Package 'EFA.dimensions'

July 20, 2020

Type Package

Title Exploratory Factor Analysis Functions for Assessing Dimensionality
Version 0.1.6
Date 2020-07-16
Author Brian P. O'Connor
Maintainer Brian P. O'Connor brian.oconnor@ubc.ca
Description Functions for seven different procedures for determining the number of factors, including functions for parallel analysis and the minimum average partial test. There are functions for conducting principal components analysis, principal axis factor analysis, maximum likelihood factor analysis, image factor analysis, and extension factor analysis, all of which can take raw data or correlation matrices as input and with options for conducting the analyses using Pearson correlations, Kendall correlations, Spearman correlations, or polychoric correlations. Varimax rotation, promax rotation, and Procrustes rotations can be performed. Additional functions focus on the factorability of a correlation matrix, the congruences between factors from different datasets, and for assessing local independence.
O'Connor (2000, doi:10.3758/bf03200807);
O'Connor (2001, doi:10.1177/01466216010251011);
Fabrigar \& Wegener (2012, ISBN:978-0-19-973417-7);
Field, Miles, \& Field (2012, ISBN:978-1-4462-0045-2).
Imports stats, psych, polycor
Suggests lattice
LazyLoad yes
LazyData yes
License GPL (>=2)
NeedsCompilation no
Repository CRAN
Date/Publication 2020-07-20 09:32:13 UTC

R topics documented:

EFA.dimensions-package 2
CONGRUENCE 3
data_Field 4
data_Harman 5
data_NEOPIR 6
data_RSE 6
data TabFid 7
EXTENSION_FA 8
FACTORABILITY 11
IMAGE_FA 12
LOCALDEP 13
MAP 14
MAXLIKE_FA 16
NEVALSGT1 18
PARALLEL 19
PA_FA 21
PCA 22
POLYCHORIC_R 23
PROCRUSTES 25
PROMAX 26
RAWPAR 27
ROOTFIT 30
SALIENT 31
SCREE_PLOT 32
SESCREE 33
VARIMAX 34
Index 35
EFA.dimensions-package
EFA.dimensions

Description

This package provides exploratory factor analysis-related functions for assessing dimensionality. There are functions for seven different procedures for determining the number of factors, including functions for parallel analysis and the minimum average partial test. There are functions for conducting principal components analysis, principal axis factor analysis, maximum likelihood factor analysis, image factor analysis, and extension factor analysis, all of which can take raw data or correlation matrices as input and with options for conducting the analyses using Pearson correlations, Kendall correlations, Spearman correlations, or polychoric correlations. Varimax rotation, promax rotation, and Procrustes rotations can be performed. Additional functions focus on the factorability of a correlation matrix, the congruences between factors from different datasets, and for assessing local independence.

References

O'Connor, B. P. (2000). SPSS and SAS programs for determining the number of components using parallel analysis and Velicer's MAP test. Behavior Research Methods, Instrumentation, and Computers, 32, 396-402. doi:10.3758/bf03200807

O'Connor, B. P. (2001). EXTENSION: SAS, SPSS, and MATLAB programs for extension analysis. Applied Psychological Measurement, 25, p. 88. doi:10.1177/01466216010251011.

Fabrigar, L. R., \& Wegener, D. T. (2012). Exploratory factor analysis. New York, NY: Oxford UNiversity Press. ISBN:978-0-19-973417-7

Field, A., Miles, J., \& Field, Z. (2012). Discovering statistics using R. Los Angeles, CA: Sage. ISBN:978-1-4462-0045-2

Description

Aligns two factor loading matrices and computes the factor solution congruence and the root mean square residual.

Usage

CONGRUENCE(target, loadings, verbose)

Arguments

target The target loading matrix.
loadings The loading matrix that will be aligned with the target.
verbose \quad Should detailed results be displayed in console?
The options are: TRUE (default) or FALSE.

Details

The function first searches for the alignment of the factors from the two loading matrices that has the highest factor solution congruence. It then aligns the factors in "loadings" with the factors in "target" without changing the loadings. The alignment is based solely on the positions and directions of the factors. The function then produces the Tucker-Wrigley-Neuhaus factor solution congruence coefficient as an index of the degree of similarity between between the aligned loading matrices (see Guadagnoli \& Velicer, 1991; and ten Berge, 1986, for reviews).

Value

A list with the following elements:

rcBefore	The factor solution congruence before factor alignment
rcAfter	The factor solution congruence after factor alignment
rcFactors	The congruence for each factor
rmsr	The root mean square residual
residmat	The residual matrix
loadingsNew	The aligned loading matrix

Author(s)

Brian P. O'Connor

References

Guadagnoli, E., \& Velicer, W. (1991). A comparison of pattern matching indices. Multivariate Behavior Research, 26, 323-343.
ten Berge, J. M. F. (1986). Some relationships between descriptive comparisons of components from different studies. Multivariate Behavioral Research, 21, 29-40.

Examples

```
# RSE data
loadings <- PCA(data_RSE[1:150,], corkind='pearson', Nfactors = 3,
                    rotate='varimax', verbose=FALSE)
target <- PCA(data_RSE[151:300,], corkind='pearson', Nfactors = 3,
            rotate='varimax', verbose=FALSE)
CONGRUENCE(target$loadingsROT, loadings$loadingsROT, verbose=TRUE)
# NEO-PI-R data
loadings <- PCA(data_NEOPIR[1:500,], corkind='pearson', Nfactors = 3,
rotate='varimax', verbose=FALSE)
target <- PCA(data_NEOPIR[501:1000,], corkind='pearson', Nfactors = 3,
    rotate='varimax', verbose=FALSE)
CONGRUENCE(target$loadingsROT, loadings$loadingsROT, verbose=TRUE)
```

data_Field data_Field

Description

A data frame with scores on 23 variables for 2571 cases. This is a simulated dataset that has the exact same correlational structure as the "R Anxiety Questionnaire" data used by Field et al. (2012) in their chapter on Exploratory Factor Analysis.

Usage

```
data(data_Field)
```


Source

Field, A., Miles, J., \& Field, Z. (2012). Discovering statistics using R. Los Angeles, CA: Sage.

Examples

```
head(data_Field)
# principal components analysis
PCA(data_Field, corkind='pearson', Nfactors=4, rotate='none', verbose=TRUE)
# MAP test
MAP(data_Field, corkind='pearson', verbose=TRUE)
```

data_Harman Correlation matrix from Harman (1967, p. 80).

Description

The correlation matrix for eight physical variables for 305 cases from Harman (1967, p. 80).

Usage

data(data_Harman)

References

Harman, H. H. (1967). Modern factor analysis (2nd. ed.). Chicago: University of Chicago Press.

Examples

```
# MAP test on the Harman correlation matrix
MAP(data_Harman, verbose=TRUE)
# parallel analysis of the Harman correlation matrix
RAWPAR(data_Harman, extract='PCA', Ndatasets=100, percentile=95,
    Ncases=305, verbose=TRUE)
```

data_NEOPIR data_NEOPIR

Description

A data frame with scores for 1000 cases on 30 variables that have the same intercorrelations as those for the Big 5 facets on pp. 100-101 of the NEO-PI-R manual (Costa \& McCrae, 1992).

Usage

data(data_NEOPIR)

References

Costa, P. T., \& McCrae, R. R. (1992). Revised NEO personality inventory (NEO-PIR) and NEO five-factor inventory (NEO-FFI): Professional manual. Odessa, FL: Psychological Assessment Resources..

Examples

```
head(data_NEOPIR)
# MAP test on the data_NEOPIR data
MAP(data_NEOPIR, corkind='pearson', verbose=TRUE)
# parallel analysis of the data_NEOPIR data
RAWPAR(data_NEOPIR, extract='PCA', Ndatasets=100, percentile=95,
    corkind='pearson', verbose=TRUE)
```

 data_RSE Item-level dataset for the Rosenberg Self-Esteem scale

Description

A data frame with 300 observations on the 10 items from the Rosenberg Self-Esteem scale.

Usage

data(data_RSE)

Examples

```
head(data_RSE)
# MAP test on the Rosenberg Self-Esteem Scale (RSE) data
MAP(data_RSE, corkind='pearson', verbose=TRUE)
# parallel analysis of the Rosenberg Self-Esteem Scale (RSE) data
RAWPAR(data_RSE, extract='PCA', Ndatasets=100, percentile=95,
        corkind='pearson', verbose=TRUE)
```

 data_TabFid data_TabFid

Description

A data frame with scores for 340 cases on 44 Bem Sex Role Inventory items, used by Tabacknick \& Fidell (2013, p. 656) in their chapter on exploratory factor analysis.

Usage

data(data_TabFid)

References

Tabachnik, B. G., \& Fidell, L. S. (2013). Using multivariate statistics. New York, NY: Pearson.

Examples

```
head(data_TabFid)
# MAP test on the data_TabFid data
MAP(data_TabFid, corkind='pearson', verbose=TRUE)
# parallel analysis of the data_TabFid data
RAWPAR(data_TabFid, extract='PCA', Ndatasets=100, percentile=95,
        corkind='pearson', verbose=TRUE)
# principal axis factor analysis of the data_TabFid data
PA_FA(data_TabFid, corkind="pearson", Nfactors = 5, iterpaf = 50,
        rotate='varimax', ppower=3, verbose=TRUE)
```


Description

Extension factor analysis, which provides correlations between nonfactored items and the factors that exist in a set of core items. The extension item correlations are then used to decide which factor, if any, a prospective item belongs to.

Usage

EXTENSION_FA(data, Ncore, Next, higherorder, roottest, corkind, corkindRAND, extract, rotate, Nfacts, NfactsHO, Ndatasets, percentile, salvalue, numsals, iterpaf, iterml, tolerml, ppower, verbose)

Arguments

data An all-numeric dataframe where the rows are cases \& the columns are the variables.

Ncore An integer indicating the number of core variables. The function will run the factor analysis on the data that appear in column \#1 to column \#Ncore of the data matrix.
Next An integer indicting the number of extension variables, if any. The function will run extension factor analyses on the remaining columns in data, i.e., using column \#Ncore+1 to the last column in data. Enter zero if there are no extension variables.
corkind The kind of correlation matrix to be used. The options are 'pearson', 'kendall', 'spearman', and 'polychoric'.
corkindRAND The kind of correlation matrix to be used for the random data when roottest = 'parallel'. The options are 'pearson', 'kendall', 'spearman', and 'polychoric'. These options are included for research purposes. In most applications, it is probably best to use Pearson correlations, which is the default.
higherorder Should a higher-order factor analysis be conducted? The options are TRUE or FALSE.
roottest The method for determining the number of factors. The options are: 'Nsalient' for number of salient loadings (see salvalue \& numsals below); 'parallel' for parallel analysis (see Ndatasets \& percentile below); 'MAP' for Velicer's minimum average partial test; 'SEscree' for the standard error scree test; 'nevals>1' for the number of eigenvalues >1; and 'user' for a user-specified number of factors (see Nfacts \& NfactsHO below).
Nfacts An integer indicating the user-determined number of factors (required only if roottest = 'user').
NfactsHO An integer indicating the user-determined number of higher order factors (required only if roottest = 'user' and higherorder = TRUE).

extract	The factor extraction method. The options are: 'PAF' for principal axis / com- mon factor analysis; 'PCA' for principal components analysis; 'ML' for maxi- mum likelihood.
rotate	The factor rotation method. The options are: 'promax', 'varimax', and 'none'.
Ndatasets	An integer indicating the \# of random data sets for parallel analyses (required only if roottest = 'parallel').
percentile	An integer indicating the percentile from the distribution of parallel analysis random eigenvalues to be used in determining the \# of factors (required only if roottest = 'parallel'). Suggested value: 95
salvalue	The minimum value for a loading to be considered salient (required only if roottest = 'Nsalient'). Suggested value: . 40
numsals	The number of salient loadings required for the existence of a factor i.e., the number of loadings > or = to salvalue (see above) for the function to identify a
factor. Required only if roottest = 'Nsalient'. Gorsuch (1995a, p. 545) suggests:	

Details

Traditional scale development statistics can produce results that are baffling or misunderstood by many users, which can lead to inappropriate substantive interpretations and item selection decisions. High internal consistencies do not indicate unidimensionality; item-total correlations are inflated because each item is correlated with its own error as well as the common variance among items; and the default number-of-eigenvalues-greater-than-one rule, followed by principal components analysis and varimax rotation, produces inflated loadings and the possible appearance of numerous uncorrelated factors for items that measure the same construct (Gorsuch, 1997a, 1997b). Concerned investigators may then neglect the higher order general factor in their data as they use misleading statistical output to trim items and fashion unidimensional scales.
These problems can be circumvented in exploratory factor analysis by using more appropriate factor analytic procedures and by using extension analysis as the basis for adding items to scales. Extension analysis provides correlations between nonfactored items and the factors that exist in a set of core items. The extension item correlations are then used to decide which factor, if any, a prospective item belongs to. The decisions are unbiased because factors are defined without being influenced by the extension items. One can also examine correlations between extension items and any higher order factor(s) in the core items. The end result is a comprehensive, undisturbed, and informative picture of the correlational structure that exists in a set of core items and of the potential contribution and location of additional items to the structure.

Extension analysis is rarely used, at least partly because of limited software availability. Furthermore, when it is used, both traditional extension analysis and its variants (e.g., correlations between estimated factor scores and extension items) are prone to the same problems as the procedures mentioned above (Gorsuch, 1997a, 1997b). However, Gorusch (1997b) described how diagonal component analysis can be used to bypass the problems and uncover the noninflated and unbiased extension variable correlations - all without computing factor scores.

Value

A list with the following elements:

fits1	eigenvalues \& fit coefficients for the first set of core variables
rff	factor intercorrelations
corelding	core variable loadings on the factors
extcorrel	extension variable correlations with the factors
fits2	eigenvalues \& fit coefficients for the higher order factor analysis
rfflding	factor intercorrelations from the first factor analysis and the loadings on the higher order factor(s)
ldingsef	variable loadings on the lower order factors and their correlations with the higher order factor(s)
extsef	extension variable correlations with the lower order factor(s) and their correla- tions with the higher order factor(s)

Author(s)

Brian P. O'Connor

References

Gorsuch, R. L. (1997a). Exploratory factor analysis: Its role in item analysis. Journal of Personality Assessment, 68, 532-560.

Gorsuch, R. L. (1997b). New procedure for extension analysis in exploratory factor analysis. Educational and Psychological Measurement, 57, 725-740.

Dwyer, P. S. (1937) The determination of the factor loadings of a given test from the known factor loadings of other tests. Psychometrika, 3, 173-178.

Horn, J. L. (1973) On extension analysis and its relation to correlations between variables and factor scores. Multivariate Behavioral Research, 8(4), 477-489.

O'Connor, B. P. (2001). EXTENSION: SAS, SPSS, and MATLAB programs for extension analysis. Applied Psychological Measurement, 25, p. 88.

Examples

```
EXTENSION_FA(data_RSE, Ncore=7, Next=3, higherorder=TRUE, roottest='MAP',
    corkind='pearson', extract='PCA', rotate='promax', Nfacts=4,
    NfactsHO=1, Ndatasets=100, percentile=95, salvalue=.40, numsals=3,
    iterpaf=200, iterml=30, tolerml=.001, ppower=4, verbose=TRUE)
EXTENSION_FA(data_NEOPIR, Ncore=12, Next=6, higherorder=TRUE, roottest='MAP',
    corkind='pearson', extract='PCA', rotate='promax', Nfacts=4,
    NfactsHO=1, Ndatasets=100, percentile=95, salvalue=.40, numsals=3,
    iterpaf=200, iterml=30, tolerml=.001, ppower=4, verbose=TRUE)
```


FACTORABILITY Factorability of a correlation matrix

Description

Three methods for assessing the factorability of a correlation matrix

Usage

FACTORABILITY(data, corkind='pearson', Ncases=NULL, verbose=TRUE)

Arguments

data An all-numeric dataframe where the rows are cases \& the columns are the variables, or a correlation matrix with ones on the diagonal. The function internally determines whether the data are a correlation matrix.
corkind The kind of correlation matrix to be used if data is not a correlation matrix. The options are 'pearson', 'kendall', 'spearman', and 'polychoric'. Required only if the entered data is not a correlation matrix.

Ncases The number of cases for a correlation matrix. Required only if the entered data is a correlation matrix.
verbose Should detailed results be displayed in console? The options are: TRUE (default) or FALSE.

Details

This function provides results from three methods of assessing whether a dataset or correlation matrix is suitable for factor analysis:
1 - whether the determinant of the correlation matrix is >0.00001;
2 - Bartlett's test of whether a correlation matrix is significantly different an identity matrix; and
3 - the Kaiser-Meyer-Olkin measure of sampling adequacy.

Value

A list with the following elements:
chisq The chi-squared value for Bartlett's test
df The degrees of freedom for Bartlett's test
pvalue The significance level for Bartlett's test
Rimage The image correlation matrix
KMO The overall KMO value
KMOvars \quad The KMO values for the variables

Author(s)

Brian P. O'Connor

References

Bartlett, M. S. (1951). The effect of standardization on a chi square approximation in factor analysis, Biometrika, 38, 337-344.

Cerny, C. A., \& Kaiser, H. F. (1977). A study of a measure of sampling adequacy for factoranalytic correlation matrices. Multivariate Behavioral Research, 12(1), 43-47.

Dziuban, C. D., \& Shirkey, E. C. (1974). When is a correlation matrix appropriate for factor analysis? Psychological Bulletin, 81, 358-361.

Kaiser, H. F., \& Rice, J. (1974). Little Jiffy, Mark IV. Educational and Psychological Measurement, 34, 111-117.

Examples

FACTORABILITY(data_RSE, corkind='pearson')
IMAGE_FA Image factor analysis

Description

Image factor analysis

Usage

IMAGE_FA(data, corkind, Nfactors, rotate, ppower, verbose)

Arguments

data	An all-numeric dataframe where the rows are cases \& the columns are the vari- ables, or a correlation matrix with ones on the diagonal. The function internally determines whether the data are a correlation matrix.
corkind	The kind of correlation matrix to be used if data is not a correlation matrix. The options are 'pearson', 'kendall', 'spearman', and 'polychoric'. Required only if the entered data is not a correlation matrix.
Nfactors	The number of factors to extract.
rotate	The factor rotation method. The options are: 'promax', 'varimax', and 'none'.
ppower	The power value to be used in a promax rotation (required only if rotate = 'pro- max'). Suggested value: 3
verbose	Should detailed results be displayed in console? The options are: TRUE (default) or FALSE.

Value

A list with the following elements:

eigenvalues	The eigenvalues
loadingsNOROT	The unrotated factor loadings
loadingsROT	The rotated factor loadings (for varimax rotation)
structure	The structure matrix (for promax rotation)
pattern	The pattern matrix (for promax rotation)
correls	The correlations between the factors (for promax rotation)

Author(s)

Brian P. O'Connor

Examples

IMAGE_FA(data_NEOPIR, corkind='pearson', Nfactors=5, rotate='varimax', ppower=3, verbose=TRUE)

LOCALDEP Local independence

Description

Provides the residual correlations after partialling the first component out of a correlation matrix. Item response theory models are based on the assumption that the items display local independence. The latent trait is presumed to be responsible for the associations between the items. Once the latent trait is partialled out, the residual correlations between pairs of items should be negligible. Local dependence exists when there is additional systematic covariance among the items. It can occur when pairs of items have highly similar content or between sequentially presented items in a test.

Local dependence distorts IRT parameter estimates, it can artificially increase scale information, and it distorts the latent trait, which becomes too heavily defined by the locally dependent items. The LOCALDEP function partials out the first component (not the IRT latent trait) from a correlation matrix. Examining the residual correlations is a preliminary, exploratory method of determining whether local dependence exists. The function also displays the number of residual correlations that are $>=$ a range of values.

Usage

```
LOCALDEP(data, corkind, verbose)
```


Arguments

$$
\begin{array}{ll}
\text { data } & \begin{array}{l}
\text { An all-numeric dataframe where the rows are cases \& the columns are the vari- } \\
\text { ables, or a correlation matrix with ones on the diagonal. The function internally } \\
\text { determines whether the data are a correlation matrix. }
\end{array} \\
\text { corkind } & \begin{array}{l}
\text { The kind of correlation matrix to be used if data is not a correlation matrix. The } \\
\text { options are 'pearson', 'kendall', 'spearman', and 'polychoric'. Required only if } \\
\text { the entered data is not a correlation matrix. }
\end{array} \\
\text { verbose } & \begin{array}{l}
\text { Should detailed results be displayed in console? } \\
\text { The options are: TRUE (default) or FALSE. }
\end{array}
\end{array}
$$

Value

A list with the following elements:
correlations The correlation matrix
residcor The residualized correlation matrix

Author(s)

Brian P. O'Connor

Examples

```
# Residual correlations for the Rosenberg Self-Esteem Scale (RSE)
```

LOCALDEP(data_RSE, corkind = 'pearson', verbose=TRUE)

MAP	Velicer's minimum average partial $(M A P)$ test for the number of fac- tors

Description

Velicer's minimum average partial (MAP) test for determining the number of factors focuses on the common variance in a correlation matrix. It involves a complete principal components analysis followed by the examination of a series of matrices of partial correlations. Specifically, on the first step, the first principal component is partialled out of the correlations between the variables of interest, and the average squared coefficient in the off-diagonals of the resulting partial correlation matrix is computed. On the second step, the first two principal components are partialled out of the original correlation matrix and the average squared partial correlation is again computed. These computations are conducted for k (the number of variables) minus one steps. The average squared partial correlations from these steps are then lined up, and the number of components is determined by the step number in the analyses that resulted in the lowest average squared partial correlation. The average squared coefficient in the original correlation matrix is also computed, and if this coefficient happens to be lower than the lowest average squared partial correlation, then no components should be extracted from the correlation matrix. Statistically, components are retained as long as the variance in the correlation matrix represents systematic variance. Components are no longer retained when there is proportionately more unsystematic variance than systematic variance (see O'Connor, 2000, p. 397).
The MAP test is often more appropriate for factor analyses than it is for principal components analyses. In Velicer's words, "Component analysis has a variety of purposes. It can be used to find a parsimonious description of the total variance of the variables involved; in this case, the [MAP test] is not applicable. Principal component analysis is frequently used to express the variance shared among variables in a set; that is, it is used as kind of a factor analysis" (1976, p. 321). "... if component analysis is employed as an alternative to factor analysis or as a first-stage solution for factor analysis, the stopping rule proposed here would seem the most appropriate." (1976, p. 326)'

```
Usage
MAP(data, corkind, verbose)
```


Arguments

$$
\begin{array}{ll}
\text { data } & \begin{array}{l}
\text { An all-numeric dataframe where the rows are cases \& the columns are the vari- } \\
\text { ables, or a correlation matrix with ones on the diagonal. The function internally } \\
\text { determines whether the data are a correlation matrix. }
\end{array} \\
\text { corkind } & \begin{array}{l}
\text { The kind of correlation matrix to be used if data is not a correlation matrix. The } \\
\text { options are 'pearson', 'kendall', 'spearman', and 'polychoric'. Required only if } \\
\text { the entered data is not a correlation matrix. }
\end{array} \\
\text { verbose } & \begin{array}{l}
\text { Should detailed results be displayed in console? } \\
\text { The options are: TRUE (default) or FALSE. }
\end{array}
\end{array}
$$

Value

A list with the following elements:

eigenvalues	eigenvalues
avgsqrs	Velicer's average squared correlations
nfMAP	number of factors according to the original (1976) MAP test
nfMAP4	number of factors according to the revised (2000) MAP test

Author(s)

Brian P. O'Connor

References

Velicer, W. F. (1976). Determining the number of components from the matrix of partial correlations. Psychometrika, 41, 321-327.

Velicer, W. F., Eaton, C. A., and Fava, J. L. (2000). Construct explication through factor or component analysis: A review and evaluation of alternative procedures for determining the number of factors or components. In R. D. Goffin \& E. Helmes, eds., Problems and solutions in human assessment (p.p. 41-71). Boston: Kluwer.

O'Connor, B. P. (2000). SPSS and SAS programs for determining the number of components using parallel analysis and Velicer's MAP test. Behavior Research Methods, Instrumentation, and Computers, 32, 396-402.

Examples

```
# MAP test on the Harman correlation matrix
MAP(data_Harman, corkind='pearson', verbose=TRUE)
# MAP test on the Rosenberg Self-Esteem Scale (RSE) using Pearson correlations
MAP(data_RSE, corkind='pearson', verbose=TRUE)
# MAP test on the Rosenberg Self-Esteem Scale (RSE) using polychoric correlations
MAP(data_RSE, corkind='polychoric', verbose=TRUE)
# MAP test on the NEO-PI-R data
MAP(data_NEOPIR, verbose=TRUE)
```

MAXLIKE_FA Maximum likelihood factor analysis

Description

Maximum likelihood factor analysis

Usage

MAXLIKE_FA(data, corkind, Nfactors, tolerml, iterml, rotate, ppower, verbose)

Arguments

data An all-numeric dataframe where the rows are cases \& the columns are the variables, or a correlation matrix with ones on the diagonal.The function internally determines whether the data are a correlation matrix.
corkind The kind of correlation matrix to be used if data is not a correlation matrix. The options are 'pearson', 'kendall', 'spearman', and 'polychoric'. Required only if the entered data is not a correlation matrix.

Nfactors The number of factors to extract.
tolerml The tolerance level.
iterml The maximum number of iterations.
rotate The factor rotation method. The options are: 'promax', 'varimax', and 'none'.
ppower \quad The power value to be used in a promax rotation (required only if rotate $=$ 'promax'). Suggested value: 3
verbose Should detailed results be displayed in console? The options are: TRUE (default) or FALSE.

Value

A list with the following elements:
eigenvalues The eigenvalues
loadingsNOROT The unrotated factor loadings
loadingsROT The rotated factor loadings (for varimax rotation)
structure \quad The structure matrix (for promax rotation)
pattern \quad The pattern matrix (for promax rotation)
correls The correlations between the factors (for promax rotation)

Author(s)

Brian P. O’Connor

Examples

```
MAXLIKE_FA(data_RSE, corkind='pearson', Nfactors = 2,
    tolerml = .001, iterml = 50, rotate='promax', ppower=3, verbose=TRUE)
```


Description

Returns the count of the number of eigenvalues greater than 1 in a correlation matrix. This value is often referred to as the "Kaiser", "Kaiser-Guttman", or "Guttman-Kaiser" rule for determining the number of components or factors in a correlation matrix.
The rationale is that a component with an eigenvalue of 1 accounts for as much variance as a single variable. Extracting components with eigenvalues of 1 or less than 1 would defeat the usual purpose of component and factor analyses. Furthermore, the reliability of a component will always be nonnegative when its eigenvalue is greater than 1 . This rule is the default retention criteria in SPSS and SAS.

There are a number of problems with this rule of thumb. Monte Carlo investigations have found that its accuracy rate is not acceptably high (Zwick \& Velicer, 1986)). The rule was originally intended to be an upper bound for the number of components to be retained, but it is most often used as the criterion to determine the exact number of components or factors. Guttman's original proof applies only to the population correlation matrix and the sampling error that occurs in specific samples results in the rule often overestimating the number of components. The rule is also considered overly mechanical, e.g., a component with an eigenvalue of 1.01 achieves factor status whereas a component with an eigenvalue of .999 does not.
This function is included in this package for curiosity and research purposes.

Usage

NEVALSGT1(data, corkind, verbose)

Arguments

data An all-numeric dataframe where the rows are cases \& the columns are the variables, or a correlation matrix with ones on the diagonal. The function internally determines whether the data are a correlation matrix.
corkind The kind of correlation matrix to be used if data is not a correlation matrix. The options are 'pearson', 'kendall', 'spearman', and 'polychoric'. Required only if the entered data is not a correlation matrix.
verbose \quad Should detailed results be displayed in console?
The options are: TRUE (default) or FALSE.

Value

The number of eigenvalues greater than 1.

Author(s)

Brian P. O'Connor

References

Kaiser, H. F. (1960). The application of electronic computer to factor analysis. Educational and Psychological Measurement, 20, 141-151.

Guttman, L. (1954). Some necessary conditions for common factor analysis. Psychometrika, 19, 149-161.

Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., \& Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4, 272-299.

Hayton, J. C., Allen, D. G., Scarpello, V. (2004). Factor retention decisions in exploratory factor analysis: A tutorial on parallel analysis. Organizational Research Methods, 7, 191-205.

Zwick, W. R., \& Velicer, W. F. (1986). Comparison of five rules for determining the number of components to retain. Psychological Bulletin, 99, 432-442.

Examples

```
# test on the Harman correlation matrix
NEVALSGT1(data_Harman, corkind='pearson', verbose=TRUE)
# test on the Rosenberg Self-Esteem Scale (RSE) using Pearson correlations
NEVALSGT1(data_RSE, corkind='pearson', verbose=TRUE)
# test on the Rosenberg Self-Esteem Scale (RSE) using polychoric correlations
NEVALSGT1(data_RSE, corkind='polychoric', verbose=TRUE)
```


Description

Generates eigenvalues for random data sets with specified numbers of variables and cases. Typically, the eigenvalues derived from an actual data set are compared to the eigenvalues derived from the random data. In Horn's original description of this procedure, the mean eigenvalues from the random data served as the comparison baseline, whereas the more common current practice is to use the eigenvalues that correspond to the desired percentile (typically the 95th) of the distribution of random data eigenvalues. Factors or components are retained as long as the ith eigenvalue from the actual data is greater than the ith eigenvalue from the random data. This function produces only random data eigenvalues and it does not take real data as input. See the rawpar function in this package for parallel analyses that also involve real data.

Usage

PARALLEL(Nvars, Ncases, Ndatasets=100, extract='PCA', percentile='95', corkind='pearson', verbose=TRUE)

Arguments

Nvars	The number of variables.
Ncases	The number of cases.
Ndatasets	An integer indicating the \# of random data sets for parallel analyses.
extract	The factor extraction method. The options are: 'PAF' for principal axis / com- mon factor analysis; 'PCA' for principal components analysis. 'image' for im- age analysis.
percentile	An integer indicating the percentile from the distribution of parallel analysis random eigenvalues. Suggested value: 95
corkind	The kind of correlation matrix to be used for the random data. The options are 'pearson', 'kendall', and 'spearman'.
verbose	Should detailed results be displayed in console? The options are: TRUE (default) or FALSE.

Details

The PARALLEL function permits users to specify PCA or PAF or image as the factor extraction method. Principal components eigenvalues are often used to determine the number of common factors. This is the default in most statistical software packages, and it is the primary practice in the literature. It is also the method used by many factor analysis experts, including Cattell, who often examined principal components eigenvalues in his scree plots to determine the number of common factors. Principal components eigenvalues are based on all of the variance in correlation matrices, including both the variance that is shared among variables and the variances that are unique to the variables. In contrast, principal axis eigenvalues are based solely on the shared variance among the variables. The procedures are qualitatively different. Some therefore claim that the eigenvalues from one extraction method should not be used to determine the number of factors for another extraction method. The PAF option in the extract argument for the PARALLEL function was included solely for research purposes. It is best to use PCA as the extraction method for regular data analyses. The MAP test (also in this package) is generally more suitable for determining the number of common factors.

Value

The random data eigenvalues

Author(s)

Brian P. O'Connor

References

Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30, 179-185.

O’Connor, B. P. (2000). SPSS and SAS programs for determining the number of components using parallel analysis and Velicer's MAP test. Behavior Research Methods, Instrumentation, and Computers, 32, 396-402.

Zwick, W. R., \& Velicer, W. F. (1986). Comparison of five rules for determining the number of components to retain. Psychological Bulletin, 99, 432-442.

Examples

PARALLEL(Nvars=15, Ncases=250, Ndatasets=100, extract='PCA', percentile=95, corkind='pearson', verbose=TRUE)

PA_FA Principal axis (common) factor analysis

Description

Principal axis (common) factor analysis with squared multiple correlations as the initial communality estimates

Usage

PA_FA(data, corkind, Nfactors, iterpaf, rotate, ppower, verbose)

Arguments

data	An all-numeric dataframe where the rows are cases \& the columns are the vari- ables, or a correlation matrix with ones on the diagonal.The function internally determines whether the data are a correlation matrix.
corkind	The kind of correlation matrix to be used if data is not a correlation matrix. The options are 'pearson', 'kendall', 'spearman', and 'polychoric'. Required only if the entered data is not a correlation matrix.
Nfactors	The number of factors to extract.
iterpaf	The maximum number of iterations. rotate
ppower	The factor rotation method. The options are: 'promax', 'varimax', and 'none'. The power value to be used in a promax rotation (required only if rotate = 'pro- max'). Suggested value: 3
verbose	Should detailed results be displayed in console? The options are: TRUE (default) or FALSE.

Value

A list with the following elements:
eigenvalues The eigenvalues
loadingsNOROT The unrotated factor loadings
loadingsROT The rotated factor loadings (for varimax rotation)
structure \quad The structure matrix (for promax rotation)
pattern The pattern matrix (for promax rotation)
correls The correlations between the factors (for promax rotation)

Author(s)

Brian P. O'Connor

Examples

```
PA_FA(data_RSE, corkind="pearson", Nfactors = 2, iterpaf = 50,
    rotate='promax', ppower=3, verbose=TRUE)
```

 PCA Principal components analysis

Description

Principal components analysis

Usage

PCA(data, corkind, Nfactors, rotate, ppower, verbose)

Arguments

data An all-numeric dataframe where the rows are cases \& the columns are the variables, or a correlation matrix with ones on the diagonal.The function internally determines whether the data are a correlation matrix.
corkind The kind of correlation matrix to be used if data is not a correlation matrix. The options are 'pearson', 'kendall', 'spearman', and 'polychoric'. Required only if the entered data is not a correlation matrix.

Nfactors The number of components to extract.
rotate The factor rotation method. The options are: 'promax', 'varimax', and 'none'.
ppower \quad The power value to be used in a promax rotation (required only if rotate $=$ ' promax'). Suggested value: 3
verbose \quad Should detailed results be displayed in console?
The options are: TRUE (default) or FALSE.

Value

A list with the following elements:
eigenvalues The eigenvalues
loadingsNOROT The unrotated factor loadings
loadingsROT The rotated factor loadings (for varimax rotation)
structure \quad The structure matrix (for promax rotation)
pattern The pattern matrix (for promax rotation)
correls The correlations between the factors (for promax rotation)

Author(s)

Brian P. O'Connor

Examples

```
PCA(data_RSE, corkind='pearson', Nfactors=NULL, rotate='promax', ppower=3, verbose=TRUE)
```

POLYCHORIC_R Polychoric correlation matrix

Description

Produces a polychoric correlation matrix

Usage

POLYCHORIC_R(data, method, verbose)

Arguments

$$
\begin{array}{ll}
\text { data } & \begin{array}{l}
\text { An all-numeric dataframe where the rows are cases \& the columns are the vari- } \\
\text { ables. All values should be integers, as in the values for Likert rating scales. } \\
\text { (optional) The source package used to estimate the polychoric correlations: 'Rev- } \\
\text { method } \\
\text { elle' for the psych package (the default); 'Fox' for the polycor package. }
\end{array} \\
\text { verbose } & \begin{array}{l}
\text { Should detailed results be displayed in console? } \\
\text { The options are: TRUE (default) or FALSE. }
\end{array}
\end{array}
$$

Details

Applying familiar factor analysis procedures to item-level data can produce misleading or uninterpretable results. Common factor analysis, maximum likelihood factor analysis, and principal components analysis produce meaningful results only if the data are continuous and multivariate normal. Item-level data almost never meet these requirements.

The correlation between any two items is affected by both their substantive (content-based) similarity and by the similarities of their statistical distributions. Items with similar distributions tend to correlate more strongly with one another than do with items with dissimilar distributions. Easy or commonly endorsed items tend to form factors that are distinct from difficult or less commonly endorsed items, even when all of the items measure the same unidimensional latent variable. Itemlevel factor analyses using traditional methods are almost guaranteed to produce at least some factors that are based solely on item distribution similarity. The items may appear multidimensional when in fact they are not. Conceptual interpretations of the nature of item-based factors will often be erroneous.

A common, expert recommendation is that factor analyses of item-level data (e.g., for binary response options or for ordered response option categories) or should be conducted on matrices of polychoric correlations. Factor analyses of polychoric correlation matrices are essentially factor analyses of the relations among latent response variables that are assumed to underlie the data and that are assumed to be continuous and normally distributed.

This is a cpu-intensive function. It is probably not necessary when there are >8 item response categories.

By default, the function uses the polychoric function from William Revelle's' psych package to produce a full matrix of polychoric correlations. The function uses John Fox's hetcor function from the polycor package when requested or when the number of item response categories is >8.

Value

The polychoric correlation matrix

Author(s)

Brian P. O'Connor

Examples

```
# Revelle polychoric correlation matrix for the Rosenberg Self-Esteem Scale (RSE)
POLYCHORIC_R(data_RSE, method = 'Revelle')
# Fox polychoric correlation matrix for the Rosenberg Self-Esteem Scale (RSE)
POLYCHORIC_R(data_RSE, method = 'Fox')
```


Description

Conducts Procrustes rotations of a factor loading matrix to a target factor matrix, and it computes the factor solution congruence and the root mean square residual (based on comparisons of the entered factor loading matrix with the Procrustes-rotated matrix).

Usage

PROCRUSTES(loadings, target, type, verbose)

Arguments

loadings The loading matrix that will be aligned with the target.
target The target loading matrix.
type The options are 'orthogonal' or 'oblique' rotation.
verbose Should detailed results be displayed in console?
The options are: TRUE (default) or FALSE.

Details

This function conducts Procrustes rotations of a factor loading matrix to a target factor matrix, and it computes the factor solution congruence and the root mean square residual (based on comparisons of the entered factor loading matrix with the Procrustes-rotated matrix). The orthogonal Procrustes rotation is based on Schonemann (1966; see also McCrae et al., 1996). The oblique Procrustes rotation is based on Hurley and Cattell (1962). The factor solution congruence is the Tucker-Wrigley-Neuhaus factor solution congruence coefficient (see Guadagnoli \& Velicer, 1991; and ten Berge, 1986, for reviews).

Value

A list with the following elements:

loadingsPROC	The Procrustes-rotated loadings
congruence	The factor solution congruence after factor Procrustes rotation
rmsr	The root mean square residual
residmat	The residual matrix after factor Procrustes rotation

Author(s)

Brian P. O'Connor

References

Guadagnoli, E., \& Velicer, W. (1991). A comparison of pattern matching indices. Multivariate Behavior Research, 26, 323-343.

Hurley, J. R., \& Cattell, R. B. (1962). The Procrustes program: Producing direct rotation to test a hypothesized factor structure. Behavioral Science, 7, 258-262.

McCrae, R. R., Zonderman, A. B., Costa, P. T. J., Bond, M. H., \& Paunonen, S. V. (1996). Evaluating replicability of factors in the revised NEO personality inventory: Confirmatory factor analysis versus Procrustes rotation. Journal of Personality and Social Psychology, 70, 552-566.

Schonemann, P. H. (1966). A generalized solution of the orthogonal Procrustes problem. Psychometrika, 31, 1-10.
ten Berge, J. M. F. (1986). Some relationships between descriptive comparisons of components from different studies. Multivariate Behavioral Research, 21, 29-40.

Examples

```
# RSE data
loadings <- PCA(data_RSE[1:150,], Nfactors = 2, rotate='varimax', verbose=FALSE)
target <- PCA(data_RSE[151:300,], Nfactors = 2, rotate='varimax', verbose=FALSE)
PROCRUSTES(loadings$loadingsROT, target$loadingsROT, type = 'orthogonal', verbose=TRUE)
```


PROMAX Promax rotation

Description

Promax rotation

Usage

PROMAX(loadings, ppower, verbose)

Arguments

loadings A loading matrix.
ppower The exponent for the promax target matrix. 'ppower' must be 1 or greater. ' 4 ' is a conventional value.
verbose Should detailed results be displayed in console? The options are: TRUE (default) or FALSE.

Value

A list with the following elements:

structure	The structure matrix (for promax rotation)
pattern	The pattern matrix (for promax rotation)
correls	The correlations between the factors (for promax rotation)

Author(s)

Brian P. O'Connor

Examples

loadings <- PCA(data_NEOPIR, corkind='pearson', Nfactors = 5, rotate='none', verbose=TRUE)
PROMAX(loadings, ppower $=3$, verbose=TRUE)

RAWPAR

Parallel analysis of eigenvalues with real data as input

Description

Parallel analysis of eigenvalues, with real data as input, for deciding on the number of components or factors.

Usage

RAWPAR(data, randtype, extract, Ndatasets, percentile, corkind, corkindRAND, Ncases, verbose)

Arguments

data
randtyp
extract The factor extraction method. The options are: 'PAF' for principal axis / common factor analysis; 'PCA' for principal components analysis. 'image' for image analysis.
Ndatasets An integer indicating the \# of random data sets for parallel analyses.
percentile An integer indicating the percentile from the distribution of parallel analysis random eigenvalues to be used in determining the \# of factors. Suggested value: 95

corkind	The kind of correlation matrix to be used if data is not a correlation matrix. The options are 'pearson', 'kendall', 'spearman', and 'polychoric'. Required only if the entered data is not a correlation matrix.
corkindRAND	The kind of correlation matrix to be used for the random data analyses. The options are 'pearson', 'kendall', 'spearman', and 'polychoric'. The default is 'pearson'.
Ncases	The number of cases upon which a correlation matrix is based. Required only if data is a correlation matrix.
verbose	Should detailed results be displayed in console?
	The options are: TRUE (default) or FALSE.

Details

The parallel analysis procedure for deciding on the number of components or factors involves extracting eigenvalues from random data sets that parallel the actual data set with regard to the number of cases and variables. For example, if the original data set consists of 305 observations for each of 8 variables, then a series of random data matrices of this size (305 by 8) would be generated, and eigenvalues would be computed for the correlation matrices for the original, real data and for each of the random data sets. The eigenvalues derived from the actual data are then compared to the eigenvalues derived from the random data. In Horn's original description of this procedure, the mean eigenvalues from the random data served as the comparison baseline, whereas the more common current practice is to use the eigenvalues that correspond to the desired percentile (typically the 95 th) of the distribution of random data eigenvalues. Factors or components are retained as long as the ith eigenvalue from the actual data is greater than the ith eigenvalue from the random data.

The RAWPAR function permits users to specify PCA or PAF or image as the factor extraction method. Principal components eigenvalues are often used to determine the number of common factors. This is the default in most statistical software packages, and it is the primary practice in the literature. It is also the method used by many factor analysis experts, including Cattell, who often examined principal components eigenvalues in his scree plots to determine the number of common factors. Principal components eigenvalues are based on all of the variance in correlation matrices, including both the variance that is shared among variables and the variances that are unique to the variables. In contrast, principal axis eigenvalues are based solely on the shared variance among the variables. The procedures are qualitatively different. Some therefore claim that the eigenvalues from one extraction method should not be used to determine the number of factors for another extraction method. The PAF option in the extract argument for the PARALLEL function was included solely for research purposes. It is best to use PCA as the extraction method for regular data analyses. The MAP test (also in this package) is generally more suitable for determining the number of common factors.

Polychoric correlations are time-consuming to compute. While polychoric correlations should probably be specified for the real data eigenvalues when data consists of item-level responses, polychoric correlations should probably not be specified for the random data computations, even for item-level data. The procedure would take much time and it is unnecessary. Polychoric correlations are estimates of what the Pearson correlations would be had the real data been continuous. For item-level data, specify polychoric correlations for the real data eigenvalues (corkind='polychoric') and use the default for the random data eigenvalues (corkindRAND='pearson'). The option for using polychoric correlations for the random data computations (corkindRAND='polychoric') was provided solely for research purposes.

Value

A list with:
eigenvalues the eigenvalues for the real and random data
nfPA the number of factors based on the parallel analysis

Author(s)

Brian P. O'Connor

References

Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30, 179-185.

O'Connor, B. P. (2000). SPSS and SAS programs for determining the number of components using parallel analysis and Velicer's MAP test. Behavior Research Methods, Instrumentation, and Computers, 32, 396-402.

Zwick, W. R., \& Velicer, W. F. (1986). Comparison of five rules for determining the number of components to retain. Psychological Bulletin, 99, 432-442.

Examples

```
# parallel analysis of the WISC data
RAWPAR(data_TabFid, randtype='generated', extract='PCA', Ndatasets=100,
        percentile=95, corkind='pearson', verbose=TRUE)
# parallel analysis of the Harman correlation matrix
RAWPAR(data_Harman, randtype='generated', extract='PCA', Ndatasets=100,
        percentile=95, corkind='pearson', Ncases=305, verbose=TRUE)
# parallel analysis of the Rosenberg Self-Esteem Scale (RSE)
RAWPAR(data_RSE, randtype='permuted', extract='PCA', Ndatasets=100,
    percentile=95, corkind='pearson', corkindRAND='pearson', verbose=TRUE)
# parallel analysis of the Rosenberg Self-Esteem Scale (RSE) using polychoric correlations
RAWPAR(data_RSE, randtype='generated', extract='PCA', Ndatasets=100,
    percentile=95, corkind='polychoric', verbose=TRUE)
# parallel analysis of the NEO-PI-R data
RAWPAR(data_NEOPIR, randtype='generated', extract='PCA', Ndatasets=100,
    percentile=95, corkind='pearson', Ncases=305, verbose=TRUE)
```

```
ROOTFIT Factor fit coefficients
```


Description

A variety of fit coefficients for the possible N -factor solutions in exploratory factor analysis

Usage

ROOTFIT(data, corkind, Ncases, extract, verbose)

Arguments

data An all-numeric dataframe where the rows are cases \& the columns are the variables, or a correlation matrix with ones on the diagonal.The function internally determines whether the data are a correlation matrix.
corkind The kind of correlation matrix to be used if data is not a correlation matrix. The options are 'pearson', 'kendall', 'spearman', and 'polychoric'. Required only if the entered data is not a correlation matrix.

Ncases The number of cases upon which a correlation matrix is based. Required only if data is a correlation matrix.
extract The factor extraction method. The options are: 'PAF' for principal axis / common factor analysis; 'PCA' for principal components analysis. 'ML' for maximum likelihood estimation.
verbose \quad Should detailed results be displayed in console? The options are: TRUE (default) or FALSE.

Value

A list with eigenvalues \& fit coefficients.

Author(s)

Brian P. O'Connor

Examples

```
# RSE data
ROOTFIT(data_RSE, corkind='pearson', extract='ML')
ROOTFIT(data_RSE, corkind='pearson', extract='PCA')
# NEO-PI-R data
ROOTFIT(data_NEOPIR, corkind='pearson', extract='ML')
ROOTFIT(data_NEOPIR, corkind='pearson', extract='PCA')
```

SALIENT Salient loadings criterion for determining the number of factors.

Description

Salient loadings criterion for determining the number of factors, as recommended by Gorsuch. Factors are retained when they consist of a specified minimum number (or more) variables that have a specified minimum (or higher) loading value.

Usage

SALIENT(data, salvalue, numsals, corkind, verbose)

Arguments

data An all-numeric dataframe where the rows are cases \& the columns are the variables, or a correlation matrix with ones on the diagonal. The function internally determines whether the data are a correlation matrix.
salvalue \quad The loading value that is considered salient. Default $=.40$
numsals \quad The required number of salient loadings for a factor. Default $=3$
corkind The kind of correlation matrix to be used if data is not a correlation matrix. The options are 'pearson', 'kendall', 'spearman', and 'polychoric'. Required only if the entered data is not a correlation matrix.
verbose Should detailed results be displayed in console?
The options are: TRUE (default) or FALSE.

Value

The number of factors according to the salient loadings criterion.

Author(s)

Brian P. O'Connor

References

Gorsuch, R. L. (1997a). Exploratory factor analysis: Its role in item analysis. Journal of Personality Assessment, 68, 532-560.

Boyd, K. C. (2011). Factor analysis. In M. Stausberg \& S. Engler (Eds.), The Routledge Handbook of Research Methods in the Study of Religion (pp. 204-216). New York: Routledge.

Examples

```
# test on the Harman correlation matrix
SALIENT(data_Harman, salvalue=.4, numsals=3, corkind='pearson', verbose=TRUE)
# test on the Rosenberg Self-Esteem Scale (RSE) using Pearson correlations
SALIENT(data_RSE, salvalue=.4, numsals=3, corkind='pearson', verbose=TRUE)
# test on the Rosenberg Self-Esteem Scale (RSE) using polychoric correlations
SALIENT(data_RSE, salvalue=.4, numsals=3, corkind='polychoric', verbose=TRUE)
```

 SCREE_PLOT Scree plot of eigenvalues

Description

Produces a scree plot of eigenvalues for raw data or for a correlation matrix.

Usage

SCREE_PLOT(data, corkind)

Arguments

data An all-numeric dataframe where the rows are cases $\&$ the columns are the variables, or a correlation matrix with ones on the diagonal.The function internally determines whether the data are a correlation matrix.
corkind The kind of correlation matrix to be used if data is not a correlation matrix. The options are 'pearson', 'kendall', 'spearman', and 'polychoric'. Required only if the entered data is not a correlation matrix.

Author(s)

Brian P. O'Connor

Examples

```
SCREE_PLOT(data_Field, corkind='pearson')
```

SCREE_PLOT(data_RSE, corkind='polychoric')

SESCREE Standard Error Scree test for the number of components.

Description

This is a linear regression operationalization of the scree test for determining the number of components. The results are purportedly identical to those from the visual scree test. The test is based on the standard error of estimate values that are computed for the set of eigenvalues in a scree plot. The number of components to retain is the point where the standard error exceeds $1 / \mathrm{m}$, where m is the numbers of variables.

Usage

SESCREE(data, corkind, verbose)

Arguments

$$
\begin{array}{ll}
\text { data } & \begin{array}{l}
\text { An all-numeric dataframe where the rows are cases \& the columns are the vari- } \\
\text { ables, or a correlation matrix with ones on the diagonal. The function internally } \\
\text { determines whether the data are a correlation matrix. }
\end{array} \\
\text { corkind } & \begin{array}{l}
\text { The kind of correlation matrix to be used if data is not a correlation matrix. The } \\
\text { options are 'pearson', 'kendall', 'spearman', and 'polychoric'. Required only if } \\
\text { the entered data is not a correlation matrix. }
\end{array} \\
\text { verbose } & \begin{array}{l}
\text { Should detailed results be displayed in console? } \\
\text { The options are: TRUE (default) or FALSE. }
\end{array}
\end{array}
$$

Value

The number of components according to the Standard Error Scree test.

Author(s)

Brian P. O'Connor

References

Zoski, K., \& Jurs, S. (1996). An objective counterpart to the visual scree test for factor analysis: the standard error scree test. Educational and Psychological Measurement, 56(3), 443-451.

Examples

```
# test on the Harman correlation matrix
SESCREE(data_Harman, corkind='pearson', verbose=TRUE)
```

\# test on the Rosenberg Self-Esteem Scale (RSE) using Pearson correlations
SESCREE(data_RSE, corkind='pearson', verbose=TRUE)
\# test on the Rosenberg Self-Esteem Scale (RSE) using polychoric correlations SESCREE(data_RSE, corkind='polychoric', verbose=TRUE)

VARIMAX varimax rotation

Description

varimax rotation

Usage

VARIMAX(loadings, verbose)

Arguments

loadings	A loading matrix.
verbose	Should detailed results be displayed in console?
	The options are: TRUE (default) or FALSE.

Value

The varimax-rotated loadings

Author(s)

Brian P. O’Connor

Examples

```
loadings <- PCA(data_NEOPIR, corkind='pearson', Nfactors = 5, rotate='none', verbose=TRUE)
```

VARIMAX(loadings, verbose=TRUE)

Index

```
CONGRUENCE, 3
data_Field,4
data_Harman, 5
data_NEOPIR,6
data_RSE, }
data_TabFid, }
EFA.dimensions-package, 2
EXTENSION_FA, 8
FACTORABILITY,11
IMAGE_FA,12
LOCALDEP, 13
MAP, 14
MAXLIKE_FA, 16
NEVALSGT1,18
PA_FA, 21
PARALLEL,19
PCA, 22
POLYCHORIC_R, 23
PROCRUSTES, 25
PROMAX, 26
RAWPAR, 27
ROOTFIT, 30
SALIENT, 31
SCREE_PLOT, 32
SESCREE, 33
VARIMAX, 34
```

