpha significance level
p1 true success rate in Population 1
p2 true success rate in Population 2
POWNR power of the nonrandomized version of the test
POW power of the randomized UMPU test

Author(s)

Stefan Wellek stefan.wellek@zi-mannheim.de
Peter Ziegler peter.ziegler@zi-mannheim.de

References

Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2010, § 11.3.3.

Examples

bi2rlv1(200, 300,.6667,1.5,.05,.25,.10)
bi2rlv2 Sample sizes for the exact Fisher type test for relevant differences

Description

The function computes minimum sample sizes required in the randomized UMPU test for relevant differences between two binomial distributions with respect to the odds ratio. Computation is done under the side condition that the ratio m / n has some predefined value λ.

Usage

bi2rlv2(rho1, rho2, alpha, p1, p2, beta, qlambd)

Arguments

rho1	lower limit of the hypothetical equivalence range for the odds ratio
rho2	upper limit of the hypothetical equivalence range for the odds ratio
alpha	significance level
p1	true success rate in Population 1
p2	true success rate in Population 2
beta	target value of power
qlambd	sample size ratio m / n

Value

rho1 lower limit of the hypothetical equivalence range for the odds ratio
rho2 upper limit of the hypothetical equivalence range for the odds ratio
alpha significance level
p1 true success rate in Population 1
p2 true success rate in Population 2
beta target value of power
qlambd \quad sample size ratio m / n
M minimum size of Sample 1
N minimum size of Sample 2
POW power of the randomized UMPU test attained with the computed values of m, n

Author(s)

Stefan Wellek stefan.wellek@zi-mannheim.de
Peter Ziegler peter.ziegler@zi-mannheim.de

References

Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2010, § 11.3.3.

Examples

```
bi2rlv2(.6667,1.5,.05,.70,.50,.80, 2.0)
```

bi2st \quad| Critical constants for the exact Fisher type UMPU test for equivalence |
| :--- |
| of two binomial distributions with respect to the odds ratio |

Description

The function computes the critical constants defining the uniformly most powerful unbiased test for equivalence of two binomial distributions with parameters p_{1} and p_{2} in terms of the odds ratio. Like the ordinary Fisher type test of the null hypothesis $p_{1}=p_{2}$, the test is conditional on the total number S of successes in the pooled sample.

Usage

bi2st(alpha, m, n, s, rho1, rho2)

Arguments

alpha	significance level
m	size of Sample 1
n	size of Sample 2
S	observed total count of successes
rho1	lower limit of the hypothetical equivalence range for the odds ratio $\varrho=\frac{p_{1}\left(1-p_{2}\right)}{p_{2}\left(1-p_{1}\right)}$
rho2	upper limit of the hypothetical equivalence range for ϱ

Value

alpha significance level
m size of Sample 1
$\mathrm{n} \quad$ size of Sample 2
s observed total count of successes
rho1 lower limit of the hypothetical equivalence range for the odds ratio $\varrho=\frac{p_{1}\left(1-p_{2}\right)}{p_{2}\left(1-p_{1}\right)}$
rho2 upper limit of the hypothetical equivalence range for ϱ
C1 left-hand limit of the critical interval for the number X of successes observed in Sample 1
C2 right-hand limit of the critical interval for X
GAM1 probability of rejecting the null hypothesis when it turns out that $X=C_{1}$
GAM2 probability of rejecting the null hypothesis for $X=C_{2}$

Author(s)

Stefan Wellek stefan.wellek@zi-mannheim.de
Peter Ziegler peter.ziegler@zi-mannheim.de

References

Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2010, § 6.6.4.

Examples

bi2st(.05, 225,119,171, 2/3, 3/2)
bi2ste1 Power of the exact Fisher type test for noninferiority

Description

The function computes exact values of the power of the randomized UMPU test for one-sided equivalence of two binomial distributions and its conservative nonrandomized version. It is assumed that the samples being available from both distributions are independent.

Usage

bi2ste1(m, n, eps, alpha, p1, p2)

Arguments

m	size of Sample 1
n	size of Sample 2
eps	noninferiority margin to the odds ratio ϱ, defined to be the maximum acceptable deviation of the true value of ϱ from unity
alpha	significance level
p1	success rate in Population 1
p2	success rate in Population 2

Value

m size of Sample 1
n size of Sample 2
eps noninferiority margin to the odds ratio ϱ, defined to be the maximum acceptable deviation of the true value of ϱ from unity
alpha significance level
p1 success rate in Population 1
p2 success rate in Population 2
POWNR power of the nonrandomized version of the test
POW power of the randomized UMPU test

Author(s)

Stefan Wellek stefan.wellek@zi-mannheim.de
Peter Ziegler peter.ziegler@zi-mannheim.de

References

Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2010, 6.6.1.

Examples

bi2ste1(106,107, 0.5, 0.05, 0.9245, 0.9065)

```
bi2ste2
```


Description

Sample sizes for the exact Fisher type test for noninferiority

Usage

bi2ste2(eps, alpha, p1, p2, bet, qlambd)

Arguments

eps noninferiority margin to the odds ratio
alpha significance level
p1 success rate in Population 1
p2 success rate in Population 2
bet target power value
qlambd \quad sample size ratio m / n

Details

The program computes the smallest sample sizes m, n satisfying $m / n=\lambda$ required for ensuring that the power of the randomized UMPU test does not fall below β.

Value
eps noninferiority margin to the odds ratio
alpha significance level
p1 success rate in Population 1
p2 success rate in Population 2
bet target power value
qlambd \quad sample size ratio m / n
M minimum size of Sample 1
N minimum size of Sample 2
POW power of the randomized UMPU test attained with the computed values of m, n

Author(s)

Stefan Wellek stefan.wellek@zi-mannheim.de
Peter Ziegler peter.ziegler@zi-mannheim.de

References

Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2010, 6.6.1.

\section*{Examples
 bi2ste2(0.5, 0.05, 0.9245, 0.9065, 0.80,1.00)
 bi2ste3 | Determination of a maximally raised nominal significance level for the |
| :--- |
| nonrandomized version of the exact Fisher type test for noninferiority |}

Description

The objective is to raise the nominal significance level as far as possible without exceeding the target significance level in the nonrandomized version of the test. The approach goes back to R.D. Boschloo (1970) who used the same technique for reducing the conservatism of the traditional nonrandomized Fisher test for superiority.

Usage

bi2ste3(m, n, eps, alpha, sw, tolrd, tol, maxh)

Arguments

m
n
eps
alpha
sW
tolrd horizontal distance from 0 and 1, respectively, of the left- and right-most boundary point to be included in the search grid
tol upper bound to the absolute difference between size and target level below which the search for a corrected nominal level terminates
maxh maximum number of interval-halving steps to be carried out in finding the maximally raised nominal level

Details

It should be noted that, as the function of the nominal level, the size of the nonrandomized test is piecewise constant. Accordingly, there is a nondegenerate interval of "candidate" nominal levels serving the purpose. The limits of such an interval can be read from the output.

Value
m size of Sample 1
n size of Sample 2
eps noninferiority margin to the odds ratio ϱ, defined to be the maximum acceptable deviation of the true value of ϱ from unity
alpha target significance level
sw width of the search grid for determining the maximum of the rejection probability on the common boundary of the hypotheses
tolrd horizontal distance from 0 and 1 , respectively, of the left- and right-most boundary point to be included in the search grid
tol upper bound to the absolute difference between size and target level below which the search for a corrected nominal level terminates
maxh maximum number of interval-halving steps to be carried out in finding the maximally raised nominal level
ALPH_0 current trial value of the raised nominal level searched for
NHST number of interval-halving steps performed up to now
SIZE size of the critical region corresponding to α_{0}

Author(s)

Stefan Wellek stefan.wellek@zi-mannheim.de
Peter Ziegler peter.ziegler@zi-mannheim.de

References

Boschloo RD: Raised conditional level of significance for the 2×2 - table when testing the equality of two probabilities. Statistica Neerlandica 24 (1970), 1-35.

Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2010, §6.6.2.

Examples

```
bi2ste3(50, 50, 1/3, 0.05, 0.05, 1e-10, 1e-8, 10)
```

```
bi2wld_ni_del
```

Function to compute corrected nominal levels for the Wald type (asymptotic) test for one-sided equivalence of two binomial distributions with respect to the difference of success rates

Description

Implementation of the construction described on pp. 183-5 of Wellek S (2010) Testing statistical hypotheses of equivalence and noninferiority. Second edition.

Usage

bi2wld_ni_del(N1,N2,EPS, SW, ALPHA, MAXH)

Arguments

N1 size of Sample 1
N2 size of Sample 2
EPS noninferiority margin to the difference of success probabilities
SW width of the search grid for determining the maximum of the rejection probability on the common boundary of the hypotheses
ALPHA target significance level
MAXH maximum number of interval-halving steps

Details

The program computes the largest nominal significance level to be used for determining the critical lower bound to the Wald-type statistic for the problem of testing $H: p_{1} \leq p_{2}-\varepsilon$ versus $K: p_{1}<$ $p_{2}-\varepsilon$.

Value

N1 size of Sample 1
N2 size of Sample 2
EPS noninferiority margin to the difference of success probabilities
SW width of the search grid for determining the maximum of the rejection probability on the common boundary of the hypotheses
ALPHA target significance level
MAXH maximum number of interval-halving steps
ALPHA0 corrected nominal level
SIZE0 size of the critical region of the test at nominal level ALPHA0
SIZE_UNC size of the test at uncorrected nominal level ALPHA
ERR_IND indicator taking value 1 when it occurs that the sufficient condition allowing one to restrict the search for the maximum of the rejection probability under the null hypothesis to its boundary, fails to be satisfied; otherwise the indicator retains its default value 0 .

Author(s)

Stefan Wellek stefan.wellek@zi-mannheim.de
Peter Ziegler peter.ziegler@zi-mannheim.de

References

Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2010, § 6.6.3.

Examples

$$
\text { bi2wld_ni_del }(25,25, .10, .01, .05,10)
$$

```
cf_reh_exact Exact confidence bounds to the relative excess heterozygosity (REH)
    exhibited by a SNP genotype distribution
```


Description

Implementation of the interval estimation procedure described on pp. 305-6 of Wellek S (2010) Testing statistical hypotheses of equivalence and noninferiority. Second edition.

Usage

cf_reh_exact($\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$, alpha, SW, TOL , ITMAX)
cf_reh_exact

Arguments

X1
X2 count of heterozygotes [\leftrightarrow genotype AB]
X3 count of homozygotes of the second kind [\leftrightarrow genotype BB]
alpha 1 -confidence level
SW width of the search grid for determining an interval covering the parameter point at which the conditional distribution function takes value α and $1-\alpha$, respectively
TOL numerical tolerance to the deviation between the computed confidence limits and their exact values
ITMAX maximum number of interval-halving steps

Details

The program exploits the structure of the family of all genotype distributions, which is 2-parameter exponential with $\log (R E H)$ as one of these parameters.

Value

X1 count of homozygotes of the first kind [\leftrightarrow genotype AA]
X2 count of heterozygotes [\leftrightarrow genotype AB]
X3 count of homozygotes of the second kind [\leftrightarrow genotype BB]
alpha 1 - confidence level
SW width of the search grid for determining an interval covering the parameter point at which the conditional distribution function takes value α and $1-\alpha$, respectively
TOL numerical tolerance to the deviation between the computed confidence limits and their exact values

ITMAX maximum number of interval-halving steps
C_l_exact exact conditional lower $(1-\alpha)$-confidence bound to REH
C_r_exact exact conditional upper $(1-\alpha)$-confidence bound to REH

Author(s)

Stefan Wellek stefan.wellek@zi-mannheim.de
Peter Ziegler peter.ziegler@zi-mannheim.de

References

Wellek S, Goddard KAB, Ziegler A: A confidence-limit-based approach to the assessment of HardyWeinberg equilibrium. Biometrical Journal 52 (2010), 253-270.
Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2010, § 9.4.3.

Examples

```
    cf_reh_exact( }34,118,96,.05,.1,1E-4,25
```

cf_reh_midp Mid-p-value - based confidence bounds to the relative excess heterozy-
gosity (REH) exhibited by a SNP genotype distribution

Description

Implementation of the interval estimation procedure described on pp. 306-7 of Wellek S (2010) Testing statistical hypotheses of equivalence and noninferiority. Second edition.

Usage

cf_reh_midp(X1, X2, X3, alpha, SW, TOL, ITMAX)

Arguments

X1
count of homozygotes of the first kind [\leftrightarrow genotype AA]
X2 count of heterozygotes [\leftrightarrow genotype AB]
X3 count of homozygotes of the second kind [\leftrightarrow genotype BB]
alpha
SW width of the search grid for determining an interval covering the parameter point at which the conditional distribution function takes value α and $1-\alpha$, respectively
TOL numerical tolerance to the deviation between the computed confidence limits and their exact values
ITMAX maximum number of interval-halving steps

Details

The mid-p algorithm serves as a device for reducing the conservatism inherent in exact confidence estimation procedures for parameters of discrete distributions.

Value

X1 count of homozygotes of the first kind [\leftrightarrow genotype AA]
X2 count of heterozygotes [\leftrightarrow genotype AB]
X3 count of homozygotes of the second kind [\leftrightarrow genotype BB]
alpha 1 - confidence level
SW width of the search grid for determining an interval covering the parameter point at which the conditional distribution function takes value α and $1-\alpha$, respectively

TOL numerical tolerance to the deviation between the computed confidence limits and their exact values
ITMAX maximum number of interval-halving steps
C_l_midp lower $(1-\alpha)$-confidence bound to REH based on conditional mid-p-values
C_r_midp upper $(1-\alpha)$-confidence bound to REH based on conditional mid-p-values

Author(s)

Stefan Wellek stefan.wellek@zi-mannheim.de
Peter Ziegler peter.ziegler@zi-mannheim.de

References

Agresti A: Categorical data Analysis (2nd edn). Hoboken, NJ: Wiley, Inc., 2002, Section 1.4.5.
Wellek S, Goddard KAB, Ziegler A: A confidence-limit-based approach to the assessment of HardyWeinberg equilibrium. Biometrical Journal 52 (2010), 253-270.
Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2010, § 9.4.3.

Examples

cf_reh_midp($137,34,8, .05, .1,1 \mathrm{E}-4,25$)
exp1st Critical constants and power against the null alternative of the UMP test for equivalence of the hazard rate of a single exponential distribution to some given reference value

Description

The function computes the critical constants defining the uniformly most powerful test for the problem $\sigma \leq 1 /(1+\varepsilon)$ or $\sigma \geq(1+\varepsilon)$ versus $1 /(1+\varepsilon)<\sigma<(1+\varepsilon)$, with σ denoting the scale parameter [\equiv reciprocal hazard rate] of an exponential distribution.

Usage

exp1st(alpha, tol,itmax, n,eps)

Arguments

alpha	significance level tol
tolerable deviation from α of the rejection probability at either boundary of the	
hypothetical equivalence interval	
itmax	maximum number of iteration steps
n	sample size eps
l	

Value
alpha
tol tolerable deviation from α of the rejection probability at either boundary of the hypothetical equivalence interval
itmax maximum number of iteration steps
n
eps

IT number of iteration steps performed until reaching the stopping criterion corre-

C1
C2
ERR1
POW0
significance level
sample size
margin determining the hypothetical equivalence range symmetrically on the log-scale sponding to TOL
left-hand limit of the critical interval for $T=\sum_{i=1}^{n} X_{i}$
right-hand limit of the critical interval for $T=\sum_{i=1}^{n} X_{i}$
deviation of the rejection probability from α under $\sigma=1 /(1+\varepsilon)$
power of the randomized UMP test against the alternative $\sigma=1$

Author(s)

Stefan Wellek stefan.wellek@zi-mannheim.de Peter Ziegler peter.ziegler@zi-mannheim.de

References

Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2010, § 4.2.

Examples

$\exp 1 \operatorname{st}(0.05,1.0 \mathrm{e}-10,100,80,0.3)$

fstretch	Critical constants and power of the UMPI (uniformly most powerful invariant) test for dispersion equivalence of two Gaussian distribu- tions

Description

The function computes the critical constants defining the optimal test for the problem $\sigma^{2} / \tau^{2} \leq \varrho_{1}$ or $\sigma^{2} / \tau^{2} \geq \varrho_{2}$ versus $\varrho_{1}<\sigma^{2} / \tau^{2}<\varrho_{2}$, with $\left(\varrho_{1}, \varrho_{2}\right)$ as a fixed nonempty interval around unity.

Usage

fstretch(alpha, tol,itmax, ny1, ny2, rho1, rho2)

Arguments

alpha
tol
itmax
ny1
ny2 number of degrees of freedom of the estimator of τ^{2}
rho1
rho2

Value

alpha significance level
tol tolerable deviation from α of the rejection probability at either boundary of the hypothetical equivalence interval
itmax maximum number of iteration steps
ny1 number of degrees of freedom of the estimator of σ^{2}
ny2
rho1
rho2
IT

C1

ERR
POW0
significance level
tolerable deviation from α of the rejection probability at either boundary of the hypothetical equivalence interval
maximum number of iteration steps
upper equivalence limit to σ^{2} / τ^{2}

number of degrees of freedom of the estimator of τ^{2}
lower equivalence limit to σ^{2} / τ^{2}
upper equivalence limit to σ^{2} / τ^{2}
number of iteration steps performed until reaching the stopping criterion corresponding to TOL
left-hand limit of the critical interval for

$$
T=\frac{n-1}{m-1} \sum_{i=1}^{m}\left(X_{i}-\bar{X}\right)^{2} / \sum_{j=1}^{n-1}\left(Y_{j}-\bar{Y}\right)^{2}
$$

C2

Note

If the two independent samples under analysis are from exponential rather than Gaussian distributions, the critical constants computed by means of fstretch with $\nu_{1}=2 m, \nu_{2}=2 n$, can be used for testing for equivalence with respect to the ratio of hazard rates. The only difference is that the ratio of sample means rather than variances has to be used as the test statistic then.

Author(s)

Stefan Wellek stefan.wellek@zi-mannheim.de
Peter Ziegler peter.ziegler@zi-mannheim.de

References

Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2010, § 6.5.

Examples

fstretch(0.05, 1.0e-10, $50,40,45,0.5625,1.7689)$
gofhwex \quad Critical constants of the exact UMPU test for approximate compatibility of a SNP genotype distribution with the Hardy-Weinberg model

Description

The function computes the critical constants defining the uniformly most powerful unbiased test for equivalence of the population distribution of the three genotypes distinguishable in terms of a single nucleotide polymorphism (SNP), to a distribution being in Hardy-Weinberg equilibrium (HWE).
The test is conditional on the total count S of alleles of the kind of interest, and the parameter θ, in terms of which equivalence shall be established, is defined by $\theta=\frac{\pi_{2}^{2}}{\pi_{1}\left(1-\pi_{1}-\pi_{2}\right)}$, with π_{1} and π_{2} denoting the population frequence of homozygotes of the 1 st kind and heterozygotes, respectively.

Usage

gofhwex(alpha, n, s, del1, del2)

Arguments

alpha significance level
n number of genotyped individuals
s observed count of alleles of the kind of interest
del1 absolute value of the lower equivalence limit to $\theta / 4-1$
del2 upper equivalence limit to $\theta / 4-1$

Value

alpha significance level
$\mathrm{n} \quad$ number of genotyped individuals
$s \quad$ observed count of alleles of the kind of interest
del1 absolute value of the lower equivalence limit to $\theta / 4-1$
del2 upper equivalence limit to $\theta / 4-1$

C1 left-hand limit of the critical interval for the observed number X_{2} of heterozygotes
C2 right-hand limit of the critical interval for the observed number X_{2}
GAM1 probability of rejecting the null hypothesis when it turns out that $X_{2}=C_{1}$
GAM2 probability of rejecting the null hypothesis for $X_{2}=C_{2}$

Author(s)

Stefan Wellek stefan.wellek@zi-mannheim.de
Peter Ziegler peter.ziegler@zi-mannheim.de

References

Wellek S: Tests for establishing compatibility of an observed genotype distribution with HardyWeinberg equilibrium in the case of a biallelic locus. Biometrics 60 (2004), 694-703.
Goddard KAB, Ziegler A, Wellek S: Adapting the logical basis of tests for Hardy-Weinberg equilibrium to the real needs of association studies in human and medical genetics. Genetic Epidemiology 33 (2009), 569-580.

Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2010, § 9.4.2.

Examples

gofhwex ($0.05,475,429,1-1 / 1.96,0.96$)

```
gofhwex_1s
```

Critical constants of the exact UMPU test for absence of a substantial deficit of heterozygotes as compared with a HWE-compliant SNP genotype distribution [noninferiority version of the test implemented by means of gofhwex]

Description

The function computes the critical constants defining the UMPU test for one-sided equivalence of the population distribution of a SNP, to a distribution being in Hardy-Weinberg equilibrium (HWE). A substantial deficit of heterozygotes is defined to occur when the true value of the parametric function $\omega=\frac{\pi_{2} / 2}{\sqrt{\pi_{1} \pi_{3}}}$ [called relative excess heterozygosity (REH)] falls below unity by more than some given margin δ_{0}.
Like its two-sided counterpart [see the description of the R function gofhwex], the test is conditional on the total count S of alleles of the kind of interest.

Usage

gofhwex_1s(alpha, $n, s, d e l 0)$

Arguments

alpha	significance level
n	number of genotyped individuals
s	observed count of alleles of the kind of interest
del0	noninferiority margin for ω, which has to satisfy $\omega>1-\delta_{0}$ under the alternative hypothesis to be established

Value

alpha significance level
$\mathrm{n} \quad$ number of genotyped individuals
$s \quad$ observed count of alleles of the kind of interest
del0 noninferiority margin for ω, which has to satisfy $\omega>1-\delta_{0}$ under the alternative hypothesis to be established

C
left-hand limit of the critical interval for the observed number X_{2} of heterozygotes
GAM probability of rejecting the null hypothesis when it turns out that $X_{2}=C$

Author(s)

Stefan Wellek stefan.wellek@zi-mannheim.de
Peter Ziegler peter.ziegler@zi-mannheim.de

References

Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2010, pp. 300-302.

Examples

gofhwex_1s(0.05,133,65,1-1/1.96)
gofind_t Establishing approximate independence in a two-way contingency table: Test statistic and critical bound

Description

The function computes all quantities required for carrying out the asymptotic test for approximate independence of two categorial variables derived in § 9.2 of Wellek S (2010) Testing statistical hypotheses of equivalence and noninferiority. Second edition.

Usage

gofind_t(alpha, r,s,eps,xv)

Arguments

alpha	significance level
r	number of rows of the contingency table under analysis
s	number of columns of the contingency table under analysis
eps	margin to the Euclidean distance between the vector π of true cell probabilities and the associated vector of products of marginal totals
xv	row vector of length $r \cdot s$ whose $(i-1) s+j$-th component is the entry in cell (i, j) of the $r \times s$ contingency table under analysis $i=1, \ldots, r, j=1, \ldots, s$.

Value

$\mathrm{n} \quad$ size of the sample to which the input table relates
alpha
r
S
eps
$X(r, s)$
DSQ_OBS
VN
CRIT
REJ indicator of a positive $[=1]$ vs negative $[=0]$ rejection decision to be taken with the data under analysis

Author(s)

Stefan Wellek stefan.wellek@zi-mannheim.de
Peter Ziegler peter.ziegler@zi-mannheim.de

References

Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2010, § 9.2.

Examples

```
xv <- c(8, 13, 15, 6, 19, 21, 31, 7)
gofind_t(0.05, 2, 4,0.15,xv)
```

Establishing goodness of fit of an observed to a fully specified multinomial distribution: test statistic and critical bound

Description

The function computes all quantities required for carrying out the asymptotic test for goodness rather than lack of fit of an observed to a fully specified multinomial distribution derived in § 9.1 of Wellek S (2010) Testing statistical hypotheses of equivalence and noninferiority. Second edition.

Usage

gofsimpt(alpha, $n, k, e p s, x, p i o)$

Arguments

\(\left.$$
\begin{array}{ll}\text { alpha } & \text { significance level } \\
\mathrm{n} & \text { sample size } \\
\mathrm{k} & \text { number of categories } \\
\text { eps } & \begin{array}{l}\text { margin to the Euclidean distance between the vectors } \pi \text { and } \pi_{0} \text { of true and hy- } \\
\mathrm{p}\end{array}
$$

pothesized cell probabilities\end{array}\right]\)| vector of length k with the observed cell counts as components |
| :--- |
| pio |

Value

\(\left.$$
\begin{array}{ll}\text { alpha } & \text { significance level } \\
\mathrm{n} & \text { sample size } \\
\mathrm{k} & \begin{array}{l}\text { number of categories } \\
\text { eps }\end{array} \\
\mathrm{X}(1, \mathrm{~K}) & \begin{array}{l}\text { margin to the Euclidean distance between the vectors } \pi \text { and } \pi_{0} \text { of true and hy- } \\
\text { observed cell counts }\end{array} \\
\text { PI0 }(1, \mathrm{~K}) & \begin{array}{l}\text { hypothecized cell probabilities } \\
\text { DSQPIH_0 }\end{array} \\
\text { observed value of the squared Euclidean distance } \\
\text { VN_N } & \begin{array}{l}\text { square root of the estimated asymtotic variance of } \sqrt{n} D S Q P I H _0 \\
\text { CRIT }\end{array}
$$

upper critical bound to \sqrt{n} D S Q P I H _0\end{array}\right]\)| indicator of a positive $[=1]$ vs negative $[=0]$ rejection decision to be taken with |
| :--- |
| the data under analysis |

Author(s)

Stefan Wellek stefan.wellek@zi-mannheim.de
Peter Ziegler peter.ziegler@zi-mannheim.de

References

Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2010, § 9.1.

Examples

```
x<- c(17, 16, 25, 9, 16, 17)
pio <- rep (1,6)/6
gofsimpt(0.05,100,6,0.15,x,pio)
```

mawi Mann-Whitney test for equivalence of two continuous distributions of
arbitrary shape: test statistic and critical upper bound

Description

Implementation of the asymptotically distribution-free test for equivalence of two continuous distributions in terms of the Mann-Whitney-Wilcoxon functional. For details see Wellek S (2010) Testing statistical hypotheses of equivalence and noninferiority. Second edition, § 6.2.

Usage

mawi(alpha,m,n,eps1_,eps2_, x,y)

Arguments

alpha	significance level
m	size of Sample 1
n	size of Sample 2
eps1_	absolute value of the left-hand limit of the hypothetical equivalence range for $\pi_{+}-1 / 2$
eps2_	right-hand limit of the hypothetical equivalence range for $\pi_{+}-1 / 2$
x	row vector with the m observations making up Sample1 as components
y	row vector with the n observations making up Sample 2 as components

Details

Notation: π_{+}stands for the Mann-Whitney functional defined by $\pi_{+}=P[X>Y]$, with $X \sim F \equiv$ cdf of Population 1 being independent of $Y \sim G \equiv \operatorname{cdf}$ of Population 2.

Value

alpha	significance level
m	size of Sample 1
n	size of Sample 2
eps1_	absolute value of the left-hand limit of the hypothetical equivalence range for $\pi_{+}-1 / 2$
eps2_	right-hand limit of the hypothetical equivalence range for $\pi_{+}-1 / 2$
W+	observed value of the U-statistics estimator of π_{+}
SIGMAH	square root of the estimated asymtotic variance of W_{+}
CRIT	upper critical bound to $\left\|W_{+}-1 / 2-\left(\varepsilon_{2}^{\prime}-\varepsilon_{1}^{\prime}\right) / 2\right\| / \hat{\sigma}$
REJ	indicator of a positive $[=1]$ vs negative $[=0]$ rejection decision to be taken with the data under analysis

Author(s)

Stefan Wellek stefan.wellek@zi-mannheim.de
Peter Ziegler peter.ziegler@zi-mannheim.de

References

Wellek S: A new approach to equivalence assessment in standard comparative bioavailability trials by means of the Mann-Whitney statistic. Biometrical Journal 38 (1996), 695-710.
Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2010, § 6.2.

Examples

```
x <- c(10.3,11.3,2.0,-6.1,6.2,6.8,3.7,-3.3,-3.6,-3.5,13.7,12.6)
y<- c(3.3,17.7,6.7,11.1,-5.8,6.9,5.8,3.0,6.0,3.5,18.7,9.6)
mawi(0.05,12,12,0.1382,0.2602,x,y)
```

```
mcnasc_ni
```

Determination of a corrected nominal significance level for the asymptotic test for noninferiority in the McNemar setting

Description

The program computes the largest nominal significance level which can be substituted for the target level α without making the exact size of the asymptotic testing procedure larger than α.

Usage

mcnasc_ni(alpha, n, del0, sw, tol, maxh)

Arguments

alpha	significance level
n	sample size
del0	absolute value of the noninferiority margin for $\delta:=p_{10}-p_{01}$, with p_{10} and p_{01} denoting the probabilities of discordant pairs of both kinds
sw	width of the search grid for determining the maximum of the rejection probabil- ity on the common boundary of the hypotheses
tol	upper bound to the absolute difference between size and target level below which the search for a corrected nominal level terminates
maxh	maximum number of interval halving steps to be carried out in finding the max- imally raised nominal level

Value

alpha	significance level
n	sample size
del0	absolute value of the noninferiority margin for $\delta:=p_{10}-p_{01}$, with p_{10} and p_{01} denoting the probabilities of discordant pairs of both kinds
sw	width of the search grid for determining the maximum of the rejection probabil- ity on the common boundary of the hypotheses
ALPH_0	value of the corrected nominal level obtained after nh steps
SIZE_UNC	exact size of the rejection region of the test at uncorrected nominal level α exact size of the rejection region of the test at nominal level α_{0}
SIZE0	number of interval-halving steps actually performed

Author(s)

Stefan Wellek stefan.wellek@zi-mannheim.de
Peter Ziegler peter.ziegler@zi-mannheim.de

References

Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2010, § 5.2.3.

Examples

mcnasc_ni $(0.05,50,0.05,0.05,0.0001,5)$

```
mcnby_ni
```

Bayesian test for noninferiority in the McNemar setting with the difference of proportions as the parameter of interest

Description

The program determines through iteration the largest nominal level α_{0} such that comparing the posterior probability of the alternative hypothesis $K_{1}: \delta>-\delta_{0}$ to the lower bound $1-\alpha_{0}$ generates a critical region whose size does not exceed the target significance level α. In addition, exact values of the power against specific parameter configurations with $\delta=0$ are output.

Usage

mcnby_ni(N, DEL0,K1,K2,K3,NSUB, SW, ALPHA, MAXH)

Arguments

$N \quad$ sample size
DEL0 noninferiority margin to the difference of the parameters of the marginal binomial distributions under comparison
K1 Parameter 1 of the Dirichlet prior for the family of trinomial distributions
K2 Parameter 2 of the Dirichlet prior for the family of trinomial distributions
K3 Parameter 3 of the Dirichlet prior for the family of trinomial distributions
NSUB number of subintervals for partitioning the range of integration
SW width of the search grid for determining the maximum of the rejection probability on the common boundary of the hypotheses
ALPHA target significance level
MAXH maximum number of interval halving steps to be carried out in finding the maximally raised nominal level

Details

The program uses 96-point Gauss-Legendre quadrature on each of the NSUB intervals into which the range of integration is partitioned.

Value

$N \quad$ sample size
DEL0 noninferiority margin to the difference of the parameters of the marginal binomial distributions under comparison
K1 Parameter 1 of the Dirichlet prior for the family of trinomial distributions
K2 Parameter 2 of the Dirichlet prior for the family of trinomial distributions
K3
Parameter 3 of the Dirichlet prior for the family of trinomial distributions

NSUB	number of subintervals for partitioning the range of integration SW
width of the search grid for determining the maximum of the rejection probabil- ity on the common boundary of the hypotheses target significance level	
MAXH	maximum number of interval halving steps to be carried out in finding the max- imally raised nominal level
ALPHA0	result of the search for the largest admissible nominal level
SIZE0	size of the critical region corresponding to α_{0} SIZE_UNC
size of the critical region of test at uncorrected nominal level α	
POW	power against 7 different parameter configurations with $\delta=0$

Author(s)

Stefan Wellek stefan.wellek@zi-mannheim.de
Peter Ziegler peter.ziegler@zi-mannheim.de

References

Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2010, § 5.2.3.

Examples

mcnby_ni $(25, .10, .5, .5, .5,10, .05, .05,5)$
mcnby_ni_pp
Computation of the posterior probability of the alternative hypothesis of noninferiority in the McNemar setting, given a specific point in the sample space

Description

Evaluation of the integral on the right-hand side of Equation (5.24) on p. 88 of Wellek S (2010) Testing statistical hypotheses of equivalence and noninferiority. Second edition.

Usage

mcnby_ni_pp(N,DEL0,N10,N01)

Arguments

N
DEL0 noninferiority margin to the difference of the parameters of the marginal binomial distributions under comparison
N10
count of pairs with $(X, Y)=(1,0)$
N01
count of pairs with $(X, Y)=(0,1)$

Details

The program uses 96-point Gauss-Legendre quadrature on each of 10 subintervals into which the range of integration is partitioned.

Value

N
DEL0 noninferiority margin to the difference of the parameters of the marginal binomial distributions under comparison
N10 count of pairs with $(X, Y)=(1,0)$
N01 count of pairs with $(X, Y)=(0,1)$
PPOST posterior probability of the alternative hypothesis $K_{1}: \delta>-\delta_{0}$ with respect to the noninformative prior determined according to Jeffrey's rule

Note

The program uses Equation (5.24) of Wellek S (2010) corrected for a typo in the middle line which must read

$$
\int_{\delta_{0}}^{\left(1+\delta_{0}\right) / 2}\left[B\left(n_{01}+1 / 2, n-n_{01}+1\right) p_{01}^{n_{01}-1 / 2}\left(1-p_{01}\right)^{n-n_{01}}\right.
$$

Author(s)

Stefan Wellek stefan.wellek@zi-mannheim.de
Peter Ziegler peter.ziegler@zi-mannheim.de

References

Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2010, § 5.2.3.

Examples

mcnby_ni_pp(72,0.05,4,5)
mcnemasc Determination of a corrected nominal significance level for the asymptotic test for equivalence of two paired binomial proportions with respect to the difference of their expectations (McNemar setting)

Description

The program computes the largest nominal significance level which can be substituted for the target level α without making the exact size of the asymptotic testing procedure larger than α.

Usage

```
mcnemasc(alpha, n, del0, sw, tol,maxh)
```


Arguments

alpha significance level
n
sample size
del0 upper limit set to $\left|p_{10}-p_{01}\right|$ under the alternative hypothesis of equivalence, with p_{10} and p_{01} denoting the probabilities of discordant pairs of both kinds
sw width of the search grid for determining the maximum of the rejection probability on the common boundary of the hypotheses
tol upper bound to the absolute difference between size and target level below which the search for a corrected nominal level terminates
maxh maximum number of interval halving steps to be carried out in finding the maximally raised nominal level

Value

alpha	significance level
n	sample size
del0	upper limit set to $\left\|p_{10}-p_{01}\right\|$ under the alternative hypothesis of equivalence, with p_{10} and p_{01} denoting the probabilities of discordant pairs of both kinds
Sw	width of the search grid for determining the maximum of the rejection probabil- ity on the common boundary of the hypotheses
ALPH_0	value of the corrected nominal level obtained after nh steps
NH	number of interval-halving steps actually performed error indicator messaging "!!!!!" if the sufficient condition for the correctness of the result output by the program was found violated
ERROR	

Author(s)

Stefan Wellek stefan.wellek@zi-mannheim.de
Peter Ziegler peter.ziegler@zi-mannheim.de

References

Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2010, § 5.2.2.

Examples

mcnemasc $(0.05,50,0.20,0.05,0.0005,5)$

Exact rejection probability of the asymptotic test for equivalence of two paired binomial proportions with respect to the difference of their expectations (McNemar setting)

Description

The program computes exact values of the rejection probability of the asymptotic test for equivalence in the sense of $-\delta_{0}<p_{10}-p_{01}<\delta_{0}$, at any nominal level α. [The largest α for which the test is valid in terms of the significance level, can be computed by means of the program menemasc.]

Usage

```
mcnempow(alpha,n,del0,p10,p01)
```


Arguments

alpha	nominal significance level
n	sample size
del 0	upper limit set to $\|\delta\|$ under the alternative hypothesis of equivalence
p 10	true value of $P[X=1, Y=0]$
p 01	true value of $P[X=0, Y=1]$

Value

alpha nominal significance level
$\mathrm{n} \quad$ sample size
del0 upper limit set to $|\delta|$ under the alternative hypothesis of equivalence
p10 true value of $P[X=1, Y=0]$
p01 true value of $P[X=0, Y=1]$
POW exact rejection probability of the asymptotic McNemar test for equivalence at nominal level α

ERROR error indicator messaging "!!!!!" if the sufficient condition for the correctness of the result output by the program was found violated

Author(s)

Stefan Wellek stefan.wellek@zi-mannheim.de
Peter Ziegler peter.ziegler@zi-mannheim.de

References

Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2010, p. 84.

Examples

mcnempow(0.024902,50,0.20,0.30,0.30)

```
mwtie_fr
```


Description

Implementation of the asymptotically distribution-free test for equivalence of discrete distributions from which grouped data are obtained. Hypothesis formulation is in terms of the Mann-WhitneyWilcoxon functional generalized to the case that ties between observations from different distributions may occur with positive probability. For details see Wellek S (2010) Testing statistical hypotheses of equivalence and noninferiority. Second edition, p.155.

Usage

mwtie_fr(k, alpha, m, n,eps1_,eps2_, x, y)

Arguments

k
alpha
m
$\mathrm{n} \quad$ size of Sample 2
eps1_ absolute value of the left-hand limit of the hypothetical equivalence range for $\pi_{+} /\left(1-\pi_{0}\right)-1 / 2$
eps2_ right-hand limit of the hypothetical equivalence range for $\pi_{+} /\left(1-\pi_{0}\right)-1 / 2$
$\mathrm{x} \quad$ row vector with the m observations making up Sample1 as components
y row vector with the n observations making up Sample2 as components

Details

Notation: π_{+}and π_{0} stands for the functional defined by $\pi_{+}=P[X>Y]$ and $\pi_{0}=P[X=Y]$, respectively, with $X \sim F \equiv \mathrm{cdf}$ of Population 1 being independent of $Y \sim G \equiv \operatorname{cdf}$ of Population 2.

Value

alpha	significance level
m	size of Sample 1
n	size of Sample 2
eps1_	absolute value of the left-hand limit of the hypothetical equivalence range for $\pi_{+} /\left(1-\pi_{0}\right)-1 / 2$
eps2_	right-hand limit of the hypothetical equivalence range for $\pi_{+} /\left(1-\pi_{0}\right)-1 / 2$

WXY_TIE \quad observed value of the U-statistics - based estimator of $\pi_{+} /\left(1-\pi_{0}\right)$
SIGMAH square root of the estimated asymtotic variance of $W_{+} /\left(1-W_{0}\right)$
CRIT upper critical bound to $\left|W_{+} /\left(1-W_{0}\right)-1 / 2-\left(\varepsilon_{2}^{\prime}-\varepsilon_{1}^{\prime}\right) / 2\right| / \hat{\sigma}$
REJ indicator of a positive $[=1]$ vs negative $[=0]$ rejection decision to be taken with the data under analysis

Author(s)

Stefan Wellek stefan.wellek@zi-mannheim.de
Peter Ziegler peter.ziegler@zi-mannheim.de

References

Wellek S, Hampel B: A distribution-free two-sample equivalence test allowing for tied observations. Biometrical Journal 41 (1999), 171-186.

Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2010, § 6.4.

Examples

```
x<- c(1,1,3,2,2,3,1,1,1,2,1,2,2,2,1,2,1,3,2,1,2,1,1,1,1,1,1,1,1,1,1,1,2,1,3,1,3,2,1,1,
    2,1,2,1,1,2,2,1,2,1,1,1,1,1,2,2,1,2,2,1,3,1,2,1,1, 2, 2, 1, 2, 2, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1,
    3,3,3,1,2,1,2,2,1,1,1,2,2,1,1,2,1,1,2,3,1,3,2,1,1,1,1, 2, 2, 2, 1, 1, 2, 2, 3, 2, 1, 2, 1, 1,
    2,2,1,2,2,2,1,1,2,3,2,1,3,2,1,1,1,2,2,2, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2,
    2,1,1,2,1,2,2,1,1,1,1,3,1,1,2,2,1,1,1,2,2,2,1,2,3,2,2,1,2,1,2,1,1,2,1, 2, 2, 1, 1,1,
    2,2,2,2)
y<- c(2,1,2,2,1,1,2,2,2,1,1,2,1,3,3,1,1,1,1,1,1,2, 2, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 2, 1,
    2,2,2,1,2,1,1,2,2,1,2,1,1,1,1,2,1,2,1,1,3,1,1,1,2, 2, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 2,
    2,1,1,1,3,2,2,2,1,2,3,1,2,1,1,1,2,1,3,3,1,2,2,2,2,2,2,1,2,1,1,1,1,2,2,1,1,1,1,2,
    1,3,1,1,2,1,2,1,2,2,2,1,2,2,2,1,1,1,2,1,2,1,2,1,1,1,2,1,2,2,1,1,1,1,2, 2, 3, 1, 3, 1,
    1,2,2,2,1,1,1,1,2,1,1,3,2,2,3,1,2,2,1,1, 2,1,1,2,1,2,2,1,2,1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1,
    1,1,1,2,1,3,2,2,1,1,1,2,2,1,1,2,1,2,1,2, 2, 2, 1, 2, 3, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1,
    3,2,1,2,2,2,1,1,1,2,1,2,2,1,2,1,1,2)
mwtie_fr(3,0.05, 204, 258,0.10,0.10,x,y)
```

mwtie_xy Distribution-free two-sample equivalence test for tied data: test statistic and critical upper bound

Description

Implementation of the asymptotically distribution-free test for equivalence of discrete distributions in terms of the Mann-Whitney-Wilcoxon functional generalized to the case that ties between observations from different distributions may occur with positive probability. For details see Wellek S (2010) Testing statistical hypotheses of equivalence and noninferiority. Second edition, § 6.4.
mwtie_xy

Usage

```
mwtie_xy(alpha,m,n,eps1_,eps2_,x,y)
```


Arguments

alpha	significance level
m	size of Sample 1
n	size of Sample 2
eps1_	absolute value of the left-hand limit of the hypothetical equivalence range for $\pi_{+} /\left(1-\pi_{0}\right)-1 / 2$
eps2_	right-hand limit of the hypothetical equivalence range for $\pi_{+} /\left(1-\pi_{0}\right)-1 / 2$
x	row vector with the m observations making up Sample1 as components
y	row vector with the n observations making up Sample2 as components

Details

Notation: π_{+}and π_{0} stands for the functional defined by $\pi_{+}=P[X>Y]$ and $\pi_{0}=P[X=Y]$, respectively, with $X \sim F \equiv \mathrm{cdf}$ of Population 1 being independent of $Y \sim G \equiv \operatorname{cdf}$ of Population 2.

Value

alpha significance level
m size of Sample 1
n size of Sample 2
eps1_ absolute value of the left-hand limit of the hypothetical equivalence range for $\pi_{+} /\left(1-\pi_{0}\right)-1 / 2$
eps2_ right-hand limit of the hypothetical equivalence range for $\pi_{+} /\left(1-\pi_{0}\right)-1 / 2$
WXY_TIE \quad observed value of the U-statistics - based estimator of $\pi_{+} /\left(1-\pi_{0}\right)$
SIGMAH square root of the estimated asymtotic variance of $W_{+} /\left(1-W_{0}\right)$
CRIT upper critical bound to $\left|W_{+} /\left(1-W_{0}\right)-1 / 2-\left(\varepsilon_{2}^{\prime}-\varepsilon_{1}^{\prime}\right) / 2\right| / \hat{\sigma}$
REJ indicator of a positive $[=1]$ vs negative $[=0]$ rejection decision to be taken with the data under analysis

Author(s)

Stefan Wellek stefan.wellek@zi-mannheim.de
Peter Ziegler peter.ziegler@zi-mannheim.de

References

Wellek S, Hampel B: A distribution-free two-sample equivalence test allowing for tied observations. Biometrical Journal 41 (1999), 171-186.
Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2010, § 6.4.

Examples

```
x <- c(1,1,3,2,2,3,1,1,1,2)
y <- c(2,1,2,2,1,1,2,2,2,1,1,2)
mwtie_xy(0.05,10,12,0.10,0.10,x,y)
```

```
postmys
```

Bayesian posterior probability of the alternative hypothesis in the setting of the one-sample t-test for equivalence

Description

Evaluation of the integral appearing on the right-hand side of equation (3.6) on p. 38 of Wellek S (2010) Testing statistical hypotheses of equivalence and noninferiority. Second edition

Usage

postmys(n, dq, sd,eps1,eps2,tol)

Arguments

n	sample size
dq	mean within-pair difference observed in the sample under analysis
sd	square root of the sample variance of the within-pair differences eps1
epsolute value of the left-hand limit of the hypothetical equivalence range for	
δ / σ_{D}	
tol	right-hand limit of the hypothetical equivalence range for δ / σ_{D} tolerance for the error induced through truncating the range of integration on the right

Details

The program uses 96-point Gauss-Legendre quadrature.

Value

n	sample size dq
sd	mean within-pair difference observed in the sample under analysis
eps 1	square root of the sample variance of the within-pair differences absolute value of the left-hand limit of the hypothetical equivalence range for δ / σ_{D}
eps2	right-hand limit of the hypothetical equivalence range for δ / σ_{D} tolerance for the error induced through truncating the range of integration on the right
PPOST	posterior probability of the set of all $\left(\delta, \sigma_{D}\right)$ such that $-\varepsilon_{1}<\delta / \sigma_{D}<\varepsilon_{2}$

Author(s)

Stefan Wellek stefan.wellek@zi-mannheim.de
Peter Ziegler peter.ziegler@zi-mannheim.de

References

Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2010, § 3.2.

Examples

postmys($23,0.16,3.99,0.5,0.5,1 e-6)$

```
powsign
```

Nonconditional power of the UMPU sign test for equivalence and its nonrandomized counterpart

Description

The program computes for each possible value of the number n_{0} of zero observations the power conditional on $N_{0}=n_{0}$ and averages these conditional power values with respect to the distribution of N_{0}. Equivalence is defined in terms of the logarithm of the ratio p_{+} / p_{-}, where p_{+}and p_{-} denotes the probability of obtaining a positive and negative sign, respectively.

Usage

```
powsign(alpha,n,eps1,eps2,poa)
```


Arguments

alpha	significance level
n	sample size
eps1	absolute value of the lower limit of the hypothetical equivalence range for $\log \left(p_{+} / p_{-}\right)$.
eps2	upper limit of the hypothetical equivalence range for $\log \left(p_{+} / p_{-}\right)$.
poa	probability of a tie under the alternative of interest

Value

alpha significance level
n sample size
eps1 absolute value of the lower limit of the hypothetical equivalence range for $\log \left(p_{+} / p_{-}\right)$.
eps2 upper limit of the hypothetical equivalence range for $\log \left(p_{+} / p_{-}\right)$.
poa probability of a tie under the alternative of interest
POWNONRD power of the nonrandomized version of the test against the alternative $p_{+}=$ $p_{-}=\left(1-p_{\circ}\right) / 2$
POW power of the randomized UMPU test against the alternative $p_{+}=p_{-}=(1-$ $\left.p_{\circ}\right) / 2$

Note

A special case of the test whose power is computed by this program, is the exact conditional equivalence test for the McNemar setting (cf. Wellek 2010, pp. 76-77).

Author(s)

Stefan Wellek stefan.wellek@zi-mannheim.de
Peter Ziegler peter.ziegler@zi-mannheim.de

References

Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2010, § 5.1.

Examples

powsign(0.06580, $50,0.847298,0.847298,0.26)$

pow_abe \quad| Confidence innterval inclusion test for average bioequivalence: exact |
| :--- |
| power against an arbitrary specific alternative | power against an arbitrary specific alternative

Description

Evaluation of the integral on the right-hand side of equation (10.11) of p. 317 of Wellek S (2010)
Testing statistical hypotheses of equivalence and noninferiority. Second edition

Usage

pow_abe(m, n, alpha, del_0,del, sig)

Arguments

m	sample size in sequence group $\mathrm{T}($ est $) / \mathrm{R}($ eference $)$
n	sample size in sequence group $\mathrm{R}($ eference $) / \mathrm{T}($ est $)$
alpha	significance level
del_0	equivalence margin to the absolute value of the log-ratio μ_{T}^{*} and μ_{R}^{*} of the for- mulation effects
del	assumed true value of $\left\|\log \left(\mu_{T}^{*} / \mu_{R}^{*}\right)\right\|$, with $0 \leq \delta<\delta_{0}$ sig
	theoretical standard deviation of the log within-subject bioavailability ratios in each sequence group

Details

The program uses 96-point Gauss-Legendre quadrature.

Value
$m \quad$ sample size in sequence group T (est)/R(eference)
n sample size in sequence group R (eference)/T(est)
alpha significance level
del_0 equivalence margin to the absolute value of the log-ratio μ_{T}^{*} and μ_{R}^{*} of the formulation effects
del \quad assumed true value of $\left|\log \left(\mu_{T}^{*} / \mu_{R}^{*}\right)\right|$, with $0 \leq \delta<\delta_{0}$
POW_ABE power of the interval inclusion test for average bioequivalence against the specific alternative given by (δ, σ)

Author(s)

Stefan Wellek stefan.wellek@zi-mannheim.de
Peter Ziegler peter.ziegler@zi-mannheim.de

References

Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2010, § 10.2.1.

Examples

```
pow_abe(12,13,0.05,log(1.25),\operatorname{log}(1.25)/2,0.175624)
```

po_pbibe \quad| Bayesian posterior probability of the alternative hypothesis of |
| :--- |
| probability-based individual bioequivalence (PBIBE) |

Description

Implementation of the algorithm presented in $\S 10.3 .3$ of Wellek S (2010) Testing statistical hypotheses of equivalence and noninferiority. Second edition.

Usage

po_pbibe(n,eps, pio,zq,s,tol,sw,ihmax)

Arguments

n
eps
pio prespecified lower bound to the probability of obtaining an individual log-bioavailability ratio falling in the equivalence range $(-\varepsilon, \varepsilon)$
sample size
equivalence margin to an individual log-bioavailability ratio
mean log-bioavailability ratio observed in the sample under analysis
square root of the sample variance of the log-bioavailability ratios
\(\left.$$
\begin{array}{ll}\text { tol } & \begin{array}{l}\text { maximum numerical error allowed for transforming the hypothesis of PBIBE } \\
\text { into a region in the parameter space of the log-normal distribution assumed to } \\
\text { underlie the given sample of individual bioavailability ratios }\end{array}
$$

sw

step width used in the numerical procedure yielding results at a level of accuracy

specified by the value chosen for tol\end{array}\right\}\)| maximum number of interval halving steps to be carried out in finding the region |
| :--- |
| specified in the parameter space according to the criterion of PBIBE |

Details

The program uses 96-point Gauss-Legendre quadrature.

Value

n
eps equivalence margin to an individual log-bioavailability ratio
pio prespecified lower bound to the probability of obtaining an individual log-bioavailability ratio falling in the equivalence range $(-\varepsilon, \varepsilon)$
zq mean log-bioavailability ratio observed in the sample under analysis
s square root of the sample variance of the log-bioavailability ratios
tol maximum numerical error allowed for transforming the hypothesis of PBIBE into a region in the parameter space of the log-normal distribution assumed to underlie the given sample of individual bioavailability ratios
sw
step width used in the numerical procedure yielding results at a level of accuracy specified by the value chosen for tol
ihmax maximum number of interval halving steps to be carried out in finding the region specified in the parameter space according to the criterion of PBIBE
PO_PBIBE posterior probability of the alternative hypothesis of PBIBE

Author(s)

Stefan Wellek stefan.wellek@zi-mannheim.de
Peter Ziegler peter.ziegler@zi-mannheim.de

References

Wellek S: Bayesian construction of an improved parametric test for probability-based individual bioequivalence. Biometrical Journal 42 (2000), 1039-52.
Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2010, § 10.3.3.

Examples

po_pbibe (20,0.25,0.75,0.17451, 0.04169, 10e-10,0.01, 100)

sgnrk

Signed rank test for equivalence of an arbitrary continuous distribution of the intraindividual differences in terms of the probability of a positive sign of a Walsh average: test statistic and critical upper bound

Description

Implementation of the paired-data analogue of the Mann-Whitney-Wilcoxon test for equivalence of continuous distributions. The continuity assumption relates to the intraindividual differences D_{i}. For details see Wellek S (2010) Testing statistical hypotheses of equivalence and noninferiority. Second edition, § 5.4.

Usage

sgnrk(alpha, n, qpl1, qpl2, d)

Arguments

alpha significance level
n sample size
qpl1 lower equivalence limit q_{+}^{\prime} to the target functional q_{+}
qpl2 upper equivalence limit $q_{+}^{\prime \prime}$ to the target functional q_{+}
d row vector with the intraindividual differences for all n pairs as components

Details

q_{+}is the probability of getting a positive sign of the so-called Walsh-average of a pair of withinsubject differences and can be viewed as a natural paired-observations analogue of the MannWhitney functional $\pi_{+}=P[X>Y]$.

Value

$\begin{array}{ll}\text { alpha } & \text { significance level } \\ \mathrm{n} & \text { sample size }\end{array}$
qpl1 lower equivalence limit q_{+}^{\prime} to the target functional q_{+}
qpl2 upper equivalence limit $q_{+}^{\prime \prime}$ to the target functional q_{+}
U_pl observed value of the U-statistics estimator of q_{+}
SIGMAH square root of the estimated asymtotic variance of U_{+}
CRIT upper critical bound to $\left|U_{+}-\left(q_{+}^{\prime}+q_{+}^{\prime \prime}\right) / 2\right| / \hat{\sigma}$
REJ indicator of a positive $[=1]$ vs negative $[=0]$ rejection decision to be taken with the data under analysis

Author(s)

Stefan Wellek stefan.wellek@zi-mannheim.de
Peter Ziegler peter.ziegler@zi-mannheim.de

References

Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2010, § 5.4.

Examples

```
d <- c(-0.5,0.333,0.667,1.333,1.5,-2.0,-1.0,-0.167,1.667,0.833,-2.167,-1.833,
    4.5,-7.5,2.667,3.333,-4.167,5.667,2.333,-2.5)
sgnrk(0.05,20,0.2398,0.7602,d)
```

srktie_d \quad| Generalized signed rank test for equivalence for tied data: test statistic |
| :--- |
| and critical upper bound |

Description

Implementation of a generalized version of the signed-rank test for equivalence allowing for arbitrary patterns of ties between the within-subject differences. For details see Wellek S (2010) Testing statistical hypotheses of equivalence and noninferiority. Second edition, § 5.5.

Usage

srktie_d(n,alpha,eps1,eps2,d)

Arguments

n
sample size
alpha
significance level
eps1 absolute value of the left-hand limit of the hypothetical equivalence range for $q_{+} /\left(1-q_{0}\right)-1 / 2$
eps2 right-hand limit of the hypothetical equivalence range for $q_{+} /\left(1-q_{0}\right)-1 / 2$
d row vector with the intraindividual differences for all n pairs as components

Details

Notation: q_{+}and q_{0} stands for the functional defined by $q_{+}=P\left[D_{i}+D_{j}>0\right]$ and $q_{0}=P\left[D_{i}+\right.$ $D_{j}=0$], respectively, with D_{i} and D_{j} as the intraindividual differences observed in two individuals independently selected from the underlying bivariate population.

Value

n	sample size
alpha	significance level eps1 absolute value of the left-hand limit of the hypothetical equivalence range for $q_{+} /\left(1-q_{0}\right)-1 / 2$
eps2	right-hand limit of the hypothetical equivalence range for $q_{+} /\left(1-q_{0}\right)-1 / 2$
U_pl	observed value of the U-statistics estimator of q_{+}
U_0	observed value of the U-statistics estimator of q_{0}
UAS_PL	observed value of $U_{+} /\left(1-U_{0}\right)$ TAUHAS CRIT
square root of the estimated asymtotic variance of $\sqrt{n} U_{+} /\left(1-U_{0}\right)$	
REJ	upper critical bound to $\sqrt{n}\left\|U_{+} /\left(1-U_{0}\right)-1 / 2-\left(\varepsilon_{2}-\varepsilon_{1}\right) / 2\right\| / \hat{\tau}$ indicator of a positive $[=1]$ vs negative $[=0]$ rejection decision to be taken with the data under analysis

Note

The function srktie_d can be viewed as the paired-data analogue of mwtie_xy

Author(s)

Stefan Wellek stefan.wellek@zi-mannheim.de
Peter Ziegler peter.ziegler@zi-mannheim.de

References

Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2010, § 5.5.

Examples

```
d<- c(0.8,0.2,0.0,-0.1,-0.3,0.3,-0.1,0.4,0.6,0.2,0.0,-0.2,-0.3,0.0,0.1,0.3,-0.3,
    0.1,-0.2,-0.5,0.2,-0.1,0.2,-0.1)
srktie_d(24,0.05,0.2602,0.2602,d)
```

| srktie_m | Analogue of srktie_d for settings where the distribution of intraindi-
 vidual differences is concentrated on a finite lattice |
| :--- | :--- | vidual differences is concentrated on a finite lattice

Description

Analogue of the function srktie_d tailored for settings where the distribution of the within-subject differences is concentrated on a finite lattice. For details see Wellek S (2010) Testing statistical hypotheses of equivalence and noninferiority. Second edition, pp.112-3.

Usage

```
srktie_m(n,alpha,eps1,eps2,w,d)
```


Arguments

n
sample size
alpha
significance level
eps1 absolute value of the left-hand limit of the hypothetical equivalence range for $q_{+} /\left(1-q_{0}\right)-1 / 2$
eps2 right-hand limit of the hypothetical equivalence range for $q_{+} /\left(1-q_{0}\right)-1 / 2$
w span of the lattice in which the intraindividual differences take their values
d row vector with the intraindividual differences for all n pairs as components

Details

Notation: q_{+}and q_{0} stands for the functional defined by $q_{+}=P\left[D_{i}+D_{j}>0\right]$ and $q_{0}=P\left[D_{i}+\right.$ $D_{j}=0$], respectively, with D_{i} and D_{j} as the intraindividual differences observed in two individuals independently selected from the underlying bivariate population.

Value

$\mathrm{n} \quad$ sample size
alpha significance level
eps1 absolute value of the left-hand limit of the hypothetical equivalence range for $q_{+} /\left(1-q_{0}\right)-1 / 2$
eps2 right-hand limit of the hypothetical equivalence range for $q_{+} /\left(1-q_{0}\right)-1 / 2$
w span of the lattice in which the intraindividual differences take their values
U_pl observed value of the U-statistics estimator of q_{+}
U_0 observed value of the U-statistics estimator of q_{0}
UAS_PL observed value of $U_{+} /\left(1-U_{0}\right)$
TAUHAS square root of the estimated asymtotic variance of $\sqrt{n} U_{+} /\left(1-U_{0}\right)$
CRIT upper critical bound to $\sqrt{n}\left|U_{+} /\left(1-U_{0}\right)-1 / 2-\left(\varepsilon_{2}-\varepsilon_{1}\right) / 2\right| / \hat{\tau}$
REJ indicator of a positive $[=1]$ vs negative $[=0]$ rejection decision to be taken with the data under analysis

Author(s)

Stefan Wellek stefan.wellek@zi-mannheim.de
Peter Ziegler peter.ziegler@zi-mannheim.de

References

Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2010, pp. 112-114.

Examples

```
d<-c(0.8,0.2,0.0,-0.1,-0.3,0.3,-0.1,0.4,0.6,0.2,0.0,-0.2,-0.3,0.0,0.1,0.3,-0.3,
    0.1,-0.2,-0.5,0.2,-0.1,0.2,-0.1)
srktie_m(24,0.05,0.2602,0.2602,0.1,d)
```

```
tt1st
```

Critical constants and power against the null alternative of the onesample t-test for equivalence with an arbitrary, maybe nonsymmetric choice of the limits of the equivalence range

Description

The function computes the critical constants defining the uniformly most powerful invariant test for the problem $\delta / \sigma_{D} \leq \theta_{1}$ or $\delta / \sigma_{D} \geq \theta_{2}$ versus $\theta_{1}<\delta / \sigma_{D}<\theta_{2}$, with $\left(\theta_{1}, \theta_{2}\right)$ as a fixed nondegenerate interval on the real line. In addition, tt 1 st outputs the power against the null alternative $\delta=0$.

Usage

```
tt1st(n,alpha, theta1, theta2,tol,itmax)
```


Arguments

n	sample size
alpha	significance level
theta1	lower equivalence limit to δ / σ_{D}
theta2	upper equivalence limit to δ / σ_{D} tolerable deviation from α of the rejection probability at either boundary of the tol
hypothetical equivalence interval	
itmax	maximum number of iteration steps

Value

n
sample size
alpha
significance level
theta1 lower equivalence limit to δ / σ_{D}
theta2 upper equivalence limit to δ / σ_{D}
IT
number of iteration steps performed until reaching the stopping criterion corresponding to TOL
C1 left-hand limit of the critical interval for the one-sample t-statistic
C2 right-hand limit of the critical interval for the one-sample t-statistic
ERR1 deviation of the rejection probability from α under $\delta / \sigma_{D}=\theta_{1}$
ERR2 deviation of the rejection probability from α under $\delta / \sigma_{D}=\theta_{2}$
POW0 power of the UMPI test against the alternative $\delta=0$

Note

If the output value of ERR2 is NA, the deviation of the rejection probability at the right-hand boundary of the hypothetical equivalence interval from α is smaller than the smallest real number representable in R .

Author(s)

Stefan Wellek stefan.wellek@zi-mannheim.de
Peter Ziegler peter.ziegler@zi-mannheim.de

References

Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2010, § 5.3.

Examples

```
tt1st(36,0.05, -0.4716,0.3853,1e-10,50)
```

tt2st Critical constants and power against the null alternative of the twosample t-test for equivalence with an arbitrary, maybe nonsymmetric choice of the limits of the equivalence range

Description

The function computes the critical constants defining the uniformly most powerful invariant test for the problem $(\xi-\eta) / \sigma \leq-\varepsilon_{1}$ or $(\xi-\eta) / \sigma \geq \varepsilon_{2}$ versus $-\varepsilon_{1}<(\xi-\eta) / \sigma<\varepsilon_{2}$, with ξ and η denoting the expected values of two normal distributions with common variance σ^{2} from which independent samples are taken. In addition, tt 2 st outputs the power against the null alternative $\xi=\eta$.

Usage

tt2st(m, n, alpha,eps1,eps2,tol,itmax)

Arguments

m	size of the sample from $\mathcal{N}\left(\xi, \sigma^{2}\right)$
n	size of the sample from $\mathcal{N}\left(\eta, \sigma^{2}\right)$
alpha	significance level
eps1	absolute value of the lower equivalence limit to $(\xi-\eta) / \sigma$
eps2	upper equivalence limit to $(\xi-\eta) / \sigma$
tol	tolerable deviation from α of the rejection probability at either boundary of the hypothetical equivalence interval
itmax	maximum number of iteration steps

Value
$\mathrm{m} \quad$ size of the sample from $\mathcal{N}\left(\xi, \sigma^{2}\right)$
n
size of the sample from $\mathcal{N}\left(\eta, \sigma^{2}\right)$
alpha
significance level
eps1 absolute value of the lower equivalence limit to $(\xi-\eta) / \sigma$
eps2 upper equivalence limit to $(\xi-\eta) / \sigma$
IT number of iteration steps performed until reaching the stopping criterion corresponding to TOL
C1 left-hand limit of the critical interval for the two-sample t-statistic
C2 right-hand limit of the critical interval for the two-sample t-statistic
ERR1 deviation of the rejection probability from α under $(\xi-\eta) / \sigma=-\varepsilon_{1}$
ERR2 deviation of the rejection probability from α under $(\xi-\eta) / \sigma=\varepsilon_{2}$
POW0 power of the UMPI test against the alternative $\xi=\eta$

Note

If the output value of ERR2 is NA, the deviation of the rejection probability at the right-hand boundary of the hypothetical equivalence interval from α is smaller than the smallest real number representable in R .

Author(s)

Stefan Wellek <stefan.wellek @zi-mannheim.de>
Peter Ziegler peter.ziegler@zi-mannheim.de

References

Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman \& Hall/CRC Press, 2010, § 6.1.

Examples

tt2st(12, 12, 0.05, 0.50, 1.00, 1e-10,50)

Index

*Topic $\mathbf{2 x} \mathbf{2}$ contingency table
gofind_t, 30
*Topic Bayesian test
bi2by_ni_del, 8
bi2by_ni_OR, 10
mcnby_ni, 36
po_pbibe, 47
postmys, 44
*Topic Dirichlet prior
mcnby_ni, 36 mcnby_ni_pp, 37
*Topic Euclidean distance statistic gofind_t, 30
gofsimpt, 32
*Topic Gauss-Legendre quadrature
bi2by_ni_del, 8
bi2by_ni_OR, 10
mcnby_ni, 36
mcnby_ni_pp, 37
po_pbibe, 47
postmys, 44
*Topic Gaussian data fstretch, 26
*Topic Hardy-Weinberg equilibrium (HWE)
gofhwex, 28 gofhwex_1s, 29
*Topic Hardy-Weinberg equilibrium cf_reh_exact, 22
cf_reh_midp, 24
*Topic Jeffrey's rule
mcnby_ni_pp, 37
*Topic Jeffreys prior postmys, 44
*Topic Mann-Whitney functional
mawi, 33
mwtie_fr, 41
mwtie_xy, 42
*Topic McNemar setting
mcnasc_ni, 34
mcnby_ni_pp, 37
mcnemasc, 38
mcnempow, 40
powsign, 45
*Topic U-statistics estimators
mwtie_fr, 41
mwtie_xy, 42
srktie_d, 50
srktie_m, 51
$*$ Topic UMP test for equivalence
exp1st, 25
*Topic UMP test
bi1st, 3
*Topic UMPU test
bi2st, 16
powsign, 45
*Topic Wald-type
bi2wld_ni_del, 21
*Topic Walsh averages
sgnrk, 49
srktie_d, 50
srktie_m, 51
*Topic asymptotic normality
gofind_t, 30
gofsimpt, 32
mawi, 33
mwtie_fr, 41
mwtie_xy, 42
sgnrk, 49
srktie_d, 50
srktie_m, 51
*Topic asymptotic test for equivalence
mcnempow, 40
*Topic asymptotic test
bi2diffac, 11
bi2dipow, 12
mcnasc_ni, 34
mcnemasc, 38
*Topic average bioequivalence
pow_abe, 46
*Topic binary observations
mcnasc_ni, 34
mcnemasc, 38
powsign, 45
*Topic binomial one-sample problem bi1st, 3
*Topic binomial two-sample problem
bi2aeq1, 4
bi2aeq2, 5
bi2aeq3, 7
bi2diffac, 11
bi2dipow, 12
bi2rlv1, 14
bi2rlv2, 15
bi2st, 16
bi2ste1, 17
bi2ste2, 18
bi2ste3, 19
$*$ Topic conditional test bi2st, 16
*Topic confidence interval inclusion test
pow_abe, 46
*Topic confidence interval inclusion
cf_reh_exact, 22
cf_reh_midp, 24
*Topic continuous observations
mawi, 33
sgnrk, 49
$*$ Topic corrected nominal level
bi2diffac, 11
mcnasc_ni, 34
mcnemasc, 38
$*$ Topic difference between response probabilities
mcnby_ni_pp, 37
*Topic difference of proportions
bi2by_ni_del, 8
mcnby_ni, 36
*Topic difference of success
probabilities
bi2diffac, 11
bi2dipow, 12
*Topic dispersion equivalence
fstretch, 26
$*$ Topic equivalence test
cf_reh_exact, 22
cf_reh_midp, 24
$*$ Topic equivalence
bi1st, 3
bi2aeq1, 4
bi2aeq2, 5
bi2aeq3, 7
bi2diffac, 11
bi2dipow, 12
bi2st, 16
mcnemasc, 38
powsign, 45
*Topic establishing approximate independence of two categorical variables
gofind_t, 30
*Topic exact Fisher-type test, nonrandomized version
bi2aeq3, 7
bi2ste3, 19
*Topic exact Fisher-type test
bi2aeq1, 4
bi2aeq2, 5
bi2rlv1, 14
bi2rlv2, 15
bi2st, 16
bi2ste1, 17
bi2ste2, 18
*Topic exact conditional confidence limit
cf_reh_exact, 22
*Topic exact conditional test powsign, 45
*Topic exact power
bi2dipow, 12
mcnempow, 40
*Topic exponential distribution exp1st, 25
$*$ Topic finite lattice
srktie_m, 51
*Topic fully specified multinomial distribution
gofsimpt, 32
$*$ Topic genetic association study
cf_reh_exact, 22
cf_reh_midp, 24
*Topic goodness of fit
cf_reh_exact, 22
cf_reh_midp, 24
*Topic homoskedasticity tt2st, 54
*Topic individual bioequivalence po_pbibe, 47
*Topic lognormal distribution
po_pbibe, 47
pow_abe, 46
*Topic matched-pair design with binary data
menby_ni, 36
*Topic maximally raised nominal level
bi2aeq3, 7
bi2ste3, 19
*Topic mid-p value
cf_reh_midp, 24
*Topic model validation
gofhwex, 28
$*$ Topic model verification
gofsimpt, 32
*Topic nominal level
bi2wld_ni_del, 21
*Topic noncentral t-distribution
tt1st, 53
tt2st, 54
*Topic noninferiority
bi2by_ni_del, 8
bi2by_ni_OR, 10
bi2ste1, 17
bi2ste2, 18
bi2ste3, 19
gofhwex_1s, 29
mcnasc_ni, 34
mcnby_ni, 36
mcnby_ni_pp, 37
*Topic nonparametric paired-sample equivalence test
sgnrk, 49
srktie_d, 50
srktie_m, 51
*Topic nonparametric two-sample equivalence test
mawi, 33
mwtie_fr, 41
mwtie_xy, 42
*Topic normal distribution
postmys, 44
*Topic odds ratio
bi2aeq1, 4
bi2aeq2, 5
bi2aeq3, 7
bi2by_ni_OR, 10
bi2rlv1, 14
bi2rlv2, 15
bi2st, 16
bi2ste1, 17
bi2ste2, 18
bi2ste3, 19
*Topic one-dimensional contingency table
gofsimpt, 32
*Topic one-sample problem exp1st, 25
*Topic package
EQUIVNONINF-package, 2
*Topic paired data
postmys, 44
*Topic paired samples
mcnasc_ni, 34
mcnemasc, 38
powsign, 45
*Topic paired t-test for equivalence
tt1st, 53
*Topic parallel-group design with binary data
bi2by_ni_del, 8
bi2by_ni_OR, 10
*Topic posterior probability of the alternative hypothesis
mcnby_ni_pp, 37
*Topic power
bi1st, 3
bi2aeq1, 4
bi2rlv1, 14
bi2ste1, 17
exp1st, 25
fstretch, 26
tt1st, 53
tt2st, 54
*Topic product of Jeffrey's priors
bi2by_ni_del, 8
bi2by_ni_OR, 10
*Topic randomized test
bi1st, 3
bi2st, 16
*Topic relative excess heterozygosity
(REH)
gofhwex_1s, 29
$*$ Topic relative excess heterozygosity
cf_reh_exact, 22
cf_reh_midp, 24
$*$ Topic relevant differences
bi2rlv1, 14
bi2rlv2, 15
*Topic sample size
bi2aeq2, 5
bi2rlv2, 15
bi2ste2, 18
*Topic single nucleotide
polymorphism (SNP)
gofhwex, 28
gofhwex_1s, 29
$*$ Topic standardized difference of means
postmys, 44
tt1st, 53
tt2st, 54
$*$ Topic tied observations
mwtie_fr, 41
mwtie_xy, 42
srktie_d, 50
srktie_m, 51
*Topic two-period crossover pow_abe, 46
*Topic two-sample problem fstretch, 26
*Topic two-sample t-test for equivalence
tt2st, 54
*Topic uniformly most powerful invariant test
fstretch, 26
tt1st, 53
tt2st, 54
*Topic uniformly most powerful
unbiased test
gofhwex, 28
gofhwex_1s, 29
bi1st, 3
bi2aeq1, 4
bi2aeq2, 5
bi2aeq3, 7
bi2by_ni_del, 8
bi2by_ni_OR, 10
bi2diffac, 11
bi2dipow, 12
bi2rlv1, 14
bi2rlv2, 15
bi2st, 16
bi2ste1, 17
bi2ste2, 18
bi2ste3, 19
bi2wld_ni_del, 21
cf_reh_exact, 22
cf_reh_midp, 24
EQUIVNONINF (EQUIVNONINF-package), 2
EQUIVNONINF-package, 2
exp1st, 25
fstretch, 26
gofhwex, 28
gofhwex_1s, 29
gofind_t, 30
gofsimpt, 32
mawi, 33
mcnasc_ni, 34
menby_ni, 36
mcnby_ni_pp, 37
mcnemasc, 38
mcnempow, 40
mwtie_fr, 41
mwtie_xy, 42
po_pbibe, 47
postmys, 44
pow_abe, 46
powsign, 45
sgnrk, 49
srktie_d, 50
srktie_m, 51
tt1st, 53
tt2st, 54

