Package 'Dominance'

March 13, 2018

Version 1.1.0

Date 2018-10-03

Title A Package to Calculate and Visualize Dominance Hierarchies

Description Functions to calculate ADI (Average Dominance Index) and FDI (Frequency-Based Dominance Index). Functions to visualize the Data with Social Network Graphs with Dual Directions and Music Notation Graph.

Maintainer Knut Krueger <Knut.Krueger@equine-science.de>

Depends R (>= 3.1.0)

Imports igraph, chron, gdata, XLC onnect

Suggests

License GPL-3

URL NA

RoxygenNote 6.0.1

NeedsCompilation no

Author Knut Krueger [aut, cre], Konstanze Krueger [aut]

Repository CRAN

Date/Publication 2018-03-13 18:54:55 UTC

R topics documented:

ominance-package
DI
ange.action.without.response
ta_ADI
ta_Musicnotation \ldots
ta_Network_1
ta_Network_2
tect_bits
DI
usicnotation

2

	search.win.lose Sociogram	•	 		•		•	•	 •		•	•	 •		•	•	•	• •	 •	•	 -	13 13
Index																						16

Dominance-package Dominance Calculation and Graphs in Animals

Description

The package can calculate ADI (Average Dominance Index) and can build social network graphs with dual directions, can build a Music Notation Graph

Details

The following are sources of information on **Dominance** package: DESCRIPTION file library(help="Dominance")

This file package?Dominance

Some help files ADI FDI Sociogram Musicnotation

Author(s)

Knut Krueger, Konstanze Krueger Maintainer: Who to complain to <Knut.Krueger@equine-science.de>

ADI

Function ADI

Description

A package to calculate Dominance Indices, print Soical Network Graphs and Music Notation Graphs.

Usage

ADI(data_sheet, bytes, ...)

ADI

ADI

Arguments

data_sheet	either a data.frame f.e imported from a data sheet containing "Name"."item.number"
	"action.from."."action.to"."kind.of.action"
	"name.of.action", "action.number", "classification", "weighting"
	or only "action.from.", "action.to", "kind.of.action" if exists actions and items
	actions: with "name.of.action", "action.number", "classification", "weighting Weigting the factor which should be used to calculate the behavior (1 for "ac- tion.from"" wins -1 for "action.to" wins") Setting a behaviour to 2 means it is count double items: with "Name", "item.number"
bytes	a string where each enabled action is set to 1 and each disabled action is set to 0 Setting a behaviour to 2 means it is count double
	Additional parameters:
	actions (data.frame) with "name.of.action", "action.number", "classification", "weighting"; Classification 1 if "action.from"" wins; Classification 2 if "action.to" wins
	Weigting the factor which should be used to calculate the behavior (1 for "ac- tion.from"" wins -1 for "action.to" wins") Setting a behaviour to 2 means it is count double
	vcolors as much colors as items, colors will returned as sorted ADI colors means color 1 = item rank 1, color 2 = item rank 2, and so on
	workbook the XIConnect Workbook for the Excel file to be changed note: The workbook must be opened before
	sheet the sheet name (ADI will be added to be sure not to delete any data
	savecounts if TRUE: save the counts of actions as sheet (available only with workbook
	saveAdi if TRUE: save the FDI as sheet (available only with workbook

Value

returns a list with ADI - the Average Dominance index Colors - the colors supported by vcolors sorted by ADI of the items ADI_count_matrix - the counts from which the ADI was calulated

Author(s)

Knut Krueger@equine-science.de>

References

The Construction of Dominance Order: Comparing Performance of Five Methods Using an Individual-Based Model C. K. Hemelrijk, J. Wantia and L. Gygax, Behaviour Vol. 142, No. 8 (Aug., 2005), pp. 1037-1058 http://www.jstor.org/stable/4536286 On using the DomWorld model to evaluate dominance ranking methods, de Vries, Han, Behaviour, Volume 146, Number 6, 2009, pp. 843-869(27) http://dx.doi.org/10.1163/156853909X412241

Examples

```
{ #you can eihter use:
data_sheet=data.frame
                        ("action.from"=c(1,4,2,3,4,3,4,3,4,3,4,3,4,3,4),
                         "action.to"=c(4,1,1,4,3,4,3,4,3,4,3,4,3,4,3),
"kind.of.action"= c(4,1,1,4,3,4,3,4,3,4,3,4,3,4,3),stringsAsFactors=FALSE)
items= data.frame ("Name"=c("item1","item2","item3","item4","item5","item6") ,
                   "item.number"=c(1:6),stringsAsFactors=FALSE)
actions=data.frame("name.of.action"= c("leading","following","approach","bite","threat to bite",
                                      "kick", "threat to kick", "chase", "retreat"),
                  "action.number"=c(1:9),
                  "classification"=c(1,2,1,1,1,1,1,1,2) ,
                  "weighting"=c(1,-1,1,1,1,1,1,-1),stringsAsFactors=FALSE)
#all encounters without leading and following
bytes= "001111111"
ADI(data_sheet,items=items,actions=actions,bytes)
# or you can use a complete f.e Excel sheet
# you can save this data as basic excel sheet to work with
data(data_ADI)
bytes= "001111111"
ADI(data_ADI, bytes)
}
```

change.action.without.response changes kind of actions for all action without response

Description

changes kind of actions for all action without response

Usage

```
change.action.without.response(data.set,action,response,newaction, ...)
```

Arguments

data.set	data.frame f.e imported from a data sheet containing
	"Name","item.number"
	"action.from.", "action.to", "kind.of.action"
	"name.of.action", "action.number", "classification", "weighting"

action	action normally with response
response	the normal response to the action
newaction	data.frame("name.of.action"="test","action.number"=1,"classification"=2,"weighting"=3)")
	workbook : the XlConnect Workbook for the Excel file to be changed note: The workbook must be opened before
	sheet: the sheet name (some random numbers will be added to be sure not to delete any data

Value

change.action.without.response returns the new data.set

Author(s)

Knut Krueger

Examples

data_ADI

Demodata for ADI and FDI

Description

Demodata to calculate an ADI and FDI

Usage

data(data_ADI)

Format

A data frame with 17 observations on the following 10 variables.

Name a character vector

item.number a numeric vector

action.from. a numeric vector

action.to a numeric vector kind.of.action a numeric vector observation.number a numeric vector name.of.action a character vector action.number a numeric vector classification a numeric vector weighting a numeric vector

Examples

data(data_ADI)

data_Musicnotation Demodata for Musicnotation

Description

Demodata to show an Musicnotation Graph

Usage

data(data_Musicnotation)

Format

A data frame with 15 observations on the following 11 variables.

action.from a numeric vector action.to a numeric vector kind.of.action a numeric vector Time a character vector Name a character vector item.number a numeric vector dominance.order a numeric vector name.of.action a character vector action.number a numeric vector classification a numeric vector weighting a numeric vector

Examples

data(data_Musicnotation)

6

data_Network_1

Description

A dataset to show a bigger sociogramm

Usage

```
data(data_Network_1)
```

Format

A data frame with 800 observations on the following 16 variables.

Name a numeric vector Beschreibung a character vector item.number a numeric vector dominance.order a character vector age a character vector sex a character vector action.from. a numeric vector action.to a numeric vector kind.of.action a numeric vector time a POSIXct test.2.kind.of.action a numeric vector test.3.kind.of.acttion a numeric vector name.of.action a character vector action.number a numeric vector classification a numeric vector weighting a numeric vector

Examples

data(data_Network_1)

data_Network_2

Description

A dataset to show a bigger sociogramm

Usage

data(data_Network_2)

Format

A data frame with 800 observations on the following 16 variables.

Name a numeric vector Beschreibung a character vector item.number a numeric vector dominance.order a character vector age a character vector sex a character vector action.from. a numeric vector action.to a numeric vector kind.of.action a numeric vector time a POSIXct test.2.kind.of.action a numeric vector test.3.kind.of.acttion a numeric vector name.of.action a character vector action.number a numeric vector classification a numeric vector weighting a numeric vector

Examples

data(data_Network_2)

detect_bits for internal use only

Description

for internal use only

Usage

detect_bits(bits, set = TRUE)

Arguments

bits

Author(s)

Knut krueger

Examples

print('for internal use only')

FDI

Function FDI

Description

A package to calculate Dominance Indices, print Soical Network Graphs and Music Notation Graphs.

Usage

FDI(data_sheet, bytes, ...)

Arguments

data_sheet	either a data.frame f.e imported from a data sheet containing "Name" "item number"
	"action from " "action to" "kind of action"
	"name.of.action", "action.number", "classification", "weighting"
	or only "action.from.", "action.to", "kind.of.action" if exists actions and items
	actions: with "name.of.action", "action.number", "classification", "weighting items: with "Name", "item.number"
bytes	a string where each enabled action is set to 1 and each disabled action is set to 0 Setting a behaviour to 2 means it is count double
	Additional parameters:
	actions (data.frame) with "name.of.action", "action.number", "classification", "weighting"; Classification 1 if "action.from"" wins; Classification 2 if "action.to" wins
	Weigting the factor which should be used to calculate the behavior (1 for "action.from"" wins -1 for "action.to" wins")
	Setting a behaviour to 2 means it is count double
	vcolors as much colors as items, colors will returned as sorted FDI colors means color 1 = item rank 1, color 2 = item rank 2, and so on
	workbook the XIConnect Workbook for the Excel file to be changed note: The workbook must be opened before
	sheet the sheet name (FDI will be added to be sure not to delete any data
	savecounts if TRUE: save the counts of actions as sheet (available only with workbook
	saveFDI if TRUE: save the FDI as sheet (available only with workbook

Value

returns a list with FDI - the Frequency Based Dominance index Colors - the colors supported by vcolors sorted by FDI of the items FDI_count_matrix - the counts from which the FDI was calulated

Author(s)

Knut Krueger, <Knut.Krueger@equine-science.de>

References

The Construction of Dominance Order: Comparing Performance of Five Methods Using an Individual-Based Model C. K. Hemelrijk, J. Wantia and L. Gygax, Behaviour Vol. 142, No. 8 (Aug., 2005), pp. 1037-1058 http://www.jstor.org/stable/4536286

On using the DomWorld model to evaluate dominance ranking methods, de Vries, Han, Behaviour, Volume 146, Number 6, 2009, pp. 843-869(27) http://dx.doi.org/10.1163/156853909X412241

musicnotation

Examples

```
{ #you can eihter use:
data_sheet=data.frame
                        ("action.from"=c(1,4,2,3,4,3,4,3,4,3,4,3,4,3,4),
                         "action.to"=c(4,1,1,4,3,4,3,4,3,4,3,4,3,4,3),
"kind.of.action"= c(4,1,1,4,3,4,3,4,3,4,3,4,3,4,3), stringsAsFactors=FALSE)
items= data.frame ("Name"=c("item1","item2","item3","item4","item5","item6") ,
                   "item.number"=c(1:6),stringsAsFactors=FALSE)
actions=data.frame("name.of.action"= c("leading","following","approach","bite","threat to bite",
                                      "kick", "threat to kick", "chase", "retreat"),
                  "action.number"=c(1:9),
                  "classification"=c(1,2,1,1,1,1,1,1,2) ,
                  "weighting"=c(1,-1,1,1,1,1,1,1,-1),stringsAsFactors=FALSE)
#all encounters without leading and following
bytes= "0011111111"
FDI(data_sheet,items=items,actions=actions,bytes)
# or you can use a complete f.e Excel sheet
# you can save this data as basic excel sheet to work with
data(data_ADI)
bytes= "001111111"
FDI(data_ADI,bytes)
   }
```

musicnotation Function musicnotation

Description

A function to visualize interaction wit a musicnotation graph.

Usage

Musicnotation(data_sheet, ...)

Arguments

data_sheet	either a data.frame f.e imported from a data sheet containing "Name","item.number" "action.from.","action.to","kind.of.action"									
	"name.of.action","action.number","classification","weighting"									
	or only "action.from.", "action.to", "kind.of.action" if exists actions and ite									
	actions: with "name.of.action", "action.number", "classification", "weighting items: with "Name", "item.number"									
	Setting a behaviour to 2 means it is count double									
•••	Additional parameters:									
	colors a factor of colors as much as actions									

lwd line width if lwd_arrows is not used also for line width arrows # TODO check this it not working -> no show_items all items will be shown

show_items items to be shown

angel_arrows The angel aof the arrow head default 20

length_arrows the lenght of the arrow default 0.05

lwd_arrows the line width of the arrows default 1

actions_colors a vector of colors for actions f.e to show one special action

- starting_time builds the graph with data bewteen starting and ending time
- ending_time builds the graph with data bewteen starting and ending time
- **user_colors** a vector of colors as much as items to show different colors for items
- **color_bits** a vector of colors as much as items 1 shows the horse colored 0 in black (defined with actions_colors)

Value

returns a list with ADI - the Average Dominance index

Author(s)

Knut Krueger, <Knut.Krueger@equine-science.de>

References

#Chase, I. D. (2006). Music notation: a new method for visualizing social interaction in animals and humans. Front Zool, 3, 18. http://dx.doi.org/10.1186%2F1742-9994-3-18

Examples

```
{ #you can eihter use:
data_sheet=data.frame
                     ("action.from"=c(1,4,2,3,4,3,4,3,4,3,4,3,4,3,4),
                      "action.to"=c(4,1,1,4,3,4,3,4,3,4,3,4,3,4,3),
                      "kind.of.action"= c(4,1,1,4,3,4,3,4,3,4,3,4,3,4,3),
                     "Time"=c('03:15:00','03:17:30','03:20:00','03:20:30','03:21:00',
                              '03:21:30','03:22:00','03:22:30','03:23:00','03:23:30',
                             '03:25:00', '03:25:30', '03:26:00', '03:26:30', '03:27:00'),
                      stringsAsFactors=FALSE)
items= data.frame ("Name"=c("item1","item2","item3","item4","item5","item6") ,
                 "item.number"=c(1:6),stringsAsFactors=FALSE)
"action.number"=c(1:9),
                "classification"=c(1,2,1,1,1,1,1,1,2) ,
                "weighting"=c(1,-1,1,1,1,1,1,-1), stringsAsFactors=FALSE)
# set colors for special encounters
color= c("green","green","red","red","red","red","red","red")
```

```
Musicnotation(data_sheet=data_sheet,actions=actions,items=items,sort_dominance=TRUE)
#or you can use a complete f.e Excel sheet
#you can save this data as basic excel sheet to work with
data(data_Musicnotation)
Musicnotation(data_sheet=data_Musicnotation,sort_dominance=TRUE) }
```

search.win.lose *for internal use only*

Description

counts the wins and loses

Usage

```
search.win.lose(data_sheet, ...)
```

Arguments

data_sheet

. . .

Author(s)

Knut Krueger

Examples

```
print('for internal use only')
```

Sociogram Social Network Graphs

Description

computes social network graphs with igraph

Usage

Sociogram(data_sheet, bits, ...)

Arguments

either a data.frame f.e imported from a data sheet containing
"Name","item.number"
"action.from.", "action.to", "kind.of.action"
"name.of.action", "action.number", "classification", "weighting"
or only "action.from.", "action.to", "kind.of.action" if exists actions and items
data_sheet: with "action.from.","action.to","kind.of.action"
items with "Name", "item.number"
as sting where each enabled action is set to 1 and each disabled action is set to 0
Postscript: FALSE (default) or path to PS output file
soziogram_layout: layout.auto,layout.random,layout.circle,layout.sphere,layout.fruchterman.reingold,lay
curved: how much the lines between the nodes ar curved 0 ist stright, default is 0.2
scal_value: the multiplicator of the nodes, default: 1/3
linesize_add: value to add to the linesize (helpful for a graph with thin lines. default 0
log: log2 size of linewitdh, default= false
canvas.width: default 1000
canvas.height: default 800
tkplot: interactiv tkplot, default = true

Value

sociogram	the igraph object						
counts_circles							
	the count of cirles						
count_interactions							
	the count of interactions						
line_size	the used linesize						
counts_circles							
	vector of min #' and max line size						

the last for are helpful to change circle size and #' linewidth

Author(s)

Knut Krueger@equine-science.de>

Examples

Sociogram

```
"item.number"=c(1:6),stringsAsFactors=FALSE)
actions=data.frame("name.of.action"= c("leading","following","approach","bite","threat to bite",
                   "kick", "threat to kick", "chase", "retreat"),
                   "action.number"=c(1:9),
                   "classification"=c(1,2,1,1,1,1,1,1,2) ,
                   "weighting"=c(1,-1,1,1,1,1,1,1,-1), stringsAsFactors=FALSE)
## all encounters without leading and following
bytes= "001111111"
Sociogram(data_sheet,items=items,actions=actions,bytes)
## mor you can use a complete f.e Excel sheet
## you can save this data as basic excel sheet to work with
data(data_Network_1)
## set 1 for action you want to show
bytes= "0011111111100000000"
Sociogram(data_Network_1,bytes)
```

```
}
```

Index

*Topic ADI Dominance-package, 2 *Topic Music Notation Graph Dominance-package, 2 *Topic Social Network Graph Dominance-package, 2 *Topic \textasciitildekwd1 change.action.without.response, 4 Sociogram, 13 *Topic \textasciitildekwd2 change.action.without.response, 4 Sociogram, 13 *Topic datasets data_ADI, 5 data_Musicnotation, 6data_Network_1,7 data_Network_2,8

ADI, 2, 2

change.action.without.response,4

data_ADI, 5
data_Musicnotation, 6
data_Network_1, 7
data_Network_2, 8
detect_bits, 9
Dominance (Dominance-package), 2
Dominance-package, 2

FDI, 2, 9

Musicnotation, 2 Musicnotation (musicnotation), 11 musicnotation, 11

search.win.lose, 13
Sociogram, 2, 13