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4 Directional-package

Directional-package This is an R package that provides methods for the statistical analysis
of directional data, including massive (very large scale) directional
data.

Description

Circular-linear regression, spherical-spherical regression, spherical regression, discriminant analy-
sis, ANOVA for circular and (hyper-)spherical data, tests for eaquality of conentration parameters,
fitting distributions, random values generation, contour plots and many more functions are included
in this package.

Details

Package: Directional
Type: Package
Version: 4.4
Date: 2020-07-13
License: GPL-2

Maintainers

Michail Tsagris <mtsagris@uoc.gr>

Note

Acknowledgments:

Professor Andy Wood and Dr Simon Preston from the university of Nottingham are highly appre-
ciated for being my supervisors during my post-doc in directional data analysis.

Dr Georgios Pappas (former postDoc at the university of Nottingham) helped me construct the
contour plots of the von Mises-Fisher and the Kent distribution.

Dr Christopher Fallaize and Dr Theo Kypraios from the university of Nottingham have provided a
function for simulating from the Bingham distribution using rejection sampling. So any questions
regarding this function should be addressed to them.

Dr Kwang-Rae Kim (post-doc at the university of Nottingham) answered some of my questions.

Giorgos Borboudakis (PhD student at the university of Crete) pointed out to me a not so clear
message in the algorithm of generating random values from the von Mises-Fisher distribution.

Panagiotis (pronounced Panayiotis) Tzirakis (master student at the department of computer science
in Heraklion during the 2013-2015 seasons) showed me how to perform parallel computing in R
and he is greatly acknowledged and appreciated not only from me but from all the readers of this
document. He also helped me with the vectorization of some contour plot functions.
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Professor John Kent from the university of Leeds is acknowledged for clarifying one thing with the
ovalness parameter in his distribution.

Phillip Paine (postdoc at the university of Nottingham) spotted that the function rfb is rather slow
and he suggested me to change it. The function has changed now and this is also due to Joshua
Davis (from Carleton College, Northfield, MN) who spotted that mistakes could occur, due a vector
not being a matrix.

Professor Kurt Hornik from the Vienna university of economics and business is greatly acknowl-
edged for his patience and contast help with this (and not only) R package.

Manos Papadakis, undergraduate student in the department of computer science at university of
Crete, is also acknowledged for his programming tips.

Dr Mojgan Golzy spotted a mistake in the ESAGdensity and Michail is very happy for that.

If you want more information on many of these algorithms see Chapters 9 and 10 in the following
document. https://www.researchgate.net/publication/324363311_Multivariate_data_analysis_in_R

Author(s)

Michail Tsagris <mtsagris@uoc.gr>, Giorgos Athineou <gioathineou@gmail.com>, Anamul Sajib
<sajibstat@du.ac.bd>, Eli Amson <eli.amson1988@gmail.com> and Micah J. Waldstein <micah@waldste.in>.

References

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley and Sons.

A test for testing the equality of the concentration parameters for ciruclar data

A test for testing the equality of the concentration parameter among g
samples, where g >= 2 for ciruclar data

Description

A test for testing the equality of the concentration parameter among g samples, where g >= 2 for
ciruclar data. It is a tangential approach.

Usage

tang.conc(u, ina, rads = FALSE)

Arguments

u A numeric vector containing the values of all samples.

ina A numerical variable or factor indicating the groups of each value.

rads If the data are in radians this should be TRUE and FALSE otherwise.

Details

This test works for circular data.
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Value

A vector including:

test The value of the test statistic.

p-value The p-value of the test.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>

References

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons. Fisher,
N. I. (1995). Statistical analysis of circular data. Cambridge University Press.

See Also

embed.circaov,hcf.circaov,lr.circaov,het.circaov,conc.test

Examples

x <- rvonmises(100, 2.4, 15)
ina <- rep(1:4,each = 25)
tang.conc(x, ina, rads = TRUE)

Angular central Gaussian random values simulation

Angular central Gaussian random values simulation

Description

Angular central Gaussian random values simulation.

Usage

racg(n, sigma)

Arguments

n The sample size, a numerical value.

sigma The covariance matrix in Rd.

Details

The algorithm uses univariate normal random values and transforms them to multivariate via a
spectral decomposition. The vectors are then scaled to have unit length.
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Value

A matrix with the simulated data.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

References

Tyler D. E. (1987). Statistical analysis for the angular central Gaussian distribution on the sphere.
Biometrika 74(3): 579-589.

See Also

acg,rvmf,rvonmises

Examples

s <- cov( iris[, 1:4] )
x <- racg(100, s)
acg(x)
vmf(x) ## the concentration parameter, kappa, is very low, close to zero, as expected.

Anova for (hyper-)spherical data

Analysis of variance for (hyper-)spherical data

Description

Analysis of variance for (hyper-)spherical data.

Usage

hcf.aov(x, ina, fc = TRUE)

lr.aov(x, ina)

embed.aov(x, ina)

het.aov(x, ina)

Arguments

x A matrix with the data in Euclidean coordinates, i.e. unit vectors.

ina A numerical variable or a factor indicating the group of each vector.

fc A boolean that indicates whether a corrected F test should be used or not.
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Details

The high concentration (hcf.aov), log-likelihood ratio (lr.aov), embedding approach (embed.aov) or
the non equal concentration parameters approach (het.aov) is used.

Value

A vector including:

test The test statistic value.

p-value The p-value of the F test.

kappa The common concentration parameter kappa based on all the data.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>

References

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

See Also

hcf.boot,spherconc.test,conc.test

Examples

x <- rvmf(60, rnorm(3), 15)
ina <- rep(1:3, each = 20)
hcf.aov(x, ina)
hcf.aov(x, ina, fc = FALSE)
lr.aov(x, ina)
embed.aov(x, ina)
het.aov(x, ina)

Anova for circular data

Analysis of variance for circular data

Description

Analysis of variance for circular data.
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Usage

hcf.circaov(u, ina, rads = FALSE)

lr.circaov(u, ina, rads = FALSE)

het.circaov(u, ina, rads = FALSE)

embed.circaov(u, ina, rads = FALSE)

Arguments

u A numeric vector containing the data.

ina A numerical or factor variable indicating the group of each value.

rads If the data are in radians, this should be TRUE and FALSE otherwise.

Details

The high concentration (hcf.circaov), log-likelihood ratio (lr.circaov), embedding approach (em-
bed.circaov) or the non equal concentration parameters approach (het.circaov) is used.

Value

A vector including:

test The value of the test statistic.

p-value The p-value of the test.

kappa The concentration parameter based on all the data. If the het.circaov is used this
argument is not returned.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>

References

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

See Also

conc.test,hcf.aov,lr.aov,het.aov,embed.aov
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Examples

x <- rvonmises(100, 2.4, 15)
ina <- rep(1:4,each = 25)
hcf.circaov(x, ina, rads = TRUE)
lr.circaov(x, ina, rads = TRUE)
het.circaov(x, ina, rads = TRUE)
embed.circaov(x, ina, rads = TRUE)

BIC for the model based clustering using mixtures of von Mises-Fisher distributions

BIC to choose the number of components in a model based clustering
using mixtures of von Mises-Fisher distributions

Description

BIC to choose the number of components in a model based clustering using mixtures of von Mises-
Fisher distributions

Usage

bic.mixvmf(x, A, n.start = 20)

Arguments

x A matrix containing directional data.
A The maximum number of clusters to be tested. Default value is 3.
n.start The number of random starts to try. See also R’s built-in function kmeans for

more information about this.

Details

If the data are not unit vectors, they are transformed into unit vectors.

Value

A list including:

BIC The BIC values for all the models tested.
A plot A plot of the BIC values.
runtime The run time of the algorithm. A numeric vector. The first element is the user

time, the second element is the system time and the third element is the elapsed
time.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>
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References

Hornik, K. and Grun, B. (2014). movMF: An R package for fitting mixtures of von Mises-Fisher
distributions. Journal of Statistical Software, 58(10):1–31.

See Also

mix.vmf,rmixvmf,mixvmf.contour

Examples

x <- as.matrix( iris[, 1:4] )
x <- x / sqrt( rowSums(x^2) )
bic.mixvmf(x, 5)

Bootstrap 2-sample mean test for (hyper-)spherical data

Bootstrap 2-sample mean test for (hyper-)spherical data

Description

Bootstrap 2-sample mean test for (hyper-)spherical data.

Usage

hcf.boot(x1, x2, fc = TRUE, B = 999)

lr.boot(x1, x2, B = 999)

embed.boot(x1, x2, B = 999)

het.boot(x1, x2, B = 999)

Arguments

x1 A matrix with the data in Euclidean coordinates, i.e. unit vectors.

x2 A matrix with the data in Euclidean coordinates, i.e. unit vectors.

fc A boolean that indicates whether a corrected F test should be used or not.

B The number of permutations to perform.

Details

The high concentration (hcf.boot), log-likelihood ratio (lr.boot), embedding approach (embed.boot)
or the non equal concentration parameters approach (het.boot) is used.
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Value

A vector including:

test The test statistic value.

p-value The p-value of the F test.

kappa The common concentration parameter kappa based on all the data.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

See Also

hcf.aov,spherconc.test,conc.test

Examples

x <- rvmf(60, rnorm(3), 15)
ina <- rep(1:2, each = 30)
x1 <- x[ina == 1, ]
x2 <- x[ina == 2, ]
hcf.boot(x1, x2)
lr.boot(x1, x2)
het.boot(x1, x2)

Check visually whether matrix Fisher samples is correctly generated or not

Check visually whether matrix Fisher samples is correctly generated
or not.

Description

It plots the log probability trace of matrix Fisher distribution which should close to the maximum
value of the logarithm of matrix Fisher distribution, if samples are correctly generated.

Usage

visual.check(x, Fa)

Arguments

x The simulated data. An array with at least 2 3x3 matrices.

Fa An arbitrary 3x3 matrix represents the parameter matrix of this distribution.
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Details

For a given parameter matrix Fa, maximum value of the logarithm of matrix Fisher distribution is
calculated via the form of singular value decomposition of Fa = UΛV T which is tr(Λ). Multiply
the last column of U by −1 and replace small eigenvalue, say, λ3 by −λ3 if |UV T | = −1.

Value

A plot which shows log probability trace of matrix Fisher distribution. The values are also returned.

Author(s)

Anamul Sajib<sajibstat@du.ac.bd>

R implementation and documentation: Anamul Sajib<sajibstat@du.ac.bd>

References

Habeck M. (2009). Generation of three-dimensional random rotations in fitting and matching prob-
lems. Computational Statistics, 24(4):719–731.

Examples

Fa <- matrix( c(85, 11, 41, 78, 39, 60, 43, 64, 48), ncol = 3) / 10
x <- rmatrixfisher(1000, Fa)
a <- visual.check(x, Fa)

Circular correlations between one and many circular variables

Circular correlations between two circular variables

Description

Circular correlations between two circular variables.

Usage

circ.cors1(theta, phi)

Arguments

theta The first cirular variable expressed in radians, not degrees.

phi The other cirular variable. In the case of "circ.cors1" this is a matrix with many
circular variables. In either case, the values must be in radians, not degrees.

Details

Correlation for circular variables using the cosinus and sinus formula of Jammaladaka and Sen-
Gupta (1988).
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Value

A matrix with two columns, the correlations and the p-values.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

References

Jammalamadaka, R. S. and Sengupta, A. (2001). Topics in circular statistics. World Scientific.

Jammalamadaka, S. R. and Sarma, Y. R. (1988). A correlation coefficient for angular variables.
Statistical Theory and Data Analysis, 2:349–364.

See Also

spml.reg

Examples

y <- runif(50, 0, 2 * pi)
x <- matrix(runif(50 * 10, 0, 2 * pi), ncol = 10)
circ.cors1(y, x)

Circular correlations between two circular variables

Circular correlations between two circular variables

Description

Circular correlations between two circular variables.

Usage

circ.cor1(theta, phi, rads = FALSE)

circ.cor2(theta, phi, rads = FALSE)

Arguments

theta The first cirular variable.

phi The other cirular variable.

rads If the data are expressed in rads, then this should be TRUE. If the data are in
degrees, then this is FALSE.
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Details

circ.cor1: Correlation for circular variables using the cosinus and sinus formula of Jammaladaka
and SenGupta (1988).

circ.cor2: Correlation for circular variables using the cosinus and sinus formula of Mardia and Jupp
(2000).

Value

A vector including:

rho The value of the correlation coefficient.

p-value The p-value of the zero correlation hypothesis testing.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>

References

Jammalamadaka, R. S. and Sengupta, A. (2001). Topics in circular statistics. World Scientific.

Jammalamadaka, S. R. and Sarma, Y. R. (1988) . A correlation coefficient for angular variables.
Statistical Theory and Data Analysis, 2:349–364.

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

See Also

circlin.cor,circ.cor2,spml.reg

Examples

y <- runif(50, 0, 2 * pi)
x <- runif(50, 0, 2 * pi)
circ.cor1(x, y, rads = TRUE)
circ.cor2(x, y, rads = TRUE)

Circular or angular regression

Circular or angular regression

Description

Regression with circular dependent variable and Euclidean or categorical independent variables.
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Usage

spml.reg(y, x, rads = TRUE, xnew = NULL, seb = FALSE, tol = 1e-07)

Arguments

y The dependent variable, a numerical vector, it can be in radians or degrees.

x The independent variable(s). Can be Euclidean or categorical (factor variables).

rads If the dependent variable is expressed in rads, this should be TRUE and FALSE
otherwise.

xnew The new values of some independent variable(s) whose circular values you want
to predict. Can be Euclidean or categorical. If they are categorical, the user must
provide them as dummy variables. It does not accept factor variables. If you
have no new x values, leave it NULL (default).

seb a boolean variable. If TRUE, the standard error of the coefficients will be be
returned. Set to FALSE in case of simulation studies or in other cases such as
a forward regression setting for example. In these cases, it can save some time.
Leave this FALSE as we currently have a problem with this, but will fixt it in
our next update.

tol The tolerance value to terminate the Newton-Raphson algorithm.

Details

The Newton-Raphson algorithm is fitted in this regression as described in Presnell et al. (1998).

Value

A list including:

runtime The runtime of the procedure.

iters The number of iterations required until convergence of the EM algorithm.

beta The regression coefficients.

seb The standard errors of the coefficients.

loglik The value of the maximised log-likelihood.

est The fitted values expressed in radians if the obsereved data are in radians and in
degrees otherwise. If xnew is not NULL, i.e. if you have new x values, then the
predicted values of y will be returned.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>

References

Presnell Brett, Morrison Scott P. and Littell Ramon C. (1998). Projected multivariate linear models
for directional data. Journal of the American Statistical Association, 93(443): 1068-1077.
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See Also

circlin.cor,circ.cor1,circ.cor2,spher.cor,spher.reg

Examples

x <- rnorm(100)
z <- cbind(3 + 2 * x, 1 -3 * x)
y <- cbind( rnorm(100,z[ ,1], 1), rnorm(100, z[ ,2], 1) )
y <- y / sqrt( rowSums(y^2) )
y <- ( atan( y[, 2] / y[, 1] ) + pi * I(y[, 1] < 0) ) %% (2 * pi)
spml.reg(y, x, rads = TRUE)

Circular-linear correlation

Circular-linear correlation

Description

It calculates the squared correlation between a circular and one or more linear variables.

Usage

circlin.cor(theta, x, rads = FALSE)

Arguments

theta The circular variable.

x The linear variable or a matrix containing many linear variables.

rads If the circualr variable is in rads, this should be TRUE and FALSE otherwise.

Details

The squared correlation between a circular and one or more linear variables is calculated.

Value

A matrix with as many rows as linear variables including:

R-squared The value of the squared correlation.

p-value The p-value of the zero correlation hypothesis testing.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>
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References

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

See Also

circ.cor1,circ.cor2,spml.reg

Examples

phi <- rvonmises(50, 2, 20, rads = TRUE)
x <- 2 * phi + rnorm(50)
y <- matrix(rnorm(50 * 5), ncol = 5)
circlin.cor(phi, x, rads = TRUE)
circlin.cor(phi, y, rads = TRUE)

Column-wise MLE of the angular Gaussian and the von Mises Fisher distributions

Column-wise MLE of the angular Gaussian and the von Mises Fisher
distributions

Description

Column-wise MLE of the angular Gaussian and the von Mises Fisher distributions.

Usage

colspml.mle(x ,tol = 1e-07, maxiters = 100, parallel = FALSE)
colvm.mle(x, tol = 1e-07)

Arguments

x A numerical matrix with data. Each column refers to a different vector of
observations of the same distribution. The values of for Lognormal must be
greater than zero, for the logitnormal they must by percentages, exluding 0 and
1, whereas for the Borel distribution the x must contain integer values greater
than 1.

tol The tolerance value to terminate the Newton-Raphson algorithm.

maxiters The maximum number of iterations that can take place in each regression.

parallel Do you want this to be executed in parallel or not. The parallel takes place in
C++, and the number of threads is defined by each system’s availiable cores.

Details

For each column, spml.mle function is applied that fits the angular Gaussian distribution estimates
its parameters and computes the maximum log-likelihood.
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Value

A matrix with four columns. The first two are the mean vector, then the γ parameter, and the fourth
column contains maximum log-likelihood.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@yahoo.gr>

References

Presnell Brett, Morrison Scott P. and Littell Ramon C. (1998). Projected multivariate linear models
for directional data. Journal of the American Statistical Association, 93(443): 1068-1077.

See Also

spml.mle,spml.reg,vm.mle,vmf.mle

Examples

x <- matrix( runif(100 * 10), ncol = 10)
a <- colspml.mle(x)
b <- colvm.mle(x)
x <- NULL

Contour plot of a mixture of von Mises-Fisher distributions model

Contour plot of a mixture of von Mises-Fisher distributions model for
spherical data only.

Description

Contour lines are produced of mixture model for spherical data only.

Usage

mixvmf.contour(u, mod)

Arguments

u A two column matrix. The first column is the longitude and the second is the
latitude.

mod This is mix.vmf object, actually it is a list. Run a mixture model and save it as
mod for example, mod = mix.vmf(x, 3).



20 Contour plot of spherical data using a von Mises-Fisher kernel density estimate

Details

The contour plot is displayed with latitude and longitude in the axes. No Lambert projection is used
here. This works for spherical data only which are given as longitude and latitude.

Value

A plot including: The points and the contour lines.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>

References

Kurt Hornik and Bettina Grun (2014). movMF: An R Package for Fitting Mixtures of von Mises-
Fisher Distributions http://cran.r-project.org/web/packages/movMF/vignettes/movMF.pdf

See Also

vmf.kerncontour,vmf.contour,mix.vmf

Examples

k <- runif(2, 4, 20)
prob <- c(0.4, 0.6)
mu <- matrix( rnorm(6), ncol = 3 )
mu <- mu / sqrt( rowSums(mu^2) )
x <- rmixvmf(200, prob, mu, k)$x
mod <- mix.vmf(x, 2)
y <- euclid.inv(x)
mixvmf.contour(y, mod)

Contour plot of spherical data using a von Mises-Fisher kernel density estimate

Contour plot of spherical data using a von Mises-Fisher kernel density
estimate

Description

Contour plot of spherical data using a von Mises-Fisher kernel density estimate.

Usage

vmf.kerncontour(u, thumb = "none", den.ret = FALSE, full = FALSE, ngrid = 100)
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Arguments

u A two column matrix. The first coolumn is the latitude and the second is the
longitude.

thumb This is either ’none’ (defualt), or ’rot’ for the rule of thumb suggested by Garcia-
Portugues (2013). If it is "none" it is estimated via cross validation, with the fast
function "vmfkde.tune_2".

den.ret If FALSE (default), plots the contours of the density along with the individual
points. If TRUE, will instead return a list with the Longitudes, Latitudes and
Densities. Look at the ’value’ section for details.

full If FALSE (default), uses the range of positions from ’u’ to calculate and option-
ally plot densities. If TRUE, calculates densities covering the entire sphere.

ngrid Sets the resolution of the density calculation.

Details

It calcculates the contour plot using a von Mises-Fisher kernel for spherical data only.

Value

The contour lines of the data. If "den.ret" was set to TRUE a list including:

lat The latitude values.
long The longitude values.
h The optimal bandwidth.
den The kernel density estimate contour points.

Author(s)

Michail Tsagris and Micah J. Waldstein.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>, Giorgos Athineou
<gioathineou@gmail.com> and Micah J. Waldstein <micah@waldste.in>.

References

Garcia Portugues, E. (2013). Exact risk improvement of bandwidth selectors for kernel density
estimation with directional data. Electronic Journal of Statistics, 7, 1655–1685.

See Also

vmf.kde,vmfkde.tune,vmf.contour,kent.datacontour

Examples

x <- rvmf(100, rnorm(3), 15)
x <- euclid.inv(x)
par( mfrow = c(1, 2) )
vmf.kerncontour(x, "rot")
vmf.kerncontour(x, "none")
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Contour plot of the Kent distribution for some data

Contour plot of the Kent distribution for some data

Description

The contour plot of the Kent distribution on the sphere for some data is produced.

Usage

kent.datacontour(x)

Arguments

x A two column matrix, where the first column is the latitude and the second
comlumn is the longitude. If the matrix has two columns, it is assumed to have
unit vectors and in this case it is turned into latitude and longitude.

Details

MLE of the parameters of the Kent distribution are calculated, then the contour plot is plotted using
these estimates and finally the data are also plotted.

Value

A plot containing the contours of the distribution along with the data.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>

References

Kent John (1982). The Fisher-Bingham distribution on the sphere. Journal of the Royal Statistical
Society, Series B, 44(1): 71-80.

See Also

kent.contour,kent.mle,vmf.kerncontour

Examples

x <- rvmf(100, rnorm(3), 10)
kent.mle(x)
y <- euclid.inv(x)
kent.datacontour(y)
vmf.kerncontour(y, thumb = "none")
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Contour plot of the Kent distribution without any data

Contour plot of the Kent distribution without any data

Description

The contour plot of the Kent distribution on the sphere is produced. The user can see how the shape
and ovalness change as he/she changes the ovlaness parameter.

Usage

kent.contour(k, b)

Arguments

k The concentration parameter.

b The ovalness parameter. It has to be less than k/2 in order for the distribution to
be unimodal. Otherwise it is bimodal.

Details

The goal of this function is for the user to see hwo the Kent distribution looks like.

Value

A plot containing the contours of the distribution.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>

References

Kent John (1982). The Fisher-Bingham distribution on the sphere. Journal of the Royal Statistical
Society, Series B, 44(1): 71-80.

See Also

kent.datacontour,kent.mle,vmf.contour,vmf.kerncontour

Examples

par( mfrow = c(1, 2) )
kent.contour(10, 2)
kent.contour(10, 4)
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Contour plots of the von Mises-Fisher distribution

Contour plots of the von Mises-Fisher distribution on the sphere

Description

Contour plots of the von Mises-Fisher distribution on the sphere.

Usage

vmf.contour(k)

Arguments

k The concentration parameter.

Details

The user specifies the concentration parameter only and not the mean direction or data. This is for il-
lustration purposes only. The graph will always contain circles, as the von Mises-Fisher distribution
is the analogue of a bivariate normal in two dimensions with a zero covariance.

Value

A contour plot of the von Mises-Fisher distribution.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>

See Also

rvmf,vmf,vmf.kerncontour,kent.contour,sphereplot

Examples

par(mfrow = c(1,3) )
vmf.contour(1)
vmf.contour(5)
vmf.contour(10)
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Conversion of cosines to azimuth and plunge

Conversion of cosines to azimuth and plunge

Description

Conversion of cosines to azimuth and plunge.

Usage

cosap(x,y,z)

Arguments

x x component of cosine.

y y component of cosine.

z z component of cosine.

Details

Orientation: x>0 is ’eastward’, y>0 is ’southward’, and z>0 is ’downward’.

Value

A list including:

A The azimuth

P The plunge

Author(s)

Eli Amson

R implementation and documentation: Eli Amson <eli.amson1988@gmail.com>

References

Amson E, Arnold P, Van Heteren AH, Cannoville A, Nyakatura JA. Trabecular architecture in the
forelimb epiphyses of extant xenarthrans (Mammalia). Frontiers in Zoology.

See Also

euclid,euclid.inv,eul2rot

Examples

cosap(-0.505, 0.510, -0.696)
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Converting a rotation matrix on SO(3) to an unsigned unit quaternion

Converting a rotation matrix on SO(3) to an unsigned unit quaternion

Description

It returns an unsigned unite quaternion in S3 (the four-dimensional sphere) from a 3 × 3 rotation
matrix on SO(3).

Usage

rot2quat(X)

Arguments

X A rotation matrix in SO(3).

Details

Firstly construct a system of linear equations by equating the corresponding components of the
theoretical rotation matrix proposed by Prentice (1986), and given a rotation matrix. Finally, the
system of linear equations are solved by following the tricks mentioned in second reference here in
order to achieve numerical accuracy to get quaternion values.

Value

A unsigned unite quaternion.

Author(s)

Anamul Sajib

R implementation and documentation: Anamul Sajib <sajibstat@du.ac.bd>

References

Prentice,M. J. (1986). Orientation statistics without parametric assumptions.Journal of the Royal
Statistical Society. Series B: Methodological 48(2). //http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm

See Also

quat2rot,rotation,Arotation \ link{rot.matrix}
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Examples

x <- rnorm(4)
x <- x/sqrt( sum(x^2) ) ## an unit quaternion in R4 ##
R <- quat2rot(x)
R
x
rot2quat(R) ## sign is not exact as you can see

Converting an unsigned unit quaternion to rotation matrix on SO(3)

Converting an unsigned unit quaternion to rotation matrix on SO(3)

Description

It forms a (3 x 3) rotation matrix on SO(3) from an unsigned unite quaternion in S3 (the four-
dimensional sphere).

Usage

quat2rot(x)

Arguments

x An unsigned unit quaternion in S3.

Details

Given an unsigned unit quaternion in S3 it forms a rotation matrix on SO(3), according to the
transformation proposed by Prentice (1986).

Value

A rotation matrix.

Author(s)

Anamul Sajib

R implementation and documentation: Anamul Sajib <sajibstat@du.ac.bd>

References

Prentice,M. J. (1986). Orientation statistics without parametric assumptions.Journal of the Royal
Statistical Society. Series B: Methodological 48(2).

See Also

rot2quat,rotation,Arotation rot.matrix
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Examples

x <- rnorm(4)
x <- x/sqrt( sum(x^2) )
x ## an unit quaternion in R4 ##
quat2rot(x)

Cross validation for estimating the classification rate

Cross validation for estimating the classification rate

Description

Cross validation for estimating the classification rate.

Usage

dirda.cv(x, ina, folds = NULL, nfolds = 10, k = 2:10, stratified = FALSE,
type = c("vmf", "iag", "esag", "kent", "sknn", "nsknn"),
seed = FALSE, B = 1000, parallel = FALSE)

Arguments

x A matrix with the data in Eulcidean coordinates, i.e. unit vectors. The matrix
must have three columns, only spherical data are currently supported.

ina A variable indicating the groupings.

folds Do you already have a list with the folds? If not, leave this NULL.

nfolds How many folds to create?

k If you choose to use k-NN, what will be the k values?

stratified Should the folds be created in a stratified way? i.e. keeping the distribution of
the groups similar through all folds?

seed If seed is TRUE, the results will always be the same.

type The type of classifier to use. The avaliable options are "vmf" (von Mises-Fisher
distribution), "esag" (ESAG distribution), "kent" (Kent distribution), "sknn" (stan-
dard k-NN) and "nsknn" (non standard k-NN). You can chose any of them or all
of them. Note that "esag" and "kent" work only with spherical data.

B If you used k-NN, should a bootstrap correction of the bias be applied? If yes,
1000 is a good value.

parallel If you want the standard -NN algorithm to take place in parallel set this equal to
TRUE.
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Details

Cross-validation for the estimation of the performance of a classifier.

The estimated performance of the best classifier is overestimated. After the cross-valdiation pro-
cedure, the predicted values produced by all classifiers are colelcted, from all folds, in an n ×M
matrix, where n is the number of samples and M the number of all classifiers used. We sample
rows (predictions) with replacement from P and denote them as the in-sample values. The non
re-sampled rows are denoted as out-of-sample values. The performance of each classifier in the
insample rows is calculated and the classifier with the optimal performance is selected, followed
by the calculation of performance in the out-of-sample values. This process is repeated B times
and the average performance is returned. The only computational overhead is with the repetitive
resampling and calculation of the performance, i.e. no model or classifier is fitted nor trained. For
more information see Tsamardinos et al. (2018). This procedure though takes place only for the
k-NN algorithm and is applied to each version standard ("sknn") or non-standard ("nsknn").

The good thing with the function is that you can run any method you want by supplying the folds
yourselves using the command makefolds. Then suppose you want to run another method. By
suppying the same folds you will be able to have comparative results for all methods.

Value

A list including:

perf A vector with the estimated performance of each classifier.

best The classifier with the optimal performance.

boot.perf The bootstrap bias corrected performance.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Tsagris M. and Alenazi A. (2019). Comparison of discriminant analysis methods on the sphere.
Communications in Statistics: Case Studies, Data Analysis and Applications, 5(4), 467–491.

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

Paine P.J. Preston S.P. & Tsagris M. and Wood A.T.A. (2018). An Elliptically Symmetric Angular
Gaussian Distribution. Statistics and Computing, 28(3):689–697.

Morris J. E. & Laycock P. J. (1974). Discriminant analysis of directional data. Biometrika, 61(2):
335-341.

Tsamardinos I., Greasidou E. & Borboudakis G. (2018). Machince Learning, 107(12): 1895-1922.
https://doi.org/10.1007/s10994-018-5714-4

See Also

ESAG.da,vmfda.pred,dirknn,knn.reg
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Examples

x <- rvmf(300, rnorm(3), 10)
ina <- sample.int(4, 300, replace = TRUE)
dirda.cv(x, ina, B = 1000)

Cross validation in von Mises-Fisher discrminant analysis

Cross validation for estimating the classification rate of a discrminant
analysis for directional data assuming a von Mises-Fisher distribution

Description

Cross validation for estimating the classification rate of a discrminant analysis for directional data
assuming a von Mises-Fisher distribution.

Usage

vmf.da(x, ina, fraction = 0.2, R = 200, seed = FALSE)

Arguments

x A matrix with the data in Eulcidean coordinates, i.e. unit vectors.

ina A variable indicating the groupings.

fraction The fraction of data to be used as test set.

R The number of repetitions.

seed If seed is TRUE, the results will always be the same.

Details

A repeated cross validation procedure is performed to estimate the rate of correct classification.

Value

A list including:

percent The estimated percent of correct classification and two estimated standard devi-
ations. The one is the standard devation of the rates and the other is assuming a
binomial distribution.

ci Three types of confidence intervals, the standard one, another one based on the
binomial distribution and the third one is the empirical one, which calcualtes the
upper and lower 2.5% of the rates.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.
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References

Tsagris M. and Alenazi A. (2019). Comparison of discriminant analysis methods on the sphere.
Communications in Statistics: Case Studies, Data Analysis and Applications, 5(4), 467–491.

Morris J. E. and Laycock P. J. (1974). Discriminant analysis of directional data. Biometrika, 61(2):
335-341.

See Also

vmfda.pred,mix.vmf,vmf,dirknn

Examples

x <- rvmf(100, rnorm(4), 15)
ina <- rep(1:2, each = 50)
vmf.da(x, ina, fraction = 0.2, R = 200, seed = FALSE)

Cross validation with ESAG discrminant analysis

Cross validation for estimating the classification rate of a discrminant
analysis for directional data assuming an ESAG distribution

Description

Cross validation for estimating the classification rate of a discrminant analysis for directional data
assuming an ESAG distribution.

Usage

ESAG.da(y, ina, fraction = 0.2, R = 100, seed = FALSE)

Arguments

y A matrix with the data in Eulcidean coordinates, i.e. unit vectors. The matrix
must have three columns, only spherical data are currently supported.

ina A variable indicating the groupings.

fraction The fraction of data to be used as test set.

R The number of repetitions.

seed If seed is TRUE, the results will always be the same.

Details

A repeated cross validation procedure is performed to estimate the rate of correct classification.
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Value

A list including:

percent The estimated percent of correct classification and two estimated standard devi-
ations. The one is the standard devation of the rates and the other is assuming a
binomial distribution.

ci Three types of confidence intervals, the standard one, another one based on the
binomial distribution and the third one is the empirical one, which calcualtes the
upper and lower 2.5% of the rates.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

References

Tsagris M. and Alenazi A. (2019). Comparison of discriminant analysis methods on the sphere.
Communications in Statistics: Case Studies, Data Analysis and Applications, 5(4), 467–491.

Paine P.J., Preston S.P., Tsagris M. and Wood A.T.A. (2018). An Elliptically Symmetric Angular
Gaussian Distribution. Statistics and Computing, 28(3):689–697.

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

See Also

vmf.da,vmfda.pred,dirknn

Examples

x <- rvmf(100, rnorm(3), 15)
ina <- rep(1:2, each = 50)
ESAG.da(x, ina, fraction = 0.2, R = 50, seed = FALSE)

Density of some (hyper-)spherical distributions

Density of some (hyper-)spherical distributions

Description

Density of some (hyper-)spherical distributions.

Usage

vmf.density(y, k, mu, logden = FALSE )
iag.density(y, mu, logden = FALSE)
purka.density(y, a, theta, logden = FALSE)
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Arguments

y A matrix or a vector with the data expressed in Euclidean coordinates, i.e. unit
vectors.

k The concentration parameter of the von Mises-Fisher distribution.

a The concentration parameter of the Purkayastha distribution.

mu The mean direction (unit vector) of the von Mises-Fisher distribution or the
mean direction of the IAG distribution.

theta The median direction for the Purkayastha distribution.

logden If you the logarithm of the density values set this to TRUE.

Details

The density of the von Mises-Fisher, of the IAG or of the Purkayastha distribution is computed.

Value

A vector with the (log) density values of y.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

References

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

Kent John (1982). The Fisher-Bingham distribution on the sphere. Journal of the Royal Statistical
Society, Series B, 44(1): 71-80.

Purkayastha S. (1991). A Rotationally Symmetric Directional Distribution: Obtained through Max-
imum Likelihood Characterization. The Indian Journal of Statistics, Series A, 53(1): 70-83

Cabrera J. and Watson G. S. (1990). On a spherical median related distribution. Communications
in Statistics-Theory and Methods, 19(6): 1973-1986.

See Also

kent.mle,rkent,ESAGmle

Examples

m <- colMeans( as.matrix( iris[,1:3] ) )
y <- rvmf(1000, m = m, k = 10)
vmf.density(y, k=10, m )
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Density of some circular distributions

Density of some circular distributions

Description

Density of some circular distributions.

Usage

vm.density(x, m, k, rads = FALSE, logden = FALSE)
spml.density(x, mu, rads = FALSE, logden = FALSE)
wrapcauchy.density(x, m, rho, rads = FALSE, logden = FALSE)
circpurka.density(x, m, a, rads = FALSE, logden = FALSE)

Arguments

x A vector with circular data.

m The mean value, a scalar. This is the median for the circular Purkayastha distri-
bution.

mu The mean vector, a vector with two values.

k The concentration parameter.

rho The rho parameter of the wrapped Cauchy distribution.

a The alpha parameter of the circular Purkayastha distribution.

rads If the data are in rads, then this should be TRUE, otherwise FALSE.

logden If you the logarithm of the density values set this to TRUE.

Details

The density of the von Mises, bivariate projected normal, wrapped Cauchy or the circular Purkayastha
distributions is computed.

Value

A vector with the (log) density values of x.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

References

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.
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See Also

kent.density,rvonmises,ESAGdensity

Examples

x <- rvonmises(500, m = 2.5, k = 10, rads = TRUE)
mod <- circ.summary(x, rads = TRUE, plot = FALSE)
den <- vm.density(x, mod$mesos, mod$kappa, rads = TRUE, logden = TRUE )
mod$loglik
sum(den)

Density of the spherical Kent and ESAG distributions

Density of the spherical Kent and ESAG distributions

Description

Density of the spherical Kent and ESAG distributions.

Usage

kent.density(y, G, param, logden = FALSE )
ESAGdensity(y, param, logden = FALSE)

Arguments

y A matrix or a vector with the data expressed in Euclidean coordinates, i.e. unit
vectors.

G For the Kent distribution only, a 3 x 3 matrix whose first column is the mean
direction. The second and third columns are the major and minor axes respec-
tively.

param For the Kent distribution a vector with the concentration κ and ovalness β pa-
rameters. The ψ has been absorbed inside the matrix G.
For the ESAG distribution, its parameters, the first three are the mean vector in
R3 and the next two are the two gammas.

logden If you the logarithm of the density values set this to TRUE.

Details

The density of the spherical Kent or spherical ESAG distribution is computed.

Value

A vector with the (log) density values of y.
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Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

References

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

Kent John (1982). The Fisher-Bingham distribution on the sphere. Journal of the Royal Statistical
Society, Series B, 44(1): 71-80.

Paine P.J., Preston S.P., Tsagris M. and Wood A.T.A. (2018). An Elliptically Symmetric Angular
Gaussian Distribution. Statistics and Computing, 28((3):689–697.

See Also

kent.mle,rkent,ESAGmle

Examples

m <- colMeans( as.matrix( iris[,1:3] ) )
y <- rkent(1000, k = 10, m = m, b = 4)
mod <- kent.mle(y)
kent.density( y, G = mod$G, param = mod$param )

Euclidean transformation

Euclidean transformation

Description

It transforms the data from the spherical coordinates to Euclidean coordinates.

Usage

euclid(u)

Arguments

u A two column matrix or even one single vector, where the first column (or ele-
ment) is the latitude and the second is the longitude. The order is important.

Details

It takes the matrix of unit vectors of latitude and longitude and transforms it to unit vectors.
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Value

A three column matrix:

U The Euclidean coordinates of the latitude and longitude.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>

See Also

euclid.inv,Arotation,lambert

Examples

x <- rvmf(10, rnorm(3), 10)
u <- euclid.inv(x)
euclid(u)
x

Euler angles from a rotation matrix on SO(3)

Compute the Euler angles from a rotation matrix on SO(3).

Description

It calculates three euler angles (θ12, θ13, θ23) from a (3× 3) rotation matrix X, where X is defined
as X = Rz(θ12)× Ry(θ13)× Rx(θ23). Here Rx(θ23) means a rotation of θ23 radians about the x
axis.

Usage

rot2eul(X)

Arguments

X A rotation matrix which is defined as a product of three elementary rotations
mentioned above. Here θ12, θ23 ∈ (−π, π) and and θ13 ∈ (−π/2, π/2).

Details

Given a rotation matrix X, euler angles are computed by equating each element in X with the
corresponding element in the matrix product defined above. This results in nine equations that can
be used to find the euler angles.
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Value

For a given rotation matrix, there are two eqivalent sets of euler angles.

Author(s)

Anamul Sajib<sajibstat@du.ac.bd>

R implementation and documentation: Anamul Sajib<sajibstat@du.ac.bd>

References

Green, P. J. \& Mardia, K. V. (2006). Bayesian alignment using hierarchical models, with applica-
tions in proteins bioinformatics. Biometrika, 93(2):235–254.

http://www.staff.city.ac.uk/~sbbh653/publications/euler.pdf

See Also

eul2rot

Examples

# three euler angles

theta.12 <- sample( seq(-3, 3, 0.3), 1 )
theta.23 <- sample( seq(-3, 3, 0.3), 1 )
theta.13 <- sample( seq(-1.4, 1.4, 0.3), 1 )

theta.12 ; theta.23 ; theta.13

X <- eul2rot(theta.12, theta.23, theta.13)
X ## A rotation matrix

e <- rot2eul(X)$v1

theta.12 <- e[3]
theta.23 <- e[2]
theta.13 <- e[1]

theta.12 ; theta.23 ; theta.13

Forward Backward Early Dropping selection for circular data using the SPML regression

Forward Backward Early Dropping selection for circular data using
the SPML regression

Description

Forward Backward Early Dropping selection for circular data using the SPML regression.
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Usage

spml.fbed(y, x, alpha = 0.05, K = 0, backward = FALSE,
parallel = FALSE, tol = 1e-07, maxiters = 100)

Arguments

y The response variable, a numeric vector expressed in rads.

x A matrix with continuous independent variables.

alpha The significance threshold value for assessing p-values. Default value is 0.05.

K How many times should the process be repeated? The default value is 0.

backward After the Forward Early Dropping phase, the algorithm proceeds witha the usual
Backward Selection phase. The default value is set to TRUE. It is advised to
perform this step as maybe some variables are false positives, they were wrongly
selected. This is rather experimental now and there could be some mistakes in
the indices of the selected variables. Do not use it for now.

parallel If you want the algorithm to run in parallel set this TRUE.

tol The tolerance value to terminate the Newton-Raphson algorithm.

maxiters The maximum number of iterations Newton-Raphson will perform.

Details

The algorithm is a variation of the usual forward selection. At every step, the most significant
variable enters the selected variables set. In addition, only the significant variables stay and are
further examined. The non signifcant ones are dropped. This goes until no variable can enter
the set. The user has the option to re-do this step 1 or more times (the argument K). In the end,
a backward selection is performed to remove falsely selected variables. Note that you may have
specified, for example, K=10, but the maximum value FBED used can be 4 for example.

Value

If K is a single number a list including:

Note, that the "gam" argument must be the same though.

res A matrix with the selected variables and their test statistic.

info A matrix with the number of variables and the number of tests performed (or
models fitted) at each round (value of K). This refers to the forward phase only.

runtime The runtime required.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>
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References

Borboudakis G. and Tsamardinos I. (2019). Forward-backward selection with early dropping. Jour-
nal of Machine Learning Research, 20(8): 1-39.

Tsagis M. (2018). Guide on performing feature selection with the R package MXM. https://
f1000researchdata.s3.amazonaws.com/manuscripts/22822/f8d7dae0-c9d3-4ce8-afa1-e552c8cf3347_
16216_-_michail_tsagris_v2.pdf?doi=10.12688/f1000research.16216.2&numberOfBrowsableCollections=
20&numberOfBrowsableInstitutionalCollections=5&numberOfBrowsableGateways=22

Presnell Brett, Morrison Scott P. and Littell Ramon C. (1998). Projected multivariate linear models
for directional data. Journal of the American Statistical Association, 93(443): 1068-1077.

See Also

spml.reg,spml.regs,spml.mle

Examples

x <- matrix( runif(100 * 50, 1, 100), ncol = 50 )
y <- runif(100)
a <- spml.fbed(y, x)

Generate random folds for cross-validation

Generate random folds for cross-validation

Description

Random folds for use in a cross validation are generated. There is the option for stratified splitting
as well.

Usage

makefolds(ina, nfolds = 10, stratified = TRUE, seed = FALSE)

Arguments

ina A variable indicating the groupings.

nfolds The number of folds to produce.

stratified A boolean variable specifying whether stratified random (TRUE) or simple ran-
dom (FALSE) sampling is to be used when producing the folds.

seed A boolean variable. If set to TRUE, the folds will always be the same.

Details

I was inspired by the command in the package TunePareto in order to do the stratified version.

https://f1000researchdata.s3.amazonaws.com/manuscripts/22822/f8d7dae0-c9d3-4ce8-afa1-e552c8cf3347_16216_-_michail_tsagris_v2.pdf?doi=10.12688/f1000research.16216.2&numberOfBrowsableCollections=20&numberOfBrowsableInstitutionalCollections=5&numberOfBrowsableGateways=22
https://f1000researchdata.s3.amazonaws.com/manuscripts/22822/f8d7dae0-c9d3-4ce8-afa1-e552c8cf3347_16216_-_michail_tsagris_v2.pdf?doi=10.12688/f1000research.16216.2&numberOfBrowsableCollections=20&numberOfBrowsableInstitutionalCollections=5&numberOfBrowsableGateways=22
https://f1000researchdata.s3.amazonaws.com/manuscripts/22822/f8d7dae0-c9d3-4ce8-afa1-e552c8cf3347_16216_-_michail_tsagris_v2.pdf?doi=10.12688/f1000research.16216.2&numberOfBrowsableCollections=20&numberOfBrowsableInstitutionalCollections=5&numberOfBrowsableGateways=22
https://f1000researchdata.s3.amazonaws.com/manuscripts/22822/f8d7dae0-c9d3-4ce8-afa1-e552c8cf3347_16216_-_michail_tsagris_v2.pdf?doi=10.12688/f1000research.16216.2&numberOfBrowsableCollections=20&numberOfBrowsableInstitutionalCollections=5&numberOfBrowsableGateways=22
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Value

A list with nfolds elements where each elements is a fold containing the indices of the data.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

See Also

dirda.cv

Examples

a <- makefolds(iris[, 5], nfolds = 5, stratified = TRUE)
table(iris[a[[1]], 5]) ## 10 values from each group

Goodness of fit test for grouped data

Goodness of fit test for grouped data

Description

Goodness of fit test for grouped data.

Usage

group.gof(g, ni, m, k, dist = "vm", rads = FALSE, R = 999, ncores = 1)

Arguments

g A vector with the group points, either in radians or in degrees.

ni The frequency of each or group class.

m The mean direction in radians or in degrees.

k The concentration parameter, κ.

dist The distribution to be tested, it can be either "vm" or "uniform".

rads If the data are in radians, this should be TRUE and FALSE otherwise.

R The number of bootstrap simulations to perform, set to 999 by default.

ncores The number of cores to use.

Details

When you have grouped data, you can test whether the data come from the von Mises-Fisher distri-
bution or from a uniform distribution.
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Value

A list including:

info A vector with two elements, the test statistic value and the bootstrap p-value.

runtime The runtime of the procedure.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>

References

Arthur Pewsey, Markus Neuhauser, and Graeme D. Ruxton (2013). Circular Statistics in R.

See Also

pvm,circ.summary,rvonmises

Examples

x <- rvonmises(100, 2, 10)
g <- seq(min(x) - 0.1, max(x) + 0.1, length = 6)
ni <- as.vector( table( cut(x, g) ) )
group.gof(g, ni, 2, 10, dist = "vm", rads = TRUE, R = 299, ncores = 1)
group.gof(g, ni, 2, 5, dist = "vm", rads = TRUE, R = 299, ncores = 1)

Habeck’s rotation matrix generation

Generation of three-dimensional random rotations using Habeck’s al-
gorithm.

Description

It generates random rotations in three-dimensional space that follow a probability distribution, ma-
trix Fisher distribution, arising in fitting and matching problem.

Usage

habeck.rot(F)

Arguments

F An arbitrary 3 x 3 matrix represents the parameter matrix of this distribution.
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Details

Firstly rotation matrices X are chosen which are the closest to F, and then parameterized using euler
angles. Then a Gibbs sampling algorithm is implemented to generate rotation matrices from the
resulting disribution of the euler angles.

Value

A simulated rotation matrix.

Author(s)

Anamul Sajib<sajibstat@du.ac.bd>

R implementation and documentation: Anamul Sajib<sajibstat@du.ac.bd>

References

Habeck M (2009). Generation of three-dimensional random rotations in fitting and matching prob-
lems. Computational Statistics, 24, 719–731.

Examples

F <- 10^(-1) * matrix( c(85, 11, 41, 78, 39, 60, 43, 64, 48), ncol = 3 ) ## Arbitrary F matrix
X <- habeck.rot(F)
det(X)

Hypothesis test for IAG distribution over the ESAG distribution

Hypothesis test for IAG distribution over the ESAG distribution

Description

The null hypothesis is whether an IAG distribution fits the data well, where the altenrative is that
ESAG distribution is more suitable.

Usage

iagesag(x, B = 1, tol = 1e-07)

Arguments

x A numeric matrix with three columns containing the data as unit vectors in Eu-
clidean coordinates.

B The number of bootstrap re-samples. By default is set to 999. If it is equal to 1,
no bootstrap is performed and the p-value is obtained throught the asymptotic
distribution.

tol The tolerance to accept that the Newton-Raphson algorithm used in the IAG
distribution has converged.
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Details

Essentially it is a test of rotational symmetry, whether the two γ parameters are equal to zero. This
works for spherical data only.

Value

A vector including:

test The value of the test statistic.
p-value or Bootstrap p-value

The p-value of the test.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

References

Paine P.J., Preston S.P., Tsagris M. and Wood A.T.A. (2018). An Elliptically Symmetric Angular
Gaussian Distribution. Statistics and Computing, 28(3):689–697.

See Also

fishkent,ESAGmle,kent.mle,iag.mle

Examples

x <- rvmf(100, rnorm(3), 15)
iagesag(x)
fishkent(x, B = 1)

Hypothesis test for von Mises-Fisher distribution over Kent distribution

Hypothesis test for von Mises-Fisher distribution over Kent distribu-
tion

Description

The null hypothesis is whether a von Mises-Fisher distribution fits the data well, where the altenra-
tive is that Kent distribution is more suitable.

Usage

fishkent(x, B = 999)
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Arguments

x A numeric matrix containing the data as unit vectors in Euclidean coordinates.

B The number of bootstrap re-samples. By default is set to 999. If it is equal to 1,
no bootstrap is performed and the p-value is obtained throught the asymptotic
distribution.

Details

Essentially it is a test of rotational symmetry, whether Kent’s ovalness parameter (beta) is equal to
zero. This works for spherical data only.

Value

A vector including:

test The value of the test statistic
p-value or Bootstrap p-value

The p-value of the test.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>

References

Rivest, L. P. (1986). Modified Kent’s statistics for testing goodness of fit for the Fisher distribution
in small concentrated samples. Statistics & probability letters, 4(1): 1-4.

See Also

iagesag,vmf,kent.mle,rkent

Examples

x <- rvmf(100, rnorm(3), 15)
fishkent(x)
fishkent(x, B = 1)
iagesag(x)



46 Interactive 3D plot of spherical data

Interactive 3D plot of spherical data

Interactive 3D plot of spherical data

Description

Interactive 3D plot of spherical data.

Usage

sphereplot(x, col = NULL)

Arguments

x A matrix with three columns, unit-vectors, spherical data.

col If you want the points to appear with different colours put numbers here, other-
wise leave it NULL.

Value

An interactive 3D plot of the spherical data will appear.

Author(s)

Michail Tsagris R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

See Also

lambert,vmf.contour,euclid

Examples

## Not run:
x <- rvmf(100, rnorm(3), 5)
sphereplot(x)
ina <- rbinom(100, 1, 0.5) + 1
sphereplot(x, col = ina)

## End(Not run)
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Inverse of Lambert’s equal area projection

Inverse of Lambert’s equal area projection

Description

It takes some points from the cartesian coordinates and maps them onto the sphere. The inverse os
the Lambert’s equal area projection.

Usage

lambert.inv(z, mu)

Arguments

z A two- column matrix containing the Lambert’s equal rea projected data.

mu The mean direction of the data on the sphere.

Details

The data are first mapped on the sphere with mean direction equal to the north pole. Then, they are
rotated to have the given mean direction. It is the inverse of the Lambert’s equal are projection.

Value

A matrix containing spherical data (unit vectors).

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>

References

Kent, John T. (1982). The Fisher-Bingham distribution on the sphere. Journal of the Royal Statisti-
cal Society. Series B (Methodological) 44(1):71-80.

See Also

lambert



48 Inverse of the Euclidean transformation

Examples

m <- rnorm(3)
m <- m / sqrt( sum(m^2) )
x <- rvmf(20, m, 19)
mu <- vmf(x)$mu
y <- lambert( euclid.inv(x) )
lambert.inv(y, mu)
euclid.inv(x)

Inverse of the Euclidean transformation

Inverse of the Euclidean transformation

Description

It transforms the data from the Euclidan coordinates to latitude dn longitude.

Usage

euclid.inv(U)

Arguments

U A matrix of unit vectors, or even one single unit vector in three dimensions.

Details

It takes the matrix of unit vectors and back transforms it to latitude and longitude.

Value

A two column matrix:

u The first column is the latitude and the second is the longitude, both expressed
in degrees.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>

See Also

euclid,Arotation,lambert
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Examples

x <- rvmf(10, rnorm(3), 10)
euclid.inv(x)
euclid( euclid.inv(x) )
x

k-NN algorithm using the arc cosinus distance

k-NN algorithm using the arc cosinus distance

Description

It classifies new observations to some known groups via the k-NN algorithm.

Usage

dirknn(x, xnew, k = 5, ina, type = "S", mesos = TRUE, parallel = FALSE, rann = FALSE)

Arguments

x The data, a numeric matrix with unit vectors.

xnew The new data whose membership is to be predicted, a numeric matrix with unit
vectors.

k The number of nearest neighbours, set to 5 by default. It can also be a vector
with many values.

ina A variable indicating the groups of the data x.

type If type is "S", the standard k-NN algorithm is to be used, else "NS" for the non
standard one. See below (details) for more information.

mesos A boolean variable used only in the case of the non standard algorithm (type="NS").
Should the average of the distances be calculated (TRUE) or not (FALSE)? If it
is FALSE, the harmonic mean is calculated.

parallel If you want the standard -NN algorithm to take place in parallel set this equal to
TRUE.

rann If you have large scale datasets and want a faster k-NN search, you can use kd-
trees implemented in the R package "RANN". In this case you must set this
argument equal to TRUE.

Details

The standard algorithm is to keep the k nearest observations and see the groups of these observa-
tions. The new observation is allocated to the most frequent seen group. The non standard algorithm
is to calculate the classical mean or the harmonic mean of the k nearest observations for each group.
The new observation is allocated to the group with the smallest mean distance.
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Value

A vector including:

g A matrix with the predicted group(s). It has as many columns as the values of k.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Tsagris M. and Alenazi A. (2019). Comparison of discriminant analysis methods on the sphere.
Communications in Statistics: Case Studies, Data Analysis and Applications, 5(4), 467–491.

See Also

dirknn.tune,vmfda.pred,mix.vmf

Examples

k <- runif(4, 4, 20)
prob <- c(0.2, 0.4, 0.3, 0.1)
mu <- matrix(rnorm(16), ncol = 4)
mu <- mu / sqrt( rowSums(mu^2) )
da <- rmixvmf(200, prob, mu, k)
nu <- sample(1:200, 180)
x <- da$x[nu, ]
ina <- da$id[nu]
xx <- da$x[-nu, ]
id <- da$id[-nu]
a1 <- dirknn(x, xx, k = 5, ina, type = "S", mesos = TRUE)
a2 <- dirknn(x, xx, k = 5,ina, type = "NS", mesos = TRUE)
a3 <- dirknn(x, xx, k = 5, ina, type = "S", mesos = FALSE)
a4 <- dirknn(x, xx, k = 5, ina, type = "NS", mesos = FALSE)
b <- vmfda.pred(xx, x, ina)
table(id, a1)
table(id, a2)
table(id, a3)
table(id, a4)

k-NN regression k-NN regression with Euclidean or (hyper-)spherical response and or
predictor variables

Description

k-NN regression with Euclidean or (hyper-)spherical response and or predictor variables.
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Usage

knn.reg(xnew, y, x, k = 5, res = "eucl", type = "euclidean", estim = "arithmetic")

Arguments

xnew The new data, new predictor variables values. A matrix with either euclidean
(univariate or multivariate) or (hyper-)spherical data. If you have a circular re-
sponse, say u, transform it to a unit vector via (cos(u), sin(u)). If xnew = x, you
will get the fitted values.

y The currently available data, the response variables values. A matrix with either
euclidean (univariate or multivariate) or (hyper-)spherical data. If you have a
circular response, say u, transform it to a unit vector via (cos(u), sin(u)).

x The currently available data, the predictor variables values. A matrix with either
euclidean (univariate or multivariate) or (hyper-)spherical data. If you have a
circular response, say u, transform it to a unit vector via (cos(u), sin(u)).

k The number of nearest neighbours, set to 5 by default. This can also be a vector
with many values.

res The type of the response variable. If it is Euclidean, set this argument equal to
"res". If it is a unit vector set it to res="spher".

type The type of distance to be used. This determines the nature of the predictor
variables. This is actually the argument "method" of the distance function in R.
The default value is "euclidean". If you use the Euclidean distance, the package
"Rfast" is used. The "dista" function of that package is about 3 times faster than
the standard built-in "dist". R has several options the type of the distance. Just
type ?Rfast::Dist in R and see the methods. Any method can be given here.
If you have unit vectors in general, you should put type="spher", so that the
cosinus distance is calculated.

estim Once the k observations whith the smallest distance are discovered, what should
the prediction be? The arithmetic average of the corresponding y values be used
estim="arithmetic" or their harmonic average estim="harmonic".

Details

This function covers a broad range of data, Euclidean and spherical, along with their combinations.

Value

A list with as many elements as the number of values of k. Each element in the list contains a matrix
(or a vector in the case of Euclidean data) with the predicted response values.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>
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See Also

knnreg.tune,spher.reg,spml.reg

Examples

y <- iris[, 1]
x <- as.matrix(iris[, 2:4])
x <- x/ sqrt( rowSums(x^2) ) ## Euclidean response and spherical predictors
a <- knn.reg(x, y, x, k = 5, res = "eucl", type = "spher", estim = "arithmetic")

y <- iris[, 2:4]
y <- y / sqrt( rowSums(y^2) ) ## Spherical response and Euclidean predictor
x <- iris[, 1]
a <- knn.reg(x, y, x, k = 5, res = "spher", type = "euclidean", estim = "arithmetic")

Lambert’s equal area projection

Lambert’s equal area projection

Description

It calculates the Lambert’s equal area projection.

Usage

lambert(y)

Arguments

y A two column matrix with the data. The first column is the altitude and the
second is the longitude.

Details

The spherical data are first rotated so that their mean direction is the north pole and then are pro-
jectedt on the plane tagent to the sphere at the north pole.

Value

A two-column matrix with the projected points.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>
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References

Kent, John T. (1982). The Fisher-Bingham distribution on the sphere. Journal of the Royal Statisti-
cal Society. Series B (Methodological) 44(1):71-80.

See Also

euclid,lambert.inv

Examples

x <- rvmf(100, rnorm(3), 20)
x <- euclid.inv(x)
a <- lambert(x)
plot(a)

Logarithm of the Kent distribution normalizing constant

Logarithm of the Kent distribution normalizing constant

Description

Logarithm of the Kent distribution normalizing constant.

Usage

kent.logcon(k, b, j = 100)

Arguments

k The conencration parameter, κ.

b The ovalness parameter, β.

j The number of the terms in the sum to use. By default this is 100.

Details

It calculates logarithm of the normalising constant of the Kent distribution.

Value

The value of the logarithm of the normalising constant of the Kent distribution.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>
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References

Kent John (1982). The Fisher-Bingham distribution on the sphere. Journal of the Royal Statistical
Society, Series B, 44(1): 71-80.

See Also

fb.saddle,kent.mle

Examples

kent.logcon(10, 2)
fb.saddle( c(0, 10, 0), c(0, -2, 2) )

Many simple circular or angular regressions

Many simple circular or angular regressions

Description

Many regressions with one circular dependent variable and one Euclidean independent variable.

Usage

spml.regs(y, x, tol = 1e-07, logged = FALSE, maxiters = 100, parallel = FALSE)

Arguments

y The dependent variable, it can be a numerical vector with data expressed in
radians or it can be a matrix with two columns, the cosinus and the sinus of
the circular data. The benefit of the matrix is that if the function is to be called
multiple times with the same response, there is no need to transform the vector
every time into a matrix.

x A matrix with independent variable.

tol The tolerance value to terminatate the Newton-Raphson algorithm.

logged Do you want the logarithm of the p-value be returned? TRUE or FALSE.

maxiters The maximum number of iterations to implement.

parallel Do you want the calculations to take plac ein parallel? The default value if
FALSE.

Details

The Newton-Raphson algorithm is fitted in these regression as described in Presnell et al. (1998).
For each colum of x a circual regression model is fitted and the hypothesis testing of no association
between y and this variable is performed.
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Value

A matrix with two columns, the test statistics and their associated (log) p-values.

Author(s)

Michail Tsagris and Stefanos Fafalios

R implementation and documentation: Michail Tsagris <mtsagris@yahoo.gr> and Stefanos Fafalios
<stefanosfafalios@gmail.com>

References

Presnell Brett, Morrison Scott P. and Littell Ramon C. (1998). Projected multivariate linear models
for directional data. Journal of the American Statistical Association, 93(443): 1068-1077.

See Also

spml.reg,spml.mle,iag.mle

Examples

x <- rnorm(200)
z <- cbind(3 + 2 * x, 1 -3 * x)
y <- cbind( rnorm(100,z[, 1], 1), rnorm(100, z[, 2], 1) )
y <- y / sqrt( rowSums(y^2) )
x <- matrix( rnorm(200 * 50), ncol = 50 )
a <- Directional::spml.regs(y, x)
x <- NULL

Mixtures of Von Mises-Fisher distributions

Mixtures of Von Mises-Fisher distributions

Description

It performs model based clustering for circualr, spherical and hyperspherical data assuming von
Mises-Fisher distributions.

Usage

mix.vmf(x, g, n.start = 10)

Arguments

x A matrix with the data expressed as unit vectors.

g The number of groups to fit. It must be greater than or equal to 2.

n.start The number of random starts to try. See also R’s built-in function kmeans for
more information about this.



56 Mixtures of Von Mises-Fisher distributions

Details

The initial step of the algorithm is not based on a spherical k-means, but on s imple k-means. The
results are comparable to the package movMF.

Value

A list including:

param A matrix with the mean direction, the concetrations parameter and mixing prob-
ability of each group.

loglik The value of the maximised log-likelihood.

pred The predicted group of each observation.

iter The number of iteration required by the EM algorithm.

runtime The run time of the algorithm. A numeric vector. The first element is the user
time, the second element is the system time and the third element is the elapsed
time.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>

References

Kurt Hornik and Bettina Grun (2014). movMF: An R Package for Fitting Mixtures of von Mises-
Fisher Distributions http://cran.r-project.org/web/packages/movMF/vignettes/movMF.pdf

See Also

rmixvmf,bic.mixvmf,mixvmf.contour

Examples

k <- runif(4, 4, 20)
prob <- c(0.2, 0.4, 0.3, 0.1)
mu <- matrix(rnorm(16), ncol = 4)
mu <- mu / sqrt( rowSums(mu^2) )
x <- rmixvmf(200, prob, mu, k)$x
mix.vmf(x, 3)
mix.vmf(x, 4)
mix.vmf(x, 5)
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MLE of (hyper-)spherical distributions

MLE of (hyper-)spherical distributions

Description

MLE of (hyper-)spherical distributions.

Usage

vmf(x, fast = FALSE, tol = 1e-07)
multivmf(x, ina, tol = 1e-07, ell = FALSE)
acg(x, tol = 1e-07)
iag.mle(x, tol = 1e-07)

Arguments

x A matrix with directional data, i.e. unit vectors.

fast IF you want a faster version, but with fewer information returned, set this equal
to TRUE.

ina A numerical vector with discrete numbers starting from 1, i.e. 1, 2, 3, 4,... or
a factor variable. Each number denotes a sample or group. If you supply a
continuous valued vector the function will obviously provide wrong results.

ell This is for the multivmf.mle only. Do you want the log-likelihood returned? The
default value is TRUE.

tol The tolerance value at which to terminate the iterations.

Details

The vm estimates the mean direction and concentration of a fitted von Mises-Fisher distribution.

The von Mises-Fisher distribution for groups of data is also implemented.

The acg.mle fits the angular central Gaussian distribution. There is a constraint on the estimated
covariance matrix; its trace is equal to the number of variables. An iterative algorithm takes place
and convergence is guaranteed.

The iag.mle implements MLE of the projected normal distribution, on the sphere.

Value

For the von Mises-Fisher a list including:

loglik The maximum log-likelihood value.

mu The mean direction.

kappa The concentration parameter.

For the multi von Mises-Fisher a list including:
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loglik A vector with the maximum log-likelihood values if ell is set to TRUE. Other-
wise NULL is returned.

mi A matrix with the group mean directions.
ki A vector with the group concentration parameters.

For the angular central Gaussian a list including:

iter The number if iterations required by the algorithm to converge to the solution.
cova The estimated covariance matrix.

For the spherical projected normal a list including:

iters The number of iteration required by the Newton-Raphson.
mesi A matrix with two rows. The first row is the mean direction and the second is

the mean vector. The first comes from the second by normalising to have unit
length.

param A vector with the elements, the norm of mean vector, the log-likelihood and the
log-likelihood of the spherical uniform distribution. The third value helps in
case you want to do a log-likleihood ratio test for uniformity.

Author(s)

Michail Tsagris R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

Sra, S. (2012). A short note on parameter approximation for von Mises-Fisher distributions: and a
fast implementation of Is(x). Computational Statistics, 27(1): 177–190.

Tyler D. E. (1987). Statistical analysis for the angular central Gaussian distribution on the sphere.
Biometrika 74(3): 579-589.

Paine P.J., Preston S.P., Tsagris M and Wood A.T.A. (2018). An Elliptically Symmetric Angular
Gaussian Distribution. Statistics and Computing, 28: 689-697.

See Also

racg,vm.mle,rvmf

Examples

m <- c(0, 0, 0, 0)
s <- cov(iris[, 1:4])
x <- racg(100, s)
mod <- acg(x)
mod
cov2cor(mod$cova) ## estimated covariance matrix turned into a correlation matrix
cov2cor(s) ## true covariance matrix turned into a correlation matrix
vmf(x)
x <- rbind( rvmf(100,rnorm(4), 10), rvmf(100,rnorm(4), 20) )
a <- multivmf(x, rep(1:2, each = 100) )
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MLE of some circular distributions

MLE of some circular distributions

Description

MLE of some circular distributions.

Usage

spml.mle(x, rads = FALSE, tol = 1e-07)
wrapcauchy(x, rads = FALSE, tol = 1e-07)
circexp.mle(x, rads = FALSE, tol = 1e-06)

Arguments

x A numerical vector with the circular data. They must be expressed in radians.

rads If the data are in radians set this to TRUE.

tol The tolerance level to stop the iterative process of finding the MLEs.

Details

The parameters of the bivariate angular Gaussian and wrapped Cauchy distributions are estimated.
For the Wrapped Cauchy, the iterative procedure described by Kent and Tyler (1988) is used. The
Newton-Raphson algortihm for the angular Gaussian is described in the regression setting in Pres-
nell et al. (1998).

Value

A list including:

iters The iterations required until convergence.

loglik The value of the maximised log-likelihood.

param A vector consisting of the estimates of the two parameters, the mean direction
for both distributions and the concentration parameter kappa and the rho for the
von Mises and wrapped Cauchy respectively.

gamma The norm of the mean vector of the angular Gaussian distribution.

mu The mean vector of the angular Gaussian distribution.

mumu In the case of "spml.mle" this is the mean angle in radians.

lambda The lambda parameter of the circular exponential distribution.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>
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References

Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley \& Sons.

Sra S. (2012). A short note on parameter approximation for von Mises-Fisher distributions: and a
fast implementation of Is(x). Computational Statistics, 27(1): 177-190.

Presnell Brett, Morrison Scott P. and Littell Ramon C. (1998). Projected multivariate linear models
for directional data. Journal of the American Statistical Association, 93(443): 1068-1077.

Kent J. and Tyler D. (1988). Maximum likelihood estimation for the wrapped Cauchy distribution.
Journal of Applied Statistics, 15(2): 247–254.

See Also

vmf,rvonmises,rvmf

Examples

x <- rvonmises(1000, 3, 9)
spml.mle(x, rads = TRUE)
wrapcauchy(x, rads = TRUE)
circexp.mle(x, rads = TRUE)

MLE of some circular distributions with multiple samples

MLE of some circular distributions with multiple samples

Description

MLE of some circular distributions with multiple samples.

Usage

multivm.mle(x, ina, tol = 1e-07, ell = FALSE)
multispml.mle(x, ina, tol = 1e-07, ell = FALSE)

Arguments

x A numerical vector with the circular data. They must be expressed in radians.
For the "spml.mle" this can also be a matrix with two columns, the cosinus and
the sinus of the circular data.

ina A numerical vector with discrete numbers starting from 1, i.e. 1, 2, 3, 4,... or
a factor variable. Each number denotes a sample or group. If you supply a
continuous valued vector the function will obviously provide wrong results.

tol The tolerance level to stop the iterative process of finding the MLEs.

ell Do you want the log-likelihood returned? The default value is FALSE.
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Details

The parameters of the von Mises and of the bivariate angular Gaussian distributions are estimated
for multiple samples.

Value

A list including:

iters The iterations required until convergence. This is returned in the wrapped Cauchy
distribution only.

loglik A vector with the value of the maximised log-likelihood for each sample.

mi For the von Mises, this is a vector with the means of each sample. For the
angular Gaussian (spml), a matrix with the mean vector of each sample

ki A vector with the concentration parameter of the von Mises distribution at each
sample.

gi A vector with the norm of the mean vector of the angular Gaussian distribution
at each sample.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley \& Sons.

Sra S. (2012). A short note on parameter approximation for von Mises-Fisher distributions: and a
fast implementation of Is(x). Computational Statistics, 27(1): 177-190.

Presnell Brett, Morrison Scott P. and Littell Ramon C. (1998). Projected multivariate linear models
for directional data. Journal of the American Statistical Association, 93(443): 1068-1077.

Kent J. and Tyler D. (1988). Maximum likelihood estimation for the wrapped Cauchy distribution.
Journal of Applied Statistics, 15(2): 247–254.

See Also

colspml.mle,purka.mle

Examples

y <- rcauchy(100, 3, 1)
x <- y
ina <- rep(1:2, 50)
multivm.mle(x, ina)
multispml.mle(x, ina)
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MLE of the ESAG distribution

MLE of the ESAG distribution

Description

MLE of the ESAG distribution.

Usage

ESAGmle(y, full = FALSE, tol = 1e-06)

Arguments

y A matrix with the data expressed in Euclidean coordinates, i.e. unit vectors.

full If you want some extra information, the inverse of the covariance matrix, the
rho parameter (smallest eigenvalue of the covariance matrix) and the angle of
rotation ψ set this equal to TRUE. Otherwise leave it FALSE.

tol A tolerance value to stop performing successive optimizations.

Details

MLE of the MLE of the ESAG distributiontribution, on the sphere, is implemented. ESAG stands
for Elliptically Symmetric Angular Gaussian and it was suugested by Paine et al. (2017). Unlike
the projected normal distribution this is rotationally symmetric and is a competitor of the spherical
Kent distribution (which is also non rotational symmetric).

Value

A list including:

mu The mean vector in R3.

gam The two gamma parameters.

loglik The log-likelihood value.

vinv The inverse of the covariance matrix. It is returned if the argument "full" is
TRUE.

rho The rho parameter (smallest eigenvalue of the covariance matrix). It is returned
if the argument "full" is TRUE.

psi The angle of rotation ψ set this equal to TRUE. It is returned if the argument
"full" is TRUE.

iag.loglik The log-likelihood value of the isotropic angular Gaussian distribution. That is,
the projected normal distribution which is rotational symmetric.
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Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

References

Paine P.J., Preston S.P., Tsagris M. and Wood A.T.A. (2018). An Elliptically Symmetric Angular
Gaussian Distribution. Statistics and Computing, 28(3):689–697.

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

See Also

ESAGdensity,ESAGsim,iag.mle,kent.mle,acg,circ.summary,sphereplot

Examples

m <- colMeans( as.matrix( iris[,1:3] ) )
y <- ESAGsim(1000, c(m, 1,0.5) )
ESAGmle(y)

MLE of the generalised von Mises distribution

MLE of the geometrically generalised von Mises distribution

Description

MLE of the geometrically generalised von Mises distribution.

Usage

ggvm(phi, rads = FALSE)

Arguments

phi A numerical vector with the circular data.
rads Whether the data are in rads (TRUE) or not (FALSE).

Details

The generalised von Mises distribution (Dietrich and Richter, 2016) is fitted to some data and its
parameters are estimated.

Value

A list including:

loglik The value of the maximised log-likelihood.
param A vector consisting of the ζ, κ, µ and α parameters of the generalised von Mises

distribution as describe din Equation (2.7) of Dietrich and Richter (2016).
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Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

References

Dietrich, T. & Richter, W. D. (2017). Classes of geometrically generalized von Mises distributions.
Sankhya B, 79(1): 21-59.

See Also

circ.summary,rvonmises

Examples

x <- rvonmises(100, 2, 25, rads = TRUE)
circ.summary(x, rads = TRUE)
ggvm(x, rads = TRUE)

MLE of the Kent distribution

MLe of the Kent distribution

Description

It estimates the concentration and the ovalness parameter of some directional data assuming the
Kent distribution. The mean direction and major and minor axes are also estimated.

Usage

kent.mle(x)

Arguments

x A matrix containing spherical data in Euclidean coordinates.

Details

The Kent distribution is fitted to some data and its parameters are estimated.
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Value

A list including:

runtime The run time of the procedure.

G A 3 x 3 matrix whose first column is the mean direction. The second and third
columns are the major and minor axes respectively.

param A vector with the concentration κ and ovalness β parameters and the angle ψ
used to rotate H and hence estimate G as in Kent (1982).

logcon The logarithm of the normalising constant, using the third type approximation
(Kume and Wood, 2005).

loglik The value of the log-likelihood.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>

References

Kent John (1982). The Fisher-Bingham distribution on the sphere. Journal of the Royal Statistical
Society, Series B, 44(1): 71-80.

Kume Alfred and Wood Andrew T.A. (2005). Saddlepoint approximations for the Bingham and
Fisher-Bingham normalizing constants. Biometrika, 92(2):465-476

See Also

kent.mle,fb.saddle,vmf,wood.mle,sphereplot

Examples

x <- rvmf(200, rnorm(3), 15)
kent.mle(x)
vmf(x)
A <- diag( c(-5, 0, 5) )
x <- rfb(200, 15, rnorm(3), A)
kent.mle(x)
vmf(x)
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MlE of the Matrix Fisher distribution on SO(3)

MlE of the Matrix Fisher distribution on SO(3)

Description

It returns the maximum likelihood estimate of the Matrix Fisher parameter F(3x3).

Usage

matrixfisher.mle(X)

Arguments

X An array containing rotation matrices in SO(3).

Value

The components of svd((̄X)).

Author(s)

Anamul Sajib & Chris Fallaize.

R implementation and documentation: Anamul Sajib <sajibstat@du.ac.bd> & Chris Fallaize.

References

Prentice M. J. (1986). Orientation statistics without parametric assumptions.Journal of the Royal
Statistical Society. Series B: Methodological 48(2).

See Also

rmatrixfisher

Examples

F <- 10^(-1) * matrix( c(85, 11, 41, 78, 39, 60, 43, 64, 48), ncol = 3 ) ### An arbitrary F matrix
X <- rmatrixfisher(5000, F)
matrixfisher.mle(X)
svd(F)
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MLE of the Purkayashta distribution

MLE of the Purkayashta distribution

Description

MLE of the Purkayashta distribution.

Usage

purka.mle(x, tol = 1e-07)

Arguments

x A numerical vector with data expressed in radians or a matrix with spherical
data.

tol The tolerance value to terminate the Brent algorithm.

Details

MLE of the Purkayastha distribution is performed.

Value

A list including:

theta The median direction.

alpha The concentration parameter.

loglik The log-likelihood.

alpha.sd The standard error of the concentration parameter.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

References

Purkayastha S. (1991). A Rotationally Symmetric Directional Distribution: Obtained through Max-
imum Likelihood Characterization. The Indian Journal of Statistics, Series A, 53(1): 70-83

Cabrera J. and Watson G. S. (1990). On a spherical median related distribution. Communications
in Statistics-Theory and Methods, 19(6): 1973-1986.

See Also

circ.cor1
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Examples

x <- cbind( rnorm(100,1,1), rnorm(100, 2, 1) )
x <- x / sqrt(rowSums(x^2))
purka.mle(x)

MLE of the Wood bimodal distribution on the sphere

MLe of the Wood bimodal distribution on the sphere

Description

It estimates the parameters of the Wood bimodal distribution.

Usage

wood.mle(y)

Arguments

y A matrix containing two columns. The first one is the latitude and the second is
the longitude, both expressed in degrees.

Details

The Wood distribution is fitted to some data and its parameters are estimated. It is a bimodal
distribution which contains 5 parameters, just like the Kent distribution.

Value

A list including:

info A 5 x 3 matrix containing the 5 parameters, gamma, delta, alpha, beta and kappa
along with their corresponding 95% confidence intervals all expressed in de-
grees.

modes The two axis of the modes of the distribution expressed in degrees.

unitvectors A 3 x 3 matrix with the 3 unitvectors associated with the gamma and delta
parameters.

loglik The value of the log-likelihood.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>
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References

Wood A.T.A. (1982). A bimodal distribution on the sphere. Journal of the Royal Statistical Society,
Series C, 31(1): 52-58.

See Also

kent.mle,ESAGmle,vmf,rvmf,sphereplot

Examples

x <- rvmf(100, rnorm(3), 15)
x <- euclid.inv(x)
wood.mle(x)

Naive Bayes classifiers for circular data

Naive Bayes classifiers for directional data

Description

Naive Bayes classifiers for directional data.

Usage

vm.nb(xnew = NULL, x, ina, tol = 1e-07)
spml.nb(xnew = NULL, x, ina, tol = 1e-07)

Arguments

xnew A numerical matrix with new predictor variables whose group is to be predicted.
Each column refers to an angular variable.

x A numerical matrix with observed predictor variables. Each column refers to an
angular variable.

ina A numerical vector with strictly positive numbers, i.e. 1,2,3 indicating the
groups of the dataset. Alternatively this can be a factor variable.

tol The tolerance value to terminate the Newton-Raphson algorithm.

Details

Each column is supposed to contain angular measurements. Thus, for each column a von Mises
distribution or an circular angular Gaussian distribution is fitted. The product of the densities is the
joint multivariate distribution.



70 Permutation based 2-sample mean test for circular data

Value

A list including:

mu A matrix with the mean vectors expressed in radians.

mu1 A matrix with the first set of mean vectors.

mu2 A matrix with the second set of mean vectors.

kappa A matrix with the kappa parameters for the vonMises distribution or with the
norm of the mean vectors for the circular angular Gaussian distribution.

ni The sample size of each group in the dataset.

est The estimated group of the xnew observations. It returns a numerical value back
regardless of the target variable being numerical as well or factor. Hence, it is
suggested that you do \"as.numeric(ina)\" in order to see what is the predicted
class of the new data.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

See Also

vmnb.pred,weibull.nb

Examples

x <- matrix( runif( 100, 0, 1 ), ncol = 2 )
ina <- rbinom(50, 1, 0.5) + 1
a <- vm.nb(x, x, ina)

Permutation based 2-sample mean test for circular data

Permutation based 2-sample mean test for circular data

Description

Permutation based 2-sample mean test for circular data.

Usage

hcfcirc.perm(u1, u2, rads = TRUE, B = 999)

hetcirc.perm(u1, u2, rads = TRUE, B = 999)

lrcirc.perm(u1, u2, rads = TRUE, B = 999)

embedcirc.perm(u1, u2, rads = TRUE, B = 999)
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Arguments

u1 A numeric vector containing the data of the first sample.

u2 A numeric vector containing the data of the first sample.

rads If the data are in radians, this should be TRUE and FALSE otherwise.

B The number of permutations to perform.

Details

The high concentration (hcf.circaov), log-likelihood ratio (lr.circaov), embedding approach (em-
bed.circaov) or the non equal concentration parameters approach (het.circaov) is used.

Value

A vector including:

test The value of the test statistic.

p-value The p-value of the test.

kappa The concentration parameter based on all the data. If the het.circaov is used this
argument is not returned.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

See Also

hcf.circaov,het.aov

Examples

u1 <- rvonmises(20, 2.4, 5)
u2 <- rvonmises(20, 2.4, 10)
ina <- rep(1:2, each = 20)
hcfcirc.perm(u1, u2)
lrcirc.perm(u1, u2)
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Prediction in discriminant analysis based on ESAG distribution

Prediction of a new observation using discriminant analysis based on
ESAGdistribution

Description

Prediction of a new observation using discriminant analysis based on ESAG distribution.

Usage

ESAGda.pred(ynew, y, ina)

Arguments

ynew The new observation(s) (unit vector(s)) whose group is to be predicted.

y A data matrix with unit vectors, i.e. spherical directional data.

ina A vector indicating the groups of the data y.

Details

Prediction of the class of a new spherical vector assuming ESAG distribution.

Value

A vector with the predicted group of each new observation.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Tsagris M. and Alenazi A. (2019). Comparison of discriminant analysis methods on the sphere.
Communications in Statistics: Case Studies, Data Analysis and Applications, 5(4), 467–491.

Paine P.J., Preston S.P., Tsagris M. and Wood A.T.A. (2017). An Elliptically Symmetric Angular
Gaussian Distribution. Statistics and Computing, 28(3):689–697.

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

See Also

ESAG.da,vmfda.pred,dirknn,knn.reg
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Examples

m1 <- rnorm(3)
m2 <- rnorm(3) + 0.5
y <- rbind( rvmf(100, m1, 3), rvmf(80, m2, 5) )
ina <- c( rep(1,100), rep(2, 80) )
ynew <- rbind(rvmf(10, m1, 10), rvmf(10, m2, 5))
id <- rep(1:2, each = 10)
g <- ESAGda.pred(ynew, y, ina)
table(id, g)

Prediction in discriminant analysis based on von Mises-Fisher distribution

Prediction of a new observation using discriminant analysis based on
von Mises-Fisher distribution

Description

Prediction of the class of a new observation using discriminant analysis based on von Mises-Fisher
distribution.

Usage

vmfda.pred(xnew, x, ina)

Arguments

xnew The new observation(s) (unit vector(s)) whose group is to be predicted.
x A data matrix with unit vectors, i.e. directional data.
ina A vector indicating the groups of the data x.

Details

Discriminant analysis assuming von Mises-Fisher distributions.

Value

A vector with the predicted group of each new observation.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Tsagris M. and Alenazi A. (2019). Comparison of discriminant analysis methods on the sphere.
Communications in Statistics: Case Studies, Data Analysis and Applications, 5(4), 467–491.

Morris J. E. and Laycock P. J. (1974). Discriminant analysis of directional data. Biometrika, 61(2):
335-341.
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See Also

vmf.da,mix.vmf,mix.vmf,dirknn,knn.reg

Examples

m1 <- rnorm(5)
m2 <- rnorm(5)
x <- rbind( rvmf(100, m1, 5), rvmf(80, m2, 10) )
ina <- c( rep(1,100), rep(2, 80) )
y <- rbind(rvmf(10, m1, 10), rvmf(10, m2, 5))
id <- rep(1:2, each = 10)
g <- vmfda.pred(y, x, ina)
table(id, g)

Prediction with some naive Bayes classifiers for circular data

Prediction with some naive Bayes classifiers for circular data

Description

Prediction with some naive Bayes classifiers for circular data.

Usage

vmnb.pred(xnew, mu, kappa, ni)
spmlnb.pred(xnew, mu1, mu2, ni)

Arguments

xnew A numerical matrix with new predictor variables whose group is to be predicted.
Each column refers to an angular variable.

mu A matrix with the mean vectors expressed in radians.

mu1 A matrix with the first set of mean vectors.

mu2 A matrix with the second set of mean vectors.

kappa A matrix with the kappa parameters for the vonMises distribution or with the
norm of the mean vectors for the circular angular Gaussian distribution.

ni The sample size of each group in the dataset.

Details

Each column is supposed to contain angular measurements. Thus, for each column a von Mises
distribution or an circular angular Gaussian distribution is fitted. The product of the densities is the
joint multivariate distribution.

Value

A numerical vector with 1, 2, ... denoting the predicted group.
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Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

See Also

vm.nb,weibullnb.pred

Examples

x <- matrix( runif( 100, 0, 1 ), ncol = 2 )
ina <- rbinom(50, 1, 0.5) + 1
a <- vm.nb(x, x, ina)
a2 <- vmnb.pred(x, a$mu, a$kappa, a$ni)

Probability density function of the von Mises-Fisher distribution

Probability density function of the von Mises-Fisher distribution

Description

Probability density function of the von Mises-Fisher distribution.

Usage

pvm(theta, m, k, rads = FALSE)

Arguments

theta A numerical value, either in radians or in degrees.

m The mean direction in radians or in degrees.

k The concentration parameter, κ.

rads If the data are in radians, this should be TRUE and FALSE otherwise.

Details

This value calculates the probability of x being less than theta and is used by group.gof.

Value

The probability that of x being less than theta, where x follows the von Mises-Fisher distribution.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>



76 Random sample of matrices in SO(p)

References

Arthur Pewsey, Markus Neuhauser, and Graeme D. Ruxton (2013). Circular Statistics in R.

See Also

group.gof,circ.summary,rvonmises

Examples

pvm(1, 2, 10, rads = TRUE)
pvm(2, 2, 10, rads = TRUE)

Random sample of matrices in SO(p)

Random sample of matrices in SO(p)

Description

Random sample of matrices in SO(p).

Usage

rsop(n, p)

Arguments

n The sample size, the number of matrices you want to generate.

p The dimensionality of the matrices.

Details

The idea is very simple. Start with a unit vector pointing at the north pole (1,0,...,0). Then generate
random numbers from a standard normal and scale them so that they have a unit length. To put
it differently, a sample of n values from the uniform distribution on the sphere is generated. Then
calculate the rotation matrix required to go from the north pole to each of a generated vector.

Value

If n = 1 one matrix is returned. If n is greater than 1, an array with n matrices inside.

Author(s)

Michail Tsagris R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and
Giorgos Athineou <gioathineou@gmail.com>
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References

G. J. A. Amaral, I. L. Dryden & Andrew T. A. Wood (2007). Pivotal Bootstrap Methods for k-
Sample Problems in Directional Statistics and Shape Analysis. Journal of the American Statistical
Association, 102(478): 695-707.

See Also

rotation,Arotation,rot.matrix

Examples

x1 <- rsop(1, 3)
x2 <- rsop(10, 3)
x3 <- rsop(100, 10)

Random values generation from the ESAG distribution

Random values generation from the ESAG distribution

Description

Random values generation from the ESAG distribution.

Usage

ESAGsim(n, param)

Arguments

n A number; how many vectors you want to generate.

param The parameters of the ESAG distribution, the first three are the mean vector in
R3 and the next two are the two gammas.

Details

A random sample from the ESAG distribution is generated. In case the gammas are zeo the sample
is drawn from Independent Angular Gaussian (IAG) or projected normal.

Value

An nx3 matrix with the simualted unit vectors.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>
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References

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

Paine P.J., Preston S.P., Tsagris M. and Wood A.T.A. (2018). An Elliptically Symmetric Angular
Gaussian Distribution. Statistics and Computing, 28((3):689–697.

See Also

ESAGmle,ESAGdensity,spml.mle,acg,circ.summary

Examples

m <- colMeans( as.matrix( iris[,1:3] ) )
y <- ESAGsim(1000, c(m, 1, 0.5) )
ESAGmle(y)

Random values simulation from some circular distributions

Random values simulation from some circular distributions

Description

Random values simulation from some circular distributions.

Usage

rvonmises(n, m, k, rads = TRUE)
rwrapcauchy(n, m, rho, rads = TRUE)

Arguments

n The sample size.
m The mean angle expressed in radians or degrees.
k The concentration parameter of the von Mises distribution. If k is zero the sam-

ple will be generated from the uniform distribution over (0, 2π).
rho The ρ parameter of the Wrapped Cauchy distribution.
rads If the mean angle is expressed in radians, this should be TRUE and FALSE

otherwise. The simulated data will be expressed in radians or degrees depending
on what the mean angle is expressed.

Details

For the von Mises distribution, the mean direction is transformed to the Euclidean coordinates (i.e.
unit vector) and then the rvmf function is employed. It uses a rejection smapling as suggested by
Andrew Wood in 1994. I have mentioned the description of the algorithm as I found it in Dhillon
and Sra in 2003. Finally, the data are transformed to radians or degrees.

For the wrapped Cauchy distribution the function generates Cauchy values x and then wrapps
around the circle x = x(mod2π). For the circular beta the function has some extra steps (see
Zheng Sun’s master thesis).
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Value

A vector with the simulated data.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>

References

Wood, A. T. (1994). Simulation of the von Mises Fisher distribution. Communications in statistics-
simulation and computation, 23(1): 157-164.

Dhillon, I. S., & Sra, S. (2003). Modeling data using directional distributions. Technical Report TR-
03-06, Department of Computer Sciences, The University of Texas at Austin. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.75.4122&rep=rep1&type=pdf

Zheng Sun (2006). Comparing measures of fit for circular distributions. Master thesis, University of
Victoria. https://dspace.library.uvic.ca/bitstream/handle/1828/2698/zhengsun_master_thesis.pdf;sequence=1

Lai, M. (1994). Some results in the statistical analysis of directional data. Master thesis, University
of Hong Kong.

See Also

circ.summary,rvmf,racg

Examples

x <- rvonmises(100, 2, 25, rads = TRUE)
circ.summary(x, rads = TRUE)

Rayleigh’s test of uniformity

Rayleigh’s test of uniformity

Description

It checkes whether the data are uniformly distributed on the sphere or hypersphere.

Usage

rayleigh(x, modif = TRUE, B = 999)

Arguments

x A matrix containing the data, unit vectors.
modif If modif is TRUE, the modification as suggested by Jupp (2001) is used.
B If B is greater than 1, bootstap calibation os performed. If it is equal to 1,

classical theory is used.
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Details

The Rayleigh test of uniformity is not the best, when there are two antipodal mean directions. In
this case it will fail. It is good to test whether there is one mean direction or not. To put it differently,
it tests whether the concentration parameter of the Fisher distribution is zero or not.

Value

A vector including:

test The value of the test statistic.
p-value or Bootstrap p-value

The (bootstrap) p-value of the test.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>

References

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

Jupp, P. E. (2001). Modifications of the rayleigh and bingham tests for uniformity of directions.
Journal of Multivariate Analysis, 77(2):1-20.

Rayleigh, L. (1919). On the problem of random vibrations, and of random flights in one, two,
or three dimensions. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science, 37(220):321-347.

See Also

vmf,meandir.test,acg

Examples

x <- rvmf(100, rnorm(5), 1) ## Fisher distribution with low concentration
rayleigh(x)

Read a file as a Filebacked Big Matrix

Read a file as a Filebacked Big Matrix

Description

Read a file as a Filebacked Big Matrix.

Usage

read.fbm(file, select)
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Arguments

file The File to read.

select Indices of columns to read (sorted). The length of select will be the number of
columns of the resulting FBM.

Details

The functions read a file as a Filebacked Big Matrix object. For more information see the "bigstatsr"
package.

Value

A Filebacked Big Matrix object.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

See Also

vmf,kent.mle

Examples

## Not run:
dataset <- matrix( runif(100 * 50, 1, 100), ncol = 50 )
write.csv(dataset, "dataset.csv")
a <- read.fbm("dataset.csv", select = 1:50)

## End(Not run)

Rotation axis and angle of rotation given a rotation matrix

Rotation axis and angle of rotation given a rotation matrix

Description

Given a 3 x 3 rotation matrix, the angle and the axis of rotation are calcualted.

Usage

Arotation(A)

Arguments

A A 3 x 3 rotation matrix.
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Details

If the user does not supply a rotation matrix a message will appear.

Value

A list including:

angle The angle of rotation expressed in degrees.

axis The axis of rotation. A vector of two components, latitude and longitude, ex-
pressed in degrees.

Author(s)

Michail Tsagris R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and
Giorgos Athineou <gioathineou@gmail.com>

References

Course webpage of Howard E. Haber. http://scipp.ucsc.edu/~haber/ph216/rotation_12.pdf

Ted Chang (1986). Spherical Regression. Annals of Statistics, 14(3): 907-924.

See Also

rot.matrix,rotation,rsop

Examples

ksi <- c(25.31, 24.29)
theta <- 2.38
A <- rot.matrix(ksi, theta, rads = FALSE)
A
Arotation(A)

Rotation matrix from a rotation axis and angle of rotation

Rotation matrix from a rotation axis and angle of rotation

Description

It calculates a rotation matrix from a rotation axis and angle of rotation.

Usage

rot.matrix(ksi, theta, rads = FALSE)
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Arguments

ksi The rotation axis, a vector with two elements, the first is the latitude and the
second is the longitude.

theta The angle of rotation.

rads If both the ksi and theta are in rads, this should be TRUE. If both the ksi and
theta are in degrees, this should be FALSE.

Details

The function accepts as arguments the rotation axis and the angle of rotation and it calcualtes the
requested rotation matrix.

Value

A 3 x 3 rotation matrix.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>

References

Course webpage of Howard E. Haber. http://scipp.ucsc.edu/~haber/ph216/rotation_12.pdf

Ted Chang (1986). Spherical Regression. Annals of Statistics, 14(3): 907-924.

See Also

Arotation,rotation,rsop

Examples

ksi <- c(25.31, 24.29)
theta <- 2.38
A <- rot.matrix(ksi, theta, rads = FALSE)
A
Arotation(A)
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Rotation matrix on SO(3) from three Euler angles

Construct a rotation matrix on SO(3) from the Euler angles.

Description

It forms a rotation matrix X on SO(3) by using three Euler angles (θ12, θ13, θ23), where X is defined
as X = Rz(θ12)× Ry(θ13)× Rx(θ23). Here Rx(θ23) means a rotation of θ23 radians about the x
axis.

Usage

eul2rot(theta.12, theta.23, theta.13)

Arguments

theta.12 An Euler angle, a number which must lie in (−π, π).

theta.23 An Euler angle, a number which must lie in (−π, π).

theta.13 An Euler angle, a number which must lie in (−π/2, π/2).

Details

Given three euler angles a rotation matrix X on SO(3) is formed using the transformation according
to Green and Mardia (2006) which is defined above.

Value

A roation matrix.

Author(s)

Anamul Sajib<sajibstat@du.ac.bd>

R implementation and documentation: Anamul Sajib <sajibstat@du.ac.bd>

References

Green, P. J. \& Mardia, K. V. (2006). Bayesian alignment using hierarchical models, with applica-
tions in proteins bioinformatics. Biometrika, 93(2):235–254.

See Also

rot2eul
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Examples

# three euler angles

theta.12 <- sample( seq(-3, 3, 0.3), 1 )
theta.23 <- sample( seq(-3, 3, 0.3), 1 )
theta.13 <- sample( seq(-1.4, 1.4, 0.3), 1 )

theta.12 ; theta.23 ; theta.13

X <- eul2rot(theta.12, theta.23, theta.13)
X # A rotation matrix
det(X)

e <- rot2eul(X)$v1

theta.12 <- e[3]
theta.23 <- e[2]
theta.13 <- e[1]

theta.12 ; theta.23 ; theta.13

Rotation matrix to rotate a spherical vector along the direction of another

Rotation matrix to rotate a spherical vector along the direction of an-
other

Description

A rotation matrix is calculated to rotate a unit vector along the direction of another.

Usage

rotation(a, b)

Arguments

a The initial unit vector.

b The target unit vector.

Details

The function calcualtes a rotation matrix given two vectors. This rotation matrix is the connection
between the two spherical only, vectors.

Value

A rotation matrix whose dimension is equal to the length of the unit vectors.
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Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>

References

G. J. A. Amaral, I. L. Dryden & Andrew T. A. Wood (2007). Pivotal Bootstrap Methods for k-
Sample Problems in Directional Statistics and Shape Analysis. Journal of the American Statistical
Association, 102(478): 695-707.

See Also

Arotation,rot.matrix,lambert,lambert.inv,rsop

Examples

a <- rnorm(3)
a <- a/sqrt(sum(a^2))
b <- rnorm(3)
b <- b/sqrt(sum(b^2))
A <- rotation(a, b)
A
a ; b
a %*% t(A)

a <- rnorm(7)
a <- a/sqrt(sum(a^2))
b <- rnorm(7)
b <- b/sqrt(sum(b^2))
A <- rotation(a, b)
A
a ; b
a %*% t(A)

Saddlepoint approximations of the Fisher-Bingham distributions

Saddlepoint approximations of the Fisher-Bingham distributions

Description

It calculates the logarithm of the normalising constant of the Fisher-Bingham distribution.

Usage

fb.saddle(gam, lam)
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Arguments

gam A numeric vector containing the parameters of the Fisher part.

lam All the eigenvalues of the Bingham part. Not just the non zero ones.

Details

It calculate the three approximations given by Kume and Wood (2005) and it uses the Fisher-
Bingham parametrization of that paper.

Value

A list including:

first oder The first order approximation

second oder The second order approximation

third oder The third order approximation

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>

References

Kume Alfred and Wood Andrew T.A. (2005). Saddlepoint approximations for the Bingham and
Fisher-Bingham normalizing constants. Biometrika, 92(2):465-476

See Also

kent.logcon,rfb,kent.mle,rbingham

Examples

p <- 3 ; k <- 1
0.5 * p * log(2 * pi) - (p/2 - 1) * log(k) + log( besselI(k, p/2 - 1, expon.scaled = TRUE) ) + k
## normalising constant of the
## von Mises-Fisher distribution
fb.saddle( c(0, k, 0), c(0, 0, 0) ) ## saddlepoint approximation

## Normalising constant of the Kent distribution
fb.saddle( c(0, 10, 0), c(0, -2, 2) )
kent.logcon(10, 2)
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Simulation from a Bingham distribution using any symmetric matrix A

Simulation from a Bingham distribution using any symmetric matrix A

Description

It simulates random values from a Bingham distribution with any given symmetric matrix.

Usage

rbingham(n, A)

Arguments

n The sample size.

A A symmetric matrix.

Details

The eigenvalues are fist calcualted and then Chris Fallaize and Theo Kypraio’s code (f.rbing) is
used. The resulting simulated data anre then right multiplied by the eigenvectors of the matrix A.

Value

A matrix with the siumlated data.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>

References

Kent J.T., Ganeiber A.M. and Mardia K.V. (2013). A new method to simulate the Bingham and re-
lated distributions in directional data analysis with applications http://arxiv.org/pdf/1310.8110v1.pdf

C.J. Fallaize and T. Kypraios (2014). Exact Bayesian Inference for the Bingham Distribution.
Statistics and Computing (To appear). http://arxiv.org/pdf/1401.2894v1.pdf

See Also

f.rbing,rfb,rvmf,rkent

Examples

A <- cov(iris[, 1:3])
x <- rbingham(100, A)
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Simulation from a Matrix Fisher distribution on SO(3)

Simulation from a Matrix Fisher distribution on SO(3)

Description

It simulates random samples (rotation matrices) from a Matrix Fisher distribution with any given
parameter matrix, F (3x3).

Usage

rmatrixfisher(n, F)

Arguments

n the sample size.

F An arbitrary 3x3 matrix.

Details

Firstly corresponding Bingham parameter A is determined for a given Matrix Fisher parameter F
using John Kent (2013) algorithm and then Bingham samples for parameter A are generated using
rbingham code. Finally convert Bingham samples to Matrix Fisher samples according to the Kent
(2013) transformation.

Value

An array with simulated rotation matrices.

Author(s)

Anamul Sajib & Chris Fallaize

R implementation and documentation: Anamul Sajib <sajibstat@du.ac.bd> & Chris Fallaize

References

Kent J.T., Ganeiber A.M. and Mardia K.V. (2013). A new method to simulate the Bingham and re-
lated distributions in directional data analysis with applications. http://arxiv.org/pdf/1310.8110v1.pdf

Examples

F <- matrix( c(85, 11, 41, 78, 39, 60, 43, 64, 48), ncol = 3) / 10 ### An arbitrary F matrix
a <- rmatrixfisher(10, F)
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Simulation of random values from a Bingham distribution

Simulating from a Bingham distribution

Description

It simulates from a Bingham distribution using the code suggested by Kent et al. (2013).

Usage

f.rbing(n, lam, fast = FALSE)

Arguments

n Sample size.
lam Eigenvalues of the diagonal symmetric matrix of the Bingham distribution.
fast If you want a fast, efficient simulation set this to TRUE.

Details

The user must have calculated the eigenvalues of the diagonal symmetric matrix of the Bingham
distribution. The function accepts the q-1 eigenvalues only. This means, that the user must have
subtracted the lowest eigenvalue from the rest and give the non zero ones. The function uses rejec-
tion sampling and it was written by Chris Fallaize and Theo Kypraios (University of Nottingham)
and kindly offered. Any questions on the code can be addressed to one of the two aforementioned
people. It is slightly different than the one Ketn et al. (2013) suggests.

Value

A list including:

X The simulated data.
avtry The estimate of M in the rejection sampling. The average number of simulated

values before a value is accepted. If the argument fast is set to TRUE this infor-
mation will not appear.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>

References

Kent J.T., Ganeiber A.M. and Mardia K.V. (2013). A new method to simulate the Bingham and re-
lated distributions in directional data analysis with applications. http://arxiv.org/pdf/1310.8110v1.pdf

C.J. Fallaize and T. Kypraios (2014). Exact Bayesian Inference for the Bingham Distribution.
Statistics and Computing (No volum assigned yet). http://arxiv.org/pdf/1401.2894v1.pdf
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See Also

rfb,rvmf,rbingham,rkent,link{rsop}

Examples

x <- f.rbing( 100, c(1, 0.6, 0.1) )
x

Simulation of random values from a mixture of von Mises-Fisher distributions

Random values simulation from a mixture of von Mises-Fisher distri-
butions

Description

The function simulates random values simulation from a given mixture of von Mises-Fisher distri-
butions.

Usage

rmixvmf(n, prob, mu, k)

Arguments

n The sample size.

prob This is avector with the mixing probability of each group.

mu A matrix with the mean direction of each group.

k A vector with the concentration parameter of each group.

Details

The function simulates random values simulation from a given mixture of von Mises-Fisher distri-
butions using the rvmf function.

Value

A list including:

id An indicator of the group of each simulated vector.

x A matrix with the simulated data.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>
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References

Kurt Hornik and Bettina Grun (2014). movMF: An R Package for Fitting Mixtures of von Mises-
Fisher Distributions http://cran.r-project.org/web/packages/movMF/vignettes/movMF.pdf

See Also

mix.vmf,rvmf,rvmf,bic.mixvmf

Examples

k <- runif(4, 4, 20)
prob <- c(0.2, 0.4, 0.3, 0.1)
mu <- matrix(rnorm(16), ncol = 4)
mu <- mu / sqrt( rowSums(mu^2) )
x <- rmixvmf(200, prob, mu, k)$x
bic.mixvmf(x, 5)

Simulation of random values from a spherical Fisher-Bingham distribution

Simulation of random values from a spherical Fisher-Bingham distri-
bution

Description

Simulation of random values from a spherical Fisher-Bingham distribution.

Usage

rfb(n, k, m, A)

Arguments

n The sample size.

k The concentraion parameter (Fisher part). It has to be greater than 0.

m The mean direction (Fisher part).

A A symmetric matrix (Bingham part).

Details

Random values from a spherical Fisher-Bingham distribution are generated. This functions included
the option of simulating from a Kent distribution also.

Value

A matrix with the simulated data.
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Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>

References

Kent J.T., Ganeiber A.M. and Mardia K.V. (2013). A new method to simulate the Bingham and re-
lated distributions in directional data analysis with applications. http://arxiv.org/pdf/1310.8110v1.pdf

See Also

rbingham,rvmf,rkent,f.rbing

Examples

k <- 15
mu <- rnorm(3)
mu <- mu / sqrt( sum(mu^2) )
A <- cov(iris[, 1:3])
x <- rfb(50, k, mu, A)
vmf(x) ## fits a von Mises-Fisher distribution to the simulated data
## Next we simulate from a Kent distribution
A <- diag( c(-5, 0, 5) )
n <- 100
x <- rfb(n, k, mu, A) ## data follow a Kent distribution
kent.mle(x) ## fits a Kent distribution
vmf(x) ## fits a von Mises-Fisher distribution
A <- diag( c(5, 0, -5) )
n <- 100
x <- rfb(n, k, mu, A) ## data follow a Kent distribution
kent.mle(x) ## fits a Kent distribution
vmf(x) ## fits a von Mises-Fisher distribution

Simulation of random values from a spherical Kent distribution

Simulation of random values from a spherical Kent distribution

Description

Simulation of random values from a spherical Kent distribution.

Usage

rkent(n, k, m, b)
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Arguments

n The sample size.

k The concentraion parameter κ. It has to be greater than 0.

m The mean direction (Fisher part).

b The ovalness parameter, β.

Details

Random values from a Kent distribution on the sphere are generated. The function generates from
a spherical Kent distribution using rfb with an arbitrary mean direction and then rotates the data to
have the desired mean direction.

Value

A matrix with the simulated data.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>

References

Kent J.T., Ganeiber A.M. and Mardia K.V. (2013). A new method to simulate the Bingham and re-
lated distributions in directional data analysis with applications. http://arxiv.org/pdf/1310.8110v1.pdf

See Also

rfb,rbingham,rvmf,f.rbing

Examples

k <- 15
mu <- rnorm(3)
mu <- mu / sqrt( sum(mu^2) )
A <- diag( c(-5, 0, 5) )
x <- rfb(500, k, mu, A)
kent.mle(x)
y <- rkent(500, k, mu, A[3, 3])
kent.mle(y)
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Simulation of random values from a von Mises-Fisher distribution

Random values simulation from a von Mises-Fisher distribution

Description

It generates random vectors following the von Mises-Fisher distribution. The data can be spherical
or hyper-spherical.

Usage

rvmf(n, mu, k)

Arguments

n The sample size.

mu The mean direction.

k The concentration parameter. If k = 0, random values from the spherical uni-
form will be drwan. Values from a multivariate normal distribution with zero
mean vector and the identity matrix as the covariance matrix. Then each vector
becomes a unit vector.

Details

It uses a rejection smapling as suggested by Andrew Wood (1994).

Value

A matrix with the simulated data.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>

References

Wood A. T. A. (1994). Simulation of the von Mises Fisher distribution. Communications in
statistics-simulation and computation, 23(1): 157–164.

Dhillon I. S. & Sra S. (2003). Modeling data using directional distributions. Technical Report TR-
03-06, Department of Computer Sciences, The University of Texas at Austin. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.75.4122&rep=rep1&type=pdf

See Also

vmf,rfb,racg,rvonmises,rmixvmf
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Examples

m <- rnorm(4)
m <- m/sqrt(sum(m^2))
x <- rvmf(100, m, 25)
m
vmf(x)

Spherical and hyperspherical median

Fast calculation of the spherical and hyperspherical median

Description

It calculates, very fast, the (hyper-)spherical median of a sample.

Usage

mediandir(x)
mediandir_2(x)

Arguments

x The data, a numeric matrix with unit vectors.

Details

The "mediandir" employes a fixed poit iterative algorithm stemming from the first derivative (Cabr-
era and Watson, 1990) to find the median direction as described by Fisher (1985) and Fisher, Lewis
and Embleton (1987). In the big samples this is much much faster than "mediandir_2", since the
search is based on iterations.

Value

The median direction.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>

References

Fisher N. I. (1985). Spherical medians. Journal of the Royal Statistical Society. Series B, 47(2):
342-348.

Fisher N. I., Lewis T. and Embleton B. J. (1987). Statistical analysis of spherical data. Cambridge
university press.

Cabrera J. and Watson G. S. (1990). On a spherical median related distribution. Communications
in Statistics-Theory and Methods, 19(6): 1973-1986.
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See Also

vmf,kent.mle

Examples

m <- rnorm(3)
m <- m / sqrt( sum(m^2) )
x <- rvmf(100, m, 10)
mediandir(x)
mediandir_2(x)

Spherical regression using the projected normal or the von Mises-Fisher distribution

Spherical regression using the projected normal or the von Mises-
Fisher distribution

Description

Spherical regression using the projected normal or the von Mises-Fisher distribution.

Usage

iag.reg(y, x, con = TRUE, xnew = NULL, tol = 1e-06)
vmf.reg(y, x, con = TRUE, xnew = NULL, tol = 1e-06)

Arguments

y A matrix with 3 columns containing the (unit vector) spherical data.

x The predictor variable(s), they can be continnuous, spherical, categorical or a
mix of them.

con Do you want the constant term in the regression?

xnew If you have new data use it, otherwise leave it NULL.

tol A tolerance value to decide when to stop the successive optimaizations.

Details

The second parametrization of the projected normal and of the von Mises-Fisher regression (Paine
et al., 2019) is applied. For more information see the paper by Paine et al. (2019).

Value

A list including:

loglik The log-likelihood of the regression model.

fit This is a measure of fit of the estimated values, defined as
∑n

i=1 y
T
i ŷi. This

appears if the argument "xnew" is NULL.
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beta The beta coefficients.

seb The standard error of the beta coefficients.

ki The norm of the fitted values. In the von Mises-Fisher regression this is the
concentration parameter of each observation. In the projected normal this are
the norms of the fitted values before being projected onto the sphere. This is
returned if the argument "xnew" is NULL.

est The fitted values of xnew if "xnew" is NULL. If it is not NULL, the fitted values
for the "xnew" you supplied will be returned.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

References

P. J. Paine, S. P. Preston, M. Tsagris and Andrew T. A. Wood (2019). Spherical regression models
with general covariates and anisotropic errors. Statistics and Computing (to appear). https://link.springer.com/content/pdf/10.1007

See Also

ESAGmle,vmf,spml.reg

Examples

y <- rvmf(150, rnorm(3), 5)
a1 <- iag.reg(y, iris[, 4])
a2 <- iag.reg(y, iris[, 4:5])

b1 <- vmf.reg(y, iris[, 4])
b2 <- vmf.reg(y, iris[, 4:5])

Spherical-spherical correlation

Spherical-spherical correlation

Description

Correlation between two spherical variables.

Usage

spher.cor(x, y)

Arguments

x A spherical variable. A matrix with thre columns, each row is a unit vector.

y A spherical variable. A matrix with thre columns, each row is a unit vector.
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Details

A very similar to the classical correlation is calcualted. In addition, a hypothesis test for no correla-
tion is performed. Note, that this is a squared correlation actually, so negative values will never be
returned.

Value

A vector including:

R-squared The value of the squared correlation.

p-value The p-value of the no correlation hypothesis testing.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>

References

Kanti V. Mardia and Peter E. Jupp. Directional statistics, pg. 254–255.

See Also

spher.reg,vmf,circ.cor1,circ.cor2

Examples

x <- rvmf(100, rnorm(3), 10)
y <- rvmf(100, rnorm(3), 10)
spher.cor(x, y)

Spherical-spherical regression

Spherical-Spherical regression

Description

It performs regression when both the dependent and independent variables are spherical.

Usage

spher.reg(y, x, rads = FALSE)
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Arguments

y The dependent variable; a matrix with either two columns, latitude and lon-
gitude, either in radians or in degrees. Alternatively it is a matrix with three
columns, unit vectors.

x The dependent variable; a matrix with either two columns, latitude and lon-
gitude, either in radians or in degrees. Alternatively it is a matrix with three
columns, unit vectors. The two matrices must agree in the scale and dimen-
sions.

rads If the data are expressed in latitude and longitude then it matter to know if they
are in radians or degrees. If they are in radians, then this should be TRUE and
FALSE otherwise. If the previous argument, euclidean, is TRUE, this one does
not matter what its value is.

Details

Spherical regression as proposed by Chang (1986) is implemented. If the estimated rotation matrix
has a determinant equal to -1, singualr value decomposition is performed and the last unit vector of
the second matrix is multiplied by -1.

Value

A list including:

A The estimated rotation matrix.

fitted The fitted values in Euclidean coordinates (unit vectors).

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>

References

Ted Chang (1986). Spherical Regression. Annals of Statistics, 14(3): 907–924.

See Also

spher.cor,spml.reg,circ.cor1,circ.cor2,sphereplot

Examples

mx <- rnorm(3)
mx <- mx/sqrt( sum(mx^2) )
my <- rnorm(3)
my <- my/sqrt( sum(my^2) )
x <- rvmf(100, mx, 15)
A <- rotation(mx, my)
y <- x %*% t(A)
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mod <- spher.reg(y, x)
A
mod$A ## exact match, no noise
y <- x %*% t(A)
y <- y + rvmf(100, colMeans(y), 40)
mod <- spher.reg(y, x)
A
mod$A ## noise added, more relistic example

Summary statistics for circular data

Summary statistics for circular data

Description

It produces a few summary measures for circular data.

Usage

circ.summary(u, rads = FALSE, fast = FALSE, tol = 1e-09, plot = TRUE)

Arguments

u A vector with circular data.

rads If the data are in rads, then this should be TRUE, otherwise FALSE.

fast A boolean variable to do a faster implementation.

tol The tolerance level to stop the Newton-Raphson algorithm for finding kappa.

plot If you want to see the data plotted on a cicrle make this TRUE.

Details

It returns the circular mean, mean resultant length, variance, standard deviation and concentration
parameter. So, basically it returns the estimated values of the parameters of the von Mises distribu-
tion.

Value

If fast = FALSE a list including all the following. If fast = TRUE less items are returned.

mesos The circular mean direction.

confint The 95% confidence interval for the circular mean direction.

kappa The concentration parameter.

MRL The mean resultant length.

circvariance The circular variance.

circstd The circular standard deviation.

loglik The log-likelihood of the fitted von Mises distribution.
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Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>

References

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

See Also

rvonmises,vm.kde,vmf,group.vm,hcf.circaov

Examples

x <- rvonmises(50, 2.5, 15, rads = TRUE)
circ.summary(x, rads = TRUE, plot = TRUE)

Summary statistics for grouped circular data

Summary statistics for grouped circular data

Description

It produces a few summary measures for grouped circular data.

Usage

group.vm(group, fi, rads = FALSE)

Arguments

group A matrix denoting the classes. Each row consists of two numbers, the lower and
upper points of each class.

fi The frequency of each class of data.

rads If the data are in rads, then this should be TRUE, otherwise FALSE.

Details

It returns the circular mean, mean resultant length, variance, standard deviation and concentration
parameter. So, basically it returns the estimated values of the parameters of the von Mises distribu-
tion. The mena resultant length though is group corrected.



Summary statistics for grouped circular data 103

Value

A list including:

mesos The circular mean direction.

confint The 95% confidence interval for the circular mean direction.

kappa The concentration parameter.

MRL The mean resultant length.

circvariance The circular variance.

circstd The circular standard deviation.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>

References

Pewsey Arthur, Markus Neuhauser and Graeme D. Ruxton (2013). Circular statistics in R. Oxford
University Press.

Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

See Also

circ.summary,rvonmises,vm.kde

Examples

x <- rvonmises(200, 3, 10)
a <- circ.summary(x, rads = TRUE, plot = FALSE)
group <- seq(min(x) - 0.1, max(x) + 0.1, length = 6)
y <- cut(x, breaks = group, length = 6)
group <- matrix( c( group[1], rep(group[2:5], each = 2), group[6]), ncol = 2, byrow = TRUE)
fi <- as.vector( table(y) )
b <- group.vm(group, fi, rads = TRUE)
a
b
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Test for a given mean direction

Test for a given mean direction

Description

A log-likelihood ratio test for testing whether the sample mena direction is equal to some predefined
one.

Usage

meandir.test(x, mu, B = 999)

Arguments

x A matrix with the data, unit vectors.

mu A unit vector with the hypothesized mean direction.

B A number either 1, so no bootstrap calibration is performed or more than 1, so
bootstrap calibration is performed.

Details

The log-likelihood ratio test is performed.

Value

A list including:

mean.dir The sample mean direction

pvalue The p-value of the test.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>

References

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

See Also

vmf,kent.mle,rayleigh
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Examples

mu <- rnorm(5)
mu <- mu / sqrt( sum(mu^2) )
x <- rvmf(100, mu, 10)
meandir.test(x, mu, 1)
meandir.test(x, mu, 499)

Test for equality of concentration parameters for spherical data

Test for equality of concentration parameters for spherical data

Description

This tests the equality of concentration parameters for spherical data only.

Usage

spherconc.test(x, ina)

Arguments

x A matrix with the data in Euclidean coordinates, i.e. unit vectors

ina A variable indicating the groupings of the observations.

Details

The test is designed for spherical data only.

Value

A list including:

mess A message stating the value of the mean resultant and which test statistic was
used, U1, U2 or U3.

res A vector containing the test statistic and its p-value.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>

References

Kanti V. Mardia and Peter E. Jupp. Directional statistics, pg. 226-227.
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See Also

het.aov,lr.aov,embed.aov,hcf.aov,conc.test,sphereplot

Examples

x <- rvmf(100, rnorm(3), 15)
ina <- rep(1:4, each = 25)
spherconc.test(x, ina)

Test of equality of the concentration parameters for circular data

A test for testing the equality of the concentration parameter among g
samples, where g >= 2 for ciruclar data

Description

A test for testing the equality of the concentration parameter among g samples, where g >= 2 for
ciruclar data.

Usage

conc.test(u, ina, rads = FALSE)

Arguments

u A numeric vector containing the values of all samples.

ina A numerical variable or factor indicating the groups of each value.

rads If the data are in radians this should be TRUE and FALSE otherwise.

Details

This test works for circular data.

Value

A list including:

mess A message informing the use of the test statistic used.

res A numeric vector containing the value of the test statistic and its associated p-
value.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>
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References

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

See Also

embed.circaov,hcf.circaov,lr.circaov,het.circaov

Examples

x <- rvonmises(100, 2.4, 15)
ina <- rep(1:4,each = 25)
conc.test(x, ina, rads = TRUE)

The k-nearest neighbours using the cosinus distance

The k-nearest neighbours using the cosinus distance

Description

The k-nearest neighbours using the cosinus distance.

Usage

cosnn(xnew, x, k = 5, index = FALSE, rann = FALSE)

Arguments

xnew The new data whose k-nearest neighbours are to be found.

x The data, a numeric matrix with unit vectors.

k The number of nearest neighbours, set to 5 by default. It can also be a vector
with many values.

index If you want the indices of the closest observations set this equal to TRUE.

rann If you have large scale datasets and want a faster k-NN search, you can use kd-
trees implemented in the R package "RANN". In this case you must set this
argument equal to TRUE.

Details

The shortest distances or the indices of the k-nearest neighbours using the cosinus distance are
returned.

Value

A matrix with the shortest distance of each xnew from x, if index is FALSE, or the indices of the
nearest neighbours of each xnew from x, if index is TRUE.



108 Transform unit vectors to angular data

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Tsagris M. and Alenazi A. (2019). Comparison of discriminant analysis methods on the sphere.
Communications in Statistics: Case Studies, Data Analysis and Applications, 5(4), 467–491.

See Also

dirknn,dirknn.tune

Examples

xnew <- rvmf(10, rnorm(3), 5)
x <- rvmf(50, rnorm(3), 5)
a <- cosnn(xnew, x, k = 5)
b <- cosnn(xnew, x, k = 5, index = TRUE)

Transform unit vectors to angular data

Transform unit vectors to angular data

Description

Transform unit vectors to angular data.

Usage

etoa(x)

Arguments

x A numerical matrix with directional data, i.e. unit verctors.

Details

from the Euclidean coordinates the data are mapped to angles, expressed in rads.

Value

A list including:

mu A matrix with angles. The number of columns is one less than that of the original
matrix.
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Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

https://en.wikipedia.org/wiki/N-sphere#Spherical_coordinates

See Also

vmnb.pred,weibull.nb

Examples

x <- rvmf(10, rnorm(3), 5)
y <- etoa(x)

Tuning of the bandwidth parameter in the von Mises kernel

Tuning of the bandwidth parameter in the von Mises kernel for circular
data

Description

Tuning of the bandwidth parameter in the von Mises kernel for circular data. Cross validation is
used.

Usage

vmkde.tune(u, low = 0.1, up = 1, rads = TRUE)

Arguments

u The data, a numerical vector.

low The lower value of h to search.

up The lower value of h to search.

rads If the data are in radians this should be TRUE and FALSE otherwise.

Details

Tuning of the bandwidth parameter in the von Mises kernel for circula data via cross validation.
The procedure is fast because an optimiser is used.
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Value

A vector including two elements:

Optimal h The best H found.

cv The value of the maximised pseudo-likelihood.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>

References

Taylor C. C. (2008). Automatic bandwidth selection for circular density estimation. Computational
Statistics & Data Analysis, 52(7), 3493–3500.

Wand M. P., & Jones M. C. (1994). Kernel smoothing. CrC Press.

See Also

vm.kde,vmfkde.tune,vmf.kde

Examples

u <- rvonmises(100, 2.4, 10, rads = TRUE)
vmkde.tune(u)

Tuning of the bandwidth parameter in the von Mises-Fisher kernel

Tuning of the bandwidth parameter in the von Mises-Fisher kernel for
(hyper-)spherical data

Description

Tuning of the bandwidth parameter in the von Mises-Fisher kernel for (hyper-)spherical data whit
cross validation.

Usage

vmfkde.tune(x, low = 0.1, up = 1)

Arguments

x A matrix with the data in Euclidean cordinates, i.e. unit vectors.

low The lower value of the bandwdith to search.

up The upper value of the bandwdith to search.
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Details

Fast tuning of the bandwidth parameter in the von Mises-Fisher kernel for (hyper-)spherical data
via cross validation.

Value

A vector including two elements:

Optimal h The best H found.

cv The value of the maximised pseudo-likelihood.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>

References

Garcia Portugues E. (2013). Exact risk improvement of bandwidth selectors for kernel density
estimation with directional data. Electronic Journal of Statistics, 7, 1655–1685.

Wand M. P., and Jones M. C. (1994). Kernel smoothing. Crc Press.

See Also

vmf.kde,vmf.kerncontour,vm.kde,vmkde.tune

Examples

x <- rvmf(100, rnorm(3), 15)
vmfkde.tune(x)

Tuning of the k-NN algorithm using the arc cosinus distance

k-NN algorithm using the arc cosinus distance. Tuning the k neigbours

Description

It estimates the percentage of correct classification via an m-fold cross validation.

Usage

dirknn.tune(x, k = 2:10, ina, type = "S", mesos = TRUE, nfolds = 10, folds = NULL,
parallel = FALSE, stratified = TRUE, seed = FALSE, rann = FALSE)
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Arguments

x The data, a numeric matrix with unit vectors.

ina A variable indicating the groups of the data x.

nfolds How many folds to create?

k A vector with the number of nearest neighbours to consider.

type If type is "S", the standard k-NN algorithm is to be used, else "NS" for the non
standard one. See below (details) for more information.

mesos A boolean variable used only in the case of the non standard algorithm (type="NS").
Should the average of the distances be calculated (TRUE) or not (FALSE)? If it
is FALSE, the harmonic mean is calculated.

folds Do you already have a list with the folds? If not, leave this NULL.

parallel If you want the standard -NN algorithm to take place in parallel set this equal to
TRUE.

stratified Should the folds be created in a stratified way? i.e. keeping the distribution of
the groups similar through all folds?

seed If seed is TRUE, the results will always be the same.

rann If you have large scale datasets and want a faster k-NN search, you can use kd-
trees implemented in the R package "RANN". In this case you must set this
argument equal to TRUE.

Details

The standard algorithm is to keep the k nearest observations and see the groups of these observa-
tions. The new observation is allocated to the most frequent seen group. The non standard algorithm
is to calculate the classical mean or the harmonic mean of the k nearest observations for each group.
The new observation is allocated to the group with the smallest mean distance.

We have made an eficient (not very much efficient though) memory allocation. Even if you have
hundreds of thousands of observations, the computer will not clush, it will only take longer. Instead
of calculate the distance matrix once in the beginning we calcualte the distances of the out-of-sample
observations from the rest. If we calculated the distance matrix in the beginning, once, the resulting
matrix could have dimensions thousands by thousands. This would not fit into the memory. If you
have a few hundres of observations, the runtime is about the same (maybe less, maybe more) as
calculating the distance matrix in the first place.

Value

A list including:

per The average percent of correct classification across the neighbours.

percent The bias corrected percent of correct classification.

runtime The run time of the algorithm. A numeric vector. The first element is the user
time, the second element is the system time and the third element is the elapsed
time.
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Author(s)

Michail Tsagris R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Tsagris M. and Alenazi A. (2019). Comparison of discriminant analysis methods on the sphere.
Communications in Statistics: Case Studies, Data Analysis and Applications, 5(4), 467–491.

See Also

dirknn,vmf.da,mix.vmf

Examples

k <- runif(4, 4, 20)
prob <- c(0.2, 0.4, 0.3, 0.1)
mu <- matrix(rnorm(16), ncol = 4)
mu <- mu / sqrt( rowSums(mu^2) )
da <- rmixvmf(200, prob, mu, k)
x <- da$x
ina <- da$id
dirknn.tune(x, nfolds = 5, k = 2:6, ina, type = "S", mesos = TRUE)
dirknn.tune(x, nfolds = 10, k = 2:6, ina, type = "S", mesos = TRUE)

Tuning of the k-NN regression

Tuning of the k-NN regression with Euclidean or (hyper-)spherical re-
sponse and or predictor variables

Description

Tuning of the k-NN regression with Euclidean or (hyper-)spherical response and or predictor vari-
ables. It estimates the percentage of correct classification via an m-fold cross valdiation. The bias
is estimated as well using the algorithm suggested by Tibshirani and Tibshirani (2009) and is sub-
tracted.

Usage

knnreg.tune(y, x, nfolds = 10, A = 10, ncores = 1, res = "eucl", type = "euclidean",
estim = "arithmetic", folds = NULL, seed = FALSE, graph = FALSE)

Arguments

y The currently available data, the response variables values. A matrix with either
euclidean (univariate or multivariate) or (hyper-)spherical data. If you have a
circular response, say u, transform it to a unit vector via (cos(u), sin(u)).
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x The currently available data, the predictor variables values. A matrix with either
euclidean (univariate or multivariate) or (hyper-)spherical data. If you have a
circular response, say u, transform it to a unit vector via (cos(u), sin(u)).

nfolds How many folds to create?

A The maximum number of nearest neighbours, set to 5 by default, starting from
the 1 nearest neighbor.

ncores How many cores to use. This is taken into account only when the predictor
variables are spherical.

res The type of the response variable. If it is Euclidean, set this argument equal to
"res". If it is a unit vector set it to res="spher".

type The type of distance to be used. This determines the nature of the predictor
variables. This is actually the argument "method" of the distance function in R.
The default value is "euclidean". R has several options the type of the distance.
Just type ?dist in R and see the methods. Any method can be given here. If you
have unit vectors in general, you should put type="spher", so that the cosinus
distance is calculated.

estim Once the k observations whith the smallest distance are discovered, what should
the prediction be? The arithmetic average of the corresponding y values be used
estim="arithmetic" or their harmonic average estim="harmonic".

folds Do you already have a list with the folds? If not, leave this NULL.

seed If seed is TRUE, the results will always be the same.

graph If this is TRUE a graph with the results will appear.

Details

Tuning of the k-NN regression with Euclidean or (hyper-)spherical response and or predictor vari-
ables. It estimates the percentage of correct classification via an m-fold cross valdiation. The bias
is estimated as well using the algorithm suggested by Tibshirani and Tibshirani (2009) and is sub-
tracted. The sum of squares of prediction is used in the case of Euclidean responses. In the case of
spherical responses the

∑
ŷT
i
yi is calculated.

Value

A list including:

crit The value of the criterion to minimise/maximise for all values of the nearest
neighbours.

best_k The best value of the nearest neighbours.

performance The bias corrected optimal value of the criterion, along wit the estimated bias.
For the case of Euclidean reponse this will be higher than the crit and for the
case or spherical responses it will be lower than crit.

runtime The run time of the algorithm. A numeric vector. The first element is the user
time, the second element is the system time and the third element is the elapsed
time.
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Author(s)

Michail Tsagris R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and
Giorgos Athineou <gioathineou@gmail.com>

See Also

knn.reg,spher.reg,dirknn.tune

Examples

y <- iris[, 1]
x <- iris[, 2:4]
x <- x/ sqrt( rowSums(x^2) ) ## Euclidean response and spherical predictors
knnreg.tune(y, x, A = 5, res = "eucl", type = "spher", estim = "arithmetic")

y <- iris[, 1:3]
y <- y/ sqrt( rowSums(y^2) ) ## Spherical response and Euclidean predictor
x <- iris[, 2]
knnreg.tune(y, x, A = 5, res = "spher", type = "euclidean", estim = "arithmetic")

Uniformity test for circular data

Uniformity tests for circular data.

Description

Hypothesis tests of uniformity for circular data.

Usage

kuiper(u, rads = FALSE, R = 1)

watson(u, rads = FALSE, R = 1)

Arguments

u A numeric vector containing the circular data, which cna be expressed in degrees
or radians.

rads A boolean variable. If the data are in radians, put this TRUE. If the data are
expressed in degrees make this FALSE.

R If R = 1the asymtptotic p-value will be calcualted. If R is greater than 1 the
bootstrap p-value is returned.

Details

The high concentration (hcf.circaov), log-likelihood ratio (lr.circaov), embedding approach (em-
bed.circaov) or the non equal concentration parameters approach (het.circaov) is used.
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Value

A vector including:

Test The value of the test statistic.

p-value The p-value of the test (bootstrap or asymptotic depends upon the value of the
argument R).

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>

References

Jammalamadaka, S. Rao and SenGupta, A. (2001). Topics in Circular Statistics, pg. 153-55
(Kuiper’s test) & 156-157 (Watson’s test).

See Also

rayleigh,vmf,rvonmises

Examples

x <- rvonmises(n = 40, m = 2, k = 10)
kuiper(x, rads = TRUE)
watson(x, rads = TRUE)
x <- rvonmises(40, m = 2, k = 0)
kuiper(x, rads = TRUE)
watson(x, rads = TRUE)

Unit vector(s) with a given angle

Unit vector(s) with a given angle

Description

Unit vector with a given angle from a given unit vector.

Usage

vec(x, n = 1, deg = 90)
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Arguments

x A unit vector. If it is not a unit vector it becomes one.

n The number of unit vectors to return.

deg The angle between the given vector and the n vectors to be returned. This must
be in degrees and it has to be between 0 and 180 degrees. If the angle is 0, the
same unit vector will be returned. If the angle is 180, the same unit vector with
the signs changed will be returned.

Details

The user provides a unit vector and the degrees. The function will return n unit vectors whose
angle with the given unit vector equals the degrees given. For example, if you want 10 unit vectors
purpendicualr to the x put vec(x, 10, 90).

Value

A list including:

runtime The runtime of the procedure.

crit The calculated angle between the given unit vector and each of the generated
unit vectors.

mat A matrix with the n unit vectors.

Author(s)

Michail Tsagris R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and
Giorgos Athineou <gioathineou@gmail.com>

See Also

rvmf,rbingham,rfb

Examples

x <- rnorm(10)
x <- x / sqrt( sum(x^2) )
a <- vec(x, 20, 90)

von Mises kernel density estimation

Kernel density estimation of circular data with a von Mises kernel

Description

Kernel density estimation of circular data with a von Mises kernel.
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Usage

vm.kde(u, h, thumb = "none", rads = TRUE)

Arguments

u A numeric vector containing the data.

h The bandwidth.

thumb It can be either "none", so the bandwidth the user has set will be used, "tay" for
the method of Taylor (2008) or "rot" for the method of Garcia-Portugues (2013).

rads If the data are in radians, this should be TRUE and FALSE otherwise.

Details

The user has the option to use a bandwidth he/she has found in some way (cross-validation) or
estimate it as Taylor (2008) or Garcia-Portugues (2013).

Value

A list including:

h The bandwidth. If the user chose one of "tay" or "rot" the estimated bandwidth
will be returned.

f The kernel density estimate at the observed points.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athi-
neou<gioathineou@gmail.com>

References

Taylor, C. C. (2008). Automatic bandwidth selection for circular density estimation. Computational
Statistics & Data Analysis, 52(7): 3493-3500.

Garcia Portugues, E. (2013). Exact risk improvement of bandwidth selectors for kernel density
estimation with directional data. Electronic Journal of Statistics, 7, 1655-1685.

See Also

vmkde.tune,vmfkde.tune,vmf.kde

Examples

x <- rvonmises(100, 2.4, 10, rads = TRUE)
hist(x, freq = FALSE)
f1 <- vm.kde(x, h = 0.1, thumb = "rot", rads = TRUE)$f
f2 <- vm.kde(x, h = 0.1, thumb = "tay", rads = TRUE)$f
h <- vmkde.tune(x)[1]
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f3 <- vm.kde(x, h = h, thumb = "none", rads = TRUE)$f
points(x, f1, col = 1)
points(x, f2, col = 2)
points(x, f3, col = 3)

von Mises-Fisher kernel density estimation for (hyper-)spherical data

Kernel density estimation for (hyper-)spherical data using a von
Mises-Fisher kernel

Description

A von Mises-Fisher kernel is used for the non parametric density estimation.

Usage

vmf.kde(x, h, thumb = "none")

Arguments

x A matrix with unit vectors, i.e. the data being expressed in Euclidean cordinates.

h The bandwidth to be used.

thumb If this is "none", the given bandwidth is used. If it is "rot" the rule of thumb
suggested by Garcia-Portugues (2013) is used.

Details

A von Mises-Fisher kernel is used for the non parametric density estimation.

Value

A list including:

h The bandwidth used.

f A vector with the kernel density estimate calculated for each of the data points.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>

References

Garcia Portugues, E. (2013). Exact risk improvement of bandwidth selectors for kernel density
estimation with directional data. Electronic Journal of Statistics, 7, 1655-1685.
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See Also

vmfkde.tune,vm.kde,vmf,vmkde.tune

Examples

x <- rvmf(100, rnorm(5), 15)
h <- vmfkde.tune(x)[1]
f1 <- vmf.kde(x, h = h, thumb = "none")
f2 <- vmf.kde(x, h = h, thumb = "rot")
f1$h ; f2$h
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distribution, 92

Simulation of random values from a
spherical Kent distribution, 93

∗ Simulation of random values
Simulation from a Bingham

distribution using any
symmetric matrix A, 88

∗ Simulation
Directional-package, 4

∗ Spherical coordinates
Euclidean transformation, 36
Inverse of the Euclidean
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Lambert’s equal area projection, 52
Spherical-spherical correlation,

98
Spherical-spherical regression, 99
Test for equality of concentration

parameters for spherical data,
105
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circ.cors1 (Circular correlations
between one and many circular
variables), 13
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circexp.mle (MLE of some circular
distributions), 59

circlin.cor, 15, 17
circlin.cor (Circular-linear

correlation), 17
circpurka.density (Density of some

circular distributions), 34
Circular correlations between one and

many circular variables, 13
Circular correlations between two

circular variables, 14
Circular or angular regression, 15
Circular-linear correlation, 17
colspml.mle, 61
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angular Gaussian and the von
Mises Fisher distributions), 18

Column-wise MLE of the angular
Gaussian and the von Mises
Fisher distributions, 18

colvm.mle (Column-wise MLE of the
angular Gaussian and the von
Mises Fisher distributions), 18

conc.test, 6, 8, 9, 12, 106
conc.test (Test of equality of the

concentration parameters for
circular data), 106

Contour plot of a mixture of von
Mises-Fisher distributions
model, 19

Contour plot of spherical data using a
von Mises-Fisher kernel
density estimate, 20

Contour plot of the Kent distribution
for some data, 22

Contour plot of the Kent distribution
without any data, 23

Contour plots of the von Mises-Fisher
distribution, 24

Conversion of cosines to azimuth and
plunge, 25

Converting a rotation matrix on SO(3)
to an unsigned unit
quaternion, 26

Converting an unsigned unit quaternion
to rotation matrix on SO(3), 27

cosap (Conversion of cosines to
azimuth and plunge), 25

cosnn (The k-nearest neighbours using
the cosinus distance), 107

Cross validation for estimating the
classification rate, 28

Cross validation in von Mises-Fisher
discrminant analysis, 30

Cross validation with ESAG discrminant
analysis, 31

Density of some (hyper-)spherical
distributions, 32

Density of some circular
distributions, 34

Density of the spherical Kent and ESAG
distributions, 35

dirda.cv, 41
dirda.cv (Cross validation for

estimating the classification
rate), 28

Directional-package, 4
dirknn, 29, 31, 32, 72, 74, 108, 113
dirknn (k-NN algorithm using the arc

cosinus distance), 49
dirknn.tune, 50, 108, 115
dirknn.tune (Tuning of the k-NN

algorithm using the arc
cosinus distance), 111

embed.aov, 9, 106
embed.aov (Anova for (hyper-)spherical

data), 7
embed.boot (Bootstrap 2-sample mean

test for (hyper-)spherical
data), 11

embed.circaov, 6, 107
embed.circaov (Anova for circular

data), 8
embedcirc.perm (Permutation based

2-sample mean test for
circular data), 70

ESAG.da, 29, 72
ESAG.da (Cross validation with ESAG

discrminant analysis), 31
ESAGda.pred (Prediction in

discriminant analysis based on
ESAG distribution), 72

ESAGdensity, 5, 35, 63, 78
ESAGdensity (Density of the spherical

Kent and ESAG distributions),
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35
ESAGmle, 33, 36, 44, 69, 78, 98
ESAGmle (MLE of the ESAG distribution),

62
ESAGsim, 63
ESAGsim (Random values generation from

the ESAG distribution), 77
etoa (Transform unit vectors to

angular data), 108
euclid, 25, 46, 48, 53
euclid (Euclidean transformation), 36
euclid.inv, 25, 37
euclid.inv (Inverse of the Euclidean

transformation), 48
Euclidean transformation, 36
eul2rot, 25, 38
eul2rot (Rotation matrix on SO(3) from

three Euler angles), 84
Euler angles from a rotation matrix on

SO(3), 37

f.rbing, 88, 93, 94
f.rbing (Simulation of random values

from a Bingham distribution),
90

fb.saddle, 54, 65
fb.saddle (Saddlepoint approximations

of the Fisher-Bingham
distributions), 86

fishkent, 44
fishkent (Hypothesis test for von

Mises-Fisher distribution
over Kent distribution), 44

Forward Backward Early Dropping
selection for circular data
using the SPML regression, 38

Generate random folds for
cross-validation, 40

ggvm (MLE of the generalised von Mises
distribution), 63

Goodness of fit test for grouped data,
41

group.gof, 75, 76
group.gof (Goodness of fit test for

grouped data), 41
group.vm, 102
group.vm (Summary statistics for

grouped circular data), 102

Habeck’s rotation matrix generation, 42
habeck.rot (Habeck’s rotation matrix

generation), 42
hcf.aov, 9, 12, 106
hcf.aov (Anova for (hyper-)spherical

data), 7
hcf.boot, 8
hcf.boot (Bootstrap 2-sample mean test

for (hyper-)spherical data), 11
hcf.circaov, 6, 71, 102, 107
hcf.circaov (Anova for circular data), 8
hcfcirc.perm (Permutation based

2-sample mean test for
circular data), 70

het.aov, 9, 71, 106
het.aov (Anova for (hyper-)spherical

data), 7
het.boot (Bootstrap 2-sample mean test

for (hyper-)spherical data), 11
het.circaov, 6, 107
het.circaov (Anova for circular data), 8
hetcirc.perm (Permutation based

2-sample mean test for
circular data), 70

Hypothesis test for IAG distribution
over the ESAG distribution, 43

Hypothesis test for von Mises-Fisher
distribution over Kent
distribution, 44

iag.density (Density of some
(hyper-)spherical
distributions), 32

iag.mle, 44, 55, 63
iag.mle (MLE of (hyper-)spherical

distributions), 57
iag.reg (Spherical regression using the

projected normal or the von
Mises-Fisher distribution), 97

iagesag, 45
iagesag (Hypothesis test for IAG

distribution over the ESAG
distribution), 43

Interactive 3D plot of spherical data,
46

Inverse of Lambert’s equal area
projection, 47

Inverse of the Euclidean
transformation, 48
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k-NN algorithm using the arc cosinus
distance, 49

k-NN regression, 50
kent.contour, 22, 24
kent.contour (Contour plot of the Kent

distribution without any
data), 23

kent.datacontour, 21, 23
kent.datacontour (Contour plot of the

Kent distribution for some
data), 22

kent.density, 35
kent.density (Density of the spherical

Kent and ESAG distributions),
35

kent.logcon, 87
kent.logcon (Logarithm of the Kent

distribution normalizing
constant), 53

kent.mle, 22, 23, 33, 36, 44, 45, 54, 63, 65,
69, 81, 87, 97, 104

kent.mle (MLE of the Kent
distribution), 64

kmeans, 10, 55
knn.reg, 29, 72, 74, 115
knn.reg (k-NN regression), 50
knnreg.tune, 52
knnreg.tune (Tuning of the k-NN

regression), 113
kuiper (Uniformity test for circular

data), 115

lambert, 37, 46–48, 86
lambert (Lambert’s equal area

projection), 52
Lambert’s equal area projection, 52
lambert.inv, 53, 86
lambert.inv (Inverse of Lambert’s

equal area projection), 47
Logarithm of the Kent distribution

normalizing constant, 53
lr.aov, 9, 106
lr.aov (Anova for (hyper-)spherical

data), 7
lr.boot (Bootstrap 2-sample mean test

for (hyper-)spherical data), 11
lr.circaov, 6, 107
lr.circaov (Anova for circular data), 8

lrcirc.perm (Permutation based
2-sample mean test for
circular data), 70

makefolds, 29
makefolds (Generate random folds for

cross-validation), 40
Many simple circular or angular

regressions, 54
matrixfisher.mle (MlE of the Matrix

Fisher distribution on SO(3)),
66

meandir.test, 80
meandir.test (Test for a given mean

direction), 104
mediandir (Spherical and

hyperspherical median), 96
mediandir_2 (Spherical and

hyperspherical median), 96
mix.vmf, 11, 20, 31, 50, 74, 92, 113
mix.vmf (Mixtures of Von Mises-Fisher

distributions), 55
Mixtures of Von Mises-Fisher

distributions, 55
mixvmf.contour, 11, 56
mixvmf.contour (Contour plot of a

mixture of von Mises-Fisher
distributions model), 19

MLE of (hyper-)spherical
distributions, 57

MLE of some circular distributions, 59
MLE of some circular distributions

with multiple samples, 60
MLE of the ESAG distribution, 62
MLE of the generalised von Mises

distribution, 63
MLE of the Kent distribution, 64
MlE of the Matrix Fisher distribution

on SO(3), 66
MLE of the Purkayashta distribution, 67
MLE of the Wood bimodal distribution

on the sphere, 68
multispml.mle (MLE of some circular

distributions with multiple
samples), 60

multivm.mle (MLE of some circular
distributions with multiple
samples), 60
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multivmf (MLE of (hyper-)spherical
distributions), 57

Naive Bayes classifiers for circular
data, 69

Permutation based 2-sample mean test
for circular data, 70

Prediction in discriminant analysis
based on ESAG distribution, 72

Prediction in discriminant analysis
based on von Mises-Fisher
distribution, 73

Prediction with some naive Bayes
classifiers for circular data,
74

Probability density function of the
von Mises-Fisher distribution,
75

purka.density (Density of some
(hyper-)spherical
distributions), 32

purka.mle, 61
purka.mle (MLE of the Purkayashta

distribution), 67
pvm, 42
pvm (Probability density function of

the von Mises-Fisher
distribution), 75
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