
Package ‘DiffusionRimp’
August 29, 2016

Version 0.1.2

Title Inference and Analysis for Diffusion Processes via Data
Imputation and Method of Lines

Description Tools for performing inference and analysis using a data-
imputation scheme and the method of lines.

URL https://github.com/eta21

BugReports https://github.com/eta21/DiffusionRimp/issues

MailingList Please send questions and comments to etiennead@gmail.com.

Depends R (>= 3.2.1)

Imports Rcpp, RcppArmadillo, rgl, colorspace

LinkingTo Rcpp, RcppArmadillo

Suggests DiffusionRgqd, DiffusionRjgqd, knitr, coda, Quandl, R.rsp

License GPL (>= 2)

VignetteBuilder knitr, R.rsp

NeedsCompilation yes

Author Etienne A.D. Pienaar [aut, cre],
Melvin M. Varughese [ctb]

Maintainer Etienne A.D. Pienaar <etiennead@gmail.com>

Repository CRAN

Date/Publication 2016-08-24 18:38:24

R topics documented:
DiffusionRimp-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
BiMOL.aic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
BiMOL.density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
BiMOL.passage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
BiRS.impute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
DoubleWell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
MOL.aic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1

https://github.com/eta21
https://github.com/eta21/DiffusionRimp/issues


2 DiffusionRimp-package

MOL.density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
MOL.passage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
MOL.plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
RcppArmadillo-Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
RS.estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
RS.impute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
TiCIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Index 26

DiffusionRimp-package Data-imputation and density approximations for diffusion processes.

Description

A package for performing data imputation on discretely observed diffusion processes as well as
calculating numerical approximations to transition and first passage time densities.

Details

Package: DiffusionRimp
Type: Package
Version: 0.1.0
Date: 2015-12-01
License: GPL (>= 2)

Functions included in the package:

RS.impute : Perform inference on a diffusion model using the random walk Metropolis-Hastings algorithm using the data-imputation algorithm.
BiRS.impute : Perform inference on a bivariate diffusion model using the random walk Metropolis-Hastings algorithm using the data-imputation algorithm.
MOL.density : Calculate the transitional density of a diffusion model using the method of lines.
BiMOL.density : Calculate the transitional density of a bivariate diffusion model using the method of lines.
MOL.passage : Calculate the first passage time density of a time-homogeneous diffusion model with fixed barriers (i.e., a two-barrier first passage time problem).
BiMOL.passage : Calculate the first passage time density of a time-homogeneous bivariate diffusion model with fixed barriers (i.e., a four-barrier problem in two dimensions).
MOL.aic* : Calculate a pseudo-AIC value for a diffusion model using the method of lines.
BiMOL.aic* : Calculate pseudo-AIC value for a bivariate diffusion model using the method of lines.

* Functions use C++.

Author(s)

Etienne A.D. Pienaar <etiennead@gmail.com>
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Examples

# example(RS.impute)
# example(MOL.density)
# example(MOL.passage)

BiMOL.aic Calculate a Pseudo AIC Value for a Bivariate Diffusion Model via the
Method of Lines

Description

MOL.aic() approximates the likelihood function for a bivariate diffusion model under a given
dataset and parameter vector.

Usage

BiMOL.aic(X, time, delt, xlims, ylims, N, theta, diff.type, plt = TRUE,
wrt = FALSE, border = NA)

Arguments

X N x 2 matrix of coordinates at which the diffusion process was observed, where
N is the number of observations.

time A vector of time nodes at which the process was observed.
delt Step size for the time domain of the lattice (see note [4]).
xlims X-limits for the spatial nodes of the lattice. These limits should be wide enough

for the transition density to be negligibly small at the endpoints (see note [2]).
ylims Y-limits for the spatial nodes of the lattice. These limits should be wide enough

for the transition density to be negligibly small at the endpoints (see note [2]).
N The number of nodes in each spatial domain at which to evaluate the transitional

density. Increase N for more accurate approximations (see note [3] and warning
[2]).

theta Parameter vector at which the AIC should be evaluated. Typically the parameter
vector is calculated using RS.impute()

diff.type 2-Component vector of indicators, each assuming values 1, 2 or 3, for which of
the predefined volatility structures to impose.

plt Draw a plot of the calculation as it takes place.
wrt Write a .cpp file. Useful for inspection purposes.
border Border colour for the mesh of the perspective plot.

Value

AIC An approximate AIC value.
likelihood The approximate likelihood value used in the calculation.
p The dimesnion of the parameter vector.
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Interface

BiMOL.aic uses a function-input interface whereby the drift and diffusion components of the stochas-
tic differential equation (SDE)

dXt = mu1(Xt, Yt, t)dt+ sigma1(Xt, Yt, t)dW
1
t

dYt = mu2(Xt, Yt, t)dt+ sigma2(Xt, Yt, t)dW
2
t ,

are defined as R-functions in the current workspace. That is by defining the drift and diffusion
components

mu1=function(X,Y,t){some expression i.t.o. X, Y and t}

mu2=function(X,Y,t){some expression i.t.o. X, Y and t}

sig11=function(X,Y,t){some expression i.t.o. X, Y and t}

sig22=function(X,Y,t){some expression i.t.o. X, Y and t}

further analysis may be conducted by calling the function BiMOL.aic().

Warning

Warning [1]: Note that if the lattice is shifted, degeneracies may occur for certain drift/volatility
specifications if the shifted lattice moves into non-nonsensical values of the drift/volatility func-
tions’ domains.

Warning [2]: Although increasing the spatial resolution of the lattice by increasing N improves
approximations, instabilities will occur if delt is not sufficiently small. This tends to manifest as
jagged/spiked solutions that oscillate between positive and negative values.

Note

Note [1]: Although the spatial limits of the lattice is defined by the user using xlims, if the initial
value Xs does not fall on one of the lattice nodes, then the lattice is shifted accordingly.

Note [2]: The approximation assumes that the entire density of the process falls on a finite interval.
Thus the algorithm may breakdown for certain problems. Depending on the parameters of the
process, the limits may be very far apart or near. Some experimentation may be required. Otherwise,
set autofind = TRUE to find useful limits. Note also that larger N may be required for wider limits.

Note [3]: Increasing N will likely require smaller delt, thus increasing computation time. For some
problems, slight increases in N will require much smaller delt.

Note [4]: delt is used as the step size for a 10(8)-th order Runge-Kutta method for solving the
resulting system of ODEs. Note again the inter-play between N and delt (see note [3]).

Author(s)

Etienne A.D. Pienaar <etiennead@gmail.com>
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References

Hamdi, S., Schiesser, W. E. and Griffiths, G. W. 2007 Method of lines. Scholarpedia, 2(7):2859.
Revision #124335.

Feagin, T. 2007 A tenth-order Runge-Kutta method with error estimate. In Proceedings of the
IAENG Conf. on Scientifc Computing.

See Also

MOL.aic, BiRS.impute.

Examples

#===============================================================================

BiMOL.density Approximate the Transition Density of a Bivariate Diffusion with Ar-
bitrary Drift and Volatility Specification

Description

BiMOL.density approximates the transition density of a bivariate diffusion on a lattice [xlims[1],xlims[2]] x [ylims[1],ylims[2]] x [s,t]
with N x N spatial nodes and time discretization delt, via the method of lines. The method of lines
approximates the solution of the Fokker-Planck equation by an N x N-dimensional system of ordi-
nary differential equations (ODEs) evaluated on [s,t].

Usage

BiMOL.density(Xs, Ys, s , t , xlims, ylims, N, delt, mu1, mu2,
sig11, sig12, sig21, sig22, final.only = FALSE,
show.lattice = FALSE)

Arguments

Xs Starting/Initial X-coordinate for the diffusion process (see note [1] and warning
[1]).

Ys Starting/Initial Y-coordinate for the diffusion process (see note [1] and warning
[1]).

s Starting time for the diffusion process.

t Value (>s) giving the terminal point for the transition horizon (the final time at
which to evaluate the transition density).

xlims X-limits for the spatial nodes of the lattice. These limits should be wide enough
for the transition density to be negligibly small at the endpoints (see note [2]).

ylims Y-limits for the spatial nodes of the lattice. These limits should be wide enough
for the transition density to be negligibly small at the endpoints (see note [2]).
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N The number of nodes in each spatial domain at which to evaluate the transitional
density. Increase N for more accurate approximations (see note [3] and warning
[2]).

mu1 Optional (if drift and diffusion coefficients are already defined) arguments giv-
ing the drift and diffusion coefficients as text expressions (See Interface below).

mu2 Optional (if drift and diffusion coefficients are already defined) arguments giv-
ing the drift and diffusion coefficients as text expressions (See Interface below).

sig11 Optional (if drift and diffusion coefficients are already defined) arguments giv-
ing the drift and diffusion coefficients as text expressions (See Interface below).

sig12 Optional (if drift and diffusion coefficients are already defined) arguments giv-
ing the drift and diffusion coefficients as text expressions (See Interface below).

sig21 Optional (if drift and diffusion coefficients are already defined) arguments giv-
ing the drift and diffusion coefficients as text expressions (See Interface below).

sig22 Optional (if drift and diffusion coefficients are already defined) arguments giv-
ing the drift and diffusion coefficients as text expressions (See Interface below).

delt Step size for the time domain of the lattice (see note [4]).
final.only Should the transition density on the entire lattice be returned (FALSE) or only the

at the terminal point of the transition horizon t (TRUE). Default = FALSE.

show.lattice If =TRUE (default) then the X-Y lattice is drawn and the initial value is indicated
in red.

Value

density 3D array containing the density approximation (matrix if final.only = TRUE).

Xt Vector of X-coordinates at which approximation was carried out.

Yt Vector of Y-coordinates at which approximation was carried out.

time Vector of time nodes at which the approximation was evaluated.

Interface

BiMOL.density uses a function-input interface whereby the drift and diffusion components of the
stochastic differential equation (SDE)

dXt = mu1(Xt, Yt, t)dt+ sigma1(Xt, Yt, t)dW
1
t

dYt = mu2(Xt, Yt, t)dt+ sigma2(Xt, Yt, t)dW
2
t ,

are defined as R-functions in the current workspace. That is by defining the drift and diffusion
components

mu1=function(X,Y,t){some expression i.t.o. X, Y and t}

mu2=function(X,Y,t){some expression i.t.o. X, Y and t}

sig11=function(X,Y,t){some expression i.t.o. X, Y and t}

sig22=function(X,Y,t){some expression i.t.o. X, Y and t}

further analysis may be conducted by calling the function BiMOL.density().
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Warning

Warning [1]: Note that if the lattice is shifted, degeneracies may occur for certain drift/volatility
specifications if the shifted lattice moves into non-nonsensical values of the drift/volatility func-
tions’ domains.

Warning [2]: Although increasing the spatial resolution of the lattice by increasing N improves
approximations, instabilities will occur if delt is not sufficiently small. This tends to manifest as
jagged/spiked solutions that oscillate between positive and negative values.

Note

Note [1]: Although the spatial limits of the lattice is defined by the user using xlims, if the initial
value Xs does not fall on one of the lattice nodes, then the lattice is shifted accordingly.

Note [2]: The approximation assumes that the entire density of the process falls on a finite interval.
Thus the algorithm may breakdown for certain problems. Depending on the parameters of the
process, the limits may be very far apart or near. Some experimentation may be required. Otherwise,
set autofind = TRUE to find useful limits. Note also that larger N may be required for wider limits.

Note [3]: Increasing N will likely require smaller delt, thus increasing computation time. For some
problems, slight increases in N will require much smaller delt.

Note [4]: delt is used as the step size for a 10(8)-th order Runge-Kutta method for solving the
resulting system of ODEs. Note again the inter-play between N and delt (see note [3]).

Author(s)

Etienne A.D. Pienaar <etiennead@gmail.com>

References

Hamdi, S., Schiesser, W. E. and Griffiths, G. W. 2007 Method of lines. Scholarpedia, 2(7):2859.
Revision #124335.

Feagin, T. 2007 A tenth-order Runge-Kutta method with error estimate. In Proceedings of the
IAENG Conf. on Scientifc Computing.

See Also

MOL.passage, MOL.density.

Examples

#===============================================================================

# For detailed notes and examples on how to use the BiMOL.density() function, see
# the following vignette:

RShowDoc('Part_2_Transition_Densities',type='html','DiffusionRimp')

#===============================================================================
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BiMOL.passage Approximate the First Passage Time Density of a Four-Barrier Prob-
lem for Time-Homogeneous Bivariate Diffusions.

Description

BiMOL.passage() approximates a solution to partial differential equation (PDE) that governs the
evolution of the survaval distribution of the first passage time density of a bivariate diffusion pass-
ing through fixed thresholds limits[1] or limits[2] in the X-dimension and limits[3] or
limits[4] in the Y-dimension.

Usage

BiMOL.passage(Xs, Ys, t, limits, N, delt, mu1, mu2, sig11, sig12,
sig21, sig22, desc = 1, Phi, plt = FALSE)

Arguments

Xs Starting/Initial X-coordinate for the diffusion process (see note [1]).
Ys Starting/Initial Y-coordinate for the diffusion process (see note [1]).
t Value (>0) giving the terminal point for the transition horizon (the final time at

which to evaluate the transition density).
limits Limits for the spatial nodes of the lattice. These limits now represent the limits

in the spatial domain (see note [2]).
N The number of nodes in the spatial domain at which to evaluate the transitional

density. Increase N for more accurate approximations (see note [3] and warning
[2]).

delt Step size for the time domain of the lattice (see note [4]).
mu1 Optional (if drift and diffusion coefficients are already defined) arguments giv-

ing the drift and diffusion coefficients as text expressions (See Interface below).
mu2 Optional (if drift and diffusion coefficients are already defined) arguments giv-

ing the drift and diffusion coefficients as text expressions (See Interface below).
sig11 Optional (if drift and diffusion coefficients are already defined) arguments giv-

ing the drift and diffusion coefficients as text expressions (See Interface below).
sig12 Optional (if drift and diffusion coefficients are already defined) arguments giv-

ing the drift and diffusion coefficients as text expressions (See Interface below).
sig21 Optional (if drift and diffusion coefficients are already defined) arguments giv-

ing the drift and diffusion coefficients as text expressions (See Interface below).
sig22 Optional (if drift and diffusion coefficients are already defined) arguments giv-

ing the drift and diffusion coefficients as text expressions (See Interface below).
desc The type of discretization used (see note [5]).
Phi An optional indicator function for defining non-trivial boundary shapes (See

vignettes).
plt Should a plot be made (for dev purposes).
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Value

surface An array giving the approximate survival probability volume for all starting val-
ues contained in the discretization of the polygon enclosed by the limits.

density A vector containing the approximate first passage time density for trajectories
starting at (Xs,Ys) (see note [i]).

time A vector of time nodes at which the approximation was evaluated.

Interface

BiMOL.passage uses a function-input interface whereby the drift and diffusion components of the
time-homogeneous bivariate stochastic differential equation (SDE):

dXt = mu1(Xt, Yt)dt+ sigma1(Xt, Yt)dW
1
t

dYt = mu2(Xt, Yt)dt+ sigma2(Xt, Yt)dW
2
t ,

are defined as R-functions in the current workspace. That is by defining the drift and diffusion
components

mu1=function(X,Y){some expression i.t.o. X and Y}

mu2=function(X,Y){some expression i.t.o. X and Y}

sig11=function(X,Y){some expression i.t.o. X and Y}

sig22=function(X,Y){some expression i.t.o. X and Y}

further analysis may be conducted by calling the function BiMOL.passage().

Warnings

Warning [1]:

Note

Note [1]: If the initial value Xs does not fall on one of the lattice nodes, then the first passage time
density is calculated by linearly interpolating between approximations at the two nearest lattice
nodes.

Note [2]: Note that that enough nodes, N, are needed in order to generate a sufficiently accurate
approximation, especially when limits[1] and limits[2] are far apart.

Note [3]: Increasing N will likely require smaller delt, thus increasing computation time. For some
problems, slight increases in N will require much smaller delt.

Note [4]: delt is used as the step size for a 10(8)-th order Runge-Kutta method for solving the
resulting system of ODEs. Note again the inter-play between N and delt (see note [3]).

Note [5]: When one of the limits is sufficiently far away to not be accessible within the provided
time-horizon, instabilities may occur and an alternative discretization may be required in order to
ensure smooth operation. Possible values are desc = 1 (close limits), desc = 2 (limits[1] is
inaccessible) and desc = 3 (limits[2] is inaccessible).
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Author(s)

Etienne A.D. Pienaar <etiennead@gmail.com>

References

Hamdi, S., Schiesser, W. E. and Griffiths, G. W. 2007 Method of lines. Scholarpedia, 2(7):2859.
Revision #124335.

Feagin, T. 2007 A tenth-order Runge-Kutta method with error estimate. In Proceedings of the
IAENG Conf. on Scientifc Computing.

See Also

MOL.passage, BiMOL.density.

Examples

#===============================================================================

# For detailed notes and examples on how to use the BiMOL.passage() function, see
# the following vignette:

RShowDoc('Part_3_First_Passage_Times',type='html','DiffusionRimp')

#===============================================================================

BiRS.impute Brownian Bridge Data Imputation for Bivariate Diffusion Processes.

Description

BiRS.impute performs inference on bivariate diffusion processes with quite arbitrary drift func-
tionals by imputing missing sample paths with Brownian bridges. The procedure was developed by
Roberts and Stramer (2001) and subsequently extended in later papers (). Currently, the diffusion
is assumed to take on the form

dXt = mux(Xt, Yt, t, theta)dt+ sigma[1]f(Xt)dW
1
t

dYt = muy(Xt, Yt, t, theta)dt+ sigma[2]g(Yt)dW
2
t ,

where mux(Xt, Yt, t, theta) and muy(Xt, Yt, t, theta) may be defined with near-complete free-
dom as R-functions in the current workspace. f(.) and g(.) may take on predefined forms (see
details).
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Usage

BiRS.impute(X, time, M, theta, sds, diff.type = c(1, 1),
burns = min(floor(updates/2),25000), updates, plot.chain = TRUE,
imputation.plot = FALSE, palette = 'mono')

Arguments

X N x 2 matrix of coordinates at which the diffusion process was observed, where
N is the number of observations.

time A vector of time nodes at which the process was observed.

M The number of points to impute between successive observations. Note that
as the transition horizon increases, more points may be required in order to
get desirable acceptance rates for Brownian bridges. Note that some transition
horizons may be removed from likelihood calculations - see exclude.

theta Starting parameters for the model process.

sds Proposal standard deviations for the drift parameter chain.

diff.type 2-Component vector of indicators, each assuming values 1, 2 or 3, for which of
the predefined volatility structures to impose - see note [3].

burns The number of updates to burn (only affects traceplots).

updates The number of updates to perform.
imputation.plot

Display imputed paths for successive updates - see note [4]. Default = FALSE.

plot.chain Display the resulting MCMC chain - see notes [5], [6] and [7].

palette Colour palette for drawing trace plots. Default palette = 'mono', otherwise a
qualitative palette will be used.

Details

DETAILS ABOUT THE METHODOLOGY

Value

per.matrix Matrix containing the MCMC chain updates.
acceptence.rate

Acceptance rates for the two parameter chains.

bridge.rate Average Acceptance rate for Brownian bridge updates.

run.time The total run time of the algorithm.

Note

Note [1]: The functional form of the drift components may be defined by the user as R-functions.
Although the function body may take on arbitrary forms both the name of the drift functions and
the input structure must assume the form

mux = function(variable1, variable2, time, theta){...} and
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muy = function(variable1, variable2, time, theta){...}.

Note that theta is a reserved variable for the parameters. It is left to the user to ensure that the
functional forms are not nonsensical. See the examples below.

Note [2]: Both drift functions have to be defined in order for the algorithm to execute.

Note [3]: The functional form for the volatility of each dimension may take on one of the following:
f(Xt) = 1, corresponding to constant volatility , f(Xt) =

√
Xt corresponding to CIR type models

and f(Xt) = Xt such as for geometric Brownian motion. Corresponding indicators are simply
given buy 1, 2, and 3.

Note [4]: Paths are imputed on a unit -volatility process. For display purposes the back-transformed
imputed trajectories may plotted along with vertical lines indicating which bridges remained un-
changed over successive updates.

Note [5]: By default the MCMC chain is displayed in a panel plot. Standard MCMC diagnostics
may be performed on this chain which is returned in the value list as per.matrix.

Note [6]: In addition to the MCMC chain, acceptance rates are given for both the drift vector
parameter updates as well as the volatility parameter updates. A, target region for the acceptance
rate trajectories is displayed in blue.

Note [7]: Average acceptance rates are indicated for bridges per the transition number by blue bars.
A target region for the bridge acceptance rates is given in light blue. Average acceptance rates that
are lower than 60% are indicated along with their respective transition number. Vertical grey lines
indicate exclude-d transitions.

Author(s)

Etienne A.D. Pienaar <etiennead@gmail.com>

References

Dellaportas, P. 2006 Bayesian model selection for partially observed diffusion models. Biometrika,
93(4): 809.

Kalogeropoulos, K., Dellaportas, P., and Roberts, G. O. 2011 Likelihood based inference for corre-
lated diffusions. Canadian Journal of Statistics, 39(1):52–72.

Roberts, G. and Stramer, O. 2001 On inference for partially observed nonlinear diffusion models
using the Metropolis-Hastings algorithm. Biometrika, 88:603–621.

See Also

RS.impute, BiMOL.density.

Examples

#===============================================================================
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DoubleWell Simulted Double Well with Shifting Modality

Description

A simulated diffusion of the form

dXt = Xt(1 + sin(2 ∗ pi ∗ t)−X2)dt+ dWt,

with X0 = 1.

Usage

data(DoubleWell)

Format

A data frame with 201 observations on the following 2 variables.

X_t Vector containing the simulated trajectory.

t Time points at which the diffusion was observed.

Examples

data(DoubleWell)
plot(rev(DoubleWell),type='l')

MOL.aic Calculate a Pseudo AIC Value for a Diffusion Model via the Method
of Lines

Description

MOL.aic() approximates the likelihood function for a diffusion model under a given dataset and
parameter vector.

Usage

MOL.aic(X, time, delt, xlims, N, theta, diff.type,plt = TRUE, wrt = FALSE)
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Arguments

X Vector of coordinates at which the diffusion process was observed, where N is
the number of observations.

time A vector of time nodes at which the process was observed.

xlims Limits for the spatial nodes of the lattice. These limits should be wide enough
for the transition density to be negligibly small at the endpoints (see note [2]).

N The number of nodes in the spatial domain at which to evaluate the transitional
density. Increase N for more accurate approximations (see note [3] and warning
[2]).

delt Step size for the time domain of the lattice (see note [4]).
theta Parameter vector at which the AIC should be evaluated. Typically the parameter

vector is calculated using RS.impute()

diff.type An indicator assuming values 1, 2 or 3, for which of the predefined volatility
structures to impose.

plt Draw a plot of the calculation as it takes place.

wrt Write a .cpp file. Useful for inspection purposes.

Value

AIC An approximate AIC value.

likelihood The approximate likelihood value used in the calculation.

p The dimesnion of the parameter vector.

Interface

MOL.aic uses a function-input interface whereby the drift and diffusion components of the stochas-
tic differential equation (SDE)

dXt = mu(Xt, t)dt+ sigma(Xt, t)dWt,

are defined as R-functions in the current workspace. That is by defining the drift and diffusion
components

mu=function(X,t){some expression i.t.o. X and t}

sig=function(X,t){some expression i.t.o. X and t}

further analysis may be conducted by calling the function MOL.aic().

Warning

Warning [1]: Note that if the lattice is shifted, degeneracies may occur for certain drift/volatility
specifications if the shifted lattice moves into non-nonsensical values of the drift/volatility func-
tions’ domains.

Warning [2]: Although increasing the spatial resolution of the lattice by increasing N improves
approximations, instabilities will occur if delt is not sufficiently small. This tends to manifest as
jagged/spiked solutions that oscillate between positive and negative values.
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Note

Note [1]: Although the spatial limits of the lattice is defined by the user using xlims, if the initial
value Xs does not fall on one of the lattice nodes, then the lattice is shifted accordingly.

Note [2]: The approximation assumes that the entire density of the process falls on a finite interval.
Thus the algorithm may breakdown for certain problems. Depending on the parameters of the
process, the limits may be very far apart or near. Some experimentation may be required. Otherwise,
set autofind = TRUE to find useful limits. Note also that larger N may be required for wider limits.

Note [3]: Increasing N will likely require smaller delt, thus increasing computation time. For some
problems, slight increases in N will require much smaller delt.

Note [4]: delt is used as the step size for a 10(8)-th order Runge-Kutta method for solving the
resulting system of ODEs. Note again the inter-play between N and delt (see note [3]).

Author(s)

Etienne A.D. Pienaar <etiennead@gmail.com>

See Also

RS.impute, BiMOL.aic.

Examples

#===============================================================================

MOL.density Approximate the Transition Density of a Scalar Diffusion with Arbi-
trary Drift and Volatility Specification

Description

For scalar diffusions with drift mu=function(X,t){} and diffusion sig=function(X,t){}, MOL.density
approximates the transition density of a scalar diffusion on a lattice [xlims[1],xlims[2]] x [s,t]
with N spatial nodes and time discretization delt, via the method of lines. The method of lines ap-
proximates the solution of the Fokker-Planck equation by an N-dimensional system of ordinary
differential equations (ODEs) evaluated on [s,t].

Usage

MOL.density(Xs, s, t, xlims, N = 31, delt, mu, sig, final.only = FALSE)
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Arguments

Xs Starting/Initial value for the diffusion process (see note [1] and warning [1]).
s Starting time for the diffusion process.

t Value (>s) giving the terminal point for the transition horizon (the final time at
which to evaluate the transition density).

xlims Limits for the spatial nodes of the lattice. These limits should be wide enough
for the transition density to be negligibly small at the endpoints (see note [2]).

N The number of nodes in the spatial domain at which to evaluate the transitional
density. Increase N for more accurate approximations (see note [3] and warning
[2]).

delt Step size for the time domain of the lattice (see note [4]).
mu Optional (if drift and diffusion coefficients are already defined) arguments giv-

ing the drift and diffusion coefficients as text expressions (See Interface below).

sig Optional (if drift and diffusion coefficients are already defined) arguments giv-
ing the drift and diffusion coefficients as text expressions (See Interface below).

final.only Should the transition density on the entire lattice be returned (FALSE) or only the
at the terminal point of the transition horizon t (TRUE). Default = FALSE.

Value

density Matrix containing the density approximation (vector if final.only = TRUE).

Xt Vector of spatial values at which approximation was carried out.

time Vector of time nodes at which the approximation was evaluated.

Interface

MOL.density uses a function-input interface whereby the drift and diffusion components of the
stochastic differential equation (SDE)

dXt = mu(Xt, t)dt+ sigma(Xt, t)dWt,

are defined as R-functions in the current workspace. That is by defining the drift and diffusion
components

mu=function(X,t){some expression i.t.o. X and t}

sig=function(X,t){some expression i.t.o. X and t}

further analysis may be conducted by calling the function MOL.density().

Warning

Warning [1]: Note that if the lattice is shifted, degeneracies may occur for certain drift/volatility
specifications if the shifted lattice moves into non-nonsensical values of the drift/volatility func-
tions’ domains.

Warning [2]: Although increasing the spatial resolution of the lattice by increasing N improves
approximations, instabilities will occur if delt is not sufficiently small. This tends to manifest as
jagged/spiked solutions that oscillate between positive and negative values.
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Note

Note [1]: Although the spatial limits of the lattice is defined by the user using xlims, if the initial
value Xs does not fall on one of the lattice nodes, then the lattice is shifted accordingly.

Note [2]: The approximation assumes that the entire density of the process falls on a finite interval.
Thus the algorithm may breakdown for certain problems. Depending on the parameters of the
process, the limits may be very far apart or near. Some experimentation may be required. Otherwise,
set autofind = TRUE to find useful limits. Note also that larger N may be required for wider limits.

Note [3]: Increasing N will likely require smaller delt, thus increasing computation time. For some
problems, slight increases in N will require much smaller delt.

Note [4]: delt is used as the step size for a 10(8)-th order Runge-Kutta method for solving the
resulting system of ODEs. Note again the inter-play between N and delt (see note [3]).

Author(s)

Etienne A.D. Pienaar <etiennead@gmail.com>

References

Hamdi, S., Schiesser, W. E. and Griffiths, G. W. 2007 Method of lines. Scholarpedia, 2(7):2859.
Revision #124335.

Feagin, T. 2007 A tenth-order Runge-Kutta method with error estimate. In Proceedings of the
IAENG Conf. on Scientifc Computing.

See Also

MOL.passage, BiMOL.density.

Examples

#===============================================================================

# For detailed notes and examples on how to use the MOL.density() function, see
# the following vignette:

RShowDoc('Part_2_Transition_Densities',type='html','DiffusionRimp')

#===============================================================================
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MOL.passage Approximate the First Passage Time Density of a Two-Barrier Problem
for Time-Homogeneous Scalar Diffusions.

Description

For scalar diffusions with drift mu=function(X){} and diffusion sig=function(X){}, moving
in relation to lower and upper bounds limits[1] and limits[2] respectively, MOL.passage()
approximates a solution to the partial differential equation (PDE) that governs the evolution of the
survaval distribution of the first passage time density via the method of lines (MOL).

Usage

MOL.passage(Xs, t, limits, N, delt, mu, sig, desc = 1)

Arguments

Xs Starting/Initial value for the diffusion process (see note [1]).

t Value (>0) giving the terminal point for the transition horizon (the final time at
which to evaluate the transition density).

limits Limits for the spatial nodes of the lattice. These limits now represent the limits
in the spatial domain (see note [2]).

N The number of nodes in the spatial domain at which to evaluate the transitional
density. Increase N for more accurate approximations (see note [3] and warning
[2]).

delt Step size for the time domain of the lattice (see note [4]).

mu Optional (if drift and diffusion coefficients are already defined) arguments giv-
ing the drift and diffusion coefficients as text expressions (See Interface below).

sig Optional (if drift and diffusion coefficients are already defined) arguments giv-
ing the drift and diffusion coefficients as text expressions (See Interface below).

desc The type of discretization used (see note [5]).

Value

surface A matrix giving the approximate survival probability over time for all starting
values contained in the discretization of the interval enclosed by limits.

density A vector containing the approximate first passage time density for trajectories
starting at Xs (see note [i]).

time A vector of time nodes at which the approximation was evaluated.
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Interface

MOL.passage uses a function-input interface whereby the drift and diffusion components of the
time-homogeneous stochastic differential equation (SDE):

dXt = mu(Xt)dt+ sigma(Xt)dWt,

are defined as R-functions in the current workspace. That is by defining the drift and diffusion
components

mu=function(X){some expression i.t.o. X}

sig=function(X){some expression i.t.o. X}

further analysis may be conducted by calling the function MOL.passage().

Warnings

Warning [1]:

Note

Note [1]: If the initial value Xs does not fall on one of the lattice nodes, then the first passage time
density is calculated by linearly interpolating between approximations at the two nearest lattice
nodes.

Note [2]: Note that that enough nodes, N, are needed in order to generate a sufficiently accurate
approximation, especially when limits[1] and limits[2] are far apart.

Note [3]: Increasing N will likely require smaller delt, thus increasing computation time. For some
problems, slight increases in N will require much smaller delt.

Note [4]: delt is used as the step size for a 10(8)-th order Runge-Kutta method for solving the
resulting system of ODEs. Note again the inter-play between N and delt (see note [3]).

Note [5]: When one of the limits is sufficiently far away to not be accessible within the provided
time-horizon, instabilities may occur and an alternative discretization may be required in order to
ensure smooth operation. Possible values are desc = 1 (close limits), desc = 2 (limits[1] is
inaccessible) and desc = 3 (limits[2] is inaccessible).

Author(s)

Etienne A.D. Pienaar <etiennead@gmail.com>

References

Hamdi, S., Schiesser, W. E. and Griffiths, G. W. 2007 Method of lines. Scholarpedia, 2(7):2859.
Revision #124335.

Feagin, T. 2007 A tenth-order Runge-Kutta method with error estimate. In Proceedings of the
IAENG Conf. on Scientifc Computing.

See Also

MOL.density, BiMOL.density.
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Examples

#===============================================================================

# For detailed notes and examples on how to use the MOL.passage() function, see
# the following vignette:

RShowDoc('Part_3_First_Passage_Times',type='html','DiffusionRimp')

#===============================================================================

MOL.plot Quick Plots for DiffusionRimp Objects

Description

MOL.plot() recognizes output objects calculated using routines from the DiffusionRimp pack-
age and subsequently constructs an appropriate plot, for example a perspective plot of a transition
density.

Usage

MOL.plot(x)

Arguments

x Generic MOL-objects, i.e. res = MOL.density().

Value

Varies in accordance with input type.

Author(s)

Etienne A.D. Pienaar: <etiannead@gmail.com>

References

Updates available on GitHub at https://github.com/eta21.

See Also

MOL.density, BiMOL.density, MOL.passage etc.

Examples

#===============================================================================

https://github.com/eta21
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RcppArmadillo-Functions

A Junk Funktion For Build Purposes

Description

This function was created as a filler in order for the package to build correctly.

Usage

junkfunction3()

Details

This function was created as a filler in order for the package to build correctly.

Value

junkfunction3() does nothing useful.

Author(s)

Etienne A.D. Pienaar

References

See the documentation for Armadillo, and RcppArmadillo, for more details.

RS.estimates Extract Parmaeter Estimates from .impute() Objects.

Description

RS.estimates() calculates parameter estimates from .impute() model objects.

Usage

RS.estimates(x, thin = 100, burns, CI = c(0.05, 0.95), corrmat = FALSE,
acf.plot = TRUE, palette = 'mono')
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Arguments

x List object of type ’RS.impute’ or ’BiRS.impute’. That is, when model = RS.impute()
then model constitutes an appropriate object for x.

thin Thinnging level for parameter chain.
burns Number of MCMC updates to discard before calculating estimates.
CI Credibility interval quantiles (for MCMC chains).
corrmat If TRUE, an estimated correlation matrix is returned in addition to the estimate

vector.
acf.plot If TRUE, an acf plot is drawn for each element of the parameter chain.
palette Colour palette for drawing trace plots. Default palette = 'mono', otherwise a

qualitative palette will be used.

Value

Data frame with parameter estimates and appropriate interval statistics.

Author(s)

Etienne A.D. Pienaar: <etiannead@gmail.com>

References

Updates available on GitHub at https://github.com/eta21.

See Also

RS.impute, BiRS.impute.

Examples

example(RS.impute)

RS.impute Brownian Bridge Data Imputation for Scalar Diffusion Processes.

Description

RS.impute performs inference on bivariate diffusion processes with quite arbitrary drift function-
als by imputing missing sample paths with Brownian bridges. The procedure was developed by
Roberts and Stramer (2001) and subsequently extended in later papers (Dellaportas et al, 2006;
Kalogeropoulos et al., 2011). Currently, the diffusion is assumed to take on the form

dXt = mu(Xt, t, theta)dt+ sigma[1]f(Xt)dWt,

where mu(Xt, theta) may be defined with near-complete freedom as R-functions in the current
workspace. f(.) may take on predefined forms (see details).

https://github.com/eta21
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Usage

RS.impute(X, time, M, theta, sds, diff.type = 1, burns = min(floor(updates/2),25000),
updates, plot.chain = TRUE, imputation.plot = FALSE, palette = 'mono')

Arguments

X Vector of coordinates at which the diffusion process was observed, where N is
the number of observations.

time A vector of time nodes at which the process was observed.

M The number of points to impute between successive observations. Note that
as the transition horizon increases, more points may be required in order to
get desirable acceptance rates for Brownian bridges. Note that some transition
horizons may be removed from likelihood calculations - see exclude.

theta Starting parameters for the model process.

sds Proposal standard deviations for the drift parameter chain.

diff.type An indicator assuming values 1, 2 or 3, for which of the predefined volatility
structures to impose - see note [3].

burns The number of updates to burn (only affects traceplots).

updates The number of updates to perform.
imputation.plot

Display imputed paths for successive updates - see note [4]. Default = FALSE.

plot.chain Display the resulting MCMC chain - see notes [5], [6] and [7].

palette Colour palette for drawing trace plots. Default palette = 'mono', otherwise a
qualitative palette will be used.

Value

per.matrix Matrix containing the MCMC chain updates.
acceptence.rate

Vector of acceptance rates for the two parameter chains.

bridge.rate Vector of average acceptance rates for Brownian bridge updates.

run.time The total run time of the algorithm.

Note

Note [1]: The functional form of the drift components may be defined by the user as R-functions.
Although the function body may take on arbitrary forms both the name of the drift functions and
the input structure must assume the form

mu = function(variable, time, theta){...}.

Note that theta is a reserved variable for the parameters. It is left to the user to ensure that the
functional forms do not degenerate. See the examples below.

Note [2]: The drift function has to be defined in order for the algorithm to execute.
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Note [3]: The functional form for the volatility may take on one of the following: f(Xt) = 1, corre-
sponding to constant volatility , f(Xt) =

√
Xt corresponding to CIR type models and f(Xt) = Xt

such as for geometric Brownian motion. Corresponding indicators are simply given buy 1, 2, and 3.

Note [4]: Paths are imputed on a unit -volatility process. For display purposes the back-transformed
imputed trajectories may plotted along with vertical lines indicating which bridges remained un-
changed over successive updates.

Note [5]: By default the MCMC chain is displayed in a panel plot. Standard MCMC diagnostics
may be performed on this chain which is returned in the value list as per.matrix.

Note [6]: In addition to the MCMC chain, acceptance rates are given for both the drift vector
parameter updates as well as the volatility parameter updates. A, target region for the acceptance
rate trajectories is displayed in blue.

Note [7]: Average acceptance rates are indicated for bridges per the transition number by blue bars.
A target region for the bridge acceptance rates is given in light blue. Average acceptance rates that
are lower than 60% are indicated along with their respective transition number. Vertical grey lines
indicate exclude-d transitions.

Author(s)

Etienne A.D. Pienaar <etiennead@gmail.com>

References

Dellaportas, P. 2006 Bayesian model selection for partially observed diffusion models. Biometrika,
93(4): 809.

Kalogeropoulos, K., Dellaportas, P., and Roberts, G. O. 2011 Likelihood based inference for corre-
lated diffusions. Canadian Journal of Statistics, 39(1):52–72.

Roberts, G. and Stramer, O. 2001 On inference for partially observed nonlinear diffusion models
using the Metropolis-Hastings algorithm. Biometrika, 88:603–621.

See Also

BiRS.impute, MOL.density.

Examples

#===============================================================================
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TiCIR Simulated Bivariate Time In-Homogeneous CIR process.

Description

A simulated diffusion of the form

dXt = Xt(1 + sin(2 ∗ pi ∗ t)−X2
t )dt+ dW 1

t ,

dYt = Yt(1 + sin(2 ∗ pi ∗ t)− Y 2
t )dt+ dW 2

t ,

with X0 = 1 and Y0 = 1.

Usage

data(TiCIR)

Format

A data frame with 101 observations on the following 3 variables.

X_t A numeric vector of X-coordinates for the simulated data.

Y_t A numeric vector of X-coordinates for the simulated data.

t A numeric vector of time nodes at which the simulated data were observed.

Examples

data(TiCIR)



Index

∗Topic C++
DiffusionRimp-package, 2

∗Topic datasets
DoubleWell, 13
TiCIR, 25

∗Topic package
DiffusionRimp-package, 2

∗Topic plot
MOL.plot, 20

BiMOL.aic, 2, 3, 15
BiMOL.density, 2, 5, 10, 12, 17, 19, 20
BiMOL.passage, 2, 8
BiRS.impute, 2, 5, 10, 22, 24

DiffusionRimp (DiffusionRimp-package), 2
DiffusionRimp-package, 2
DoubleWell, 13

junkfunction3
(RcppArmadillo-Functions), 21

MOL.aic, 2, 5, 13
MOL.density, 2, 7, 15, 19, 20, 24
MOL.passage, 2, 7, 10, 17, 18, 20
MOL.plot, 20

RcppArmadillo-Functions, 21
RS.estimates, 21
RS.impute, 2, 12, 15, 22, 22

TiCIR, 25

26


	DiffusionRimp-package
	BiMOL.aic
	BiMOL.density
	BiMOL.passage
	BiRS.impute
	DoubleWell
	MOL.aic
	MOL.density
	MOL.passage
	MOL.plot
	RcppArmadillo-Functions
	RS.estimates
	RS.impute
	TiCIR
	Index

