Package 'DMRnet'

March 24, 2018

Type Package

Title Delete or Merge Regressors Algorithms for Linear and Logistic Model Selection and High-Dimensional Data

Version 0.2.0

Author Agnieszka Prochenka-Sołtys, Piotr Pokarowski

Maintainer Agnieszka Prochenka-Sołtys <ap220756@mimuw.edu.pl>

Description Model selection algorithms for regression and classification, where the predictors can be numerical and categorical and the number of regressors exceeds the number of observations. The selected model consists of a subset of numerical regressors and partitions of levels of factors. Aleksandra Maj-Kańska, Piotr Pokarowski and Agnieszka Prochenka (2015) <doi:10.1214/15-EJS1050>. Piotr Pokarowski and Jan Mielniczuk (2015) <http://www.jmlr.org/papers/volume16/pokarowski15a/pokarowski15a.pdf>.

License GPL-2

Encoding UTF-8

LazyData false

Imports glmnet, grpreg, stats, graphics, utils

RoxygenNote 5.0.1

NeedsCompilation no

Repository CRAN

Date/Publication 2018-03-24 10:45:01 UTC

R topics documented:

DMRnet-package	2
coef.cv.DMR	3
coef.DMR	4
coef.gic.DMR	4
cv.DMR	5
cv.DMRnet	6
DMR	8
DMRnet	10

DMRnet-package

																																									22
pro	omoter	•	•	•	•	•	•	·	•	·	•	•	·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	·	·	•	·	•	·	19
	int.DMR																																								
	edict.gic.DMR																																								
pro	edict.DMR .	•												•	•								•			•		•		•										•	17
pro	edict.cv.DMR	•	•					•	•	•				•	•	•				•			•			•		•	•	•		•			•	•		•	•	•	16
plo	ot.gic.DMR .	•	•	•	•	•		•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		15
plo	ot.DMR	•												•	•								•			•		•		•										•	15
	ot.cv.DMR .																																								
	ete																																								
0	DMR																																								

Index

DMRnet-package DMRnet-package

Description

Model selection algorithms for regression and classification, where the predcitors can be numerical and categorical and the number of regressors exceeds the number of observations. The seleted model consists of a subset of numerical regressors and partitions of levels of factors.

Details

Similar in use to **glmnet**. It consists of the following functions:

DMR - Model selection algorithm for p<n; produces a path of models.

DMRnet - Model slection algorithm even for p>=n; produces a path of models.

print.DMR, coef.DMR, plot.DMR, predict.DMR - For inspection of the models on the path.

gic.DMR, cv.DMR, cv.DMRnet - For final model selection, resulting with one model from the path.

coef.gic.DMR, coef.cv.DMR, plot.gic.DMR, plot.cv.DMR, predict.gic.DMR, predict.cv.DMR - For inspection of the final model.

miete, promoter - Two data sets used for methods illustration.

Author(s)

Agnieszka Prochenka-Sołtys, Piotr Pokarowski

Maintainer: Agnieszka Prochenka-Sołtys <ap220756@mimuw.edu.pl>

References

Aleksandra Maj-Kańska, Piotr Pokarowski and Agnieszka Prochenka. "Delete or merge regressors for linear model selection." Electronic Journal of Statistics 9.2 (2015): 1749-1778. https://projecteuclid.org/euclid.ejs/1440507392

Piotr Pokarowski and Jan Mielniczuk. "Combined 11 and greedy 10 penalized least squares for linear model selection." Journal of Machine Learning Research 16.5 (2015). http://www.jmlr.org/papers/volume16/pokarowski15a/pokarowski15a.pdf

coef.cv.DMR

Agnieszka Prochenka and Piotr Pokarowski. "Delete or Merge Regressors algorithm." 20th European Young Statisticians Meeting, Aug 2017. https://indico.uu.se/event/317/contribution/32/material/paper/0.pdf

coef.cv.DMR coef.cv.DMR

Description

Extracts coefficients from a cv.DMR object (for the model with minimal cross-validated error).

Usage

S3 method for class 'cv.DMR'
coef(object, ...)

Arguments

object	Fitted cv.DMR object.
	Further arguments passed to or from other methods.

Details

Similar to other coef methods, this function extracts coefficients from a fitted cv.DMR object for the model with minimal cross-validated error.

Value

Vector of coefficients.

Examples

```
## cv.DMR for linear regression
set.seed(13)
data(miete)
y <- miete$rent
X <- miete$area
cv = cv.DMR(X,y)
coef(cv)</pre>
```

coef.DMR

Description

Extracts coefficients from a DMR object.

Usage

S3 method for class 'DMR'
coef(object, df = NULL, ...)

Arguments

object	Fitted DMR object.
df	Number of parameters in the model for which coefficients are required. Default is the entire path of models.
	Further arguments passed to or from other methods.

Details

Similar to other coef methods, this function extracts coefficients from a fitted DMR object.

Value

Vector or matrix of coefficients.

Examples

```
data(miete)
y <- miete[,1]
X <- miete[,-1]
m <- DMR(X, y)
coef(m, df = 12)</pre>
```

coef.gic.DMR

coef.gic.DMR

Description

Extracts coefficients from a gic.DMR object (for the model with minimal gic).

Usage

```
## S3 method for class 'gic.DMR'
coef(object, ...)
```

cv.DMR

Arguments

object	Fitted gic.DMR object.
	Further arguments passed to or from other methods.

Details

Similar to other coef methods, this function extracts coefficients from a fitted gic.DMR object for the model with minimal gic.

Value

Vector of coefficients.

Examples

```
data(miete)
y <- miete[,1]
X <- miete[,-1]
m <- DMR(X, y)
g <- gic.DMR(m, c = 2.5)
coef(g)</pre>
```

cv.DMR

cross-validation for DMR

Description

Does k-fold cross-validation for DMR and returns a value for df.

Usage

```
cv.DMR(X, y, family = "gaussian", clust.method = "complete",
lam = 10^(-7), nfolds = 10)
```

Arguments

Х	Input data frame, of dimension n x p; DMR works only if p <n, for="" p="">=n see DM- Rnet; each row is an observation vector. Columns can be numerical or integer for continuous predictors or factors for categorical predictors.</n,>
У	Response variable. Numerical for family="gaussian" or a factor with two levels for family="binomial". For family="binomial" the last level in alphabetical order is the target class.
family	Response type; one of: "gaussian", "binomial".
clust.method	Clustering method used for partitioning levels of factors; see function hclust in package stats for details.

cv.DMRnet

lam	Value of parameter lambda controling the amount of penalization in rigde regres- sion. Used only for logistic regression in order to allow for parameter estimation in linearly separable setups.
nfolds	Number of folds in cross-validation.

Details

cv.DMR algorithm does k-fold cross-validation for DMR. The df for the minimal estimated prediction error is returned.

Value

An object with S3 class "cv.DMR" is returned, which is a list with the ingredients of the cross-validation fit.

df.min df (number of parameters) for the model with minimal cross-validated error.

dmr.fit Fitted DMR object for the full data.

cvm The mean cross-validated error for the entire sequence of models.

foldid The fold assignments used.

See Also

plot.cv.DMR for plotting, coef.cv.DMR for extracting coefficients and predict.cv.DMR for prediction.

Examples

```
## cv.DMR for linear regression
set.seed(13)
data(miete)
ytr <- miete$rent[1:1500]
Xtr <- miete$area[1:1500]
Xte <- miete$area[1501:2053]
cv <- cv.DMR(Xtr, ytr)
print(cv)
plot(cv)
coef(cv)
ypr <- predict(cv, newx = Xte)</pre>
```

cv.DMRnet

cross-validation for DMRnet

Description

Does k-fold cross-validation for DMR and returns a value for df.

cv.DMRnet

Usage

```
cv.DMRnet(X, y, family = "gaussian", clust.method = "complete", o = 5,
nlambda = 20, lam = 10^(-7), interc = TRUE, nfolds = 10,
maxp = ifelse(family == "gaussian", ceiling(length(y)/2),
ceiling(length(y)/4)))
```

Arguments

Х	Input data frame, of dimension n x p; each row is an observation vector. Columns can be numerical or integer for continuous predictors or factors for categorical predictors.
У	Response variable. Numerical for family="gaussian" or a factor with two lev- els for family="binomial". For family="binomial" the last level in alphabetical order is the target class.
family	Response type; one of: "gaussian", "binomial".
clust.method	Clustering method used for partitioning levels of factors; see function hclust in package stats for details.
0	Parameter of the group lasso screening step, described in DMRnet.
nlambda	Parameter of the group lasso screening step, described in DMRnet.
lam	Value of parameter lambda controling the amount of penalization in rigde regres- sion. Used only for logistic regression in order to allow for parameter estimation in linearly separable setups. Used only for numerical reasons.
interc	Should intercept(s) be fitted (default=TRUE) or set to zero (FALSE). If in X there are any categorical variables, interc=TRUE.
nfolds	Number of folds in cross-validation.
maxp	Maximal number of parameters of the model, smaller values result in quicker computation.

Details

cv.DMRnet algorithm does k-fold cross-validation for DMRnet. The df for the minimal estimated prediction error is returned.

Value

An object with S3 class "cv.DMR" is returned, which is a list with the ingredients of the cross-validation fit.

df.min df (number of parameters) for the model with minimal cross-validated error.

dmr.fit Fitted DMR object for the full data.

cvm The mean cross-validated error for the entire sequence of models.

foldid The fold assignments used.

See Also

plot.cv.DMR for plotting, coef.cv.DMR for extracting coefficients and predict.cv.DMR for prediction.

Examples

```
## cv.DMRnet for linear regression
set.seed(13)
data(miete)
ytr <- miete$rent[1:1500]
Xtr <- miete$area[1:1500]
Xte <- miete$area[1501:2053]
cv <- cv.DMRnet(Xtr, ytr)
print(cv)
plot(cv)
coef(cv)
ypr <- predict(cv, newx = Xte)</pre>
```

DMR

Delete or Merge Regressors

Description

Fit a path of linear (family = "gaussian") or logistic (family = "binomial") regression models, where the number of parameters changes from 1 to p (p is the number of columns in the model matrix). Models are subsets of continuous predictors and partitions of levels of factors in X.

Usage

```
DMR(X, y, family = "gaussian", clust.method = "complete", lam = 10^(-7))
```

Arguments

X	Input data frame; each row is an observation vector; each column can be numer- ical or integer for a continuous predictor or a factor for a categorical predictor; DMR works only if p <n (n="" is="" number="" observations,="" of="" of<br="" p="" the="">columns in the model matrix), for p>=n see DMRnet.</n>
У	Response variable; Numerical for family="gaussian" or a factor with two levels for family="binomial". For family="binomial" the last level in alphabetical order is the target class.
family	Response type; one of: "gaussian", "binomial".
clust.method	Clustering method used for partitioning levels of factors; see function hclust in package stats for details.
lam	Value of parameter lambda controling the amount of penalization in rigde regres- sion. Used only for logistic regression in order to allow for parameter estimation in linearly separable setups. Used only for numerical reasons.

DMR

Details

DMR algorithm is based on a traditional stepwise method. A nested family of models is built based on the values of squared Wald statistics:

1. For each continuous variable the squared Wald statistic is calculated for a hypothesis that the variable is equal to zero (it should be deleted).

2. For each factor a dissimilarity matrix is constructed using squared Wald statistics for hypotheses that two parameters are equal (the two levels of factor should be merged). Next, hierarchical clustering is preformed using the dissimilarity matrix. All cutting heights are recorded.

3. Squared Wald statistics and cutting heights and values of from steps 2 and 3 are concatenated and sorted, giving vector h.

4. Nested family of models of size 1 to p is built by accepting hypotheses according to increasing values in vector h.

Value

An object with S3 class "DMR", which is a list with the ingredients:

beta	Matrix p times p of estimated paramters; each column corresponds to a model on the nested path having from p to 1 parameter (denoted as df).
df	Vector of degrees of freedom; from p to 1.
rss/loglik	Measure of fit for the nested models: rss (residual sum of squares) for fam- ily="gaussian" and loglik (loglikelihood) for family="binomial"
n	Number of observations.
arguments	List of the chosen arguments from the function call.
interc	If the intercept was fitted: for DMR always equal to TRUE.

See Also

print.DMR for printing, plot.DMR for plotting, coef.DMR for extracting coefficients and predict.DMR for prediction.

Examples

```
## DMR for linear regression
data(miete)
ytr <- miete[1:1500,1]
Xtr <- miete[1:1500,-1]
Xte <- miete[1501:2053,-1]
m1 <- DMR(Xtr, ytr)
print(m1)
plot(m1)
g <- gic.DMR(m1, c = 2.5)
plot(g)
coef(m1, df = g$df.min)
ypr <- predict(m1, newx = Xte, df = g$df.min)</pre>
```

DMR for logistic regression

notice that only part of dataset promoter was used since DMR works only if p<n, for p>n use DMRnet data(promoter) ytr <- factor(promoter[1:80,1]) Xtr <- promoter[1:80,2:11] Xte <- promoter[81:106,2:11] m2 <- DMR(Xtr, ytr, family = "binomial") print(m2) plot(m2) g <- gic.DMR(m2, c = 2) plot(g) coef(m2, df = g\$df.min) ypr <- predict(m2, newx = Xte, df = g\$df.min)</pre>

DMRnet

Delete or Merge Regressors net

Description

Fit a path of linear (family = "gaussian") or logistic (family = "binomial") regression models, where models are subsets of continuous predictors and partitions of levels of factors in X. Works even if $p \ge n$ (the number of observations is greater than the number of columns in the model matrix).

Usage

```
DMRnet(X, y, family = "gaussian", clust.method = "complete", o = 5,
nlambda = 20, lam = 10^(-7), interc = TRUE, maxp = ifelse(family ==
  "gaussian", ceiling(length(y)/2), ceiling(length(y)/4)))
```

Arguments

Х	Input data frame; each row is an observation vector; each column can be numer- ical or integer for a continuous predictor or a factor for a categorical predictor.
У	Response variable; Numerical for family="gaussian" or a factor with two lev- els for family="binomial". For family="binomial" the last level in alphabetical order is the target class.
family	Response type; one of: "gaussian", "binomial".
clust.method	Clustering method used for partitioning levels of factors; see function hclust in package stats for details.
0	Parameter of the group lasso screening step, described in Details.
nlambda	Parameter of the group lasso screening step, described in Details.
lam	Value of parameter lambda controling the amount of penalization in rigde regres- sion. Used only for logistic regression in order to allow for parameter estimation in linearly separable setups. Used only for numerical reasons.
interc	Should intercept(s) be fitted (default=TRUE) or set to zero (FALSE). If in X there are any categorical variables, interc=TRUE.
maxp	Maximal number of parameters of the model, smaller values result in quicker computation

DMRnet

Details

DMRnet algorithm is a generalization of DMR to high-dimensional data. It uses a screening step in order to decrease the problem to p<n and DMR subsequently. The screening is done according to the group lasso implemented in the grpreg package.

First, the group lasso for the problem is solved for nlambda values of lambda parameter. Next, for each value of lambda, the scaled nonzero second norms of the groups' coefficients are sorted in decreasing order. Finally, the first i over o fraction of the groups with the largest nonzero values are chosen for further analysis, i = 1,2,...,o-1. E.g., if o=5, first 1/5, first 2/5,..., 4/5 groups with the largest scaled nonzero second norm of coefficients are chosen.

The final path of models is chosen by minimizing the likelihood of the models for the number of parameters df equal to 1,...,l<=maxp for some integer l. Note that, in contrast to DMR, the models on the path need not to be nested.

Value

An object with S3 class "DMR", which is a list with the ingredients:

beta	Matrix p times l of estimated paramters; each column corresponds to a model on the nested path having from l to 1 parameter (denoted as df).
df	Vector of degrees of freedom; from l to 1.
rss/loglik	Measure of fit for the nested models: rss (residual sum of squares) for fam- ily="gaussian" and loglik (loglikelihood) for family="binomial"
n	Number of observations.
call	The call that produced this object.
interc	If the intercept was fitted: value of parameter interc.

See Also

print.DMR for printing, plot.DMR for plotting, coef.DMR for extracting coefficients and predict.DMR for prediction.

Examples

```
## DMRnet for linear regression
data(miete)
ytr <- miete[1:1500,1]
Xtr <- miete[1:1500,-1]
Xte <- miete[1501:2053,-1]
m1 <- DMRnet(Xtr, ytr)
print(m1)
plot(m1)
g <- gic.DMR(m1, c = 2.5)
plot(g)
coef(m1, df = g$df.min)
ypr <- predict(m1, newx = Xte, df = g$df.min)
## DMRnet for logistic regression
data(promoter)
```

```
ytr <- factor(promoter[1:80,1])
Xtr <- promoter[1:80,-1]
Xte <- promoter[81:106,-1]
m2 <- DMRnet(Xtr, ytr, family = "binomial")
print(m2)
plot(m2)
g <- gic.DMR(m2, c = 2)
plot(g)
coef(m2, df = g$df.min)
ypr <- predict(m2, newx = Xte, df = g$df.min)</pre>
```

gic.DMR

gic.DMR

Description

Computes values of generalized information criterion for the entire sequence of models from a DMR object.

Usage

gic.DMR(x, c = ifelse(x\$arguments\$family == "gaussian", 2.5, 2))

Arguments

х	Fitted DMR object.
с	Parameter controling amount of penalization for complexity of the model in the generalized information criterion. For linear regression gic for model M is
	$GIC_M = RSS_M + df_M * c * logp * s^2,$
	where RSS_M is the residual sum of squares and df_M is the number of parameters in the model M; s^2 is an estimator of $sigma^2$ based on the model in the DMR object with the largest number of parameters. For logistic regression gic for model M is
	$GIC_M = -2 * loglik_M + M * c * logp,$
	where $loglik_M$ is the logarithm of the likelihood function and df_M is the number of parameters in the model M. Recommended values are c=2.5 for linear regression and c=2 for logistic regression.
Value	

An object of class gic.DMR is returned, which is a list with the ingredients of the gic fit.

df.min df (number of parameters) for the model with minimal gic.

dmr.fit Fitted DMR object.

gic Vector of gic values for the entire sequence of models.

miete

See Also

plot.gic.DMR for plotting, coef.gic.DMR for extracting coefficients and predict.gic.DMR for prediction.

Examples

```
data(miete)
y <- miete[,1]
X <- miete[,-1]
m <- DMR(X, y)
(g <- gic.DMR(m, c = 2.5))</pre>
```

miete miete dataset

Description

The miete data contains the rent index for Munich in 2003.

Usage

data(miete)

Format

A data frame with 2053 observations on the following 12 variables.

rent Rent in euros.
bathextra Special furniture in bathroom, yes = 1, no = 0.
tiles Bathroom with tiles, yes = 0, no = 1.
area Municipality.
kitchen Upmarket kitchen, yes = 1, no = 0.
rooms Number of rooms.
best Best adress, yes = 1, no = 0.
good Good adress, yes = 1, no = 0.
warm Warm water, yes = 0, no = 1.
central Central heating, yes = 0, no = 1.
year Year of construction.
size Living space in square meter.

References

Fahrmeir, L., Künstler, R., Pigeot, I., Tutz, G. (2004) Statistik: der Weg zur Datenanalyse. 5. Auflage, Berlin: Springer-Verlag.

Examples

data(miete)
summary(miete)

plot.cv.DMR

Plot cross-validated error values from a cv.DMR object.

plot.cv.DMR

Usage

Description

S3 method for class 'cv.DMR'
plot(x, ...)

Arguments

х	Fitted cv.DMR object.
	Further arguments passed to or from other methods.

Details

Produces a plot of cross-validated error values for the entire sequence of models from the fitted cv.DMR object.

Examples

```
## cv.DMR for linear regression
set.seed(13)
data(miete)
y <- miete$rent
X <- miete$area
cv = cv.DMR(X,y)
plot(cv)</pre>
```

plot.DMR

plot.DMR

Description

Plot coefficients from a DMR object.

Usage

S3 method for class 'DMR'
plot(x, ...)

Arguments

Х	Fitted DMR object.
	Further arguments passed to or from other methods.

Details

Produces a coefficient profile plot of the coefficient paths for a fitted DMR object.

Examples

```
data(miete)
y <- miete[,1]
X <- miete[,-1]
m <- DMR(X, y)
plot(m)</pre>
```

plot.gic.DMR plot.gic.DMR

Description

Plot gic values from a gic.DMR object.

Usage

S3 method for class 'gic.DMR'
plot(x, ...)

Arguments

х	Fitted gic.DMR object.
• • •	Further arguments passed to or from other methods.

Details

Produces a plot of generalized information criterion for the entire sequence of models from the fitted gic.DMR object.

Examples

```
data(miete)
y <- miete[,1]
X <- miete[,-1]
m <- DMR(X, y)
g <- gic.DMR(m, c = 2.5)
plot(g)</pre>
```

predict.cv.DMR predict.cv.DMR

Description

Make predictions from a cv.DMR object (for the model with minimal cross-validated error).

Usage

```
## S3 method for class 'cv.DMR'
predict(object, newx, type = "link", ...)
```

Arguments

object	Fitted cv.DMR object.
newx	Data frame of new values for X at which predictions are to be made.
type	One of: link, response, class. For "gaussian" for all values of type it gives the fitted values. For "binomial" type "link" gives the linear predictors, for type "response" it gives the fitted probabilities and for type "class" it produces the class label corresponding to the maximum probability.
• • •	Further arguments passed to or from other methods.

Details

Similar to other predict methods, this function predicts fitted values from a fitted cv.DMR object for the model with minimal cross-validated error.

Value

Vector of predictions.

predict.DMR

Examples

```
## cv.DMR for linear regression
set.seed(13)
data(miete)
ytr <- miete$rent[1:1500]
Xtr <- miete$area[1:1500]
Xte <- miete$area[1501:2053]
cv <- cv.DMR(Xtr, ytr)
print(cv)
plot(cv)
coef(cv)
ypr <- predict(cv, newx = Xte)</pre>
```

predict.DMR

predict.DMR

Description

Make predictions from a DMR object.

Usage

```
## S3 method for class 'DMR'
predict(object, newx, df = NULL, type = "link", ...)
```

Arguments

object	Fitted DMR object.
newx	Data frame of new values for X at which predictions are to be made.
df	Number of parameters in the model for which predictions are required. Default is the entire sequence of models for df=1 to df=p.
type	One of: link, response, class. For "gaussian" for all values of type it gives the fitted values. For "binomial" type "link" gives the linear predictors, for type "response" it gives the fitted probabilities and for type "class" it produces the class label corresponding to the maximum probability.
	Further arguments passed to or from other methods.

Details

Similar to other predict methods, this function predicts fitted values from a fitted DMR object.

Value

Vector or matrix of predictions.

Examples

```
data(miete)
ytr <- miete[1:1500,1]
Xtr <- miete[1:1500,-1]
Xte <- miete[1501:2053,-1]
m <- DMR(Xtr, ytr)
ypr <- predict(m, newx = Xte, df = 11)</pre>
```

predict.gic.DMR predict.gic.DMR

Description

Make predictions from a gic.DMR object (for the model with minimal gic).

Usage

```
## S3 method for class 'gic.DMR'
predict(object, newx, type = "link", ...)
```

Arguments

object	Fitted gic.DMR object.
newx	Data frame of new values for X at which predictions are to be made.
type	One of: link, response, class. For "gaussian" for all values of type it gives the fitted values. For "binomial" type "link" gives the linear predictors, for type "response" it gives the fitted probabilities and for type "class" it produces the class label corresponding to the maximum probability.
	Further arguments passed to or from other methods.

Details

Similar to other predict methods, this function predicts fitted values from a fitted gic.DMR object for the model with minimal gic.

Value

Vector of predictions.

Examples

```
data(miete)
ytr <- miete[1:1500,1]
Xtr <- miete[1:1500,-1]
Xte <- miete[1501:2053,-1]
m <- DMR(Xtr, ytr)
g <- gic.DMR(m, c = 2.5)
ypr <- predict(g, newx = Xte)</pre>
```

print.DMR

print.DMR

Description

Print a DMR object.

Usage

S3 method for class 'DMR'
print(x, ...)

Arguments

х	Fitted DMR object.
	Further arguments passed to or from other methods.

Details

Print a summary of the DMR path at each step along the path.

Value

The summary is silently returned.

Examples

```
data(miete)
y <- miete[,1]
X <- miete[,-1]
m <- DMR(X, y)
print(m)</pre>
```

promoter

promoter dataset

Description

It consists of E. Coli promoter gene sequences starting at position -50 (p-50) and ending at position +7 (p7). Each of these 57 Fields is filled by one of a, g, t, c. The task is to recognize promoters, which are genetic regions which initiate the first step in the expression of adjacent genes (transcription). There are 53 promoters and 53 nonpromoter sequences.

Usage

data(promoter)

Format

A data frame with 106 observations on the following 58 variables.

y One of 1/0, indicating the class (1 = promoter).

X1 Sequence; filled by one of a, g, t, c.

X2 Sequence; filled by one of a, g, t, c.

X3 Sequence; filled by one of a, g, t, c.

X4 Sequence; filled by one of a, g, t, c.

X5 Sequence; filled by one of a, g, t, c.

X6 Sequence; filled by one of a, g, t, c.

X7 Sequence; filled by one of a, g, t, c.

X8 Sequence; filled by one of a, g, t, c.

X9 Sequence; filled by one of a, g, t, c.

X10 Sequence; filled by one of a, g, t, c.

X11 Sequence; filled by one of a, g, t, c.

X12 Sequence; filled by one of a, g, t, c.

X13 Sequence; filled by one of a, g, t, c.

X14 Sequence; filled by one of a, g, t, c.

X15 Sequence; filled by one of a, g, t, c.

X16 Sequence; filled by one of a, g, t, c.

X17 Sequence; filled by one of a, g, t, c.

X18 Sequence; filled by one of a, g, t, c.

X19 Sequence; filled by one of a, g, t, c.

 $\textbf{X20} \hspace{0.1 cm} \text{Sequence; filled by one of } a, \, g, \, t, \, c.$

X21 Sequence; filled by one of a, g, t, c.

X22 Sequence; filled by one of a, g, t, c.

X23 Sequence; filled by one of a, g, t, c.

X24 Sequence; filled by one of a, g, t, c.

 $\textbf{X25} \hspace{0.1 cm} \text{Sequence; filled by one of } a, \, g, \, t, \, c.$

X26 Sequence; filled by one of a, g, t, c.

X27 Sequence; filled by one of a, g, t, c.

X28 Sequence; filled by one of a, g, t, c.

X29 Sequence; filled by one of a, g, t, c.

X30 Sequence; filled by one of a, g, t, c.

X31 Sequence; filled by one of a, g, t, c.

X32 Sequence; filled by one of a, g, t, c.

X33 Sequence; filled by one of a, g, t, c.

X34 Sequence; filled by one of a, g, t, c.

promoter

- X35 Sequence; filled by one of a, g, t, c.
- **X36** Sequence; filled by one of a, g, t, c.
- X37 Sequence; filled by one of a, g, t, c.
- **X38** Sequence; filled by one of a, g, t, c.
- **X39** Sequence; filled by one of a, g, t, c.
- X40 Sequence; filled by one of a, g, t, c.
- X41 Sequence; filled by one of a, g, t, c.
- $\textbf{X42} \hspace{0.1 cm} \text{Sequence; filled by one of } a, \, g, \, t, \, c.$
- X43 Sequence; filled by one of a, g, t, c.
- X44 Sequence; filled by one of a, g, t, c.
- $\textbf{X45} \hspace{0.1 cm} \text{Sequence; filled by one of a, g, t, c.}$
- $\textbf{X46} \hspace{0.1 cm} \text{Sequence; filled by one of a, g, t, c.}$
- X47 Sequence; filled by one of a, g, t, c.
- X48 Sequence; filled by one of a, g, t, c.
- X49 Sequence; filled by one of a, g, t, c.
- **X50** Sequence; filled by one of a, g, t, c.
- **X51** Sequence; filled by one of a, g, t, c.
- **X52** Sequence; filled by one of a, g, t, c.
- **X53** Sequence; filled by one of a, g, t, c.
- **X54** Sequence; filled by one of a, g, t, c.
- **X55** Sequence; filled by one of a, g, t, c.
- **X56** Sequence; filled by one of a, g, t, c.
- **X57** Sequence; filled by one of a, g, t, c.

Source

UCI machine learning repository: promoter

References

Towell, G., Shavlik, J., Noordewier, M. Refinement of approximate domain theories by knowledgebased neural networks. In Proceedings of the eighth National conference on Artificial intelligence, pages 861-866. Boston, MA, 1990.

Examples

```
data(promoter)
summary(promoter)
```

Index

*Topic datasets miete, 13 promoter, 19 coef.cv.DMR, 3, 6, 7 coef.DMR, 4, 9, 11 coef.gic.DMR, 4, 13 cv.DMR, 5cv.DMRnet,6 DMR, 8, 11 DMRnet, 7, 8, 10 DMRnet-package, 2 gic.DMR, 12miete, 13 plot.cv.DMR, 6, 7, 14 plot.DMR, 9, 11, 15 plot.gic.DMR, *13*, 15 predict.cv.DMR, 6, 7, 16 predict.DMR, 9, 11, 17 predict.gic.DMR, 13, 18 print.DMR, 9, 11, 19

promoter, 19