
Package ‘EMC’
February 19, 2015

Type Package

Title Evolutionary Monte Carlo (EMC) algorithm

Version 1.3

Date 2011-12-08

Author Gopi Goswami <goswami@stat.harvard.edu>

Maintainer Gopi Goswami <grgoswami@gmail.com>

Depends R (>= 1.9.0), mvtnorm, MASS, graphics

Description random walk Metropolis, Metropolis Hasting, parallel tempering, evolution-
ary Monte Carlo, temperature ladder construction and placement

License GPL (>= 2)

Repository CRAN

Date/Publication 2011-12-11 17:42:15

NeedsCompilation yes

R topics documented:

evolMonteCarlo . 2
findMaxTemper . 6
MetropolisHastings . 11
parallelTempering . 13
placeTempers . 17
print . 21
randomWalkMetropolis . 22
utilsForExamples . 25

Index 26

1

2 evolMonteCarlo

evolMonteCarlo evolutionary Monte Carlo algorithm

Description

Given a multi-modal and multi-dimensional target density function, a (possibly asymmetric) pro-
posal distribution and a temperature ladder, this function produces samples from the target using
the evolutionary Monte Carlo algorithm.

Below sampDim refers to the dimension of the sample space, temperLadderLen refers to the length
of the temperature ladder, and levelsSaveSampForLen refers to the length of the levelsSaveSampFor.

Usage

evolMonteCarlo(nIters,
temperLadder,
startingVals,
logTarDensFunc,
MHPropNewFunc,
logMHPropDensFunc = NULL,
MHBlocks = NULL,
MHBlockNTimes = NULL,
moveProbsList = NULL,
moveNTimesList = NULL,
SCRWMNTimes = NULL,
SCRWMPropSD = NULL,
levelsSaveSampFor = NULL,
nThin = 1,
saveFitness = FALSE,
verboseLevel = 0,
...)

Arguments

nIters integer > 0.

temperLadder double vector with all positive entries, in decreasing order.

startingVals double matrix of dimension temperLadderLen × sampDim or vector of length
sampDim, in which case the same starting values are used for every temperature
level.

logTarDensFunc function of two arguments (draw, ...) that returns the target density evalu-
ated in the log scale.

MHPropNewFunc function of four arguments (temperature, block, currentDraw, ...)
that returns new Metropolis-Hastings proposals. See details below on the argu-
ment block.

evolMonteCarlo 3

logMHPropDensFunc

function of five arguments (temperature, block, currentDraw, proposalDraw, ...)
that returns the proposal density evaluated in the log scale. See details below on
the argument block.

MHBlocks list of integer vectors giving dimensions to be blocked together for sampling.
It defaults to as.list(1:sampDim), i.e., each dimension is treated as a block on
its own. See details below for an example.

MHBlockNTimes integer vector of number of times each block given by MHBlocks should be
sampled in each iteration. It defaults to rep(1, length(MHBlocks)). See
details below for an example.

moveProbsList named list of probabilities adding upto 1.

moveNTimesList named list of integers ≥ 0.

SCRWMNTimes integer > 0.

SCRWMPropSD double > 0.
levelsSaveSampFor

integer vector with positive entries.

nThin integer ≥ 1. Every nThin draw is saved.

saveFitness logical.

verboseLevel integer, a value ≥ 2 produces a lot of output.

... optional arguments to be passed to logTarDensFunc, MHPropNewFunc and logMHPropDensFunc.

Details

MHPropNewFunc and logMHPropDensFunc The MHPropNewFunc and the logMHPropDensFunc are
called multiple times by varying the block argument over 1:length(MHBlocks), so these
functions should know how to generate a proposal from the currentDraw or to evaluate the
proposal density depending on which block was passed as the argument. See the example
section for sample code.

MHBlocks and MHBlockNTimes Blocking is an important and useful tool in MCMC that helps
speed up sampling and hence mixing. Example: Let sampDim = 6. Let we want to sample di-
mensions 1, 2, 4 as one block, dimensions 3 and 5 as another and treat dimension 6 as the third
block. Suppose we want to sample the three blocks mentioned above 1, 5 and 10 times in each
iteration, respectively. Then we could set MHBlocks = list(c(1, 2, 4), c(3, 5), 6)
and MHBlockNTimes = c(1, 5, 10).

The EMC and the TOEMC algorithm The evolutionary Monte Carlo (EMC; Liang and Wong,
2001) algorithm is composed of the following moves:

MH Metropolis-Hastings or mutation
RC real crossover
SC snooker crossover
RE (random) exchange

The target oriented EMC (TOEMC; Goswami and Liu, 2007) algorithm has the following
additional moves on top of EMC:

4 evolMonteCarlo

BCE best chromosome exchange
BIRE best importance ratio exchange

BSE best swap exchange
CE cyclic exchange

The current function could be used to run both EMC and TOEMC algorithms by specifying
what moves to employ using the following variables.

moveProbsList and moveNTimesList The allowed names for components of moveProbsList
and moveNTimesList come from the abbreviated names of the moves above. For exam-
ple, the following specifications are valid:

moveProbsList = list(MH = 0.4,
RC = 0.3,
SC = 0.3)

moveNTimesList = list(MH = 1,
RC = floor(temperLadderLen / 2),
SC = floor(temperLadderLen / 2),
RE = temperLadderLen)

SCRWMNTimes and SCRWMPropSD The conditional sampling step of the snooker crossover (SC)
move is done using random walk Metropolis (RWM) with normal proposals; SCRWMNTimes
and SCRWMPropSD are the number of RWM draws and the proposal standard deviation for
the RWM step, respectively. Note these variables are only required if the SC move has
positive probability in moveProbsList or a positive number of times in moveNTimesList.

levelsSaveSampFor By default, samples are saved and returned for temperature level temperLadderLen.
The levelsSaveSampFor could be used to save samples from other temperature levels as well
(e.g., levelsSaveSampFor = 1:temperLadderLen saves samples from all levels).

saveFitness The term fitness refers to the function H(x), where the target density of interest is
given by:

g(x) ∝ exp[−H(x)/τmin]

H(x) is also known as the energy function. By default, the fitness values are not saved, but
one can do so by setting saveFitness = TRUE.

Value

Below nSave refers to ceil(nIters / nThin). This function returns a list with the following
components:

draws array of dimension nSave× sampDim× levelsSaveSampForLen, if saveFitness = FALSE.
If saveFitness = TRUE, then the returned array is of dimension nSave ×
(sampDim + 1)× levelsSaveSampForLen; i.e., each of the levelsSaveSampForLen
matrices contain the fitness values in their last column.

acceptRatios matrix of the acceptance rates for various moves used.

evolMonteCarlo 5

detailedAcceptRatios

list of matrices with detailed summary of the acceptance rates for various
moves used.

nIters the nIters argument.

nThin the nThin argument.

nSave as defined above.

temperLadder the temperLadder argument.

startingVals the startingVals argument.

moveProbsList the moveProbsList argument.

moveNTimesList the moveNTimesList argument.
levelsSaveSampFor

the levelsSaveSampFor argument.

time the time taken by the run.

Note

The effect of leaving the default value NULL for some of the arguments above are as follows:

logMHPropDensFunc the proposal density MHPropNewFunc is deemed symmetric.
MHBlocks as.list(1:sampDim).

MHBlockNTimes rep(1, length(MHBlocks)).
moveProbsList list(MH = 0.4, RC = 0.3, SC = 0.3).
moveNTimesList list(MH = 1, RC = mm, SC = mm, RE = nn), where

mm <- floor(nn / 2) and nn <- temperLadderLen.
SCRWMNTimes 1, if SC is used.
SCRWMPropSD needs to be provided by the user, if SC is used.

levelsSaveSampFor temperLadderLen.

Author(s)

Gopi Goswami <goswami@stat.harvard.edu>

References

Gopi Goswami and Jun S. Liu (2007). On learning strategies for evolutionary Monte Carlo. Statis-
tics and Computing 17:1:23-38.

Faming Liang and Wing H.Wong (2001). Real-Parameter Evolutionary Monte Carlo with Applica-
tions to Bayesian Mixture Models. Journal of the American Statistical Association 96:653-666.

See Also

parallelTempering

Examples

Not run:
samplerObj <-

6 findMaxTemper

with(VShapedFuncGenerator(-13579),
{

allMovesNTimesList <- list(MH = 1, RC = 2, SC = 2, RE = 4,
BIRE = 2, BCE = 2, BSE = 2, CE = 2)

evolMonteCarlo(nIters = 2000,
temperLadder = c(15, 6, 2, 1),
startingVals = c(0, 0),
logTarDensFunc = logTarDensFunc,
MHPropNewFunc = MHPropNewFunc,
moveNTimesList = allMovesNTimesList,
SCRWMNTimes = 1,
SCRWMPropSD = 3.0,
levelsSaveSampFor = seq_len(4),
verboseLevel = 1)

})
print(samplerObj)
print(names(samplerObj))
with(samplerObj,
{

print(detailedAcceptRatios)
print(dim(draws))
par(mfcol = c(2, 2))
for (ii in seq_along(levelsSaveSampFor)) {

main <- paste('temper:', round(temperLadder[levelsSaveSampFor[ii]], 3))
plot(draws[, , ii],

xlim = c(-5, 20),
ylim = c(-8, 8),
pch = '.',
ask = FALSE,
main = as.expression(main),
xlab = as.expression(substitute(x[xii], list(xii = 1))),
ylab = as.expression(substitute(x[xii], list(xii = 2))))

}
})

End(Not run)

findMaxTemper Find the maximum temperature for parallel MCMC chains

Description

Multiple MCMC chains based algorithms (e.g., parallel tempering, evolutionary Monte Carlo) need
a temperature ladder. This function finds the maximum temperature for constructing the ladder.

Below sampDim refers to the dimension of the sample space, temperLadderLen refers to the length
of the temperature ladder, and levelsSaveSampForLen refers to the length of levelsSaveSampFor.
Note, this function calls evolMonteCarlo, so some of the arguments below have the same name
and meaning as the corresponding ones for evolMonteCarlo. See details below for explanation on
the arguments.

findMaxTemper 7

Usage

findMaxTemper(nIters,
statsFuncList,
startingVals,
logTarDensFunc,
MHPropNewFunc,
logMHPropDensFunc = NULL,
temperLadder = NULL,
temperLimits = NULL,
ladderLen = 10,
scheme = 'exponential',
schemeParam = 0.5,
cutoffDStats = 1.96,
cutoffESS = 50,
guideMe = TRUE,
levelsSaveSampFor = NULL,
saveFitness = FALSE,
doFullAnal = TRUE,
verboseLevel = 0,
...)

Arguments

nIters integer > 0.

statsFuncList list of functions of one argument each, which return the value of the statistic
evaluated at one MCMC sample or draw.

startingVals double matrix of dimension temperLadderLen × sampDim or vector of length
sampDim, in which case the same starting values are used for every temperature
level.

logTarDensFunc function of two arguments (draw, ...) that returns the target density evalu-
ated in the log scale.

MHPropNewFunc function of four arguments (temperature, block, currentDraw, ...)
that returns new Metropolis-Hastings proposals. See details below on the argu-
ment block.

logMHPropDensFunc

function of five arguments (temperature, block, currentDraw, proposalDraw, ...)
that returns the proposal density evaluated in the log scale. See details below on
the argument block.

temperLadder double vector with all positive entries, in decreasing order.

temperLimits double vector with two positive entries.

ladderLen integer > 0.

scheme character.

schemeParam double > 0.

cutoffDStats double > 0.

cutoffESS double > 0.

8 findMaxTemper

guideMe logical.
levelsSaveSampFor

integer vector with positive entries.

saveFitness logical.

doFullAnal logical.

verboseLevel integer, a value ≥ 2 produces a lot of output.

... optional arguments to be passed to logTarDensFunc, MHPropNewFunc and logMHPropDensFunc.

Details

This function is based on the method to find the temperature range introduced in section 4.1 of
Goswami and Liu (2007).

statsFuncList The user specifies this list of functions, each of which is known to be sensitive to
the presence of modes. For example, if both dimension 1 and 3 are sensitive to presence of
modes, then one could use:

coord1 <- function (xx) { xx[1] }

coord3 <- function (xx) { xx[3] }

statsFuncList <- list(coord1, coord3)

temperLadder This is the temperature ladder needed for the first stage preliminary run. One can
either specify a temperature ladder via temperLadder or specify temperLimits, ladderLen,
scheme and schemeParam. For details on the later set of parameters, see below. Note,
temperLadder overrides temperLimits, ladderLen, scheme and schemeParam.

temperLimits temperLimits = c(lowerLimit, upperLimit) is a two-tuple of positive
numbers, where the lowerLimit is usually 1 and upperLimit is a number in [100, 1000]. If
stochastic optimization (via sampling) is the goal, then lowerLimit is taken to be in [0, 1].

ladderLen, scheme and schemeParam These three parameters are required (along with temperLimits)
if temperLadder is not provided. We recommend taking ladderLen in [15, 30]. The allowed
choices for scheme and schemeParam are:

scheme schemeParam
======== =============

linear NA
log NA

geometric NA
mult-power NA
add-power ≥ 0
reciprocal NA

exponential ≥ 0
tangent ≥ 0

findMaxTemper 9

We recommended using scheme = 'exponential' and schemeParam in [0.3, 0.5].

cutoffDStats This cutoff comes fromNormal1(0, 1), the standard normal distribution (Goswami
and Liu, 2007); the default value 1.96 is a conservative cutoff. Note if you have more than one
statistic in statsFuncList, which is usually the case, using this cutoff may result in different
suggested maximum temperatures (as can be seen by calling the print function on the result
of findMaxTemper). A conservative recommendation is that you choose the maximum of the
suggested temperatures as the final maximum temperature for use in placeTempers and later
in parallelTempering or evolMonteCarlo.

cutoffESS a cutoff for the effective sample size (ESS) of the underlying Markov chain ergodic
estimator and the importance sampling estimators.

guideMe If guideMe = TRUE, then the function suggests different modifications to alter the setting
towards a re-run, in case there are problems with the underlying MCMC run.

doFullAnal If doFullAnal = TRUE, then the search for the maximum temperature is conducted
among all the levels of the temperLadder. In case this switch is turned off, the search for
maximum temperature is done in a greedy (and faster) manner, namely, search is stopped as
soon as all the statistic(s) in the statsFuncList find some maximum temperature(s). Note,
the greedy search may result in much higher maximum temperature (and hence sub-optimal)
than needed, so it is not recommended.

levelsSaveSampFor This is passed to evolMonteCarlo for the underlying MCMC run.

Value

This function returns a list with the following components:

temperLadder the temperature ladder used for the underlying MCMC run.

DStats the D-statistic (Goswami and Liu, 2007) values used to find the maximum tem-
perature.

cutoffDStats the cutoffDStats argument.

nIters the post burn-in nIters.
levelsSaveSampFor

the levelsSaveSampFor argument.

draws array of dimension nIters× sampDim× levelsSaveSampForLen, if saveFitness = FALSE.
If saveFitness = TRUE, then the returned array is of dimension nIters ×
(sampDim + 1)× levelsSaveSampForLen; i.e., each of the levelsSaveSampForLen
matrices contain the fitness values in their last column.

startingVals the startingVals argument.
intermediate statistics

a bunch of intermediate statistics used in the computation of DStats, namely,
MCEsts, MCVarEsts, MCESS, ISEsts, ISVarEsts, ISESS, each being computed
for all the statistics provided by statsFuncList argument.

time the time taken by the run.

Note

The effect of leaving the default value NULL for some of the arguments above are as follows:

10 findMaxTemper

logMHPropDensFunc the proposal density MHPropNewFunc is deemed symmetric.
temperLadder valid temperLimits, ladderLen, scheme and schemeParam

are provided, which are used to construct the temperLadder.
temperLimits a valid temperLadder is provided.

levelsSaveSampFor temperLadderLen.

Author(s)

Gopi Goswami <goswami@stat.harvard.edu>

References

Gopi Goswami and Jun S. Liu (2007). On learning strategies for evolutionary Monte Carlo. Statis-
tics and Computing 17:1:23-38.

See Also

placeTempers, parallelTempering, evolMonteCarlo

Examples

Not run:
coord1 <- function (xx) { xx[1] }
ss <- function (xx) { sum(xx) }
pp <- function (xx) { prod(xx) }
statsFuncList <- list(coord1, ss, pp)
maxTemperObj <-

with(VShapedFuncGenerator(-13579),
findMaxTemper(nIters = 15000,

statsFuncList = statsFuncList,
temperLadder = c(20, 15, 10, 5, 1),
startingVals = c(0, 0),
logTarDensFunc = logTarDensFunc,
MHPropNewFunc = MHPropNewFunc,
levelsSaveSampFor = seq_len(5),
doFullAnal = TRUE,
verboseLevel = 1))

print(maxTemperObj)
print(names(maxTemperObj))
with(maxTemperObj,
{

par(mfcol = c(3, 3))
for (ii in seq_along(levelsSaveSampFor)) {

main <- paste('temper:', round(temperLadder[levelsSaveSampFor[ii]], 3))
plot(draws[, , ii],

xlim = c(-10, 25),
ylim = c(-10, 10),
pch = '.',
ask = FALSE,
main = as.expression(main),
xlab = as.expression(substitute(x[xii], list(xii = 1))),
ylab = as.expression(substitute(x[xii], list(xii = 2))))

MetropolisHastings 11

}
})

End(Not run)

MetropolisHastings The Metropolis-Hastings algorithm

Description

Given a target density function and an asymmetric proposal distribution, this function produces
samples from the target using the Metropolis Hastings algorithm.

Below sampDim refers to the dimension of the sample space.

Usage

MetropolisHastings(nIters,
startingVal,
logTarDensFunc,
propNewFunc,
logPropDensFunc,
MHBlocks = NULL,
MHBlockNTimes = NULL,
nThin = 1,
saveFitness = FALSE,
verboseLevel = 0,
...)

Arguments

nIters integer > 0.

startingVal double vector of length sampDim.

logTarDensFunc function of two arguments (draw, ...) that returns the target density evalu-
ated in the log scale.

propNewFunc function of three arguments (block, currentDraw, ...) that returns new
Metropolis-Hastings proposals. See details below on the argument block.

logPropDensFunc

function of four arguments (block, currentDraw, proposalDraw, ...)
that returns the proposal density evaluated in the log scale. See details below on
the argument block.

MHBlocks list of integer vectors giving dimensions to be blocked together for sampling.
It defaults to as.list(1:sampDim), i.e., each dimension is treated as a block on
its own. See details below for an example.

MHBlockNTimes integer vector of number of times each block given by MHBlocks should be
sampled in each iteration. It defaults to rep(1, length(MHBlocks)). See
details below for an example.

12 MetropolisHastings

nThin integer ≥ 1. Every nThin draw is saved.

saveFitness logical indicating whether fitness values should be saved. See details below.

verboseLevel integer, a value ≥ 2 produces a lot of output.

... optional arguments to be passed to logTarDensFunc, propNewFunc and logPropDensFunc.

Details

propNewFunc and logPropDensFunc The propNewFunc and the logPropDensFunc are called mul-
tiple times by varying the block argument over 1:length(MHBlocks), so these functions
should know how to generate a proposal from the currentDraw or to evaluate the proposal
density depending on which block was passed as the argument. See the example section for
sample code.

MHBlocks and MHBlockNTimes Blocking is an important and useful tool in MCMC that helps
speed up sampling and hence mixing. Example: Let sampDim = 6. Let we want to sample di-
mensions 1, 2, 4 as one block, dimensions 3 and 5 as another and treat dimension 6 as the third
block. Suppose we want to sample the three blocks mentioned above 1, 5 and 10 times in each
iteration, respectively. Then we could set MHBlocks = list(c(1, 2, 4), c(3, 5), 6)
and MHBlockNTimes = c(1, 5, 10)

saveFitness The term fitness refers to the negative of the logTarDensFunc values. By default,
the fitness values are not saved, but one can do so by setting saveFitness = TRUE.

Value

Below nSave refers to ceil(nIters / nThin). This function returns a list with the following
components:

draws matrix of dimension nSave× sampDim, if saveFitness = FALSE. If saveFitness = TRUE,
then the returned matrix is of dimension nSave × (sampDim + 1), where the
fitness values appear in its last column.

acceptRatios matrix of the acceptance rates.
detailedAcceptRatios

matrix with detailed summary of the acceptance rates.

nIters the nIters argument.

nThin the nThin argument.

nSave as defined above.

startingVal the startingVal argument.

time the time taken by the run.

Note

The effect of leaving the default value NULL for some of the arguments above are as follows:

MHBlocks as.list(1:sampDim).
MHBlockNTimes rep(1, length(MHBlocks)).

parallelTempering 13

Author(s)

Gopi Goswami <goswami@stat.harvard.edu>

References

Jun S. Liu (2001). Monte Carlo strategies for scientific computing. Springer.

See Also

randomWalkMetropolis, parallelTempering, evolMonteCarlo

Examples

Not run:
samplerObj <-

with(CigarShapedFuncGenerator2(-13579),
MetropolisHastings(nIters = 5000,

startingVal = c(0, 0),
logTarDensFunc = logTarDensFunc,
propNewFunc = propNewFunc,
logPropDensFunc = logPropDensFunc,
verboseLevel = 2))

print(samplerObj)
print(names(samplerObj))
with(samplerObj,
{

print(detailedAcceptRatios)
print(dim(draws))
plot(draws,

xlim = c(-3, 5),
ylim = c(-3, 4),
pch = '.',
ask = FALSE,
main = as.expression(paste('# draws:', nIters)),
xlab = as.expression(substitute(x[xii], list(xii = 1))),
ylab = as.expression(substitute(x[xii], list(xii = 2))))

})

End(Not run)

parallelTempering The parallel Tempering algorithm

Description

Given a multi-modal and multi-dimensional target density function, a (possibly asymmetric) pro-
posal distribution and a temperature ladder, this function produces samples from the target using
the parallel tempering algorithm.

Below sampDim refers to the dimension of the sample space, temperLadderLen refers to the length
of the temperature ladder, and levelsSaveSampForLen refers to the length of the levelsSaveSampFor.

14 parallelTempering

Usage

parallelTempering(nIters,
temperLadder,
startingVals,
logTarDensFunc,
MHPropNewFunc,
logMHPropDensFunc = NULL,
MHBlocks = NULL,
MHBlockNTimes = NULL,
moveProbsList = NULL,
moveNTimesList = NULL,
levelsSaveSampFor = NULL,
nThin = 1,
saveFitness = FALSE,
verboseLevel = 0,
...)

Arguments

nIters integer > 0.

temperLadder double vector with all positive entries, in decreasing order.

startingVals double matrix of dimension temperLadderLen × sampDim or vector of length
sampDim, in which case the same starting values are used for every temperature
level.

logTarDensFunc function of two arguments (draw, ...) that returns the target density evalu-
ated in the log scale.

MHPropNewFunc function of four arguments (temperature, block, currentDraw, ...)
that returns new Metropolis-Hastings proposals. See details below on the argu-
ment block.

logMHPropDensFunc

function of five arguments (temperature, block, currentDraw, proposalDraw, ...)
that returns the proposal density evaluated in the log scale. See details below on
the argument block.

MHBlocks list of integer vectors giving dimensions to be blocked together for sampling.
It defaults to as.list(1:sampDim), i.e., each dimension is treated as a block on
its own. See details below for an example.

MHBlockNTimes integer vector of number of times each block given by MHBlocks should be
sampled in each iteration. It defaults to rep(1, length(MHBlocks)). See
details below for an example.

moveProbsList named list of probabilities adding upto 1.

moveNTimesList named list of integers ≥ 0.
levelsSaveSampFor

integer vector with positive entries.

nThin integer ≥ 1. Every nThin draw is saved.

saveFitness logical.

parallelTempering 15

verboseLevel integer, a value ≥ 2 produces a lot of output.

... optional arguments to be passed to logTarDensFunc, MHPropNewFunc and logMHPropDensFunc.

Details

MHPropNewFunc and logMHPropDensFunc The MHPropNewFunc and the logMHPropDensFunc are
called multiple times by varying the block argument over 1:length(MHBlocks), so these
functions should know how to generate a proposal from the currentDraw or to evaluate the
proposal density depending on which block was passed as the argument. See the example
section for sample code.

MHBlocks and MHBlockNTimes Blocking is an important and useful tool in MCMC that helps
speed up sampling and hence mixing. Example: Let sampDim = 6. Let we want to sample di-
mensions 1, 2, 4 as one block, dimensions 3 and 5 as another and treat dimension 6 as the third
block. Suppose we want to sample the three blocks mentioned above 1, 5 and 10 times in each
iteration, respectively. Then we could set MHBlocks = list(c(1, 2, 4), c(3, 5), 6)
and MHBlockNTimes = c(1, 5, 10).

The parallel tempering algorithm The parallel tempering (PT; Liang and Wong, 2001) algorithm
is composed of the following moves:

MH Metropolis-Hastings or mutation
RE (random) exchange

The current function could be used to run the PT algorithm by specifying what moves to
employ using the following variables.
moveProbsList and moveNTimesList The allowed names for components of moveProbsList

and moveNTimesList come from the abbreviated names of the moves above. For exam-
ple, the following specifications are valid:
moveProbsList = list(MH = 0.4,

RE = 0.6)

moveNTimesList = list(MH = 1,
RE = temperLadderLen)

levelsSaveSampFor By default, samples are saved and returned for temperature level temperLadderLen.
The levelsSaveSampFor could be used to save samples from other temperature levels as well
(e.g., levelsSaveSampFor = 1:temperLadderLen saves samples from all levels).

saveFitness The term fitness refers to the function H(x), where the target density of interest is
given by:

g(x) ∝ exp[−H(x)/τmin]

H(x) is also known as the energy function. By default, the fitness values are not saved, but
one can do so by setting saveFitness = TRUE.

Value

Below nSave refers to ceil(nIters / nThin). This function returns a list with the following
components:

16 parallelTempering

draws array of dimension nSave× sampDim× levelsSaveSampForLen, if saveFitness = FALSE.
If saveFitness = TRUE, then the returned array is of dimension nSave ×
(sampDim + 1)× levelsSaveSampForLen; i.e., each of the levelsSaveSampForLen
matrices contain the fitness values in their last column.

acceptRatios matrix of the acceptance rates for various moves used.
detailedAcceptRatios

list of matrices with detailed summary of the acceptance rates for various
moves used.

nIters the nIters argument.

nThin the nThin argument.

nSave as defined above.

temperLadder the temperLadder argument.

startingVals the startingVals argument.

moveProbsList the moveProbsList argument.

moveNTimesList the moveNTimesList argument.
levelsSaveSampFor

the levelsSaveSampFor argument.

time the time taken by the run.

Note

The effect of leaving the default value NULL for some of the arguments above are as follows:

logMHPropDensFunc the proposal density MHPropNewFunc is deemed symmetric.
MHBlocks as.list(1:sampDim).

MHBlockNTimes rep(1, length(MHBlocks)).
moveProbsList list(MH = 0.4, RC = 0.3, SC = 0.3).
moveNTimesList list(MH = 1, RC = mm, SC = mm, RE = nn), where

mm <- floor(nn / 2) and nn <- temperLadderLen.
levelsSaveSampFor temperLadderLen.

Author(s)

Gopi Goswami <goswami@stat.harvard.edu>

References

Faming Liang and Wing H.Wong (2001). Real-Parameter Evolutionary Monte Carlo with Applica-
tions to Bayesian Mixture Models. Journal of the American Statistical Association 96:653-666.

See Also

evolMonteCarlo

Examples

Not run:

placeTempers 17

samplerObj <-
with(VShapedFuncGenerator(-13579),

parallelTempering(nIters = 2000,
temperLadder = c(15, 6, 2, 1),
startingVals = c(0, 0),
logTarDensFunc = logTarDensFunc,
MHPropNewFunc = MHPropNewFunc,
levelsSaveSampFor = seq_len(4),
verboseLevel = 1))

print(samplerObj)
print(names(samplerObj))
with(samplerObj,
{

print(detailedAcceptRatios)
print(dim(draws))
par(mfcol = c(2, 2))
for (ii in seq_along(levelsSaveSampFor)) {

main <- paste('temper:', round(temperLadder[levelsSaveSampFor[ii]], 3))
plot(draws[, , ii],

xlim = c(-5, 20),
ylim = c(-8, 8),
pch = '.',
ask = FALSE,
main = as.expression(main),
xlab = as.expression(substitute(x[xii], list(xii = 1))),
ylab = as.expression(substitute(x[xii], list(xii = 2))))

}
})

End(Not run)

placeTempers Place the intermediate temperatures between the temperature limits

Description

Multiple MCMC chains based algorithms (e.g., parallel tempering, evolutionary Monte Carlo) need
a temperature ladder. This function places the intermediate temperatures between the minimum and
the maximum temperature for the ladder.

Below sampDim refers to the dimension of the sample space, temperLadderLen refers to the length
of the temperature ladder, and levelsSaveSampForLen refers to the length of levelsSaveSampFor.
Note, this function calls evolMonteCarlo, so some of the arguments below have the same name
and meaning as the corresponding ones for evolMonteCarlo. See details below for explanation on
the arguments.

Usage

placeTempers(nIters,
acceptRatioLimits,

18 placeTempers

ladderLenMax,
startingVals,
logTarDensFunc,
MHPropNewFunc,
logMHPropDensFunc = NULL,
temperLadder = NULL,
temperLimits = NULL,
ladderLen = 15,
scheme = 'exponential',
schemeParam = 1.5,
guideMe = TRUE,
levelsSaveSampFor = NULL,
saveFitness = FALSE,
verboseLevel = 0,
...)

Arguments

nIters integer > 0.
acceptRatioLimits

double vector of two probabilities.

ladderLenMax integer > 0.

startingVals double matrix of dimension temperLadderLen × sampDim or vector of length
sampDim, in which case the same starting values are used for every temperature
level.

logTarDensFunc function of two arguments (draw, ...) that returns the target density evalu-
ated in the log scale.

MHPropNewFunc function of four arguments (temperature, block, currentDraw, ...)
that returns new Metropolis-Hastings proposals. See details below on the argu-
ment block.

logMHPropDensFunc

function of five arguments (temperature, block, currentDraw, proposalDraw, ...)
that returns the proposal density evaluated in the log scale. See details below on
the argument block.

temperLadder double vector with all positive entries, in decreasing order.

temperLimits double vector with two positive entries.

ladderLen integer > 0.

scheme character.

schemeParam double > 0.

guideMe logical.
levelsSaveSampFor

integer vector with positive entries.

saveFitness logical.

verboseLevel integer, a value ≥ 2 produces a lot of output.

... optional arguments to be passed to logTarDensFunc, MHPropNewFunc and logMHPropDensFunc.

placeTempers 19

Details

This function is based on the temperature placement method introduced in section 4.2 of Goswami
and Liu (2007).

acceptRatioLimits This is a range for the estimated acceptance ratios for the random exchange
move for the consecutive temperature levels of the final ladder. It is recommended that speci-
fied range is between 0.3 and 0.6.

ladderLenMax It is preferred that one specifies acceptRatioLimits for constructing the final tem-
perature ladder. However, If one has some computational limitations then one could also
specify ladderLenMax which will limit the length of the final temperature ladder produced.
This also serves as an upper bound on the number of temperature levels while placing the
intermediate temperatures using the acceptRatioLimits.

temperLadder This is the temperature ladder needed for the second stage preliminary run. One can
either specify a temperature ladder via temperLadder or specify temperLimits, ladderLen,
scheme and schemeParam. For details on the later set of parameters, see below. Note,
temperLadder overrides temperLimits, ladderLen, scheme and schemeParam.

temperLimits temperLimits = c(lowerLimit, upperLimit) is a two-tuple of positive
numbers, where the lowerLimit is usually 1 and upperLimit is a number in [100, 1000]. If
stochastic optimization (via sampling) is the goal, then lowerLimit is taken to be in [0, 1].
Often the upperLimit is the maximum temperature as suggested by findMaxTemper.

ladderLen, scheme and schemeParam These three parameters are required (along with temperLimits)
if temperLadder is not provided. We recommend taking ladderLen in [15, 30]. The allowed
choices for scheme and schemeParam are:

scheme schemeParam
======== =============

linear NA
log NA

geometric NA
mult-power NA
add-power ≥ 0
reciprocal NA

exponential ≥ 0
tangent ≥ 0

We recommended using scheme = 'exponential' and schemeParam in [1.5, 2].

guideMe If guideMe = TRUE, then the function suggests different modifications to alter the setting
towards a re-run, in case there are problems with the underlying MCMC run.

levelsSaveSampFor This is passed to evolMonteCarlo for the underlying MCMC run.

Value

This function returns a list with the following components:

finalLadder the final temperature ladder found by placing the intermediate temperatures to
be used in parallelTempering or evolMonteCarlo.

20 placeTempers

temperLadder the temperature ladder used for the underlying MCMC run.
acceptRatiosEst

the estimated acceptance ratios for the random exchange move for the consecu-
tive temperature levels of temperLadder.

CVSqWeights this is the square of the coefficient of variation of the weights of the importance
sampling estimators used to estimate the acceptance ratios, namely, estAcceptRatios.

temperLimits the sorted temperLimits argument.
acceptRatioLimits

the sorted acceptRatioLimits argument.

nIters the post burn-in nIters.
levelsSaveSampFor

the levelsSaveSampFor argument.

draws array of dimension nIters× sampDim× levelsSaveSampForLen, if saveFitness = FALSE.
If saveFitness = TRUE, then the returned array is of dimension nIters ×
(sampDim + 1)× levelsSaveSampForLen; i.e., each of the levelsSaveSampForLen
matrices contain the fitness values in their last column.

startingVals the startingVals argument.

time the time taken by the run.

Note

The effect of leaving the default value NULL for some of the arguments above are as follows:

logMHPropDensFunc the proposal density MHPropNewFunc is deemed symmetric.
temperLadder valid temperLimits, ladderLen, scheme and schemeParam

are provided, which are used to construct the temperLadder.
temperLimits a valid temperLadder is provided.

levelsSaveSampFor temperLadderLen.

Author(s)

Gopi Goswami <goswami@stat.harvard.edu>

References

Gopi Goswami and Jun S. Liu (2007). On learning strategies for evolutionary Monte Carlo. Statis-
tics and Computing 17:1:23-38.

See Also

findMaxTemper, parallelTempering, evolMonteCarlo

Examples

Not run:
placeTempersObj <-

with(VShapedFuncGenerator(-13579),

print 21

placeTempers(nIters = 10000,
acceptRatioLimits = c(0.5, 0.6),
ladderLenMax = 50,
startingVals = c(0, 0),
logTarDensFunc = logTarDensFunc,
MHPropNewFunc = MHPropNewFunc,
temperLimits = c(1, 5),
ladderLen = 10,
levelsSaveSampFor = seq_len(10),
verboseLevel = 1))

print(placeTempersObj)
print(names(placeTempersObj))
with(placeTempersObj,
{

par(mfcol = c(3, 3))
for (ii in seq_along(levelsSaveSampFor)) {

main <- paste('temper:', round(temperLadder[levelsSaveSampFor[ii]], 3))
plot(draws[, , ii],

xlim = c(-4, 20),
ylim = c(-8, 8),
pch = '.',
ask = FALSE,
main = as.expression(main),
xlab = as.expression(substitute(x[xii], list(xii = 1))),
ylab = as.expression(substitute(x[xii], list(xii = 2))))

}
})

End(Not run)

print The printing family of functions

Description

The printing family of functions for this package.

Usage

S3 method for class 'EMC'
print(x, ...)
S3 method for class 'EMCMaxTemper'
print(x, ...)
S3 method for class 'EMCPlaceTempers'
print(x, ...)

Arguments

x an object inheriting from class EMC (generated by functions randomWalkMetropolis,
MetropolisHastings, parallelTempering and evolMonteCarlo), EMCMaxTemper

22 randomWalkMetropolis

(generated by function findMaxTemper) or EMCPlaceTempers (generated by
function placeTempers).

... optional arguments passed to print.default; see its documentation.

Author(s)

Gopi Goswami <goswami@stat.harvard.edu>

See Also

randomWalkMetropolis, MetropolisHastings, parallelTempering, evolMonteCarlo, findMaxTemper,
placeTempers

randomWalkMetropolis The Random Walk Metropolis algorithm

Description

Given a target density function and a symmetric proposal generating function, this function pro-
duces samples from the target using the random walk Metropolis algorithm.

Below sampDim refers to the dimension of the sample space.

Usage

randomWalkMetropolis(nIters,
startingVal,
logTarDensFunc,
propNewFunc,
MHBlocks = NULL,
MHBlockNTimes = NULL,
nThin = 1,
saveFitness = FALSE,
verboseLevel = 0,
...)

Arguments

nIters integer > 0.

startingVal double vector of length sampDim.

logTarDensFunc function of two arguments (draw, ...) that returns the target density evalu-
ated in the log scale.

propNewFunc function of three arguments (block, currentDraw, ...) that returns new
Metropolis-Hastings proposals. See details below on the argument block.

MHBlocks list of integer vectors giving dimensions to be blocked together for sampling.
It defaults to as.list(1:sampDim), i.e., each dimension is treated as a block on
its own. See details below for an example.

randomWalkMetropolis 23

MHBlockNTimes integer vector of number of times each block given by MHBlocks should be
sampled in each iteration. It defaults to rep(1, length(MHBlocks)). See
details below for an example.

nThin integer ≥ 1. Every nThin draw is saved.

saveFitness logical indicating whether fitness values should be saved. See details below.

verboseLevel integer, a value ≥ 2 produces a lot of output.

... optional arguments to be passed to logTarDensFunc and propNewFunc.

Details

propNewFunc The propNewFunc is called multiple times by varying the block argument over
1:length(MHBlocks), so this function should know how to generate a proposal from the
currentDraw depending on which block was passed as the argument. See the example section
for sample code.

MHBlocks and MHBlockNTimes Blocking is an important and useful tool in MCMC that helps
speed up sampling and hence mixing. Example: Let sampDim = 6. Let we want to sample di-
mensions 1, 2, 4 as one block, dimensions 3 and 5 as another and treat dimension 6 as the third
block. Suppose we want to sample the three blocks mentioned above 1, 5 and 10 times in each
iteration, respectively. Then we could set MHBlocks = list(c(1, 2, 4), c(3, 5), 6)
and MHBlockNTimes = c(1, 5, 10)

saveFitness The term fitness refers to the negative of the logTarDensFunc values. By default,
the fitness values are not saved, but one can do so by setting saveFitness = TRUE.

Value

Below nSave refers to ceil(nIters / nThin). This function returns a list with the following
components:

draws matrix of dimension nSave× sampDim, if saveFitness = FALSE. If saveFitness =
TRUE, then the returned matrix is of dimension nSave × (sampDim + 1), where
the fitness values appear in its last column.

acceptRatios matrix of the acceptance rates.
detailedAcceptRatios

matrix with detailed summary of the acceptance rates.

nIters the nIters argument.

nThin the nThin argument.

nSave as defined above.

startingVal the startingVal argument.

time the time taken by the run.

Note

The effect of leaving the default value NULL for some of the arguments above are as follows:

MHBlocks as.list(1:sampDim).
MHBlockNTimes rep(1, length(MHBlocks)).

24 randomWalkMetropolis

Author(s)

Gopi Goswami <goswami@stat.harvard.edu>

References

Jun S. Liu (2001). Monte Carlo strategies for scientific computing. Springer.

See Also

MetropolisHastings, parallelTempering, evolMonteCarlo

Examples

Not run:
samplerObj <-

with(CigarShapedFuncGenerator1(-13579),
randomWalkMetropolis(nIters = 5000,

startingVal = c(0, 0),
logTarDensFunc = logTarDensFunc,
propNewFunc = propNewFunc,
verboseLevel = 1))

print(samplerObj)
print(names(samplerObj))
with(samplerObj,
{

print(detailedAcceptRatios)
print(dim(draws))
plot(draws,

xlim = c(-3, 5),
ylim = c(-3, 4),
pch = '.',
ask = FALSE,
main = as.expression(paste('# draws:', nIters)),
xlab = as.expression(substitute(x[xii], list(xii = 1))),
ylab = as.expression(substitute(x[xii], list(xii = 2))))

})

samplerObj <-
with(threeDimNormalFuncGenerator(-13579),
{

randomWalkMetropolis(nIters = 5000,
startingVal = c(0, 0, 0),
logTarDensFunc = logTarDensFunc,
propNewFunc = propNewFunc,
MHBlocks = list(c(1, 2), 3),
verboseLevel = 1)

})
print(samplerObj)
print(names(samplerObj))
with(samplerObj,
{

utilsForExamples 25

print(detailedAcceptRatios)
print(dim(draws))
pairs(draws,

pch = '.',
ask = FALSE,
main = as.expression(paste('# draws:', nIters)),
labels = c(as.expression(substitute(x[xii], list(xii = 1))),

as.expression(substitute(x[xii], list(xii = 2))),
as.expression(substitute(x[xii], list(xii = 3)))))

})

End(Not run)

utilsForExamples The utility function(s) for examples

Description

The utility function(s) that are used in the example sections of the exported functions in this pack-
age.

Usage

CigarShapedFuncGenerator1(seed)
CigarShapedFuncGenerator2(seed)
VShapedFuncGenerator(seed)
WShapedFuncGenerator(seed)
uniModeFuncGenerator(seed)
twentyModeFuncGenerator(seed)
threeDimNormalFuncGenerator(seed)

Arguments

seed the seed for random number generation.

Value

A list containing the objects to be used as arguments to the exported functions in the respective
example sections of this package.

Author(s)

Gopi Goswami <goswami@stat.harvard.edu>

See Also

randomWalkMetropolis, MetropolisHastings, parallelTempering, evolMonteCarlo, findMaxTemper,
placeTempers

Index

∗Topic datagen
utilsForExamples, 25

∗Topic methods
evolMonteCarlo, 2
findMaxTemper, 6
MetropolisHastings, 11
parallelTempering, 13
placeTempers, 17
randomWalkMetropolis, 22

∗Topic print
print, 21

CigarShapedFuncGenerator1
(utilsForExamples), 25

CigarShapedFuncGenerator2
(utilsForExamples), 25

evolMonteCarlo, 2, 6, 10, 13, 16, 17, 20, 22,
24, 25

findMaxTemper, 6, 19, 20, 22, 25

MetropolisHastings, 11, 22, 24, 25

parallelTempering, 5, 10, 13, 13, 20, 22, 24,
25

placeTempers, 10, 17, 22, 25
print, 21

randomWalkMetropolis, 13, 22, 22, 25

threeDimNormalFuncGenerator
(utilsForExamples), 25

twentyModeFuncGenerator
(utilsForExamples), 25

uniModeFuncGenerator
(utilsForExamples), 25

utilsForExamples, 25

VShapedFuncGenerator
(utilsForExamples), 25

WShapedFuncGenerator
(utilsForExamples), 25

26

	evolMonteCarlo
	findMaxTemper
	MetropolisHastings
	parallelTempering
	placeTempers
	print
	randomWalkMetropolis
	utilsForExamples
	Index

