Package ‘DSpat’

February 19, 2015

Type Package

Title Spatial Modelling for Distance Sampling Data
Version 0.1.6

Date 2014-12-08

Author Devin Johnson, Jeff Laake, Jay VerHoef
Maintainer Jeff Laake <Jeff.Laake@noaa.gov>

Description Fits inhomogeneous Poisson process spatial models
to line transect sampling data and provides estimate of
abundance within a region.

Depends R (>=2.0.0), spatstat (>= 1.22-0), RandomFields
Imports rgeos, mgev, sp

License GPL (>=2)

NeedsCompilation no

Repository CRAN

Date/Publication 2014-12-12 14:39:42

R topics documented:

DSpat-package e 2
create.covariate.imagest . e u e e e e e e e e e e e e e 7
create.dines 8
create.points.by.offset L 9
dist2line 10
dspat e e e 10
DSpat.covariates L. 13
DSpatlines e 14
DSpatobs 15
integrate.Antensity e e e e 15
Internal 17
lgep.correctionl e 18
lines_to_strips o e e e 19
LTDataFrame e 20

2 DSpat-package

OffSEt.points e e e e 21
project2line e e e e 21
quadscheme.t oL 22
sample.points e 23
SIMCOVATIAtes e e 24
SIMDSpat e e e e e e e 25
SIMPEs 29
transect.intensity L e 30
WeedS . .o e e e e e 31
weeds.all . . . L 38
weeds.Covariates e e e e e 40
weeds.dines 41
weeds.obso L e 42

Index 43

DSpat-package Spatial modelling package for distance sampling data
Description

DSpat uses the tools in spatstat to provide an analysis of distance sampling data in a spatial
context in which the density surface and the detection function are estimated simultaneously. The
package provides a fitted density surface and total abundance and measures of precision. It also
provides simulation capabilities.

Details

Package: DSpat

Type: Package

Version: 1.0

Date: 2008-04-08

License: GPL version 2 or later

Conventional distance sampling (Buckland et al. 2001;2004) uses likelihood theory for estima-
tion of the detection function based on an assumed uniform distribution of perpendicular distances
within the transects. An adequate sampling design provides the basis for the uniform distribution
assumption and inference for abundance. No assumption is made about the spatial distribtion of the
object being sampled.

DSpat provides a full-likelihood framework for simultaneous estimation of the detection function
and abundance based on an inhomogeneous Poisson process. A full-likelihood approach has a
number of advantages because there is no strict requirement on the sampling design so it can be used
with unequal coverage sampling and it can provide estimates of the density surface and abundance
for any defined sub-area. Also, by modelling the observed data as a spatial process ’adjustments’ to
the strip-width of the transect occur naturally when the transect extends beyond the area containing
objects. Consider sampling a marine environment with a contorted coastline such as fjords. In

DSpat-package 3

sampling the open ocean, the full transect width can contain objects but within a fjord the strip is
narrowed or clipped in areas where it extends onto land. This causes difficulties with conventional
distance sampling which assumes a uniform distribution of objects across the entire strip. Thus,
either a very narrow strip must be used for both areas or the detection function must be estimated
separately for each region and even that can not completely cope with the problem. This variation
in the spatial distribution of objects is handled easily with a spatial model that simultaneously
estimates the detection function and the intensity (density) of the point process (e.g., animal/plant
locations). The detection function is estimated as a covariate to explain the intensity of the observed
point process as a function of perpendicular distance from the centerline. Thus, obviously the
potential for confounding occurs if the pattern of transects is such that pattern of perpendicular
distances is confounded with the spatial pattern of a covariate that determines the true intensity of
the process. For example, if there was a density gradient with respect to the coastline and a single-
sided transect parallel to the coastline was sampled then perpendicular distance and distance from
the coastline are completely confounded. However, with a typical dual-sided transect, the pattern of
perpendicular distance is no longer entirely confounded with the distance from the coastline because
perpendicular increases away from the centerline in both directions. Thus, confounding would not
occur except in the unlikely situation that intensity (density) varied relative to the coastline in such
a fashion that was symmetric with respect to the centerline of the transect. With a modicum of care
in the design, confounding between perpendicular distance and spatial covariates can be avoided
but the analyst should always be cognizant of the potential for confounding.

Current Limitations: 1) assumes no overlap among strips 2) no handling of cluster size 3) assumes
detection probability on the transect centerline is 1 4) can only use a detection function of the
form log(g(x)) = h(z) where h(x) is linear in the parameters. For example, h(z) = —tau *
(distance®)/2. Note that any parameter such as tau is not constrained so this does allow for the
possibility of an increasing detection function.

The first limitation will require some thought and work as we are unaware of any solutions at
present. If there is overlap, when owin in spatstat is called with the poly=transects, the code
will fail. It is easy to get around this problem to fit the model by using study . area as the boundary
but the calls to Kinhom and 1gcp.correction will not work properly. Also, there are some philo-
sophical and inference issues that need to be considered if sample overlap. For example, is the point
process fixed during sampling or should the replicate (and overlapping) samples be considered as
independent realizations of the point process. Even though most designs do not have overlapping
transects in theory, in practice if the line is composed of contiguous line segments that vary slightly
in angle, the transects will overlap when created from the line segments. Some solution is needed
as this is will likely occur in most real applications.

The latter three limitations can be resolved with the extension of the likelihood and additional
coding in the package. DSpat currently uses ppm in spatstat which uses either glm or gam in mgcv
to solve for the MLEs. We have functions that compute the likelihood and they can be generalized
to accomodate these limitations but they have not been incorporated into the package yet.

DSpat relies heavily on the tools in spatstat and to a lesser degree the functions in gpclib, mgcv
and RandomFields. DSpat provides aditional functions to cope with analysis and simulation of
distance sampling data (line transect only at this stage). The functions in DSpat are listed below in
categories with a brief description.

There are a number of concepts that should be understood prior to using this package. There are
2 coordinate systems that we will use. The first is the standard x,y Cartesian coordinate system
with x on the horizontal and y on the vertical. The second which is not used extensively (yet) is
the coordinate system within each line-transect. A line-transect is composed of a line (centerline)

DSpat-package

which has a beginning (x0,y0) and end (x1,y1) and a rectangular strip with a defined width which
extends width/2 to the left and right of the centerline. We use the term line to represent the line and
transect for the rectangular strip (line-transect). The transect has a left-half and right-half defined
by the direction of travel from beginning to the end of the line. Imagine the line-transect rotated
such that it is vertical with the rotated versions of y0,yl such that yO<y1 (travelling from south to
north). We define a coordinate system u,v within the line-transect. The origin for u,v (u=0,v=0) is
the rotated location of the beginning of the line (x0,y0) and u is equivalent to the standard horizontal
x-coordinate with a range of (-width/2,width/2) and v is equivalent to the vertical y-coordinate
with a range of (@,L) where L is the length of the line L=sqrt((x0-x1)*2+(y0-y1)*2). We use
the variable distance for the perpendicular distance which is the absolute value of u.

So why have 2 coordinate systems? spatstat always works with the X,y coordinate system and
it creates grids and the like with a horizontal-vertical orientation to the grid. In fitting distance
sampling data we want to control the grid resolution relative to the u,v coordinates. In particular,
we need to use a relatively fine grid in the u direction for estimation of the detection function
which can change quickly over a small scale relative to most covariates that would be used for the
intensity function. To use the spatstat code for grids and the like, we rotate the line-transects and
observations to vertical from south to north and create the grid and counting weights in what is now
the u,v coordinate system. Thus, for clarity we use a function argument epsvu in place of epsyx to
show that the grid resolution is over u,v and not over Xx,y, unless the line-transects are all originally
oriented vertically. Currently all line-transects must be rectangular we envision generalizing this
and the u,v coordinate system will be used.

Even though all transects must be rectangular, the surveyed portion of the transect need not be
rectangular. This is relevant when portions of the transect extend outside the boundary of the study
area (defined region being sampled with the transects). The study area can be defined by any
polygon as defined for class owin in spatstat. Note the restriction that the polygon coordinates
must be given in a counter-clockwise direction. A simple example would be a square region such
as

study.area=owin(xrange=c(0,100),yrange=c(0,100))
or a square with a missing portion
study.area=owin(poly=data.frame(x=c(0,40,40,100,100,0),

You can examine these by simply typing plot(study.area. Regardless, of the study area shape
but depending on the orientation of the transects, portions of the transects can extend outside of the
study area. For example, consider the corners of transects at a 45 degree angle extending across a
rectangular study area. In many practical applications the width of the transect is so narrow relative
to the dimensions of the study area, that these corners are of no consequence. However, in some
applications with small scales this can be important. For example, surveys of narrow inlets (fjords)
or rivers or contorted coastlines or surveys of small areas (see weeds).

This is handled in DSpat by clipping the portion of the rectangular transect that extends outside
of the study area. The transects are clipped after they are rotated and gridded. This is important
because that ensures the grids spatstat are positioned the same across all transects.

Analysis
Primary Functions:
dspat - main function for fitting spatial model to distance sampling data

integrate.intensity - computes predicted intensity surface, total abundance and precision with
optional correction for over-dispersion

y=c(9,0,50, 50,

DSpat-package 5

transect.intensity - computes predicted and observed counts within each transect in specified
perpendicular distance intervals

Secondary Functions:

create.covariate.images - create a list of covariate images from a dataframe of covariates. The
list of covariate images is used by LTDataFrame.

lines_to_strips - from a dataframe of lines this function creates a psp object and a list of transect
polygons that assumes that lines are the centerlines of strips that have width as defined in the lines
dataframe.

lgcp.correction - computes Monte Carlo correction for over-dispersion
LTDataFrame - assign covariates to the data (observations) and dummy points

quadscheme.lt - constructs a quadrature scheme for ppm that is more efficent for line transect
samples which are small slices of the study area. The default quadrature scheme in spatstat
creates dummy points across the entire study area which is terribly inefficient. This function rotates
each line to vertical, creates a quadrature scheme within the line and then "rotates" back to original
position to get the proper covariates. These line-by-line quadratures are then merged into a single
quadrature.

Data preparation and utility

offset.points - this utility function is useful for most applied data sets in which the position of
the observation is specified by the coordinates on the line that are perpendicular to the object. For a
line and its observations, this function converts the object positions on the line and the perpendicular
distance (negative is left) to the coordinates for the location of the object. It could be generalized to
work with a radial distance and angle which would often be collected in shipboard work. It is also
used from lines_to_strips to compute the vertices of the transect from the lines with a given
width.

create.points.by.offset - this is a wrapper function that calls of fset.points for each line in
a lines dataframe and the corresponding observations in an observations dataframe, and returns a
new observations dataframe with X,y being the true object coordinates.

dist2line - this function is the inverse of offset.points. It takes the true coordinates of points
and a line and computes the perpendicular distance on the line and the coordinates on the line.

project2line - likewise this is a wrapper function for dist2line that is essentially the inverse of
create.points.by.offset.

Internal
AIC.dspat - computes AIC for the model; only correct if a HPP or IPP process

coef.dspat -extracts the coefficients into a list with a vector for intensity coefficients and another
for detection coefficients.

print.dspat - provides a listing of elements in the dspat object.

summary .dspat - extracts the ppm object and calls the spatstat summary function for this object.
vcov.dspat - extracts the variance-covariance matrix from the ppm object.

Ops.psp - allows syntax x==y or x!=y where x and y are psp objects.

rev_val - reorders vector for use in im.

im.clipped - fills in clipped image with vector of values defined over the clipped region.

owin.gpc.poly - converts first polygon in owin class to a gpc polygon.

6 DSpat-package

Simulation

create.lines - create a systematic grid of parallel lines (with a random start) across a study area
at a specified angle.

sample.points - extract observed points from a point process that fall within the defined set of
strips and are randomly detected with a defined detection function.

simCovariates - a non-general function for simulating covariates in a 100x100 rectangle with
discrete habitats and a linear vertical habitat feature. See DSpat.covariates.

simDSpat - a wrapper function to simulate distance sampling from a rectangular study area with
a specified set of covariates on a grid. It calls create.lines, lines_to_strips, simPts and
sample.points and returns a dataframe of lines and observations that can be used with the
covariates datframe in dspat for an analysis.

simPts - creates a simulated point process in a study area by calling RFsimulate from the package
RandomFields and rpoispp from spatstat. The intensity process is defined by a covariates
dataframe and a formula and parameters for the intensity as a function of the covariates.

Example datasets

An example dataset from the fairy tale simulated world of simCovariates can be found in DSpat. obs,
DSpat.lines,DSpat.covariates. To run an example analysis with these data, type example (dspat)
or example (DSpat) to run the same code below.

An example real-world dataset of a devil’s claw weed in a farm paddock can be found in weeds,
weeds.all, weeds.obs, weeds.lines, weeds.covariates. Torun a set of analyses, type example (weeds).

Author(s)

Devin S. Johnson, Jeffrey L. Laake, and Jay M. Ver Hoef
Maintainer: <Jeff.LLaake @Noaa.Gov>

References
Johnson,D.S., Laake, J.L., and Ver Hoef, J M. (in prep). A model based approach for making
ecological inference from distance sampling data.

Buckland, S.T., D.R.Anderson, K.P. Burnham, J.L. Laake, D.L. Borchers, and L. Thomas. 2001.
Introduction to Distance Sampling: Estimating Abundance of Biological Populations. Oxford Uni-
versity Press.

Buckland, S.T., D.R.Anderson, K.P. Burnham, J.L. Laake, D.L. Borchers, and L. Thomas. 2004.
Advanced Distance Sampling. Oxford University Press.

See Also

spatstat

Examples

get example data
data(DSpat.lines)
data(DSpat.obs)

create.covariate.images 7

data(DSpat.covariates)

Fit model with covariates used to create the data

sim.dspat=dspat(~ river + factor(habitat),
study.area=owin(xrange=c(@,100), yrange=c(0,100)),
obs=DSpat.obs,lines=DSpat.lines,covariates=DSpat.covariates,
epsvu=c(1,.01),width=0.4)

Print

sim.dspat

Summarize results

summary (sim.dspat)

Extract coefficients

coef.intensity <- coef(sim.dspat)$intensity

coef.detection <- coef(sim.dspat)$detection

Extract variance-covariance matrix (inverse information matrix)

J.inv <- vcov(sim.dspat)

Compute AIC

AIC(sim.dspat)

Visualize intensity (no. animals per area) and estimate abundance

mu.B <- integrate.intensity(sim.dspat,dimyx=100)

cat('Abundance = ', round(mu.B$abundance,@), "\n")

dev.new()

plot(mu.B$lambda, col=gray(1-c(1:100)/120), main='Estimated Intensity')

plot(sim.dspat$model$Q$data,add=TRUE)

plot(owin(poly=sim.dspat$transect),add=TRUE)

plot(sim.dspat$lines.psp,lty=2,add=TRUE)

Compute se and confidence interval for abundance without over-dispersion

mu.B <- integrate.intensity(sim.dspat,se=TRUE,dimyx=100)

cat(”"Standard Error = ", round(mu.B$precision$se,@), "\n",
"95 Percent Conf. Int. = ", round(mu.B$precision$lcl.95,0), ',',
round(mu.B$precision$ucl.95,0), ")", "\n")

create.covariate.images
Create a list of covariate images

Description

Creates a list of covariates images from a dataframe of covariates defined on a grid for the study
area. Images are created for variables contained in vector of names varnames and the values of the
covariates are in the covariates dataframe.

Usage

create.covariate.images(covariates, varnames)

Arguments

covariates covariate dataframe (see DSpat for structure)

varnames vector of names of fields contained in covariates that will be used for fitted model

8 create.lines

Value

covariate.im - list of covariate images (class im)

Author(s)
Jeff Laake

create.lines Create a systematic sample of parallel lines across a grid

Description

Create a systematic set of lines to sample a rectangular grid. The grid is positioned with a random
start on the study area. The systematic grid can be set at any angle and the number of lines is set
by the spacing or the spacing is set by width and number of lines. This is a wrapper function for
rlinegridin spatstat.

Usage

create.lines(study.area,nlines=NULL,width, spacing=NULL,angle=0)

Arguments

study.area owin class defining area

nlines number of lines

width full transect width

spacing spacing distance between centerlines

angle angle of rotation in degrees anticlockwise from x-axis
Value

lines dataframe with label,x0,y0,x1,y1,width where x0,y0 is beginning and x1,y1 is end of the line

Author(s)
Jeff Laake

See Also

simCovariates,simPts

Examples

study.area=owin(xrange=c(@,100),yrange=c(0,100))
xp=create.lines(study.area,nlines=10,width=5,angle=180)
1s=lines_to_strips(xp,study.area)

plot(ls$lines,lty=2)
plot(owin(poly=1s$transects),add=TRUE)

create.points.by.offset 9

create.points.by.offset
Create point dataframe offset from line

Description

For a set of observations with X,y locations on the line and a perpendicular distance, create a new
observation dataframe with true X,y point locations.

Usage

create.points.by.offset(lines, observations)

Arguments
lines - data frame of lines with the following structure
label - unique label
X0 - x coordinate of beginning of line
yo - y coordinate of beginning of line
x1 - x coordinate of end of line
y1 - y coordinate of end of line
width - optional full width of each transect
line is in center of transect
- any number of covariates
observations - data frame of observations with the following structure
label - label linking it to a unique line
X - x coordinate
y - y coordinate
distance- perpendicular distance;
positive=right side; negative=left side
- any number of covariates
Value

observations dataframe with true X,y locations

Author(s)
Jeff Laake

See Also

offset.points

10 dspat

dist2line Compute perpendicular distances and projections onto line

Description

Calculates perpendicular distances of a point process contained within a strip to the center line of
the strip they are contained in. It also computes the positions of the objects projected onto the line.
This is the inverse of the offset.points function.

Usage

dist2line(object.ppp, line.ends)

Arguments
object.ppp point process for observations in a strip
line.ends ends of line x0,y0,x1,y1
Value
distVals vector of perpendicular distances
projection dataframe of projected locations on the line
Author(s)

Devin Johnson

See Also

project2line

dspat Fits spatial model to distance sampling data

Description

Creates a dspat object by fitting model represented by formula to observations along line transects
in a study area with covariates defined for a grid over the entire study area.

Usage

dspat(int.formula=~1, det.formula=~1, study.area, obs, lines, covariates,
epsvu=c(1,.01), width=NULL, use.gam=FALSE, show.warnings=FALSE,
nclass=NULL)

dspat 11

Arguments
int.formula formula for model of the point process intensity
det.formula formula for interaction with distance in the detection process
study.area owin class for study area
obs dataframe of observations
lines dataframe of lines
covariates dataframe of covariates on a grid in the study area
epsvu vector of height of pixels(y) and width of pixels(x)
width full transect width; only needed if it is not specified in lines.df
use.gam if TRUE uses gam instead of glm for fitting; if formula contains s() use.gam will

be set TRUE by default

show.warnings if TRUE, show the warnings created in building the quadrature.

nclass number of distance classes for expected/observed counts.
Details
covariates has following structure
X - X coordinate of midpoint of grid cell
y - y coordinate of midpoint of grid cell

. — any number of covariate

the data are ordered by column from left to right and
from bottom to top such that y changes first from smallest
to largest. Below are matrices showing y,x and their order
3,1 3,2 3,3 369

2,12,22,3 2538

1,171,21,3 147

The default for the intensity formula (int.formula) is ~1, a homogeneous Poisson process. Note
that what is actually fitted is ~-14+constant where constant is 1 everywhere. This is done to avoid a
glitch in vcov. ppm. The detection formula (det.formula) is expressed as a formula that interacts
with I(—distance?/2). The default of ~1 is a detection function that is constant everywhere. If
you use ~-1, it will drop distance which assumes a strip transect with perfect detection within the
strip. The variables contained in int.formula must be all contained within covariates because
they need to be defined across the entire study area. The variables contained in det . formula can be
in covariates or in lines because for prediction of the intensity, distance is set to zero, so these
covariates need not be known across the entire survey area.

’

The value of epsvu[2] is adjusted such that it is an even multiple of width/2 so that the grid points
are evenly distributed in the direction of perpendicular distance.

Value
list of class "dspat" with elements

model output object from ppm

lines.psp psp line segment process for center lines

12 dspat

transects list of dataframes specifying polygonal transects

covariate.im list of covariate images (class im)

study.area owin class of study area
use.gam TRUE if gam used and FALSE otherwise
Author(s)

Jeff Laake; Devin Johnson

See Also

quadscheme.lt,LTDataFrame

Examples

get example data

data(DSpat.lines)

data(DSpat.obs)

data(DSpat.covariates)

Fit model with covariates used to create the data

sim.dspat=dspat(~ river + factor(habitat),
study.area=owin(xrange=c(@,100), yrange=c(0,100)),
obs=DSpat.obs,lines=DSpat.lines,covariates=DSpat.covariates,
epsvu=c(4,.1),width=0.4)

Print

sim.dspat

Summarize results

summary(sim.dspat)

Extract coefficients

coef.intensity <- coef(sim.dspat)$intensity

coef.detection <- coef(sim.dspat)$detection

Extract variance-covariance matrix (inverse information matrix)
J.inv <- vcov(sim.dspat)

Compute AIC

AIC(sim.dspat)

Visualize intensity (no. animals per area) and estimate abundance
mu.B <- integrate.intensity(sim.dspat,dimyx=100)

cat('Abundance = ', round(mu.B$abundance,@), "\n")

dev.new()

plot(mu.B$lambda, col=gray(1-c(1:100)/120), main='Estimated Intensity')
plot(sim.dspat$model$Q$data,add=TRUE)
plot(owin(poly=sim.dspat$transect),add=TRUE)
plot(sim.dspat$lines.psp,lty=2,add=TRUE)

Compute se and confidence interval for abundance without over-dispersion
mu.B <- integrate.intensity(sim.dspat,se=TRUE,dimyx=100)
cat(”"Standard Error = ", round(mu.B$precision$se,@), "\n",
"95 Percent Conf. Int. = (", round(mu.B$precision$lcl.95,0), ',',
round(mu.B$precision$ucl.95,0), ")", "\n")

DSpat.covariates 13

Compute se and confidence interval for abundance with over-dispersion estimate

dev.new()

The rest of the example has been put into a function to speed up package checking; remove # to run

to run type do.dspat()

do.spat=function()

{

mu.B <- integrate.intensity(sim.dspat,se=TRUE,od=TRUE, reps=30,dimyx=100)

cat(”"Standard Error (corrected) = ", round(mu.B$precision.od$se,@), "\n",

"95 Percent Conf. Int. (corrected) = ", round(mu.B$precision.od$1cl.95,0),
" ", round(mu.B$precision.od$ucl.95,0), ")", "\n")

Fit model with smooth of x and y

sim.dspat=dspat(~ s(x) + s(y),study.area=owin(xrange=c(@,100), yrange=c(0,100)),
obs=DSpat.obs,lines=DSpat.lines,covariates=DSpat.covariates,
epsvu=c(1,.01),width=0.4)

AIC(sim.dspat)

Visualize intensity (no. animals per area) and estimate abundance

mu.B <- integrate.intensity(sim.dspat,dimyx=100,se=TRUE)

cat('Abundance = ', round(mu.B$abundance,@), "\n")
cat("Standard Error = ", round(mu.B$precision$se,@), "\n",
"95 Percent Conf. Int. = ", round(mu.B$precision$lcl.95,0),

non

,", round(mu.B$precision$ucl.95,0), ")", "\n")

dev.new()

plot(mu.B$lambda, col=gray(1-c(1:100)/120), main='Estimated Intensity')

plot(sim.dspat$model$Q$data,add=TRUE)

plot(owin(poly=sim.dspat$transect),add=TRUE)

plot(sim.dspat$lines.psp,lty=2,add=TRUE)

#

Fit model with smooth of x and y with interaction

#

sim.dspat=dspat(~ s(x,y),study.area=owin(xrange=c(0,100), yrange=c(0,100)),
obs=DSpat.obs,lines=DSpat.lines,covariates=DSpat.covariates,
epsvu=c(1,.01),width=0.4)

AIC(sim.dspat)

Visualize intensity (no. animals per area) and estimate abundance

mu.B <- integrate.intensity(sim.dspat,dimyx=100,se=TRUE)

cat('Abundance = ', round(mu.B$abundance,@), "\n")
cat("Standard Error = ", round(mu.B$precision$se,), "\n",
"95 Percent Conf. Int. = ", round(mu.B$precision$lcl.95,0),

non

,", round(mu.B$precision$ucl.95,0), ")", "\n")

dev.new()

plot(mu.B$lambda, col=gray(1-c(1:100)/120), main='Estimated Intensity')
plot(sim.dspat$model$Q$data,add=TRUE)
plot(owin(poly=sim.dspat$transect),add=TRUE)
plot(sim.dspat$lines.psp,lty=2,add=TRUE)

3

DSpat.covariates Raster covariates study area

14 DSpat.lines

Description

Example set of raster covariates for computing predicted intensity/abundance across the entire study
area (100x100).

Usage

data(DSpat.covariates)

Format

A data frame with 10000 (1x1 raster element) on the following 4 variables.

x x coordinate for mid-point of raster cell
y y coordinate for mid-point of raster cell
river distance from river to center of raster element

habitat type of habitat for raster element

DSpat.lines Example DSpat lines dataframe

Description

An example dataframe of 10 transect centerlines

Usage

data(DSpat.lines)

Format
A data frame with 10 observations on the following 5 variables.
label unique line label that links points to lines
x@ x-coordinate for beginning of line
x1 x-coordinate for end of line

y@ y-coordinate for beginning of line

y1 y-coordinate for end of line

Details

An example set of vertical lines evenly spaced across a window of 100x100.

DSpat.obs 15

DSpat.obs Observation dataframe for DSpat

Description

An example dataframe for the observations for fitting a spatial model with DSpat

Usage

data(DSpat.obs)

Format
A data frame with 395 observations on the following 6 variables.
label unique line label that links points to lines

x x coordinate of observation point

y y coordinate of observation point

Details

Example observation dataframe simulated with specific covariates across a 100x100 window. Only
the x,y coordinates and line label are needed. The covariates are extracted based on the x,y coordi-
nates.

integrate.intensity Integrated intensity of fitted model

Description

Compute intensity and its integration (abundance) and measures of precision with and without over-
dispersion correction

Usage

integrate.intensity(x, dimyx=NULL, eps=NULL, se=FALSE, od=FALSE,
reps=100, silent=FALSE, J.inv=NULL, showplot=TRUE)

16

Arguments

X
dimyx
eps
se

od

reps
silent
J.inv

showplot

Details

integrate.intensity

dspat object

number of y,x pixels

height and width of pixels

if TRUE, compute std error of abundance and log-normal ci

if TRUE and se=TRUE, also compute over-dispersion corrected std error of
abundance and log-normal ci

number of reps for MC integration for over-dispersion correction
if FALSE, show progress on MC integration
var-cov matrix from fitted model

if TRUE show Poisson and empirical and fitted K-functions

Either dimyx or eps can be specified. If neither specified then it uses the first covariate image in
the dspat object to set the intensity grid. If more than one are specified then others are ignored with
their priority for use matching the order they are listed above.

Value

Abundance

distribution

precision
precision.od
lambda

W

Author(s)

Estimate of expected abundance in the study area

dataframe containing N (predicted number of points in the cell),x,y (X,y coordi-
nates of cell) and covariates used in the model

List containing se, 1cl.95, ucl.95, J.inv, and b.vec
For over-dispersion estimate a list containing se, 1c1.95, ucl.95, J.inv, and b.vec
estimated intensity image

window mask for study area

Devin Johnson; Jeff Laake

See Also

lgcp.correction

Internal 17

Internal Internal DSpat functions

Description

Miscellaneous set of functions used in the package.

Usage

S3 method for class 'dspat'
AIC(object,...,k)

S3 method for class 'dspat'
print(x,...)

S3 method for class 'dspat'
summary (object,...)

S3 method for class 'dspat'
coef(object,...)

S3 method for class 'dspat'’

vcov(object,...)
X.PSp==Yy.psp
X.psp!=y.psp

rev_val(x,y,val)
im.clipped(x, window)

owin.gpc.poly(window)

Arguments

X for generic functions: a dspat object output from dspat with class dspat, for
rev_val: a vector of x coordinates, for im.clipped: a vector of image values
in order defined by spatstat

object a dspat object output from dspat with class dspat

k penalty per parameter in AIC, default is 2

X.psp, Y.psp psp objects

\% vector of y coordinates

val vector of image values

window class owin polygonal window

additional arguments for generic functions

18 Igep.correction

Details

Internal functions:

AIC Computes AIC value

print.dspat print various objects in dspat object

summary.dspat shows summary of ppm model object

coef.dspat provides coefficients of the intensity and detection function

vcov.dspat provides var-cov matrix of coefficients

Ops.psp provides == and != operators for psp objects

rev_val reverses order of val such that y increases within increasing x as needed in im
im.clipped creates image and fills values (val) into the clipped portion

of the image as defined by window
owin.gpc.poly creates a gpc class poly from first polygon of an owin class

Author(s)
Jeff Laake
lgep.correction Calculate Overdispersion factor for IPP fit via Monte Carlo Integra-
tion
Description

Calculate Overdispersion factor for IPP fit via Monte Carlo Integration

Usage

lgcp.correction(fit.ppm, fit.lgcp, reps = 100, J.inv, silent = FALSE, lines.psp)

Arguments
fit.ppm fitted model from ppm of spatstat
fit.lgep fitted model from lgcp.estK
reps number of replicates for approximation
J.inv variance-covariance matrix from fitted ppm model
silent if FALSE, shows counter for replicates
lines.psp line segment process
Value
J.inv.corr Adjusted var-cov matrix

u score matrix

lines_to_strips 19

Author(s)

Devin Johnson

See Also

integrate.intensity

lines_to_strips Convert lines to transects (strips)

Description

Convert lines (center) with transect widths to strips and compute rotation angle from vertical. With
the intersect function in gpclib, it also now clips the portions of the transects that are outside the
study area.

Usage

lines_to_strips(lines, study.area, width = NULL)

Arguments
lines dataframe with fields named label,x0,x1,y0,y1 and optionally width
study.area owin class giving study area window
width optional; if all lines have the same width it can be specified here
Details

The function assumes that the intersection of the strip and the study area only results in a single
intersection polygon. That means the entire strip cannot pass outside the study area and then come
back into the study area as in an aerial transect that passes over water to over land and then back
over water. In this case, the line should end when it passes out of the sampled area and restarted
when back in the sampled area.

Value
lines a psp class of lines with label and angles for rotation added
transects a list of dataframes with polygon coordinates

Author(s)

Jeff Laake

20 LTDataFrame

LTDataFrame Creates covariate dataframes

Description

Creates covariate dataframes for observations and dummy quadrature points

Usage

LTDataFrame(study.area, lines, lines.psp, int.formula, det.formula,
covariates, Q.1t)

Arguments
study.area owin object that defines study area
lines data frame of lines with structure as shown in quadscheme. 1t
lines.psp psp class with added list elements width and label
int.formula model formula for intensity process
det.formula model formula for detection scale process
covariates covariate dataframe (see DSpat for structure)
Q.1t It quadscheme of class quad
Details

Checks to make sure that all of the variables used in formula are either in covariates or in lines.
Then it extracts the values of covariates for each observation and for dummy points. These are
merged with the needed covariates from lines and then a single dataframe is returned with the
observations followed by the dummy points. In addition, the covariate images in a list are returned
to keep with the dspat object for use in integrate.intensity.

Value

cov.df dataframe of covariates followed by rows for covariates for dummy quadrature
points

covariate.im list of covariate images

Author(s)
Devin Johnson; Jeff Laake

See Also

quadscheme.lt,create.covariate.images

offset.points 21

offset.points Offset points from the line to actual position

Description

Convert x,y point locations on the line and a distance (negative is left of line for the direction of
travel) for a series of points in a strip.

Usage

offset.points(line, pts)

Arguments
line vector with named components of x0,y0,x1,yl; line traverses from (x0,y0) to
(xLyl)
pts dataframe of x,y,distance for each observed point; X,y is the location on the line
that is perpendicular to the object; a negative distance implies it is on the left
side of the line as defined by the direction of travel
Value

pts dataframe with x,y locations of the objects offset from the line at the appropriate distance and
side.

Author(s)
Jeff Laake

See Also

create.points.by.offset

project2line Project points onto line

Description

Projects point process contained in strips to the center line of each strip containing points. This is
the inverse of the create.points.by.offset function.

Usage

project2line(obs.ppp, lines.psp)

22 quadscheme.lt

Arguments
obs. ppp point process contained in strips
lines.psp line segment process with label field
Value

dataframe of projected locations (X,y) on the lines

Author(s)
Jeff Laake

See Also

dist2line

quadscheme. 1t Create line transect quadrature for spatstat

Description

Creates a quadrature for spatstat from a study area, observations, and lines

Usage

quadscheme.lt(study.area, observations, lines, width = NULL,
epsvu = c(1, 0.01), show.warnings=FALSE)

Arguments
study.area owin class giving the boundaries of the study area
observations - data frame of observations with the following structure
label - label linking it to a unique line
X - x coordinate
y - y coordinate
distance- perpendicular distance from center line
- any number of covariates
lines - data frame of lines with the following structure
label - unique label
X0 - x coordinate of beginning of line
yo - y coordinate of beginning of line
x1 - x coordinate of end of line
y1 - y coordinate of end of line

width - optional full width of transect around line
angle - angle of rotation to get to vertical
- any number of covariates

sample.points 23

width if no width field is given in lines then it must be specified here as a constant
width for all lines

epsvu pixel dimensions epsvu[l] in v direction (height) and epsvu[2] in u direction
(width) (these are used once line is rotated vertically.

show.warnings if TRUE, warnings from quadrature construction will be shown.

Value
Q quadscheme as defined in spatstat
transects list of transect polygon dataframes
lines.psp line segment process

Author(s)

Devin Johnson; Jeff Laake

See Also
LTDataFrame
sample.points Sample points within each transect and filter with specified detection
function
Description

Create a dataframe of observations by simulating distance sampling of a point process with a sys-
tematic set of lines over a rectangular grid. The transects, lines and point process(points.ppp)
are input arguments. Detection of observations is specified with a user-defined detection function
which takes a distance vector and set of parameters det.par as its arguments.

Usage

sample.points(transects,lines,points.ppp,detfct=NULL,det.par=NULL,
det.formula=~1,covariates=NULL)
hndetfct(x,scale)

Arguments
transects list of transect polygons
lines dataframe of lines
points.ppp simulated point process
detfct detection function name

det.par parameters for the detection function

24 simCovariates
det.formula formula of covariates to use for scale of distance if det.formula=~-1, uses a strip
transect
covariates a matrix with columns x,y and any number of covariates x and y are the mid
points of the grid cells; the order of the rows must match the formulation for
function im
X perpendicular distance for detection function
scale scale for detection function
Details

Definition for half-normal detection function (hndetfct) is exp(-(x*2/(2*xexp(scale)*2)))

Value

observation dataframe with fields label,x,y,distance for line label, x,y coordinates of the observation
location and its perpendicular distance from the line

Author(s)

Jeff Laake

See Also

simCovariates,simPts,create.lines

Examples

study.area=owin(xrange=c(@,100),yrange=c(0,100))

hab.range=30

probs=c(1/3,2/3)

covariates = simCovariates(hab.range, probs)

xlines=create.lines(study.area,nlines=10,width=5,angle=45)

ls=lines_to_strips(xlines,study.area)

plot(ls$lines,lty=2)

plot(owin(poly=1s$transects),add=TRUE)

xpp=simPts(covariates=covariates,int.formula=~factor(habitat),int.par=c(0,1,2),EN=1000)

obs=sample.points(transects=1ls$transects,lines=xlines,points.ppp=xpp,
hndetfct,c(1),covariates=covariates)

plot(ppp(x=obs$x, y=obs$y,window=study.area),add=TRUE, pch=20)

simCovariates Simulates covariates for an example in DSpat

Description

Create a set of covariates in a 100x100 world with a vertical linear feature and discrete habitats.

simDSpat 25

Usage

simCovariates(hab.range=30, probs=c(1/3,2/3), river.loc=50)

Arguments
hab.range habitat range that controls patchiness
probs ordered probablities that define habitat cutoffs
river.loc x coordinate for north-south river location
Details

The number of habitat types is the length of probs plus 1. The habitats are stored as a numeric from
1 to the number of types, but should be fitted with habitat as a factor variable. The distance to the
river is a scaled distance from O to 1.

Value

dataframe with columns x,y,river and habitat

Author(s)
Devin Johnson; Jeff Laake

See Also

simPts

Examples

covariates = simCovariates(hab.range=50, probs=c(1/3,2/3,7/8))

simDSpat Simulate a distance sample from a specified spatial point process

Description

This is a wrapper function that calls all of the functions needed to simulate and sample a point
process over a defined study.area with a specified covariates on a grid. In sequence it calls
create.lines, lines_to_strips, simPts, and sample.points.

Usage

simDSpat (study.area=owin(xrange=c(9,100),yrange=c(0,100)),covariates,
angle=90,nlines=10,spacing=10,width=1,int.formula=~1,
int.par=1,model="exp",cor.par=NULL,EN=1000,detfct=hndetfct,
det.formula=~1,det.par=log(width/3),showplot=FALSE, showlines=FALSE,
showpts=FALSE,pts=NULL,...)

Arguments

study.area

covariates

angle
nlines
spacing
width
int.formula
int.par
model

cor.par

EN
detfct

det.formula

det.par
showplot
showlines
showpts

pts

Value

simDSpat

owin class defining area

a matrix with columns x,y and any number of covariates x and y are the mid
points of the grid cells; the order of the rows must match the formulation for
function im

angle of rotation in degrees anticlockwise from x-axis

number of lines

spacing distance between centerlines

full transect width

formula for deriving expected intensity from covariates
parameters for intensity formula

either "exp" or "gauss" for exponential or Gaussian correlation

parameters controlling clustering of points cor.par[1] sigma? cor.par[2]=alpha
where cov(yl,y2)=sigma?® x exp(—dP /alpha) and d is the distance between y1
and y2 and p=1 for exp and p=2 for gauss; if it is not specified then no additional
clustering is included.

expected number of points
detection function name

formula of covariates to use for scale of distance if det.formula=~-1, uses a strip
transect

parameters for the detection function

if TRUE show plot of the simulated points

if TRUE show lines and transects on the plot
if TRUE show points on the plot

if not NULL use these points rather than generating new ones; this allows gen-
eration of a single set of points and evaluation of different sampling designs or
intensity

parameters, if any, passed to plot

a list with elements

lines lines dataframe with label,x0,y0,x1,y1,width where x0,y0 is beginning and x1,y1
is end of the line
observations adataframe of the coordinates of the observed points
Author(s)
Jeff Laake
See Also

simCovariates,simPts

simDSpat 27

Examples

Code stored in a function to speed up package checking run by typing do.simDSpat

Some portions of this code will not pass the packge check on Linux and Mac and will issue

an error that the polygons intersect even though when run as an example, the

error is not encountered; so polygon checking is turned off

do.simDSpat=function()

{

Now that it is in a function shouldn't need following line

spatstat.options(checkpolygons=FALSE)

study.area=owin(poly=list(x=c(0,40,40,100,100,0),y=c(0,0,40,40,100,100)))

covariates = simCovariates(hab.range=30, probs=c(1/3,2/3))

simdata=simDSpat(study.area,covariates,int.formula=~factor(habitat),

int.par=c(0,1,2),angle=45,nlines=10,width=3,det.par=.1)

sim.dspat=dspat(int.formula=~factor(habitat),study.area=study.area,
obs=simdata$observations,lines=simdata$lines,
covariates=covariates,epsvu=c(1,.05))

summary(sim.dspat)

AIC(sim.dspat)

coef(sim.dspat)

mu.B <- integrate.intensity(sim.dspat,dimyx=100, se=TRUE)

cat('Abundance = ', round(mu.B$abundance, @), "\n")
cat('Standard Error = ', round(mu.B$precision$se,@), "\n",
'95 Percent Conf. Int. = (', round(mu.B$precision$lcl.95,0), ',"',

round(mu.B$precision$ucl.95,0), ')', '\n')

mu.B <- integrate.intensity(sim.dspat,dimyx=100, se=TRUE, od=TRUE, reps=50)

cat('Abundance = ', round(mu.B$abundance, @), "\n")

cat('Standard Error (corrected) = ', round(mu.B$precision.od$se,@), "\n",

'95 Percent Conf. Int.(corrected) = (', round(mu.B$precision.od$lcl.95,0), ',"',
round(mu.B$precision.od$ucl.95,0), ')', '\n')

plot(mu.B$lambda, main='Estimated Intensity')

plot(sim.dspat$lines.psp,lty=2,add=TRUE)

plot(owin(poly=sim.dspat$transect),add=TRUE)

plot(sim.dspat$model$Q$data,add=TRUE)

Now sample with same point process realization with a different sampling angle

dev.new()

simdata=simDSpat(study.area,covariates,int.formula=~factor(habitat),

int.par=c(0,1,2),angle=90,nlines=10,width=3,pts=simdata$pts)

sim.dspat=dspat(int.formula=~factor(habitat),study.area=study.area,
obs=simdata$observations,lines=simdata$lines,
covariates=covariates,epsvu=c(1,.05))

mu.B <- integrate.intensity(sim.dspat,dimyx=100,se=TRUE)

cat('Abundance = ', round(mu.B$abundance,@), "\n")
cat('Standard Error = ', round(mu.B$precision$se,@), "\n",
'95 Percent Conf. Int. = (', round(mu.B$precision$lcl.95,0), ',',

round(mu.B$precision$ucl.95,0), ')', '\n")
mu.B <- integrate.intensity(sim.dspat,dimyx=100,se=TRUE,od=TRUE, reps=50)
cat('Abundance = ', round(mu.B$abundance,@), "\n")
cat('Standard Error (corrected)= ', round(mu.B$precision.od$se,0), "\n",
'95 Percent Conf. Int. (corrected)= (', round(mu.B$precision.od$lcl.95,0), ',"',
round(mu.B$precision.od$ucl.95,0), ')', '\n')
plot(mu.B$lambda, main='Estimated Intensity')

28

simDSpat

plot(sim.dspat$lines.psp,lty=2,add=TRUE)
plot(owin(poly=sim.dspat$transect),add=TRUE)
spatstat.options(checkpolygons=TRUE)
plot(sim.dspat$model$Q$data,add=TRUE)
Sample with detection as a function of habitat
dev.new()
study.area=owin(poly=1list(x=c(0,40,40,100,100,0),y=c(0,0,40,40,100,100)))
simdata=simDSpat(study.area,covariates,int.formula=~factor(habitat),
int.par=c(0,1,2),angle=45,nlines=10,width=3,
det.par=c(.1,.5,-.2),det.formula=~factor(habitat))
sim.dspat=dspat(int.formula=~factor(habitat),det.formula=~factor(habitat),
study.area=study.area, obs=simdata$observations,lines=simdata$lines,
covariates=covariates,epsvu=c(1,.05))
summary(sim.dspat)
AIC(sim.dspat)
coef (sim.dspat)
mu.B <- integrate.intensity(sim.dspat,dimyx=100,se=TRUE)

cat('Abundance = ', round(mu.B$abundance,@), "\n")
cat('Standard Error = ', round(mu.B$precision$se,@), "\n",
'95 Percent Conf. Int. = (', round(mu.B$precision$lcl.95,0), ',',

round(mu.B$precision$ucl.95,0), ')', '\n')
plot(mu.B$lambda, main='Estimated Intensity')
plot(sim.dspat$lines.psp,lty=2,add=TRUE)
plot(owin(poly=sim.dspat$transect),add=TRUE)
plot(sim.dspat$model$Q$data,add=TRUE)
HHHHHHHHHHHHAEHHHHEHHH A
Generate example like Figure used in paper for simulations
Note: it required a patch to plot.im from spatstat to
fix the ribbon bar on the side.
#

if(is.null(list(...)$zlim))

{
ribbonvalues <- seq(vrange[1], vrange[2], length = ribn)
ribbonrange <- vrange
ribbonticks <- clamp(pretty(ribbonvalues), vrange)

}

else

{
zlim=list(...)$z1lim
ribbonvalues <- seq(zlim[1], zlim[2], length = ribn)
ribbonrange <- zlim
ribbonticks <- clamp(pretty(ribbonvalues), zlim)

e E E E E E E E

B s S S S S
study.area=owin(poly=list(x=c(0,100,100,0),y=c(0,0,100,100)))
covariates = simCovariates(hab.range=30, probs=c(1/3,2/3))
postscript("Figurel.eps”,horizontal=FALSE)
par(mfrow=c(2,1),mar=c(3, 1, 3, 1) + 0.1)

k=10

width=0.04*100/k

En=75

simPts 29

p=0.25

EN=En/(.04%*p)

simdata=simDSpat(study.area,covariates,int.formula=~factor(habitat)+river,EN=EN,
int.par=c(0,1,2,-1),angle=90,nlines=k,width=width,
det.par=log(width/5),showplot=TRUE, col=gray(1-c(1:100)/120),
breaks=(0:100)*2.5/100,
z1lim=c(0,2.5))

lines(c(590,50),c(0,100),1ty=2)

sim.dspat=dspat(int.formula=~factor(habitat)+river,study.area=study.area,
obs=simdata$observations,lines=simdata$lines,
covariates=covariates,epsvu=c(1,width/100))

summary (sim.dspat)

AIC(sim.dspat)

coef(sim.dspat)

mu.B <- integrate.intensity(sim.dspat,dimyx=100)

plot(mu.B$lambda, col=gray(1-c(1:100)/120), main='Estimated Intensity',

breaks=(0:100)*2.5/100,z1im=c(0,2.5))

plot(sim.dspat$lines.psp,lty=2,add=TRUE)

plot(owin(poly=sim.dspat$transect),add=TRUE)

plot(sim.dspat$model$Q$data,add=TRUE)

dev.off ()
spatstat.options(checkpolygons=TRUE)
}
simPts Simulates point process on a rectangular grid
Description

Generates a set of points from either a homogeneous or inhomogeneous Poisson process with op-
tional clustering. This is a wrapper function for rpoispp from the spatstat package. The intensity
is defined by covariates on a grid, an intensity formula and parameters. The correlation structure is
defined by the model and the correlation parameters.

Usage
simPts(covariates,int.formula=~1, int.par=c(1), EN=100,
model, showplot=FALSE, showpts=FALSE, ...)
Arguments
covariates a matrix with columns x,y and any number of covariates x and y are the mid
points of the grid cells; the order of the rows must match the formulation for
function im
int.formula formula for deriving expected intensity from covariates
int.par parameters for intensity formula

EN expected number of points

30

model
showplot

showpts

Value

transect.intensity

a spatial model for suimulation. See RFsimulate for further specification.
if TRUE, plot intensity and point process
if TRUE show points on the plot

parameters, if any, passed to plot

ppp object of point locations

Author(s)

Devin Johnson; Jeff Laake

See Also

simCovariates

Examples

hab.range=30
probs=c(1/3,2/3)

covariates = simCovariates(hab.range, probs)
xpp=simPts(covariates=covariates,int.formula=~factor(habitat),int.par=c(0,1,2))
plot(xpp)
transect.intensity Compute expected and observed counts by distance within transect
Description

Computes the expected and observed counts for equally-spaced bins of perpendincular distance
within each transect. Expected and observed counts are each a matrix with a row for each transect
and a column for each distance bin.

Usage

transect.intensity(x, epsvu=NULL, obs.ppp, covariates, nclass=NULL, width)

Arguments

X
epsvu
obs.ppp
covariates
nclass
width

dspat object

epsvu setting for fitted model; only uses epsvu[2] value for u
observation point process

dataframe of covariates at quadrature points

number of equally-spaced distance intervals within 0-width/2

maximum full transect width over all transects

weeds 31

Details

The actual number of distance bins will only match nclass if it is selected such that nclassxepsvu[2]
is an even multiple of width/2. The function dspat adjusts epsvu[2] such that it is an even multi-
ple of width/2 and this function assumes that condition holds. Sometimes your choice of epsvu[2]
will provide less than optimal choices for nclass and in some cases it can only choose a single bin.
In these cases, select another value of epsvu[2] which is a multiple for width/2.

If nclass is not specified then it uses the default of ceiling(sqrt(n)) intervals.

Value
exp.counts matrix of expected counts in each distance bin (columns) for each transect (row)
obs.counts matrix of observed counts in each distance bin (columns) for each transect (row)
Author(s)
Jeff Laake

weeds Dubbo weed data

Description

Locations of devils claw in a farming paddock. Locations to all weeds are given and those observed
along one of eight 150m wide transects (75m each side) are specified as Seen=1.

Usage

data(weeds)

Format
A data frame with 742 observations on the following 4 variables.

Transect Label of the transect 1 to 8

SignedDistance perpendicular distance in meters of weed from centerline; negative left and pos-
itive right

Distance absolute perpendicular distance

Seen weed was seen if 1 and O if missed

Details

These are the data that were provided by Melville and Welsh (see reference below) that were used
in their Biometrics paper on distance sampling. In their paper they specified that the transects were
laid out parallel in a north-south direction and presumably the transects were contiguous. This
allows us to construct an x coordinate for each weed but no y coordinate was provided. In our use
of these data we have created a y coordinate using runif and we have assumed the entire study area
was 1200x1200 or 1.44 sq kilometers. They also stated that on transect 5-8 sheep ate the leafy part
of the weed but there was no sheep grazing on transects 1-4. Presumably there was a fence between
the sets of transects.

32 weeds

References

Melville, G. J., and A. H. Welsh. 2001. Line transect sampling in small regions. Biometrics
57:1130-1137.

Examples

HHHHHHHHHEHE AR AR AR RN
Dubbo weed data
HHHHHHHEHE AR AR AR A
#
Example creates a function that you can run. It is not run as
part of the exampled to speed up package checking
To run, code type do.weeds()
do.weeds=function()
{
data(weeds.all)
TrueAbundance=dim(weeds.all)[1]
cat("\nTrue N= " TrueAbundance, "\n")
study.area=owin(xrange=c(0,1200),yrange=c(0,1200))
data(weeds.lines)
data(weeds.obs)
data(weeds.covariates)
study.area=owin(xrange=c(@,1200),yrange=c(0,1200))
#
The entire study area is covered by the 8 N-S strips that are each 150m wide
Sheep are absent on strips 1-4 and present on strips 5-8
The following fits a model using all weeds whether they were seen or not
#
weeds.dspat=dspat(int.formula=~factor(strip),det.formula=~-1,
study.area=study.area,
obs=weeds.all,lines=weeds.lines,covariates=weeds.covariates,
epsvu=c(100,1))
mu.B <- integrate.intensity(weeds.dspat,dimyx=120,se=TRUE)
cat('Abundance = ', round(mu.B$abundance, @), "\n")
pdf ("Truelntensity.pdf")
plot(mu.B$lambda, main='True intensity by strip"')
plot(weeds.dspat$lines.psp,lty=2,add=TRUE)
plot(owin(poly=weeds.dspat$transect),add=TRUE)
plot(weeds.dspat$model$Q$data,add=TRUE, pch=20)
dev.off()
Compute distances for each weed
obs.ppp=weeds.dspat$model$Q$data
no.sheep.distances=NULL
sheep.distances=NULL
transects=weeds.dspat$transects
for (i in 1:4)
no.sheep.distances=c(no.sheep.distances,
dist2line(obs.ppplowin(poly=transects[i])],weeds.dspat$lines.psp$ends[i,])$distance)
sheep.distances=NULL
for (i in 5:8)
sheep.distances=c(sheep.distances,

weeds 33

dist2line(obs.ppplowin(poly=transects[i])],weeds.dspat$lines.psp$ends[i,])$distance)
pdf ("True Distance Distribution.pdf")
par(mfrow=c(2,1))
hist(no.sheep.distances,breaks=(0:15)*5,main="Sheep absent”,xlab="Perpendicular distance (m)")
hist(sheep.distances,breaks=(0:15)*5,main="Sheep present”,xlab="Perpendicular distance (m)")
dev.off()
no.sheep=hist(no.sheep.distances,breaks=(0:15)*5,plot=FALSE)$counts
with.sheep=hist(sheep.distances,breaks=(0:15)*5,plot=FALSE)$counts
summary of abundance per strip
Est.N=by(mu.B$distribution$N,cut(mu.B$distribution$x,seq(@,1200,150)), sum)
True.N=by(weeds.all$x,cut(weeds.all$x,seq(0,1200,150)),length)
pdf ("TrueAbundanceByStrip.pdf")
barplot(rbind(True.N,Est.N),beside=TRUE, legend=TRUE,names.arg=1:8,main="All weeds")
dev.off()
The following code will produce the true detection probability as a function of
distance for no sheep (lines 1-4) and sheep (lines 5-8) using all known weed locations
observed weed locations.
sheep.labels.obs=cut(weeds.obs$label,c(1,4,8),include.lowest=TRUE)
levels(sheep.labels.obs)=c("Sheep absent”,"”Sheep present”)
sheep.labels=cut(weeds.all$label,c(1,4,8),include. lowest=TRUE)
levels(sheep.labels)=c(”Sheep absent”,"”Sheep present”)
cat("\n All weeds \n")
table(sheep.labels,cut(weeds.all$distance, (0:10)*7.5,include. lowest=TRUE))
det=table(sheep.labels.obs,cut(weeds.obs$distance, (0:10)*7.5,include. lowest=TRUE))/
table(sheep.labels,cut(weeds.all$distance, (0:10)*7.5,include. lowest=TRUE))
cat("\n Detection \n")
det
pdf ("TrueDetection.pdf")
barplot(det,beside=TRUE,main="Dubbo weed detection probability”,
xlab="Perpendicular distance”,legend=TRUE)

H+

dev.off()
#
For the observed weeds with N-S transects:
#
6 different models were fit for each pairing of:
int.formula:
3 formulas for intensity: ~factor(sheep), ~factor(strip), ~s(x)
det.formula
2 formulas for detection: ~1 (constant sigma), ~factor(sheep) (sigma for sheep,no sheep)
#
A half-normal detection function is assumed which is fitted with I(-distance*2/2)
#
Fit model ~sheep, ~1

weeds.dspat.1=dspat(int.formula=~factor(sheep), study.area=study.area,
obs=weeds.obs,lines=weeds.lines,covariates=weeds.covariates,
epsvu=c(100,1))

AIC(weeds.dspat.1)

coef (weeds.dspat.1)

mu.B = integrate.intensity(weeds.dspat.1,dimyx=120,se=TRUE)

cat('Abundance = ', round(mu.B$abundance,@), "\n")
cat('Standard Error = ', round(mu.B$precision$se,@), "\n",
'95 Percent Conf. Int. = (', round(mu.B$precision$lcl.95,0), ',',

round(mu.B$precision$ucl.95,0), ')', '\n')

34

weeds

pdf ("NS_model_1_intensity.pdf")

plot(mu.B$lambda, main='Estimated Intensity')

plot(weeds.dspat.1%$lines.psp,lty=2,add=TRUE)

plot(owin(poly=weeds.dspat.1$transect),add=TRUE)

plot(weeds.dspat.1$model$Q$data,add=TRUE, pch=20)

dev.off()

Fit model ~sheep, ~sheep

weeds.dspat.2=dspat(int.formula=~factor(sheep),det.formula=~factor(sheep),
study.area=study.area,
obs=weeds.obs,lines=weeds.lines,covariates=weeds.covariates,
epsvu=c(100,1))

summary (weeds.dspat.2)

AIC(weeds.dspat.2)

coef (weeds.dspat.2)

mu.B = integrate.intensity(weeds.dspat.2,dimyx=120,se=TRUE)

cat('Abundance = ', round(mu.B$abundance,@), "\n")
cat('Standard Error = ', round(mu.B$precision$se,@), "\n",
'95 Percent Conf. Int. = (', round(mu.B$precision$lcl.95,0), ',"',

round(mu.B$precision$ucl.95,0), ')', '\n')
pdf ("NS_model_2_intensity.pdf")
plot(mu.B$lambda, main='Estimated Intensity')
plot(weeds.dspat.2%$lines.psp,lty=2,add=TRUE)
plot(owin(poly=weeds.dspat.2%$transect),add=TRUE)
plot(weeds.dspat.2%$model$Q$data,add=TRUE, pch=20)
dev.off()
Fit model ~factor(strip), ~1
weeds.dspat.3=dspat(~factor(strip),study.area=study.area,
obs=weeds.obs,lines=weeds.lines,covariates=weeds.covariates,
epsvu=c(100,1))
summary (weeds.dspat. 3)
AIC(weeds.dspat.3)
coef (weeds.dspat. 3)
mu.B = integrate.intensity(weeds.dspat.3,dimyx=120,se=TRUE)

cat('Abundance = ', round(mu.B$abundance,@), "\n")
cat('Standard Error = ', round(mu.B$precision$se,@), "\n",
'95 Percent Conf. Int. = (', round(mu.B$precision$lcl.95,0), ',',

round(mu.B$precision$ucl.95,0), ')', '\n')

pdf ("NS_model_3_intensity.pdf")

plot(mu.B$lambda, main='Estimated Intensity')

plot(weeds.dspat.3%$lines.psp,lty=2,add=TRUE)

plot(owin(poly=weeds.dspat.3%$transect),add=TRUE)

plot(weeds.dspat.3%$model$Q$data,add=TRUE, pch=20)

dev.off()

Fit model ~factor(strip), ~factor(sheep)

weeds.dspat.4=dspat(int.formula=~factor(strip),det.formula=~factor(sheep),
study.area=study.area,
obs=weeds.obs,lines=weeds.lines,covariates=weeds.covariates,
epsvu=c(100,0.75),nclass=10)

summary (weeds.dspat.4)

AIC(weeds.dspat.4)

coef (weeds.dspat.4)

mu.B = integrate.intensity(weeds.dspat.4,dimyx=120,se=TRUE)

mu.B.4=mu.B

weeds
cat('Abundance = ', round(mu.B$abundance,@), "\n")
cat('Standard Error = ', round(mu.B$precision$se,@), "\n",

'95 Percent Conf. Int. = (', round(mu.B$precision$lcl.95,0), ',"',
round(mu.B$precision$ucl.95,0), ')', '\n")

pdf ("NS_model_4_intensity.pdf")

plot(mu.B$lambda, main='Estimated Intensity')

plot(weeds.dspat.4$lines.psp,lty=2,add=TRUE)

plot(owin(poly=weeds.dspat.4$transect),add=TRUE)

plot(weeds.dspat.4$model$Q$data,add=TRUE, pch=20)

dev.off()

Fit model ~s(x), ~1

weeds.dspat.5=dspat(int.formula=~s(x),
study.area=study.area,
obs=weeds.obs,lines=weeds.lines,covariates=weeds.covariates,
epsvu=c(100,1))

summary (weeds.dspat.5)

AIC(weeds.dspat.5)

coef (weeds.dspat.5)

mu.B = integrate.intensity(weeds.dspat.5,dimyx=120,se=TRUE)

cat('Abundance = ', round(mu.B$abundance,@), "\n")
cat('Standard Error = ', round(mu.B$precision$se,@), "\n",
'95 Percent Conf. Int. = (', round(mu.B$precision$lcl.95,0), ',',

round(mu.B$precision$ucl.95,0), ')', '\n")
pdf ("NS_model_5_intensity.pdf")
plot(mu.B$lambda, main='Estimated Intensity')
plot(weeds.dspat.5%lines.psp,lty=2,add=TRUE)
plot(owin(poly=weeds.dspat.5%transect),add=TRUE)
plot(weeds.dspat.5%$model$Q$data,add=TRUE, pch=20)
dev.off()
Fit model ~s(x), ~sheep
weeds.dspat.6=dspat(int.formula=~s(x),det.formula=~factor(sheep),
study.area=study.area,
obs=weeds.obs,lines=weeds.lines,covariates=weeds.covariates,
epsvu=c(100,1))

summary (weeds.dspat.6)

AIC(weeds.dspat.6)

coef (weeds.dspat.6)

mu.B = integrate.intensity(weeds.dspat.6,dimyx=120,se=TRUE)

cat('Abundance = ', round(mu.B$abundance, @), "\n")
cat('Standard Error = ', round(mu.B$precision$se,@), "\n",
'95 Percent Conf. Int. = (', round(mu.B$precision$lcl.95,0), ',"',

round(mu.B$precision$ucl.95,0), ')', '\n')
pdf ("NS_model_6_intensity.pdf")
plot(mu.B$lambda, main='Estimated Intensity')
plot(weeds.dspat.6%$lines.psp,lty=2,add=TRUE)
plot(owin(poly=weeds.dspat.6%$transect),add=TRUE)
plot(weeds.dspat.6%modelQdata,add=TRUE, pch=20)
dev.off()
summary of abundance per strip using model 4
Est.N=by(mu.B.4%$distribution$N,cut(mu.B.4$distribution$x,seq(@,1200,150)),sum)
True.N=by(weeds.all$x,cut(weeds.all$x,seq(0,1200,150)),length)
postscript("Figure3.ps”,height=6,width=5,6horizontal=FALSE)

35

36

weeds

barplot(rbind(True.N,Est.N),beside=TRUE, legend=TRUE,names.arg=1:8,main="N-S lines model 4")
dev.off()

Show goodness of fit for sheep absent/present
postscript(”"Figure4.ps"”,height=6,width=5,horizontal=FALSE)

exp.nosheep=apply (weeds.dspat.4$exp.counts[1:4,],2, sum)
obs.nosheep=apply(weeds.dspat.4$obs.counts[1:4,],2, sum)
exp.sheep=apply(weeds.dspat.4$exp.counts[5:8,],2, sum)

obs. sheep=apply(weeds.dspat.4$obs.counts[5:8,],2, sum)

par(mfrow=c(2,1))

barplot (rbind(exp=exp.nosheep,obs=obs.nosheep),beside=TRUE,main="Sheep absent")
barplot(rbind(exp=exp.sheep,obs=obs.sheep),beside=TRUE, legend=FALSE,main="Sheep present”)
dev.off()

chi-square test for model 4

chisg=sum((exp.nosheep-obs.nosheep)*2/exp.nosheep)+

sum((exp.sheep-obs.sheep)*2/exp.sheep)

cat("Chi-square=",chisq,” p= ",1-pchisq(chisq,2*x10-1length(weeds.dspat.4$par)),"\n")
sigma for no sheep and sheep

sigmas=sqrt(1/coef(weeds.dspat.4)$detection)

cat("\n Sigma (no sheep) =",sigmas[1],"\n","Sigma (sheep) =" sigmas[2],"\n")

HHH A AR A AR
Modify sampled vertical N-S strips to extend from 600 to 1200 and then

add 4 E-W horizontal strips centered at 75,225,375,525. Using approximate
detection functions for sheep/no sheep areas, a sample of observations from

the points are randomly selected.

NOTE: The following is random and will not produce the same results each time
it is run because of the random observation process.

ETE T T T T s

HHHHHHHHHHEHEEHEHHHEHHHAHAE AR
data(weeds.obs)
data(weeds.lines)
weeds.obs=weeds.obs[weeds.obs$y>600,]
xlines=data.frame(label=9:12,x0=rep(0,4),x1=rep(1200,4),y0=c(75,225,375,525),
y1=c(75,225,375,525) ,width=rep(149.999,4))
ls=lines_to_strips(xlines,study.area)
pts=ppp(x=weeds.all$x,y=weeds.all$y,window=study.area)
pdf ("E-W_N-S samples.pdf")
plot(pts)
plot(ppp(x=weeds.obs$x,y=weeds.obs$y,window=study.area),add=TRUE,pch=19,col="red",cex=.5)
obs=sample.points(ls$transects,xlines,pts,detfct=hndetfct,
det.par=c(3.637586,-.1466),det.formula=~factor(sheep),
covariates=weeds.covariates)
weeds.obs=rbind(weeds.obs,obs)
plot(ppp(x=obs$x,y=obs$y,window=study.area),add=TRUE, pch=19,cex=.5)
dev.off()
weeds.lines[,"y0"]1=600.0001
weeds.lines=rbind(weeds.lines,as.matrix(xlines))
weeds.dspat=dspat(int.formula=~factor(strip),det.formula=~factor(sheep),
study.area=study.area,
obs=weeds.obs,lines=weeds.lines,covariates=weeds.covariates,
epsvu=c(100,1),nclass=15)
coef (weeds.dspat)
sigma for no sheep and sheep

weeds 37

sigmas=sqrt(1/coef(weeds.dspat)$detection)

cat("\n Sigma (no sheep) =",sigmas[1],"\n","Sigma (sheep) =", sigmas[2],"\n")
mu.B <- integrate.intensity(weeds.dspat,dimyx=120,se=TRUE)
cat('Abundance = ', round(mu.B$abundance,@), "\n")
cat('Standard Error = ', round(mu.B$precision$se,@), "\n",
'95 Percent Conf. Int. = (', round(mu.B$precision$lcl.95,0), ',"',

round(mu.B$precision$ucl.95,0), ')', '\n")
pdf ("E-W_N-S Estimated Intensity.pdf")
plot(mu.B$lambda, main='Estimated Intensity')
plot(weeds.dspat$lines.psp,lty=2,add=TRUE)
plot(owin(poly=weeds.dspat$transect),add=TRUE)
plot(weeds.dspat$model$Q$data,add=TRUE, pch=20)
dev.off()
summary of abundance per strip
pdf ("E-W_N-S AbundanceByStrip.pdf")
Est.N=by(mu.B$distribution$N,cut(mu.B$distribution$x,seq(@,1200,150)), sum)
True.N=by(weeds.all$x,cut(weeds.all$x,seq(0,1200,150)),length)
barplot(rbind(True.N,Est.N),beside=TRUE, legend=TRUE,names.arg=1:8,main="N-S and E-W lines")
dev.off()
Show goodness of fit for sheep absent/present
pdf ("GOF for NS_EW model.pdf")
exp.nosheep=apply (weeds.dspat$exp.counts[1:4,],2, sum)
obs.nosheep=apply(weeds.dspat$obs.counts[1:4,],2, sum)
exp.sheep=apply(weeds.dspat$exp.counts[5:8,],2,sum)
obs. sheep=apply(weeds.dspat$obs.counts[5:8,], 2, sum)
par(mfrow=c(2,1))
barplot(rbind(exp=exp.nosheep,obs=obs.nosheep),beside=TRUE, legend=TRUE,main="Sheep absent")
barplot (rbind(exp=exp.sheep,obs=obs.sheep),beside=TRUE, legend=FALSE,main="Sheep present")
dev.off()
chi-square test for model
chisg=sum((exp.nosheep-obs.nosheep)*2/exp.nosheep)+
sum((exp.sheep-obs.sheep)*2/exp. sheep)
cat("Chi-square=",chisq,” p= ",1-pchisq(chisq,2*15-10),"\n")

HHHEHHHEHE AR A
Modify sampling such that all strips are E-W. Using approximate

detection functions for sheep/no sheep areas derived from known data,

a sample of observations from the points are randomly selected.

#

#

#

#

NOTE: The following is random and will not produce the same results each time

it is run because of the random observation process.

#

B s s S S S

xlines=data.frame(label=1:8,x0=rep(0,8),x1=rep(1200,8),y0=seq(75,1125,150),y1=seq(75,1125,150),

width=rep(149.999,8))

ls=lines_to_strips(xlines,study.area)

pts=ppp(x=weeds.all$x,y=weeds.all$y,window=study.area)

pdf ("E-W samples.pdf")

plot(pts)

obs=sample.points(ls$transects,xlines,pts,detfct=hndetfct,
det.par=c(3.637586,-.1466),det.formula=~factor(sheep),
covariates=weeds.covariates)

plot(ppp(x=obs$x,y=obs$y,window=study.area),add=TRUE, pch=19,cex=.5)

38 weeds.all

dev.off()

weeds.dspat=dspat(int.formula=~factor(strip),det.formula=~factor(sheep),
study.area=study.area,
obs=obs,lines=xlines,covariates=weeds.covariates,
epsvu=c(100,1),nclass=15)

coef (weeds.dspat)

sigmas=sqrt(1/coef(weeds.dspat)$detection)

cat("\n Sigma (no sheep) =",sigmas[1],"\n","Sigma (sheep) =", sigmas[2],"\n")
mu.B <- integrate.intensity(weeds.dspat,dimyx=120,se=TRUE)
cat('Abundance = ', round(mu.B$abundance,@), "\n")
cat('Standard Error = ', round(mu.B$precision$se,@), "\n",
'95 Percent Conf. Int. = (', round(mu.B$precision$lcl.95,0), ',"',

round(mu.B$precision$ucl.95,0), ')', '\n")
pdf ("E-W Estimated Intensity.pdf")
plot(mu.B$lambda, main='Estimated Intensity')
plot(weeds.dspat$lines.psp,lty=2,add=TRUE)
plot(owin(poly=weeds.dspat$transect),add=TRUE)
plot(weeds.dspat$model$Q$data,add=TRUE, pch=20)
dev.off()
summary of abundance per strip
Est.N=by(mu.B$distribution$N,cut(mu.B$distribution$x,seq(@,1200,150)), sum)
True.N=by(weeds.all$x,cut(weeds.all$x,seq(0,1200,150)),length)
pdf ("E-W AbundanceByStrip.pdf")
barplot(rbind(True.N,Est.N),beside=TRUE, legend=TRUE,names.arg=1:8,main="E-W lines")
dev.off()
Show goodness of fit for sheep absent/present
pdf ("GOF for EW model.pdf")
exp.nosheep=apply (weeds.dspat$exp.counts[1:4,],2, sum)
obs.nosheep=apply(weeds.dspat$obs.counts[1:4,],2, sum)
exp.sheep=apply(weeds.dspat$exp.counts[5:8,],2,sum)
obs. sheep=apply(weeds.dspat$obs.counts[5:8,], 2, sum)
par(mfrow=c(2,1))
barplot(rbind(exp=exp.nosheep,obs=obs.nosheep),beside=TRUE, legend=TRUE,main="Sheep absent")
barplot (rbind(exp=exp.sheep,obs=obs.sheep),beside=TRUE, legend=FALSE,main="Sheep present")
dev.off()
chi-square test for model
chisg=sum((exp.nosheep-obs.nosheep)*2/exp.nosheep)+
sum((exp.sheep-obs.sheep)*2/exp. sheep)
cat("Chi-square=",chisq,” p= ",1-pchisq(chisq,2*15-10),"\n")
3

weeds.all Dubbo weed data with constructed y-coordinate

Description

Locations of devils claw in a farming paddock. Locations to all weeds are given as X,y coordinates
and are contained in one of eight 150m wide transects (75m each side). The weeds seen by observers
are specified as Seen=1.

weeds.all 39

Usage

data(weeds.all)

Format

A data frame with 742 observations on the following 5 variables.

label label of the transect 1 to 8

x x coordinate along horizontal (east-west) of 1200m x 1200m paddock
y y coordinate along vertical (north-south) of 1200m x 1200m paddock
distance absolute perpendicular distance from line

Seen weed was seen if 1 and O if missed

Details

The data provided from Melville and Welsh did not have the y-coordinate. We have constructed
y-coordinates by drawing randomly from a uniform distribution in the y-direction such that no two
weeds are at the exact same location. The code used to create weeds.all was as follows:

data(weeds)

Fudge the data ever so slightly to appease spatstat so the transects don't abut

and all points are contained within the strips.

weeds$SignedDistance[weeds$SignedDistance==75]=74.99

weeds$SignedDistance[weeds$SignedDistance==-75]1=-74.99

weeds.all=data.frame(label=weeds$Transect, x=(weeds$Transect-1)*150+75
+weeds$SignedDistance, y=floor(runif(dim(weeds)[1]1)*1200),
distance=weeds$Distance, Seen=weeds$Seen)

while(any(duplicated(data. frame(x=weeds.all$x,y=weeds.all$y))))

{
npts=sum(as.numeric(any(duplicated(data.frame(x=weeds.all$x,y=weeds.all$y)))))
weeds.all$y[duplicated(data.frame(x=weeds.all$x, y=weeds.all$y))]=

runif(npts)*1200

3

save(weeds.all,file="weeds.all.rda")
See weeds for more details.
References

Melville, G. J., and A. H. Welsh. 2001. Line transect sampling in small regions. Biometrics
57:1130-1137.

40 weeds.covariates

weeds.covariates Covariate grid for Dubbo weed data

Description

Grid (1 sq meter) of covariates for farm paddock in Dubbo weed data.

Usage

data(weeds.covariates)

Format

A data frame with 120 x 120 observations on the following 4 variables.

x X coordinate for mid-point of grid cell
y y coordinate for mid-point of grid cell
sheep 0 if no sheep and 1 if sheep were present on the transect

strip transect number 1 to 8

Details

This is the constructed set of covariates for the farm paddock for the weeds data that were provided
by Melville and Welsh (see reference below) that were used in the Biometrics paper on distance
sampling.

The code used to create the covariate grid was as follows:

xx=expand.grid(seq(5,1195,10),seq(5,1195,10))

weeds.covariates=data. frame(x=xx$Var2,y=xx$vVari,
sheep=rep(c(@,1),each= 120"2/2),
strip=rep(c(1,2,3,4,5,6,7,8),each=1202/8))

save(weeds.covariates,file="weeds.covariates.rda")

References

Melville, G. J., and A. H. Welsh. 2001. Line transect sampling in small regions. Biometrics
57:1130-1137.

weeds.lines 41

weeds.lines Transect lines from Dubbo weed data

Description

Lines sampled in a farming paddock with eight 150m wide transects (75m each side)

Usage

data(weeds.lines)

Format

A data frame with 8 observations on the following 6 variables.

label Label of the transect 1 to 8

x@ x coordinate for the beginning of the line
x1 x coordinate for the end of the line

y@ y coordinate for the beginning of the line
y1 y coordinate for the end of the line

width full width of the transect

Details

These are lines constructed for the weeds data that were provided by Melville and Welsh (see
reference below) that were used in the Biometrics paper on distance sampling.

The code used to create the lines was as follows:

weeds.lines=data.frame(label=1:8,x0=75+0:7x150,x1=75+0:7x150,
y0=rep(0,8),yl=rep(1200,8),width=rep(149.9999,8))

The line widths were reduced by 0.0001 so the transects do no abut because spatstat treats them
as overlapping polygons.

References

Melville, G. J., and A. H. Welsh. 2001. Line transect sampling in small regions. Biometrics
57:1130-1137.

42 weeds.obs

weeds.obs Observations from Dubbo weed data

Description

Observed devils claw in a farming paddock from eight 150m wide transects (75m each side). These
are the records from weeds that were seen.

Usage

data(weeds.obs)

Format

A data frame with 479 observations on the following 4 variables.

label Label of the transect 1 to 8
x X coordinate in the farming paddock
y y coordinate created randomly for the data

distance perpendicular distance from line to weed

Details

These are the data constructed from weeds that were provided by Melville and Welsh (see reference
below) that were used in the Biometrics paper on distance sampling.

The code used to create the data from weeds was as follows:

data(weeds.all)
weeds.obs=weeds.all[weeds.all$Seen==1,]
weeds.obs$Seen=NULL

save(weeds.obs, file="weeds.obs.rda")

References

Melville, G. J., and A. H. Welsh. 2001. Line transect sampling in small regions. Biometrics
57:1130-1137.

Index

+Topic datasets
DSpat.covariates, 13
DSpat.lines, 14
DSpat.obs, 15
weeds, 31
weeds.all, 38
weeds.covariates, 40
weeds.lines, 41
weeds.obs, 42

AIC.dspat, 5
AIC.dspat (Internal), 17

coef.dspat, 5

coef.dspat (Internal), 17
create.covariate.images, 5,7, 20
create.lines, 6, 8, 24
create.points.by.offset, 5,9, 21

dist2line, 5, 10, 22
DSpat (DSpat-package), 2
dspat, 4, 6, 10, 17, 31
DSpat-package, 2
DSpat.covariates, 6, 13
DSpat.lines, 6, 14
DSpat.obs, 6, 15

glm, 3

hndetfct (sample.points), 23
im.clipped, 5

im.clipped (Internal), 17

integrate.intensity, 4, 15, 19, 20
Internal, 17

lgcp.correction, 3, 5, 16, 18
lines_to_strips, 5, 6, 19
LTDataFrame, 5, 12, 20, 23

offset.points, 5, 9, 10, 21

43

Ops.psp, 5

Ops.psp (Internal), 17
owin.gpc.poly, 5
owin.gpc.poly (Internal), 17

print.dspat, 5
print.dspat (Internal), 17
project2line, 5, 10, 21

quadscheme.1lt, 5, 12, 20, 22

rev_val, 5
rev_val (Internal), 17
RFsimulate, 30

sample.points, 6, 23
simCovariates, 6, 8, 24, 24, 26, 30
simDSpat, 6, 25
simPts, 6, 8, 24-26, 29
spatstat, 6

summary.dspat, 5

summary.dspat (Internal), 17

transect.intensity, 5, 30

vcov.dspat, 5
vcov.dspat (Internal), 17

weeds, 4, 6, 31, 3942
weeds.all, 6, 38
weeds.covariates, 6, 40
weeds.lines, 6, 41
weeds.obs, 6, 42

	DSpat-package
	create.covariate.images
	create.lines
	create.points.by.offset
	dist2line
	dspat
	DSpat.covariates
	DSpat.lines
	DSpat.obs
	integrate.intensity
	Internal
	lgcp.correction
	lines_to_strips
	LTDataFrame
	offset.points
	project2line
	quadscheme.lt
	sample.points
	simCovariates
	simDSpat
	simPts
	transect.intensity
	weeds
	weeds.all
	weeds.covariates
	weeds.lines
	weeds.obs
	Index

