
Package ‘DiffusionRjgqd’
August 29, 2016

Version 0.1.1

Title Inference and Analysis for Jump Generalized Quadratic Diffusions

Description
Tools for performing inference and analysis on a class of quadratic jump diffusion processes.

URL https://github.com/eta21

BugReports https://github.com/eta21/DiffusionRjgqd/issues

MailingList Please send questions and comments to etiennead@gmail.com.

Depends R (>= 3.2.1)

Imports Rcpp, RcppArmadillo, rgl, colorspace

LinkingTo Rcpp, RcppArmadillo

Suggests DiffusionRgqd, knitr, coda, Quandl, R.rsp

License GPL (>= 2)

VignetteBuilder knitr, R.rsp

NeedsCompilation yes

Author Etienne A.D. Pienaar [aut, cre],
Melvin M. Varughese [ctb]

Maintainer Etienne A.D. Pienaar <etiennead@gmail.com>

Repository CRAN

Date/Publication 2016-08-16 19:46:05

R topics documented:
DiffusionRjgqd-package . 2
BiJGQD.density . 3
BiJGQD.mcmc . 6
JGQD.density . 10
JGQD.dic . 13
JGQD.estimates . 14
JGQD.mcmc . 15
JGQD.plot . 18

1

https://github.com/eta21
https://github.com/eta21/DiffusionRjgqd/issues

2 DiffusionRjgqd-package

JGQD.remove . 20
JSDEsim1 . 21
JSDEsim2 . 21
JSDEsim3 . 22
RcppArmadillo-Functions . 23

Index 24

DiffusionRjgqd-package

A package for Performing Inference and Analysis on Generalized
Quadratic Jump Diffusion Processes (JGQDs).

Description

DiffusionRjgqd is a toolbox for performing analysis and inference on a class of jump diffusion
processes with quadratic drift and diffusion with state-dependent and time inhomogeneous jump
mechanisms. The package consists of functions for performing likelihood based inference and
transitional density approximations for both 1D and 2D JGQDs.

Details

Package: DiffusionRjgqd
Type: Package
Version: 0.1.0
Date: 2015-12-01
License: GPL (>= 2)

The package is designed around an interface whereby the user supplies standard R-functions dic-
tating the functional form of the coefficients of the JGQD after which the package handles all the
necessary mathematics and algorithmic construction. Furthermore, computational efficiency is op-
timized by constructing algorithms in C++ using the Rcpp and RcppArmadillo libraries.

Functions included in the package:

BiJGQD.density : Generate the transitional density of a 2D JGQD.
BiJGQD.mcmc* : Conduct inference via MCMC on a 2D JGQD.
JGQD.density : Generate the transitional density of a 1D JGQD.
JGQD.mcmc* : Conduct inference via MCMC on a 1D JGQD.

* Functions use C++.

Author(s)

Etienne A.D. Pienaar: <etiennead@gmail.com>

BiJGQD.density 3

Maintainer: Etienne A.D. Pienaar (<etiennead@gmail.com>)

References

Updates available on GitHub at https://github.com/eta21.

See Also

BiJGQD.mcmc, JGQD.mcmc, JGQD.dic,JGQD.remove and JGQD.density.

Examples

Not run:
example(JGQD.density)
example(BiJGQD.density)

End(Not run)

BiJGQD.density Generate the Transition Density of a Bivariate Jump Generalized
Quadratic Diffusion Model (2D JGQD).

Description

BiJGQD.density generates approximate transitional densities for bivariate generalized quadratic
jump diffusions (JGQDs). Given a starting coordinate, (Xs, Ys), the approximation is evaluated
over a lattice Xt x Yt for an equispaced discretization (intervals of width delt) of the transition
time horizon [s, t].

BiJGQD.density() approximates the transitional density of jump diffusions of the form:

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt + dPt

where
µ(1)(Xt, t) =

∑
i+j≤2

aij(t)X
i
tY

j
t ,

µ(2)(Xt, t) =
∑

i+j≤2

bij(t)X
i
tY

j
t ,

and
σ(Xt, Yt, t)σ

′(Xt, Yt, t) = (γ(i,j)(Xt, t))i,j=1,2

such that
γ(1,1)(Xt, t) =

∑
i+j≤2

cij(t)X
i
tY

j
t ,

γ(1,2)(Xt, t) =
∑

i+j≤2

dij(t)X
i
tY

j
t ,

γ(2,1)(Xt, t) =
∑

i+j≤2

eij(t)X
i
tY

j
t ,

https://github.com/eta21

4 BiJGQD.density

γ(2,2)(Xt, t) =
∑

i+j≤2

fij(t)X
i
tY

j
t ,

and dPt = J(Xt, t)dNt describes a Poisson process with jump matrix:

J(Xt, t, żt)
(1,1) = ż11,

J(Xt, t, żt)
(2,1) = ż21,

if jumps are additive or
J(Xt, t, żt)

(1,1) = ż11Xt,

J(Xt, t, żt)
(2,1) = ż21Yt,

if jumps are multiplicative. For purposes of this package the arrival rate is decomposed as:

λ(Xt, t) =
∑

i+j≤1

λij(t)X
i
tY

j
t

and
(ż11, ż21)

′ ∼ MVN(µJ ,ΣJ).

Usage

BiJGQD.density(Xs, Ys, Xt, Yt, s, t, delt, Dtype, Jdist, Jtype, print.output,
eval.density)

Arguments

Xt x-Coordinates of the lattice at which to evaluate the transition density.
Yt y-Coordinates of the lattice at which to evaluate the transition density.
Xs Initial x-coordinate.
Ys Initial y-coordinate.
s Starting time of the diffusion.
t Final time at which to evaluate the transition density.
delt Step size for numerical solution of the cumulant system. Also used for the

discretization of the transition time-horizon. See warnings [1] and [2].
Dtype The density approximant to use. Valid types are "Saddlepoint" (default) or

"Edgeworth".
Jdist Valid entries are ’MVNormal’ (currently).
Jtype Valid types are 1 or 2.
print.output If TRUE information about the model and algorithm is printed to the console.
eval.density If TRUE, the density is evaluated in addition to calculating the moment eqns.

Details

BiJGQD.density constructs an approximate transition density for a class of quadratic diffusion
models. This is done by first evaluating the trajectory of the cumulants/moments of the diffusion
numerically as the solution of a system of ordinary differential equations over a time horizon [s,t]
split into equi-distant points delt units apart. Subsequently, the resulting cumulants/moments are
carried into a density approximant (by default, a saddlepoint approximation) in order to evaluate
the transtion surface.

BiJGQD.density 5

Value

density 3D Array containing approximate density values. Note that the 3rd dimension
represents time.

Xt Copy of x-coordinates.

Yt Copy of y-coordinates.

time A vector containing the time mesh at which the density was evaluated.

cumulants A matrix giving the cumulants of the diffusion. Cumulants are indicated by
row-names.

Warning

Warning [1]: The system of ODEs that dictate the evolution of the cumulants do so approximately.
Thus, although it is unlikely such cases will be encountered in inferential contexts, it is worth check-
ing (by simulation) whether cumulants accurately replicate those of the target GQD. Furthermore,
it may in some cases occur that the cumulants are indeed accurate whilst the density approximation
fails. This can again be verified by simulation.

Warning [2]: The parameter delt is also used as the stepsize for solving a system of ordinary
differential equations (ODEs) that govern the evolution of the cumulants of the diffusion. As such
delt is required to be small for highly non-linear models in order to ensure sufficient accuracy.

Author(s)

Etienne A.D. Pienaar: <etiannead@gmail.com>

References

Updates available on GitHub at https://github.com/eta21.

Daniels, H.E. 1954 Saddlepoint approximations in statistics. Ann. Math. Stat., 25:631–650.

Eddelbuettel, D. and Romain, F. 2011 Rcpp: Seamless R and C++ integration. Journal of Statistical
Software, 40(8):1–18,. URL http://www.jstatsoft.org/v40/i08/.

Eddelbuettel, D. 2013 Seamless R and C++ Integration with Rcpp. New York: Springer. ISBN
978-1-4614-6867-7.

Eddelbuettel, D. and Sanderson, C. 2014 Rcpparmadillo: Accelerating R with high-performance
C++ linear algebra. Computational Statistics and Data Analysis, 71:1054–1063. URL http://dx.
doi.org/10.1016/j.csda.2013.02.005.

Feagin, T. 2007 A tenth-order Runge-Kutta method with error estimate. In Proceedings of the
IAENG Conf. on Scientifc Computing.

Varughese, M.M. 2013 Parameter estimation for multivariate diffusion systems. Comput. Stat.
Data An., 57:417–428.

See Also

See BiJGQD.mcmc and JGQD.density.

https://github.com/eta21
http://www.jstatsoft.org/v40/i08/
http://dx.doi.org/10.1016/j.csda.2013.02.005
http://dx.doi.org/10.1016/j.csda.2013.02.005

6 BiJGQD.mcmc

Examples

#===

For detailed notes and examples on how to use the BiJGQD.density() function, see
the following vignette:

RShowDoc('Part_3_Bivariate_Diffusions',type='html','DiffusionRjgqd')

#===

BiJGQD.mcmc MCMC Inference on Bivariate Jump Generalized Quadratic Diffu-
sions (2D JGQDs).

Description

BiJGQD.mcmc() uses parametrised coefficients (provided by the user as R-functions) to construct
a C++ program in real time that allows the user to perform Bayesian inference on the resulting
diffusion model. Given a set of starting parameters and other input parameters, a MCMC chain
is returned for further analysis. The user may specify any model within the JGQD framework by
defining parametrised functions giving the form of the coefficients of the model.

BiJGQD.density() approximates the transitional density of jump diffusions of the form:

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt + dPt

where
µ(1)(Xt, t) =

∑
i+j≤2

aij(t)X
i
tY

j
t ,

µ(2)(Xt, t) =
∑

i+j≤2

bij(t)X
i
tY

j
t ,

and
σ(Xt, Yt, t)σ

′(Xt, Yt, t) = (γ(i,j)(Xt, t))i,j=1,2

such that
γ(1,1)(Xt, t) =

∑
i+j≤2

cij(t)X
i
tY

j
t ,

γ(1,2)(Xt, t) =
∑

i+j≤2

dij(t)X
i
tY

j
t ,

γ(2,1)(Xt, t) =
∑

i+j≤2

eij(t)X
i
tY

j
t ,

γ(2,2)(Xt, t) =
∑

i+j≤2

fij(t)X
i
tY

j
t ,

BiJGQD.mcmc 7

and dPt = J(Xt, t)dNt describes a Poisson process with jump matrix:

J(Xt, t, żt)
(1,1) = ż11,

J(Xt, t, żt)
(2,1) = ż21,

if jumps are additive or
J(Xt, t, żt)

(1,1) = ż11Xt,

J(Xt, t, żt)
(2,1) = ż21Yt,

if jumps are multiplicative. For purposes of this package the arrival rate is decomposed as:

λ(Xt, t) =
∑

i+j≤1

λij(t)X
i
tY

j
t

and
(ż11, ż21)

′ ∼ MVN(µJ ,ΣJ).

Usage

BiJGQD.mcmc(X, time, mesh = 10, theta, sds, updates = 10,
burns = min(round(updates/2),25000), exclude = NULL, plot.chain = TRUE,

RK.order = 4, wrt = FALSE, Tag = NA, Dtype = "Saddlepoint",
Jdist = "MVNormal", Jtype ='Add', adapt = 0, print.output = TRUE,
decode = TRUE, palette = 'mono')

Arguments

X A matrix containing rows of data points to be modelled. Although observations
are allowed to be non-equidistant, observations in both dimensions are assumed
to occur at the same time epochs (i.e. time gives the time signature for both
dimensions).

time A vector containing the time epochs at which observations were made.

mesh The number of mesh points in the time discretization.

theta The parameter vector of the process. theta are taken as the starting values of the
MCMC chain and gives the dimension of the parameter vector used to calculate
the DIC. Care should be taken to ensure that each element in theta is in fact
used within the coefficient-functions, otherwise redundant parameters will be
counted in the calculation of the DIC.

sds Proposal distribution standard deviations. That is, for the i-th parameter the
proposal distribution is ~ Normal(...,sds[i]^2).

updates The number of MCMC updates/iterations to perform (including burn-in).

burns The number of MCMC updates/iterations to burn.

exclude Vector indicating which transitions to exclude from the analysis. Default = NULL.

plot.chain If = TRUE (default), a trace plot of the MCMC chain will be made along with a
trace of the acceptance rate.

RK.order The order of the Runge-Kutta solver used to approximate the trajectories of
cumulants. Must be 4 (default) or 10.

8 BiJGQD.mcmc

Tag Tag can be used to name (tag) an MCMC run e.g. Tag='Run_1'

Dtype The density approximant to use. Valid types are "Saddlepoint" (default),
"Edgeworth" or "Normal".

Jdist Valid entries are ’MVNormal’ (currently).

Jtype Valid types are 1 or 2.

adapt For development purposes.

wrt If TRUE a .cpp file will be written to the current directory. For bug report diag-
nostics.

print.output If TRUE information about the model and algorithm is printed to the console.

decode Should the algorithm estimate jump detection probabilities? Default value is
TRUE.

palette Colour palette for drawing trace plots. Default palette = 'mono', otherwise a
qualitative palette will be used.

Value

par.matrix A matrix containing the MCMC chain on theta.
acceptence.rate

A vector containing the acceptance rate of the MCMC at every iteration.

model.info A list of variables pertaining to inference calculations.
model.info$elapsed.time

The runtime, in h/m/s format,of the MCMC procedure (excluding compile time).
model.info$time.homogeneous

‘No’ if the model has time-homogeneous coefficients and ‘Yes’ otherwise.

model.info$p The dimension of theta.

model.info$DIC Calculated Deviance Information Criterion.

model.info$pd Effective number of parameters (see model.info$DIC).

decode.prob Estimated jump detection probabilities.

Syntactical jargon

Synt. [1]: The coefficients of the 2D JGQD may be parameterized using the reserved variable
theta. For example:

a00 <- function(t){theta[1]*(theta[2]+sin(2*pi*(t-theta[3])))}.

Synt. [2]: Due to syntactical differences between R and C++ special functions have to be used
when terms that depend on t. When the function cannot be separated in to terms that contain a
single t, the prod(a,b) function must be used. For example:

a00 <- function(t){0.1*(10+0.2*sin(2*pi*t)+0.3*prod(sqrt(t),1+cos(3*pi*t)))}.

Here sqrt(t)*cos(3*pi*t) constitutes the product of two terms that cannot be written i.t.o. a single t.
To circumvent this isue, one may use the prod(a,b) function.

Synt. [3]: Similarly, the ^ - operator is not overloaded in C++. Instead the pow(x,p) function may
be used to calculate x^p. For example sin(2*pi*t)^3 in:

a00 <- function(t){0.1*(10+0.2*pow(sin(2*pi*t),3))}.

BiJGQD.mcmc 9

Warning

Warning [1]: The parameter mesh is used to discretize the transition horizons between successive
observations. It is thus important to ensure that mesh is not too small when large time differences
are present in time. Check output for max(dt) and divide by mesh.

Note

Note [1]: When plot.chain is TRUE, a trace plot is created of the resulting MCMC along with the
acceptance rate at each update. This may save time when scrutinizing initial MCMC runs.

Author(s)

Etienne A.D. Pienaar <etiannead@gmail.com>

References

Updates available on GitHub at https://github.com/eta21.

Daniels, H.E. 1954 Saddlepoint approximations in statistics. Ann. Math. Stat., 25:631–650.

Eddelbuettel, D. and Romain, F. 2011 Rcpp: Seamless R and C++ integration. Journal of Statistical
Software, 40(8):1–18,. URL http://www.jstatsoft.org/v40/i08/.

Eddelbuettel, D. 2013 Seamless R and C++ Integration with Rcpp. New York: Springer. ISBN
978-1-4614-6867-7.

Eddelbuettel, D. and Sanderson, C. 2014 Rcpparmadillo: Accelerating R with high-performance
C++ linear algebra. Computational Statistics and Data Analysis, 71:1054–1063. URL http://dx.
doi.org/10.1016/j.csda.2013.02.005.

Feagin, T. 2007 A tenth-order Runge-Kutta method with error estimate. In Proceedings of the
IAENG Conf. on Scientifc Computing.

Varughese, M.M. 2013 Parameter estimation for multivariate diffusion systems. Comput. Stat.
Data An., 57:417–428.

See Also

JGQD.remove and JGQD.mcmc.

Examples

#===

For detailed notes and examples on how to use the BiJGQD.mcmc() function, see
the following vignette:

RShowDoc('Part_4_Likelihood_Inference',type='html','DiffusionRjgqd')

#===

https://github.com/eta21
http://www.jstatsoft.org/v40/i08/
http://dx.doi.org/10.1016/j.csda.2013.02.005
http://dx.doi.org/10.1016/j.csda.2013.02.005

10 JGQD.density

JGQD.density Generate the Transition Density of a Scalar Jump Generalized
Quadratic Diffusion (GQD).

Description

JGQD.density() approximates the transition density of a scalar generalized quadratic diffusion
model (GQD). Given an initial value for the diffusion, Xs, the approximation is evaluated for all Xt
at equispaced time-nodes given by splitting [s, t] into subintervals of length delt.

JGQD.density() approximates transitional densities of jump diffusions of the form:

dXt = µ(X, t)dt+ σ(Xt, t)dWt + dPt

where
µ(X, t) = G0(t, θ) +G1(t, θ)Xt +G2(t, θ)X

2
t ,

σ(X, t) =
√
Q0(t, θ) +Q1(t, θ)Xt +Q2(t, θ)X2

t ,

and dPt = j(Xt, żt)dNt describes a Poisson process with intensity:

λ(X, t) = λ0(t, θ) + λ1(t, θ)Xt + λ2(t, θ)X
2
t ,

jump coefficient
j(Xt, żt) = żt

or
j(Xt, żt) = żtXt

and
żt ∼ Normal(µJ(t, θ), σ

2
J(t, θ)),

żt ∼ Exponential(λJ(t, θ)),

żt ∼ Gamma(αJ(t, θ), βJ(t, θ)),

or
żt ∼ Laplace(aJ(t, θ), bJ(t, θ)).

Usage

JGQD.density(Xs = 4, Xt = seq(5, 8, 1/10), s = 0, t = 5, delt =1/100,
Jdist = "Normal", Jtype = "Add", Dtype = "Saddlepoint",
Trunc = c(8, 4), factorize = FALSE, factor.type = "Diffusion",
beta, print.output = TRUE, eval.density = TRUE)

JGQD.density 11

Arguments

Xs Initial value of the process at time s.

Xt Vector of values at which the transition density is to be evaluated over the tra-
jectory of the transition density from time s to t.

s The starting time of the process.

t The time horizon up to and including which the transitional density is evaluated.

delt Size of the time increments at which successive evaluations are made.

Dtype Character string indicating the type of density approximation (see details) to use.
Types: 'Saddlepoint' and 'Edgeworth' are supported (default = 'Saddlepoint').

Trunc Vector of length 2 containing the cumulant truncation order and the density trun-
cation order respectively. May take on values 4 and 8 with the constraint that
Trunc[1] >= Trunc[2]. Default is c(4,4).

Jdist Valid entries are ’Normal’, ’Exponential’, ’Gamma’ or ’Laplace’.

Jtype Valid types are ’Add’ or ’Mult’.

factorize Should factorization be used (default = TRUE).

factor.type Can be used to envoke a special factorization in order to evaluate Hawkes pro-
cesses nested within the JGQD framework.

beta Variable used for a special case jump structure (for research purposes).

print.output If TRUE, model information is printed to the console.

eval.density If TRUE, the density is evaluated in addition to calculating the moment eqns.

Details

JGQD.density constructs an approximate transition density for a class of quadratic diffusion mod-
els. This is done by first evaluating the trajectory of the cumulants/moments of the diffusion nu-
merically as the solution of a system of ordinary differential equations over a time horizon [s,t]
split into equi-distant points delt units apart. Subsequently, the resulting cumulants/moments are
carried into a density approximant (by default, a saddlepoint approximation) in order to evaluate
the transtion surface.

Value

density A matrix giving the density over the spatio-temporal mesh whose vertices are
defined by paired permutations of the elements of X_t and time

Xt A vector of points defining the state space at which the density was evalu-
ated(recycled from input).

time A vector of time points at which the density was evaluated.

cumulants A matrix giving the cumulants of the diffusion. Row i gives the i-th cumulant.

moments A matrix giving the moments of the diffusion. Row i gives the i-th cumulant.

mesh A matrix giving the mesh used for normalization of the density.

Interface

12 JGQD.density

Warning

Warning [1]: The system of ODEs that dictate the evolution of the cumulants do so approxi-
mately. Thus, although it is unlikely such cases will be encountered in inferential contexts, it is
worth checking (by simulation) whether cumulants accurately replicate those of the target jump
GQD. Furthermore, it may in some cases occur that the cumulants are indeed accurate whilst the
density approximation fails. This can again be verified by simulation after which alternate density
approximants may be specified through the variable Dtype.

Warning [2]: The parameter delt is also used as the stepsize for solving a system of ordinary
differential equations (ODEs) that govern the evolution of the cumulants of the diffusion. As such
delt is required to be small for highly non-linear models in order to ensure sufficient accuracy.

Author(s)

Etienne A.D. Pienaar: <etiannead@gmail.com>

References

Updates available on GitHub at https://github.com/eta21.

Daniels, H.E. 1954 Saddlepoint approximations in statistics. Ann. Math. Stat., 25:631–650.

Eddelbuettel, D. and Romain, F. 2011 Rcpp: Seamless R and C++ integration. Journal of Statistical
Software, 40(8):1–18,. URL http://www.jstatsoft.org/v40/i08/.

Eddelbuettel, D. 2013 Seamless R and C++ Integration with Rcpp. New York: Springer. ISBN
978-1-4614-6867-7.

Eddelbuettel, D. and Sanderson, C. 2014 Rcpparmadillo: Accelerating R with high-performance
C++ linear algebra. Computational Statistics and Data Analysis, 71:1054–1063. URL http://dx.
doi.org/10.1016/j.csda.2013.02.005.

Feagin, T. 2007 A tenth-order Runge-Kutta method with error estimate. In Proceedings of the
IAENG Conf. on Scientifc Computing.

Varughese, M.M. 2013 Parameter estimation for multivariate diffusion systems. Comput. Stat.
Data An., 57:417–428.

See Also

See JGQD.mcmc and BiJGQD.density.

Examples

#===

For detailed notes and examples on how to use the JGQD.density() function, see
the following vignette:

RShowDoc('Part_2_Transition_Densities',type='html','DiffusionRjgqd')

#===

https://github.com/eta21
http://www.jstatsoft.org/v40/i08/
http://dx.doi.org/10.1016/j.csda.2013.02.005
http://dx.doi.org/10.1016/j.csda.2013.02.005

JGQD.dic 13

JGQD.dic Summarize MCMC Selection Output for a List of JGQD.mcmc or Bi-
JGQD.mcmc Objects.

Description

JGQD.dic() summarizes the MCMC output from a list of JGQD.mcmc() objects. This may be used
to neatly summarize the MCMC output of various models fitted to a given dataset.

Usage

JGQD.dic(model.list, type = "col")

Arguments

model.list A list of JGQD.mcmc() objects.

type Shoould output be of row ('row') or column ('col') format.

Details

JGQD.dic() summarizes the output from various models fitted via JGQD.mcmc(). By ranking them
according to DIC. [=] indicates which model has the minimal DIC.

Elapsed_Time Time_Homogeneous p DIC pD N
Model 1 00:00:47 No 5.00 389.30 3.92 201
Model 2 00:01:00 No 5.00 [=]386.45 4.13 201
Model 3 00:02:50 No 5.00 391.37 3.94 201

Value

A data frame with summary of model output. See Details.

Author(s)

Etienne A.D. Pienaar: <etiannead@gmail.com>

References

Updates available on GitHub at https://github.com/eta21.

See Also

JGQD.mcmc

Examples

https://github.com/eta21

14 JGQD.estimates

#===

For detailed notes and examples on how to use the BiJGQD.dic() function, see
the following vignette:

RShowDoc('Part_4_Likelihood_Inference',type='html','DiffusionRjgqd')

#===

JGQD.estimates Extract Parmaeter Estimates from .mle() or .mcmc() Objects.

Description

JGQD.estimates() calculates parameter estimates from .mle() or .mcmc() model objects.

Usage

JGQD.estimates(x, thin = 100, burns, CI = c(0.05, 0.95), corrmat =
FALSE, acf.plot = TRUE, palette='mono')

Arguments

x List object of type ’JGQD.mcmc’ or ’JGQD.mle’. That is, when model =JGQD.mcmc()
then model constitutes an appropriate object for x.

thin Thinnging level for parameter chain.

burns Number of MCMC updates to discard before calculating estimates.

CI Credibility interval quantiles (for MCMC chains).

corrmat If TRUE, an estimated correlation matrix is returned in addition to the estimate
vector.

acf.plot If TRUE, an acf plot is drawn for each element of the parameter chain.

palette Colour palette for drawing trace plots. Default palette = 'mono', otherwise a
qualitative palette will be used.

Value

Data frame with parameter estimates and appropriate interval statistics.

Author(s)

Etienne A.D. Pienaar: <etiannead@gmail.com>

References

Updates available on GitHub at https://github.com/eta21.

https://github.com/eta21

JGQD.mcmc 15

See Also

JGQD.mcmc, BiJGQD.mcmc.

Examples

example(JGQD.mcmc)

JGQD.mcmc MCMC Inference on Jump Generalized Quadratic Diffusion Models
(JGQDs).

Description

JGQD.mcmc() uses parametrised coefficients (provided by the user as R-functions) to construct a
C++ program in real time that allows the user to perform Bayesian inference on the resulting jump
diffusion model. Given a set of starting parameters, a MCMC chain is returned for further analysis.
The structure of the model is predefined and coefficients may be provided for models nested within
the generalized quadratic diffusion framework.

JGQD.mcmc() performs inference using the Metropolis-Hastings algorithm for jump diffusions of
the form:

dXt = µ(X, t)dt+ σ(Xt, t)dWt + dPt

where
µ(X, t) = G0(t, θ) +G1(t, θ)Xt +G2(t, θ)X

2
t ,

σ(X, t) =
√
Q0(t, θ) +Q1(t, θ)Xt +Q2(t, θ)X2

t ,

and dPt = j(Xt, żt)dNt describes a Poisson process with intensity:

λ(X, t) = λ0(t, θ) + λ1(t, θ)Xt + λ2(t, θ)X
2
t ,

jump coefficient
j(Xt, żt) = żt

or
j(Xt, żt) = żtXt

and
żt ∼ Normal(µJ(t, θ), σ

2
J(t, θ)),

żt ∼ Exponential(λJ(t, θ)),

żt ∼ Gamma(αJ(t, θ), βJ(t, θ)),

or
żt ∼ Laplace(aJ(t, θ), bJ(t, θ)).

16 JGQD.mcmc

Usage

JGQD.mcmc(X, time, mesh = 10, theta, sds, updates = 1000,
burns = min(round(updates/2), 25000), Jtype = "Add", Jdist = "Normal",
Dtype = "Saddlepoint", RK.order = 4, exclude = NULL, plot.chain = TRUE,
wrt = FALSE, Tag = NA, factorize = TRUE, print.output = TRUE,
decode = TRUE, palette = 'mono')

Arguments

X Time series (vector) of discretely observed points of the process of interest.
These may be non-equidistant observations (see time).

time A vector of time-stamps associated with each observation in X.

mesh The number mesh points between any two given data points.

theta The parameter vector of the process. theta are taken as the starting values of the
MCMC chain and gives the dimension of the parameter vector used to calculate
the DIC. Care should be taken to ensure that each element in theta is in fact
used within the coefficient-functions, otherwise redundant parameters will be
counted in the calculation of the DIC.

sds Proposal distribution standard deviations. That is, for the i-th parameter the
proposal distribution is ~ Normal(...,sds[i]^2)

updates The number of chain updates (including burned updates) to perform.

burns The number of updates to burn. That is, the first burns values are omitted from
the inference, although the entire chain is returned.

exclude Vector indicating which transitions to exclude from the analysis. Default = NULL.

plot.chain If TRUE (default), a trace plot is made of the resulting MCMC chain (see details).

RK.order The order of the Runge-Kutta solver used to approximate the trajectories of
cumulants. Must be 4 or (default) 10.

Dtype Character string indicating the type of density approximation (see details) to use.
Types: 'Saddlepoint' is supported in the current version of the software.

Tag Tag can be used to name (tag) an MCMC run e.g. Tag='Run_1'

wrt If TRUE a .cpp file will be written to the current directory. For bug report diag-
nostics.

Jdist Valid entries are ’Normal’, ’Expnential’, ’Gamma’ and ’Laplace’.

Jtype Valid types are ’Add’ or ’Mult’.

factorize Should factorization be used (default = TRUE).

print.output If TRUE, model information is printed to the console.

decode Should the algorithm estimate jump detection probabilities? Default value is
TRUE.

palette Colour palette for drawing trace plots. Default palette = 'mono', otherwise a
qualitative palette will be used.

JGQD.mcmc 17

Details

JGQD.mcmc() operates by searching the workspace for functions with names that match the coeffi-
cients of the predefined stochastic differential equation. Only the required coefficients need to be
specified e.g. G0(t),G1(t) and Q0(t) for an Ornstein-Uhlenbeck model. Unspecified coefficients
are ignored. When a new model is to be defined, the current model may be removed from the
workspace by using the JGQD.remove function, after which the new coefficients may be supplied.

Value

par.matrix A matrix containing the MCMC chain on theta.
acceptence.rate

A vector containing the acceptance rate of the MCMC at every iteration.

model.info A list of variables pertaining to inference calculations.
model.info$elapsed.time

The runtime, in h/m/s format,of the MCMC procedure (excluding compile time).
model.info$time.homogeneous

‘No’ if the model has time-homogeneous coefficients and ‘Yes’ otherwise.

model.info$p The dimension of theta.

model.info$DIC Calculated Deviance Information Criterion.

model.info$pd Effective number of parameters (see model.info$DIC).

decode.prob Estimated jump detection probabilities.

Syntactical jargon

Synt. [1]: The coefficients of the JGQD may be parameterized using the reserved variable theta.
For example:

G0 <- function(t){theta[1]*(theta[2]+sin(2*pi*(t-theta[3])))}.

Synt. [2]: Due to syntactical differences between R and C++ special functions have to be used
when terms that depend on t. When the function cannot be separated in to terms that contain a
single t, the prod(a,b) function must be used. For example:

G0 <- function(t){0.1*(10+0.2*sin(2*pi*t)+0.3*prod(sqrt(t),1+cos(3*pi*t)))}.

Here sqrt(t)*cos(3*pi*t) constitutes the product of two terms that cannot be written i.t.o. a single t.
To circumvent this isue, one may use the prod(a,b) function.

Synt. [3]: Similarly, the ^ - operator is not overloaded in C++. Instead the pow(x,p) function may
be used to calculate x^p. For example sin(2*pi*t)^3 in:

G0 <- function(t){0.1*(10+0.2*pow(sin(2*pi*t),3))}.

Note

Note [1]: When plot.chain is TRUE, a trace plot is created of the resulting MCMC along with the
acceptance rate at each update. This may save time when scrutinizing initial MCMC runs.

Author(s)

Etienne A.D. Pienaar: <etiennead@gmail.com>

18 JGQD.plot

References

Updates available on GitHub at https://github.com/eta21.

Daniels, H.E. 1954 Saddlepoint approximations in statistics. Ann. Math. Stat., 25:631–650.

Eddelbuettel, D. and Romain, F. 2011 Rcpp: Seamless R and C++ integration. Journal of Statistical
Software, 40(8):1–18,. URL http://www.jstatsoft.org/v40/i08/.

Eddelbuettel, D. 2013 Seamless R and C++ Integration with Rcpp. New York: Springer. ISBN
978-1-4614-6867-7.

Eddelbuettel, D. and Sanderson, C. 2014 Rcpparmadillo: Accelerating R with high-performance
C++ linear algebra. Computational Statistics and Data Analysis, 71:1054–1063. URL http://dx.
doi.org/10.1016/j.csda.2013.02.005.

Feagin, T. 2007 A tenth-order Runge-Kutta method with error estimate. In Proceedings of the
IAENG Conf. on Scientifc Computing.

Varughese, M.M. 2013 Parameter estimation for multivariate diffusion systems. Comput. Stat.
Data An., 57:417–428.

See Also

JGQD.remove, BiJGQD.mcmc.

Examples

#===

For detailed notes and examples on how to use the JGQD.mcmc() function, see
the following vignette:

RShowDoc('Part_4_Likelihood_Inference',type='html','DiffusionRjgqd')

#===

JGQD.plot Quick Plots for DiffusionRjgqd Objects

Description

JGQD.plot() recognizes output objects calculated using routines from the DiffusionRjgqd pack-
age and subsequently constructs an appropriate plot, for example a perspective plot of a transition
density.

Usage

JGQD.plot(x, thin = 1, burns, h = FALSE, palette = 'mono')

https://github.com/eta21
http://www.jstatsoft.org/v40/i08/
http://dx.doi.org/10.1016/j.csda.2013.02.005
http://dx.doi.org/10.1016/j.csda.2013.02.005

JGQD.plot 19

Arguments

x Generic JGQD-objects, i.e. res = JGQD.density().

thin Thinning interval for .mcmc objects.

burns Number of parameter draws to discard for .mcmc objects.

h if TRUE a histogram is drawn i.s.o. a trace plot.

palette Colour palette for drawing trace plots. Default palette = 'mono', otherwise a
qualitative palette will be used.

Value

Varies in accordance with input type.

Author(s)

Etienne A.D. Pienaar: <etiannead@gmail.com>

References

Updates available on GitHub at https://github.com/eta21.

See Also

JGQD.mcmc, JGQD.density, BiJGQD.density etc.

Examples

#===
Plot the transitional density of a jump diffusion
#---
rm(list=ls(all=TRUE))
library(DiffusionRjgqd)

JGQD.remove()
Define the jump diffusion using the DiffusionRjgqd syntax:
G1=function(t){0.2*5+0.1*sin(2*pi*t)}
G2=function(t){-0.2}
Q1=function(t){0.2}

State dependent intensity:
Lam0 = function(t){1}
Lam1 = function(t){0.1}

Normally distributed jumps: N(1,0.2)
Jmu = function(t){1.0}
Jsig = function(t){0.2}
Normal distribution is the default:
res_1 = JGQD.density(4,seq(2,10,1/10),0,2.5,1/100,factorize=FALSE)

JGQD.plot(res_1)

https://github.com/eta21

20 JGQD.remove

JGQD.remove Remove the Coefficients of a JGQD Model.

Description

Removes any existing coefficient functions from the current workspace.

Usage

JGQD.remove()

Details

JGQD.remove clears the workspace of functions with names that match the coefficients of the 1D
JGQD. This may be used when more than one model is specified in a given session.

Value

No value is returned.

Note

JGQD.remove simply searches the workspace for functions with definitions that match the form of
the DiffusionRjgqd interface and removes them from the workspace, freeing up the user to redefine
a diffusion with new coefficients.

Author(s)

Etienne A.D. Pienaar: <etiennead@gmail.com>

References

Updates available on GitHub at https://github.com/eta21.

See Also

JGQD.density and BiJGQD.density.

https://github.com/eta21

JSDEsim1 21

JSDEsim1 Simulated Trajectory of a Scalar Jump Diffusion.

Description

Simulated trajectory of a scalar jump diffusion with Normal distributed jumps ariving with stochas-
tic intensity. The dynamics of the process is given by the jump SDE:

dXt = (5−Xt)dt+ 0.1
√
XtdBt + dPt

where dPt = żtdNt describes a Poisson process with intensity:

λ(Xt) = 0.5Xt

and
ż ∼ N(0.5, 0.52)

Usage

data("JSDEsim1")

Format

A data frame with 251 observations on the following 2 variables.

Xt Observed trajectory.

time Time index for the observed trajectory

contains_jump Indicator variable to indicate if a given transition contains a jump (ignore the first
value).

Examples

data(JSDEsim1)

JSDEsim2 Simulated Trajectory of a Bivariate Jump Diffusion.

Description

Simulated trajectory of a bivariate jump diffusion with Normally distributed jumps . The dynamics
of the process is given by the jump SDE:

dXt = 0.5(2 + Yt −Xt)dt+ 0.1
√
XtYtdBt + dP 1

t

dXt = (5−Xt)dt+ 0.1
√
YtdWt + dP 2

t

22 JSDEsim3

where
dP 1

t = ż1dN
1
t

dP 2
t = ż2dN

1
t

describes a bivariate Poisson process with single excitations ariving with intensity:

λ(Xt, Yt) = 1

and
{ż1, ż2}′ ∼ Bivariate Normal({0.5, 0.5}′, diag({0.5, 0.5}))

.

Usage

data("JSDEsim2")

Format

A data frame with 501 observations on the following 3 variables.

Xt a numeric vector
Yt a numeric vector
time a numeric vector

Examples

data(JSDEsim2)

JSDEsim3 Jump Observations for a Bivariate Simulated Dataset.

Description

Jump observations for a simulated trajectory of a bivariate jump diffusion with Normally distributed
jumps. The dynamics of the process is given by the jump SDE:

dXt = 0.5(2 + Yt −Xt)dt+ 0.1
√
XtYtdBt + dP 1

t

dXt = (5−Xt)dt+ 0.1
√
YtdWt + dP 2

t

where
dP 1

t = ż1dN
1
t

dP 2
t = ż2dN

1
t

describes a bivariate Poisson process with single excitations ariving with intensity:

λ(Xt, Yt) = 1

and
{ż1, ż2}′ ∼ Bivariate Normal({0.5, 0.5}′, diag({0.5, 0.5}))

.

RcppArmadillo-Functions 23

Usage

data("JSDEsim3")

Format

A data frame with 100001 observations on the following 3 variables.

Xjumps Observed jumps in the X-dimension.

Yjumps Observed jumps in the X-dimension.

Jtime Times at which jumps are observed.

Examples

data(JSDEsim3)
maybe str(JSDEsim3) ; plot(JSDEsim3) ...

RcppArmadillo-Functions

A Junk Funktion For Build Purposes

Description

This function was created as a filler in order for the package to build correctly.

Usage

junkfunction2()

Details

This function was created as a filler in order for the package to build correctly.

Value

junkfunction2() does nothing useful.

Author(s)

Etienne A.D. Pienaar

References

See the documentation for Armadillo, and RcppArmadillo, for more details.

Index

∗Topic C++
BiJGQD.mcmc, 6
DiffusionRjgqd-package, 2
JGQD.mcmc, 15

∗Topic MCMC
BiJGQD.mcmc, 6

∗Topic Moments
BiJGQD.density, 3

∗Topic Syntax
BiJGQD.mcmc, 6

∗Topic Transition density
BiJGQD.density, 3

∗Topic datasets
JSDEsim1, 21
JSDEsim2, 21
JSDEsim3, 22

∗Topic deviance information criterion
(DIC)

JGQD.dic, 13
∗Topic mcmc

JGQD.mcmc, 15
∗Topic moments

JGQD.density, 10
∗Topic package

DiffusionRjgqd-package, 2
∗Topic plot

JGQD.plot, 18
∗Topic remove models

JGQD.remove, 20
∗Topic syntax

JGQD.mcmc, 15
∗Topic transition density

JGQD.density, 10

BiJGQD.density, 2, 3, 12, 19, 20
BiJGQD.mcmc, 2, 3, 5, 6, 15, 18

DiffusionRjgqd
(DiffusionRjgqd-package), 2

DiffusionRjgqd-package, 2

JGQD.density, 2, 3, 5, 10, 19, 20
JGQD.dic, 3, 13
JGQD.estimates, 14
JGQD.mcmc, 2, 3, 9, 12, 13, 15, 15, 19
JGQD.plot, 18
JGQD.remove, 3, 9, 17, 18, 20
JSDEsim1, 21
JSDEsim2, 21
JSDEsim3, 22
junkfunction2

(RcppArmadillo-Functions), 23

RcppArmadillo-Functions, 23

24

	DiffusionRjgqd-package
	BiJGQD.density
	BiJGQD.mcmc
	JGQD.density
	JGQD.dic
	JGQD.estimates
	JGQD.mcmc
	JGQD.plot
	JGQD.remove
	JSDEsim1
	JSDEsim2
	JSDEsim3
	RcppArmadillo-Functions
	Index

