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createData Simulate test data

Description

This function creates synthetic dataset with various problems such as overdispersion, zero-inflation,
etc.

Usage

createData(sampleSize = 100, intercept = @, fixedEffects = 1,
quadraticFixedeEffects = NULL, numGroups = 1@, randomEffectVariance = 1,
overdispersion = @, family = poisson(), scale = 1, cor = 0,
roundPoissonVariance = NULL, pZerolInflation = @, binomialTrials = 1,
temporalAutocorrelation = @, spatialAutocorrelation = 0,
factorResponse = F, replicates = 1, hasNA = F)

Arguments
sampleSize sample size of the dataset
intercept intercept (linear scale)

fixedEffects vector of fixed effects (linear scale)

quadraticFixedEffects
vector of quadratic fixed effects (linear scale)

numGroups number of groups for the random effect

randomEffectVariance
variance of the random effect (intercept)

overdispersion if this is a numeric value, it will be used as the sd of a random normal variate
that is added to the linear predictor. Alternatively, a random function can be
provided that takes as input the linear predictor.

family family

scale scale if the distribution has a scale (e.g. sd for the Gaussian)
cor correlation between predictors

roundPoissonVariance

if set, this creates a uniform noise on the possion response. The aim of this is to
create heteroscedasticity

pZeroInflation probability to set any data point to zero
binomialTrials Number of trials for the binomial. Only active if family == binomial
temporalAutocorrelation

strength of temporal Autocorrelation
spatialAutocorrelation

strength of spatial Autocorrelation
factorResponse should the response be transformed to a factor (inteded to be used for 0/1 data)
replicates number of datasets to create

hasNA should an NA be added to the environmental predictor (for test purposes)
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Examples

testData = createData(sampleSize = 500, intercept = 2, fixedEffects = c(1),
overdispersion = @, family = poisson(), quadraticFixedEffects = c(-3),
randomeffectVariance = 0)

par(mfrow = c(1,2))

plot(testData$Environmentl, testData$observedResponse)

hist(testData$observedResponse)

# with zero-inflation

testData = createData(sampleSize = 500, intercept = 2, fixedEffects = c(1),
overdispersion = @, family = poisson(), quadraticFixedEffects = c(-3),
randomEffectVariance = @, pZerolnflation = 0.6)

par(mfrow = c(1,2))

plot(testData$Environmentl, testData$observedResponse)

hist(testData$observedResponse)

# binomial with multiple trials

testData = createData(sampleSize = 40, intercept = 2, fixedEffects = c(1),

overdispersion = @, family = binomial(), quadraticFixedEffects = c(-3),

randomEffectVariance = @, binomialTrials = 20)

plot(observedResponsel / observedResponse@ ~ Environment1, data = testData, ylab = "Proportion 1")

# spatial / temporal correlation

testData = createData(sampleSize = 100, family = poisson(), spatialAutocorrelation = 3,
temporalAutocorrelation = 3)

plot(log(observedResponse) ~ time, data = testData)
plot(log(observedResponse) ~ x, data = testData)

createDHARMa Create a DHARMa object from hand-coded simulations or Bayesian
posterior predictive simulations

Description
Create a DHARMa object from hand-coded simulations or Bayesian posterior predictive simula-
tions

Usage

createDHARMa(simulatedResponse, observedResponse,
fittedPredictedResponse = NULL, integerResponse = F, seed = 123,
method = c("PIT", "traditional”))
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Arguments
simulatedResponse
matrix of observations simulated from the fitted model - row index for observa-
tions and colum index for simulations
observedResponse

true observations

fittedPredictedResponse

integerResponse

seed

method

Details

optional fitted predicted response. For Bayesian posterior predictive simula-
tions, using the median posterior prediction as fittedPredictedResponse is rec-
ommended. If not provided, the mean simulatedResponse will be used.

if T, noise will be added at to the residuals to maintain a uniform expectations for
integer responses (such as Poisson or Binomial). Unlike in simulateResiduals,
the nature of the data is not automatically detected, so this MUST be set by the
user appropriately

the random seed to be used within DHARMa. The default setting, recommended
for most users, is keep the random seed on a fixed value 123. This means that
you will always get the same randomization and thus teh same result when run-
ning the same code. NULL = no new seed is set, but previous random state
will be restored after simulation. FALSE = no seed is set, and random state will
not be restored. The latter two options are only recommended for simulation
experiments. See vignette for details.

the quantile randomization method used. The two options implemented at the
moment are probability integral transform (PIT-) residuals (current default), and
the "traditional" randomization procedure, that was used in DHARMa until ver-
sion 0.3.0. For details, see getQuantile

The use of this function is to convert simulated residuals (e.g. from a point estimate, or Bayesian
p-values) to a DHARMa object, to make use of the plotting / test functions in DHARMa

Note

Either scaled residuals or (simulatedResponse AND observed response) have to be provided

Examples

## READING IN HAND-CODED SIMULATIONS

testData

createData(sampleSize = 50, randomEffectVariance = 0)

fittedModel <- glm(observedResponse ~ Environment1, data = testData, family = "poisson")

# in DHARMA, using the simulate.glm function of glm

sims

simulateResiduals(fittedModel)

plot(sims, quantreg = FALSE)

# Doing the same with a handcoded simulate function.
# of course this code will only work with a 1-par glm model
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simulateMyfit <- function(n=10, fittedModel){
int = coef(fittedModel)[1]
slo = coef(fittedModel)[2]
pred = exp(int + slo * testData$Environmentl)
predSim = replicate(n, rpois(length(pred), pred))
return(predSim)

}
sims = simulateMyfit(250, fittedModel)

dharmaRes <- createDHARMa(simulatedResponse = sims,
observedResponse = testData$observedResponse,
fittedPredictedResponse = predict(fittedModel, type = "response”),
integer = TRUE)
plot(dharmaRes, quantreg = FALSE)

DHARMa DHARMa - Residual Diagnostics for HierArchical (Multi-level /
Mixed) Regression Models

Description

The 'DHARMa’ package uses a simulation-based approach to create readily interpretable scaled
(quantile) residuals for fitted (generalized) linear mixed models. Currently supported are linear and
generalized linear (mixed) models from ’lme4’ (classes ’lmerMod’, ’glmerMod’), ’glmmTMB’
and ’spaMM’, generalized additive models ("gam’ from 'mgcv’), ’glm’ (including ’negbin’ from
"MASS’, but excluding quasi-distributions) and ’Im’ model classes. Moreover, externally created
simulations, e.g. posterior predictive simulations from Bayesian software such as "JAGS’, ’STAN’,
or 'BUGS’ can be processed as well. The resulting residuals are standardized to values between 0
and 1 and can be interpreted as intuitively as residuals from a linear regression. The package also
provides a number of plot and test functions for typical model misspecification problems, such as
over/underdispersion, zero-inflation, and residual spatial and temporal autocorrelation.

Details

See index / vignette for details

See Also

simulateResiduals

Examples

vignette(”"DHARMa", package="DHARMa")
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getFitted Get model fitted

Description

Wrapper to get the fitted value a fitted model
Usage
getFitted(object, ...)

## Default S3 method:
getFitted(object, ...)

## S3 method for class 'gam'

getFitted(object, ...)
Arguments
object a fitted model

additional parameters to be passed on, usually to the simulate function of the
respective model class

Details

The purpose of this wrapper is to standardize extract the fitted values

Author(s)

Florian Hartig

See Also

getObservedResponse, getSimulations, getRefit, getFixedEffects
Examples

testData = createData(sampleSize = 400, family = gaussian())

fittedModel <- Im(observedResponse ~ Environmentl , data = testData)

# response that was used to fit the model
getObservedResponse(fittedModel)

# predictions of the model for these points
getFitted(fittedModel)

# extract simulations from the model as matrix
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getSimulations(fittedModel, nsim = 2)

# extract simulations from the model for refit (often requires different structure)
x = getSimulations(fittedModel, nsim = 2, type = "refit")

getRefit(fittedModel, x[[1]11)

getRefit(fittedModel, getObservedResponse(fittedModel))

getFixedEffects Extract fixed effects of a supported model

Description

A wrapper to extract fixed effects of a supported model

Usage
getFixedEffects(fittedModel)

Arguments

fittedModel a fitted model

See Also

getObservedResponse, getSimulations, getRefit, getFitted
Examples

testData = createData(sampleSize = 400, family = gaussian())

fittedModel <- 1m(observedResponse ~ Environmentl , data = testData)

# response that was used to fit the model
getObservedResponse(fittedModel)

# predictions of the model for these points
getFitted(fittedModel)

# extract simulations from the model as matrix
getSimulations(fittedModel, nsim = 2)

# extract simulations from the model for refit (often requires different structure)
x = getSimulations(fittedModel, nsim = 2, type = "refit")

getRefit(fittedModel, x[[11])

getRefit(fittedModel, getObservedResponse(fittedModel))
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getObservedResponse Get model response

Description

Extract the response of a fitted model
Usage
getObservedResponse(object, ...)

## Default S3 method:
getObservedResponse(object, ...)

## S3 method for class 'HLfit'

getObservedResponse(object, ...)
Arguments
object a fitted model

additional parameters

Details

The purpose of this function is to savely extract the response (dependent variable) of the fitted model
classes

Author(s)

Florian Hartig

See Also

getRefit, getSimulations, getFixedEffects, getFitted

Examples
testData = createData(sampleSize = 400, family = gaussian())
fittedModel <- Im(observedResponse ~ Environmentl , data = testData)

# response that was used to fit the model
getObservedResponse(fittedModel)

# predictions of the model for these points
getFitted(fittedModel)

# extract simulations from the model as matrix
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getSimulations(fittedModel, nsim = 2)

# extract simulations from the model for refit (often requires different structure)
x = getSimulations(fittedModel, nsim = 2, type = "refit")

getRefit(fittedModel, x[[1]11)

getRefit(fittedModel, getObservedResponse(fittedModel))

getQuantile calculate quantiles

Description

calculates residual quantiles from a given simulation

Usage

getQuantile(simulations, observed, integerResponse, method = c("PIT",
"traditional”))

Arguments
simulations a matrix with simulations from a fitted model. Rows = observations, columns =
replicate simulations
observed a vector with the observed data
integerResponse
is the response integer-valued. Only has an effect for method = "traditional"
method the quantile randomization method used. See details
Details

The function calculates residual quantiles from the simulated data. For continous distributions, this
will simply the the value of the ecdf.

For discrete data, there are two options implemented.

The current default (available since DHARMa 0.3.1) are probability integral transform (PIT-) resid-
uals (Smith, 1985; Dunn & Smyth, 1996; see also see also Warton, et al., 2017).

Before DHARMa 0.3.1, a different randomization procedure was used, in which the a U(-0.5, 0.5)
distribution was added on observations and simualtions for discrete distributions. For a completely
discrete distribution, the two procedures should deliver equivalent results, but the second method
has the disadvantage that a) one has to know if the distribution is discrete (DHARMa tries to recog-
nize this automatically), and b) that it leads to inefficiencies for some distributions such as the the
Tweedie, which are partly continous, partly discrte (see e.g. https://github.com/florianhartig/DHARMa/issues/168).
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getRandomState Record and restore a random state

Description

The aim of this function is to record, manipualate and restor a random state

Usage

getRandomState(seed = NULL)

Arguments
seed seed argument to set.seed(). NULL = no seed, but random state will be restored.
F = random state will not be restored
Details

This function is intended for two (not mutually exclusive tasks)
a) record the current random state

b) change the current random state in a way that the previous state can be restored

Value
a list with various infos about the random state that after function execution, as well as a function
to restore the previous state before the function execution

Author(s)

Florian Hartig
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Examples

# testing the function in standard settings

set.seed(13)

runif(1)

x = getRandomState(123)
runif (1)
x$restoreCurrent()
runif(1)

# values outside set /restore are identical to

set.seed(13)
runif(2)

# if no seed is set, this will also be restored

rm(.Random.seed) # now, there is no random seed
x = getRandomState(123)

exists(".Random.seed"”) # TRUE

runif(1)

x$restoreCurrent()

exists(".Random.seed") # False

# with seed = false

x = getRandomState(seed = FALSE)
exists(”.Random.seed")

runif(1)

x$restoreCurrent()
exists(”.Random.seed")

getRefit Get model refit

Description

Wrapper to refit a fitted model
checks if the fitted model excluded NA values

Usage
getRefit(object, newresp, ...)

## Default S3 method:
getRefit(object, newresp, ...)

## S3 method for class 'lm'
getRefit(object, newresp, ...)
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## S3 method for class 'glmmTMB'
getRefit(object, newresp, ...)

## S3 method for class 'HLfit'

getRefit(object, newresp, ...)
Arguments
object a fitted model
newresp the new response that should be used to refit the model

additional parameters to be passed on to the refit or update class that is used to
refit the model

Details

The purpose of this wrapper is to standardize the refit of a model. The behavior of this function
depends on the supplied model. When available, it uses the refit method, otherwise it will use
update. For glmmTMB: since version 1.0, glmmTMB has a refit function, but this didn’t work, so
I switched back to this implementation, which is a hack based on the update function.

Checks if the fitted model excluded NA values

Author(s)

Florian Hartig

See Also

getObservedResponse, getSimulations, getFixedEffects

Examples
testData = createData(sampleSize = 400, family = gaussian())
fittedModel <- 1Im(observedResponse ~ Environmentl , data = testData)

# response that was used to fit the model
getObservedResponse(fittedModel)

# predictions of the model for these points
getFitted(fittedModel)

# extract simulations from the model as matrix
getSimulations(fittedModel, nsim = 2)

# extract simulations from the model for refit (often requires different structure)
x = getSimulations(fittedModel, nsim = 2, type = "refit")

getRefit(fittedModel, x[[11])

getRefit(fittedModel, getObservedResponse(fittedModel))
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getSimulations Get model simulations

Description

Wrapper to simulate from a fitted model

Usage

getSimulations(object, nsim = 1, type = c("normal”, "refit"), ...)

## Default S3 method:

getSimulations(object, nsim = 1, type = c("normal”, "refit"), ...)
## S3 method for class 'negbin'
getSimulations(object, nsim = 1, type = c("normal”, "refit"), ...)

## S3 method for class 'lmerMod'
getSimulations(object, nsim = 1, type = c("normal”, "refit"), ...)

## S3 method for class 'glmmTMB'
getSimulations(object, nsim = 1, type = c("normal”, "refit"), ...)

## S3 method for class 'HLfit'

getSimulations(object, nsim = 1, type = c("normal”, "refit"), ...)
Arguments

object a fitted model

nsim number of simulations

type if simulations should be prepared for getQuantile or for refit

additional parameters to be passed on, usually to the simulate function of the
respective model class

Details
The purpose of this wrapper for for the simulate function is to return the simulations from a model
in a standardized way

The function is a wrapper for for the simulate function is to return the simulations from a model in
a standardized way.

Note: if the model was fit with weights, the function will throw a warning if used with a model class
whose simulate function does not include the weightsi in the simulations. Note that the results may
or may not be appropriate in this case, depending on how you use the weights.

Value

a matrix with simulations
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Author(s)

Florian Hartig

See Also

getObservedResponse, getRefit, getFixedEffects, getFitted
Examples

testData = createData(sampleSize = 400, family = gaussian())

fittedModel <- 1m(observedResponse ~ Environmentl , data = testData)

# response that was used to fit the model
getObservedResponse(fittedModel)

# predictions of the model for these points
getFitted(fittedModel)

# extract simulations from the model as matrix
getSimulations(fittedModel, nsim = 2)

# extract simulations from the model for refit (often requires different structure)
x = getSimulations(fittedModel, nsim = 2, type = "refit")

getRefit(fittedModel, x[[11])

getRefit(fittedModel, getObservedResponse(fittedModel))

hist.DHARMa Histogram of DHARMa residuals

Description

The function produces a histogram from a DHARMa output

Usage

## S3 method for class 'DHARMa‘’
hist(x, breaks = seq(-0.02, 1.02, len = 53), col = c("red”,
rep("lightgrey”, 50), "red”), main = "Hist of DHARMa residuals”,

xlab = "Residuals (outliers are marked red)"”, cex.main =1, ...)
Arguments
X a DHARMa simulation output (class DHARMa)
breaks breaks for hist() function

col col for hist bars
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main plot main
xlab plot xlab
cex.main plot cex.main

other arguments to be passed on to hist

See Also

plotSimulatedResiduals, plotResiduals

Examples

testData = createData(sampleSize = 200, family = poisson(),
randomeffectVariance = 1, numGroups = 5)
fittedModel <- glm(observedResponse ~ Environmentl,
family = "poisson”, data = testData)
simulationOutput <- simulateResiduals(fittedModel = fittedModel)
##HHAEHH main plotting function ##H##H#HHHEHAEHE

# for all functions, quantreg = T will be more
# informative, but slower

plot(simulationOutput, quantreg = FALSE)
HHHEHEAAEEA Distribution  #HEHHHEHHHEHEHERHHEHEHE
plotQQunif(simulationOutput = simulationOutput)
hist(simulationOutput )

A residual plots  ##HHEHEHEHEHEHE

# rank transformation, using a simulationOutput
plotResiduals(simulationOutput, rank = TRUE, quantreg = FALSE)

# smooth scatter plot - usually used for large datasets, default for n > 10000
plotResiduals(simulationOutput, rank = TRUE, quantreg = FALSE, smoothScatter = TRUE)

# residual vs predictors, using explicit values for pred, residual
plotResiduals(simulationOutput, form = testData$Environmentl,
quantreg = FALSE)

# if pred is a factor, or asFactor = T, will produce a boxplot
plotResiduals(simulationOutput, form = testData$group,
quantreg = FALSE, asFactor = TRUE)

# All these options can also be provided to the main plotting function
plot(simulationQutput, quantreg = FALSE, rank = FALSE)

# If you want to plot summaries per group, use
simulationOutput = recalculateResiduals(simulationOutput, group = testData$group)
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plot(simulationOutput, asFactor = TRUE) # we see one residual point per RE

outliers Return outliers

Description

Returns the outliers of a DHARMa object

Usage
outliers(object, lowerQuantile = @, upperQuantile = 1, return = c("index",
"logical"))
Arguments
object an object with simulated residuals created by simulateResiduals

lowerQuantile lower threshold for outliers. Default is zero = outside simulation envelope
upperQuantile upper threshold for outliers. Default is 1 = outside simulation envelope

return wheter to return an indices of outliers or a logical vector

Details

First of all, note that the standard definition of outlier in the DHARMa plots and outlier tests is an
observation that is outside the simulation envelope. How far outside that is depends a lot on how
many simulations you do. If you have 100 data points and to 100 simulations, you would expect to
have one "outlier" on average, even with a perfectly fitting model. This is in fact what the outlier
test tests.

Thus, keep in mind that for a small number of simulations, outliers are mostly a technical term:
these are points that are outside our simulations, but we don’t know how far away they are.

If you are seriously interested in HOW FAR outside the expected distribution a data point is, you
should increase the number of simulations in simulateResiduals to be sure to get the tail of the
data distribution correctly. In this case, it may make sense to adjust lowerQuantile and upperQuan-
tile, e.g. to 0.025, 0.975, which would define outliers as values outside the central 95

Also, note that outliers are particularly concerning if they have a strong influence on the model fit.
One could test the influence, for example, by removing them from the data, or by some meausures
of leverage, e.g. generalisations for Cook’s distance as in Pinho, L. G. B., Nobre, J. S., & Singer, J.
M. (2015). Cook’s distance for generalized linear mixed models. Computational Statistics & Data
Analysis, 82, 126—136. doi:10.1016/j.csda.2014.08.008. At the moment, however, no such function
is provided in DHARMa.
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plot.DHARMa DHARMa standard residual plots

Description

This function creates standard plots for the simulated residuals

Usage

## S3 method for class 'DHARMa’
plot(x, rank = TRUE, ...)

Arguments

X an object with simulated residuals created by simulateResiduals

rank if T (default), the values of pred will be rank transformed. This will usually make
patterns easier to spot visually, especially if the distribution of the predictor is
skewed.

further options for plotResiduals. Consider in particular parameters quantreg,
rank and asFactor. xlab, ylab and main cannot be changed when using plotSim-
ulatedResiduals, but can be changed when using plotResiduals.

Details

The function creates two plots. To the left, a qq-uniform plot to detect deviations from overall
uniformity of the residuals (calling plotQQunif), and to the right, a plot of residuals against pre-
dicted values (calling plotResiduals). Outliers are highlighted in red (for more on outliers, see
testOutliers). For a correctly specified model, we would expect

a) a straight 1-1 line in the uniform qqg-plot -> evidence for an overall uniform (flat) distribution of
the residuals

b) uniformity of residuals in the vertical direction in the res against predictor plot

Deviations of this can be interpreted as for a linear regression. See the vignette for detailed exam-
ples.

To provide a visual aid in detecting deviations from uniformity in y-direction, the plot of the resid-
uals against the predicted values also performs an (optional) quantile regression, which provides
0.25, 0.5 and 0.75 quantile lines across the plots. These lines should be straight, horizontal, and at
y-values of 0.25, 0.5 and 0.75. Note, however, that some deviations from this are to be expected by
chance, even for a perfect model, especially if the sample size is small. See further comments on
this plot, its interpretation and options, in plotResiduals

The quantile regression can take some time to calculate, especially for larger datasets. For that
reason, quantreg = F can be set to produce a smooth spline instead. This is default for n > 2000.

See Also

plotResiduals, plotQQunif
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Examples

testData = createData(sampleSize = 200, family = poisson(),
randomEffectVariance = 1, numGroups = 5)
fittedModel <- glm(observedResponse ~ Environmentl,
family = "poisson”, data = testData)
simulationOutput <- simulateResiduals(fittedModel = fittedModel)

#HHHHHH# main plotting function #HHHEHHHHHI

# for all functions, quantreg = T will be more
# informative, but slower

plot(simulationOutput, quantreg = FALSE)
HHHEHEHEEAE Distribution  #HHEHHEHEHEHEHERHHEHEHE
plotQQunif(simulationOutput = simulationOutput)
hist(simulationOutput )

HHHEHHAEEEA residual plots  #HHEHEHEHEHEEHE

# rank transformation, using a simulationOutput
plotResiduals(simulationOutput, rank = TRUE, quantreg = FALSE)

# smooth scatter plot - usually used for large datasets, default for n > 10000
plotResiduals(simulationOutput, rank = TRUE, quantreg = FALSE, smoothScatter = TRUE)

# residual vs predictors, using explicit values for pred, residual
plotResiduals(simulationOutput, form = testData$Environmentl,
quantreg = FALSE)

# if pred is a factor, or asFactor = T, will produce a boxplot
plotResiduals(simulationOutput, form = testData$group,
quantreg = FALSE, asFactor = TRUE)

# All these options can also be provided to the main plotting function
plot(simulationOutput, quantreg = FALSE, rank = FALSE)

# If you want to plot summaries per group, use
simulationQutput = recalculateResiduals(simulationQutput, group = testData$group)
plot(simulationOutput, asFactor = TRUE) # we see one residual point per RE

plotConventionalResiduals
Conventional residual plot
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Description

Convenience function to draw conventional residual plots

Usage

plotConventionalResiduals(fittedModel)

Arguments

fittedModel a fitted model object

plotQQunif Quantile-quantile plot for a uniform distribution

Description

The function produces a uniform quantile-quantile plot from a DHARMa output

Usage
plotQQunif(simulationOutput, testUniformity = T, testOutliers =T,
testDispersion = T, ...)
Arguments
simulationQutput

a DHARMa simulation output (class DHARMa)

testUniformity if T, the function testUniformity will be called and the result will be added to
the plot

testOutliers if T, the function testOutliers will be called and the result will be added to
the plot

testDispersion if T, the function testDispersion will be called and the result will be added to
the plot

arguments to be passed on to gqunif

Details

the function calls qqunif from the R package gap to create a quantile-quantile plot for a uniform
distribution.

See Also

plotSimulatedResiduals, plotResiduals
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Examples

testData = createData(sampleSize = 200, family = poisson(),
randomEffectVariance = 1, numGroups = 5)
fittedModel <- glm(observedResponse ~ Environmentl,
family = "poisson”, data = testData)
simulationQutput <- simulateResiduals(fittedModel = fittedModel)

HHHEHEH# main plotting function #HHHEHEHEHH

# for all functions, quantreg = T will be more
# informative, but slower

plot(simulationQutput, quantreg = FALSE)
HHHHHAEHAHAEE Distribution  ##HHHHEHHEHAHHBHAHHHRE
plotQQunif(simulationOutput = simulationOutput)
hist(simulationOutput )

A residual plots  #HHEEEHEHHEHAHHE

# rank transformation, using a simulationOutput
plotResiduals(simulationOutput, rank = TRUE, quantreg = FALSE)

# smooth scatter plot - usually used for large datasets, default for n > 10000
plotResiduals(simulationOutput, rank = TRUE, quantreg = FALSE, smoothScatter = TRUE)

# residual vs predictors, using explicit values for pred, residual
plotResiduals(simulationOutput, form = testData$Environmentl,
quantreg = FALSE)

# if pred is a factor, or asFactor = T, will produce a boxplot
plotResiduals(simulationOutput, form = testData$group,
quantreg = FALSE, asFactor = TRUE)

# All these options can also be provided to the main plotting function
plot(simulationOutput, quantreg = FALSE, rank = FALSE)

# If you want to plot summaries per group, use
simulationOutput = recalculateResiduals(simulationOutput, group = testData$group)
plot(simulationQOutput, asFactor = TRUE) # we see one residual point per RE

plotResiduals Generic res ~ pred scatter plot with spline or quantile regression on
top
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Description

plotResiduals

The function creates a generic residual plot with either spline or quantile regression to highlight
patterns in the residuals. Outliers are highlighted in red.

Usage

plotResiduals(simulationOutput, form = NULL, quantreg = NULL, rank = F,

asFactor =

.2

Arguments

NULL, smoothScatter = NULL, quantiles = c(0.25, 0.5, 0.75),

simulationQutput

form

quantreg

rank

asFactor

smoothScatter

quantiles

Details

on object, usually a DHARMa object, from which residual values can be ex-
tracted. Alternatively, a vector with residuals or a fitted model can be provided,
which will then be transformed into a DHARMa object.

optional predictor against which the residuals should be plotted. Default is to
used the predicted(simulationOutput)

whether to perform a quantile regression on 0.25, 0.5, 0.75 on the residuals. If
F, a spline will be created instead. Default NULL chooses T for nObs < 2000,
and F otherwise.

if T, the values provided in form will be rank transformed. This will usually
make patterns easier to spot visually, especially if the distribution of the predic-
tor is skewed. If form is a factor, this has no effect.

should a numeric predictor provided in form be treated as a factor. Default is to
choose this for < 10 unique values, as long as enough predictions are available
to draw a boxplot.

if T, a smooth scatter plot will plotted instead of a normal scatter plot. This
makes sense when the number of residuals is very large. Default NULL chooses
T for nObs < 10000, and F otherwise.

for a quantile regression, which quantiles should be plotted

additional arguments to plot / boxplot.

The function plots residuals against a predictor (by default against the fitted value, extracted from
the DHARMa object, or any other predictor).

Outliers are highlighted in red (for information on definition and interpretation of outliers, see

testOutliers).

To provide a visual aid in detecting deviations from uniformity in y-direction, the plot function cal-
culates an (optional) quantile regression, which compares the empirical 0.25, 0.5 and 0.75 quantiles
(default) in y direction (red solid lines) with the theoretical 0.25, 0.5 and 0.75 quantiles (dashed

black line).

Asymptotically (i.e. for lots of data / residuals), if the model is correct, theoretical and the empirical
quantiles should be identical (i.e. dashed and solid lines should match). A p-value for the deviation
is calculated for each quantile line. Significant deviations are highlighted by red color.
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If form is a factor, a boxplot will be plotted instead of a scatter plot. The distribution for each factor
level should be uniformly distributed, so the box should go from 0.25 to 0.75, with the median
line at 0.5. Again, chance deviations from this will increases when the sample size is smaller.
You can run null simulations to test if the deviations you see exceed what you would expect from
random variation. If you want to create box plots for categorical predictors (e.g. because you
only have a small number of unique numeric predictor values), you can convert your predictor with
as.factor(pred)

Value

if quantile tests are performed, the function returns them invisibly.

Note

The quantile regression can take some time to calculate, especially for larger datasets. For that
reason, quantreg = F can be set to produce a smooth spline instead.

See Also
plotQQunif

Examples

testData = createData(sampleSize = 200, family = poisson(),
randomEffectVariance = 1, numGroups = 5)
fittedModel <- glm(observedResponse ~ Environmentl,
family = "poisson”, data = testData)
simulationOutput <- simulateResiduals(fittedModel = fittedModel)
HHHEH# main plotting function #HHHEHHHHHI

# for all functions, quantreg = T will be more
# informative, but slower

plot(simulationOutput, quantreg = FALSE)
H#iHHEHHHAEAE Distribution  #HHEHHEHEHEHEHERHHEHEHE
plotQQunif(simulationOutput = simulationOutput)
hist(simulationOutput )

H#HHEHHHAEA residual plots  ##HHEHEHEHEHEEE

# rank transformation, using a simulationOutput
plotResiduals(simulationOutput, rank = TRUE, quantreg = FALSE)

# smooth scatter plot - usually used for large datasets, default for n > 10000
plotResiduals(simulationOutput, rank = TRUE, quantreg = FALSE, smoothScatter = TRUE)

# residual vs predictors, using explicit values for pred, residual
plotResiduals(simulationOutput, form = testData$Environmentl,
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quantreg = FALSE)

# if pred is a factor, or asFactor = T, will produce a boxplot
plotResiduals(simulationOutput, form = testData$group,
quantreg = FALSE, asFactor = TRUE)

# All these options can also be provided to the main plotting function
plot(simulationOutput, quantreg = FALSE, rank = FALSE)

# If you want to plot summaries per group, use
simulationOutput = recalculateResiduals(simulationQutput, group = testData$group)
plot(simulationQutput, asFactor = TRUE) # we see one residual point per RE

plotSimulatedResiduals
DHARMa standard residual plots

Description

DEPRECATED, use plot() instead

Usage
plotSimulatedResiduals(simulationOutput, ...)
Arguments
simulationOutput
an object with simulated residuals created by simulateResiduals
further options for plotResiduals. Consider in particular parameters quantreg,
rank and asFactor. xlab, ylab and main cannot be changed when using plotSim-
ulatedResiduals, but can be changed when using plotResiduals.
Note

This function is deprecated. Use plot.DHARMa

See Also

plotResiduals, plotQQunif
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print.DHARMa Print simulated residuals

Description

Print simulated residuals

Usage
## S3 method for class 'DHARMa’
print(x, ...)
Arguments
X an object with simulated residuals created by simulateResiduals

optional arguments for compatibility with the generic function, no function im-
plemented

recalculateResiduals  Recalculate residuals with grouping

Description

The purpose of this function is to recalculate scaled residuals per group, based on the simulations
done by simulateResiduals

Usage

recalculateResiduals(simulationOutput, group = NULL, aggregateBy = sum,
seed = 123, method = c("PIT", "traditional”))

Arguments
simulationQutput
an object with simulated residuals created by simulateResiduals
group group of each data point

aggregateBy function for the aggregation. Default is sum. This should only be changed if
you know what you are doing. Note in particular that the expected residual
distribution might not be flat any more if you choose general functions, such as
sd etc.
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seed

method

Value

recalculateResiduals

the random seed to be used within DHARMa. The default setting, recommended
for most users, is keep the random seed on a fixed value 123. This means that
you will always get the same randomization and thus teh same result when run-
ning the same code. NULL = no new seed is set, but previous random state
will be restored after simulation. FALSE = no seed is set, and random state will
not be restored. The latter two options are only recommended for simulation
experiments. See vignette for details.

the quantile randomization method used. The two options implemented at the
moment are probability integral transform (PIT-) residuals (current default), and
the "traditional" randomization procedure, that was used in DHARMa until ver-
sion 0.3.0. For details, see getQuantile

an object of class DHARMa, similar to what is returned by simulateResiduals, but with addi-
tional outputs for the new grouped calculations. Note that the relevant outputs are 2x in the object,
the first is the grouped calculations (which is returned by $name access), and later another time, un-
der identical name, the original output. Moreover, there is a function ’aggregateByGroup’, which
can be used to aggregate predictor variables in the same way as the variables calculated here

Examples

library(1me4)

testData

createData(sampleSize = 200, overdispersion = 0.5, family = poisson())

fittedModel <- glmer(observedResponse ~ Environmentl + (1|group),

family = "poisson”, data = testData)

simulationQutput <- simulateResiduals(fittedModel = fittedModel)

# standard plot

plot(simulationOutput)

# one of the possible test, for other options see ?testResiduals
testOutliers(simulationOutput)

# for various other plots and tests, see the help / vignette

# the calculated residuals can be accessed via
residuals(simulationOutput)

# transform residuals to other pdf, see ?residuals.DHARMa for details
residuals(simulationOutput, quantileFunction = gnorm, outlierValues = c(-7,7))

# calculating summaries per group
simulationOutput = recalculateResiduals(simulationOutput, group = testData$group)
plot(simulationOutput, quantreg = FALSE)

# create residuals with refitting, see ?simulateResiduals for details
# n=10 is very low, set higher when using this for real
simulationOutput <- simulateResiduals(fittedModel = fittedModel,
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n =10, refit = TRUE)
plot(simulationOutput, quantreg = FALSE)

residuals.DHARMa Return residuals of a DHARMa simulation

Description

Return residuals of a DHARMa simulation

Usage
## S3 method for class 'DHARMa‘’
residuals(object, quantileFunction = NULL, outlierValues = NULL, ...)
Arguments
object an object with simulated residuals created by simulateResiduals
quantileFunction

optional - a quantile function to transform the uniform 0/1 scaling of DHARMa
to another distribution

outlierValues if a quantile function with infinite support (such as dnorm) is used, residuals that
are 0/1 are mapped to -Inf / Inf. outlierValues allows to convert -Inf / Inf values
to an optional min / max value.

optional arguments for compatibility with the generic function, no function im-
plemented

Details

the function accesses the slot $scaledResiduals in a fitted DHARMa object, and optionally trans-
forms the standard DHARMa quantile residuals (which have a uniform distribution) to a particular
pdf.

Note

some of the papers on simulated quantile residuals transforming the residuals (which are natively
uniform) back to a normal distribution. I presume this is because of the larger familiarity of
most users with normal residuals. Personally, I never considered this desirable, for the reasons
explained in https://github.com/florianhartig/DHARMa/issues/39, but with this function, I wanted
to give users the option to plot normal residuals if they so wish.
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Examples

library(1me4)

testData = createData(sampleSize = 200, overdispersion = 0.5, family = poisson())
fittedModel <- glmer(observedResponse ~ Environmentl + (1|group),
family = "poisson”, data = testData)

simulationOutput <- simulateResiduals(fittedModel = fittedModel)

# standard plot
plot(simulationOutput)

# one of the possible test, for other options see ?testResiduals
testOutliers(simulationOutput)

# for various other plots and tests, see the help / vignette

# the calculated residuals can be accessed via
residuals(simulationOutput)

# transform residuals to other pdf, see ?residuals.DHARMa for details
residuals(simulationOutput, quantileFunction = gnorm, outlierValues = c(-7,7))

# calculating summaries per group
simulationOutput = recalculateResiduals(simulationOutput, group = testData$group)
plot(simulationOutput, quantreg = FALSE)

# create residuals with refitting, see ?simulateResiduals for details
# n=10 is very low, set higher when using this for real
simulationOutput <- simulateResiduals(fittedModel = fittedModel,

n = 10, refit = TRUE)
plot(simulationOutput, quantreg = FALSE)

runBenchmarks Benchmark calculations

Description

This function runs statistical benchmarks, including Power / Type I error simulations for an arbitrary
test with a control parameter

Usage

runBenchmarks(calculateStatistics, controlValues = NULL, nRep = 10,
alpha = 0.05, parallel = F, ...)
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Arguments

calculateStatistics
the statistics to be benchmarked. Should return one value, or a vector of values.
If controlValues are given, must accept a paramteter control

controlValues a vector with a control parameter (e.g. to vary the strength of a problem the test
should be specific to)

nRep number of replicates per level of the controlValues
alpha significance level
parallel whether to use parallel computations. Possible values are F, T (sets the cores

automatically to number of available cores -1), or an integer number for the
number of cores that should be used for the cluster

additional parameters to calculateStatistics

Note

The benchmark function in DHARMa are intended for development purposes, and for users that
want to test / confirm the properties of functions in DHARMa. If you are running an applied data
analysis, they are probably of little use.

simulateResiduals Create simulated residuals

Description

The function creates scaled residuals by simulating from the fitted model. Residuals can be ex-
tracted with residuals.DHARMa. See testResiduals for an overview of residual tests, plot.DHARMa
for an overview of available plots.

Usage

simulateResiduals(fittedModel, n = 250, refit = F, integerResponse = NULL,
plot = F, seed = 123, method = c("PIT", "traditional”), ...)

Arguments

fittedModel a fitted model of a class supported by DHARMa

n number of simulations. Default is 100. A more save value would be 250 or even
1000. The smaller the number, the higher the stochastic error on the residuals.
Also, for very small n, discretization artefacts can influence the tests.

refit if FALSE, new data will be simulated and scaled residuals will be created by
comparing observed data with new data. If TRUE, the model will be refit on the
simulated data (parametric bootstrap), and scaled residuals will be created by
comparing observed with refitted residuals.
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simulateResiduals

integerResponse
if TRUE, noise will be added at to the residuals to maintain a uniform expec-
tations for integer responses (such as Poisson or Binomial). Usually, the model
will automatically detect the appropriate setting, so there is no need to adjust
this setting.

plot if TRUE, plotResiduals will be directly run after the residuals have been cal-
culated

seed the random seed to be used within DHARMa. The default setting, recommended
for most users, is keep the random seed on a fixed value 123. This means that
you will always get the same randomization and thus teh same result when run-
ning the same code. NULL = no new seed is set, but previous random state
will be restored after simulation. FALSE = no seed is set, and random state will
not be restored. The latter two options are only recommended for simulation
experiments. See vignette for details.

method the quantile randomization method used. The two options implemented at the
moment are probability integral transform (PIT-) residuals (current default), and
the "traditional" randomization procedure, that was used in DHARMa until ver-
sion 0.3.0. For details, see getQuantile

parameters to pass to the simulate function of the model object. An important
use of this is to specify whether simulations should be conditional on the current
random effect estimates, e.g. via re.form. Note that not all models support
syntax to specify conditionao or unconditional simulations. See also details

Details

There are a number of important considerations when simulating from a more complex (hierarchi-
cal) model:

Re-simulating random effects / hierarchical structure: in a hierarchical model, we have several
stochastic processes aligned on top of each other. Specifically, in a GLMM, we have a lower level
stochastic process (random effect), whose result enters into a higher level (e.g. Poisson distribution).
For other hierarchical models such as state-space models, similar considerations apply.

In such a situation, we have to decide if we want to re-simulate all stochastic levels, or only a
subset of those. For example, in a GLMM, it is common to only simulate the last stochastic level
(e.g. Poisson) conditional on the fitted random effects. This is often referred to as a conditional
simuation. For controlling how many levels should be re-simulated, the simulateResidual function
allows to pass on parameters to the simulate function of the fitted model object. Please refer to the
help of the different simulate functions (e.g. ?simulate.merMod) for details. For merMod (Ime4)
model objects, the relevant parameters are parameters are use.u and re.form

If the model is correctly specified, the simulated residuals should be flat regardless how many
hierarchical levels we re-simulate. The most thorough procedure would therefore be to test all
possible options. If testing only one option, I would recommend to re-simulate all levels, because
this essentially tests the model structure as a whole. This is the default setting in the DHARMa
package. A potential drawback is that re-simulating the lower-level random effects creates more
variability, which may reduce power for detecting problems in the upper-level stochastic processes.
In particular dispersion tests may produce different results when switching from conditional to
unconditional simulations, and often the conditional simulation is more sensitive.
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Integer responses: a second complication is the treatment of inter responses. Imaging we have
observed a 0, and we predict 30% zeros - what is the quantile that we should display for the residual?
To deal with this problem and maintain a uniform response, the option integerResponse adds a
uniform noise from -0.5 to 0.5 on the simulated and observed response, which creates a uniform
distribution - you can see this via hist(ecdf(runif(10000))(runif(10000))).

DHARMa will try to automatically if the fitted model has an integer or discrete distribution via the
family argument. However, in some cases the family does not allow to uniquely identify the distri-
bution type. For example, a tweedie distribution can be inter or continuous. Therefore, DHARMa
will additionally check the simulation results for repeated values, and will change the distribution
type if repeated values are found (a message is displayed in this case).

Refitting or not: a third issue is how residuals are calculated. simulateResiduals has two options
that are controlled by the refit parameter:

1. if refit = FALSE (default), new data is simulated from the fitted model, and residuals are calcu-
lated by comparing the observed data to the new data

2. if refit = TRUE, a parametric bootstrap is performed, meaning that the model is refit on the new
data, and residuals are created by comparing observed residuals against refitted residuals. I advise
against using this method per default (see more comments in the vignette), unless you are really
sure that you need it.

Residuals per group: In many situations, it can be useful to look at residuals per group, e.g. to see
how much the model over / underpredicts per plot, year or subject. To do this, use recalculateResiduals,
together with a grouping variable (see also help)

Transformation to other distributions: DHARMa calculates residuals for which the theoret-
ical expectation (assuming a correctly specified model) is uniform. To transfor this residuals
to another distribution (e.g. so that a correctly specified model will have normal residuals) see
residuals.DHARMa.

Value
An S3 class of type "DHARMa", essentially a list with various elements. Implemented S3 functions
include plot, print and residuals.DHARMa. Residuals returns the calculated scaled residuals.

See Also

testResiduals, plot.DHARMa, plotResiduals, print.DHARMa, residuals.DHARMa, recalculateResiduals

Examples
library(1me4)
testData = createData(sampleSize = 200, overdispersion = 0.5, family = poisson())
fittedModel <- glmer(observedResponse ~ Environmentl + (1]|group),
family = "poisson”, data = testData)

simulationOQutput <- simulateResiduals(fittedModel = fittedModel)

# standard plot
plot(simulationOutput)
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# one of the possible test, for other options see ?testResiduals
testOutliers(simulationOutput)

# for various other plots and tests, see the help / vignette

# the calculated residuals can be accessed via
residuals(simulationOutput)

# transform residuals to other pdf, see ?residuals.DHARMa for details
residuals(simulationOutput, quantileFunction = gnorm, outlierValues = c(-7,7))

# calculating summaries per group
simulationOutput = recalculateResiduals(simulationOutput, group = testData$group)
plot(simulationOutput, quantreg = FALSE)

# create residuals with refitting, see ?simulateResiduals for details
# n=10 is very low, set higher when using this for real
simulationOutput <- simulateResiduals(fittedModel = fittedModel,

n =10, refit = TRUE)
plot(simulationOutput, quantreg = FALSE)

testDispersion DHARMa dispersion tests

Description

This function performs a simulation-based test for over/underdispersion

Usage

testDispersion(simulationOutput, alternative = c("two.sided”, "greater”,
"less"), plot =T, ...)

Arguments

simulationOutput
an object of class DHARMa with simulated quantile residuals, either created
via simulateResiduals or by createDHARMa for simulations created outside
DHARMa

alternative a character string specifying whether the test should test if observations are
"greater”, "less" or "two.sided" compared to the simulated null hypothesis. Greater
corresponds to overdispersion.

plot whether to plot output

arguments to pass on to testGeneric
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Details

The function implements two tests, depending on whether it is applied on a simulation with refit =
F, orrefit=T.

If refit = F, the function tests the sd of the data against the sd of the simulated data.

If refit = T, the function compares the approximate deviance (via squared pearson residuals) with the
same quantity from the models refitted with simulated data. Applying this is much slower than the
previous alternative. Given the computational cost, I would suggest that most users will be satisfied
with the standard dispersion test.

Note

The results of the dispersion test can can differ depending on whether it is evaluated on conditional
(= conditional on fitted random effects) or unconditional (= REs are re-simulated) simulations.
You can change between conditional or unconditional simulations in simulateResiduals if this is
supported by the regression package that you use. The default in DHARMa is to use unconditional
simulations, but I have often found that conditional simulations are more sensitive to dispersion
problems. I recommend trying both, as neither test should be positive if the dispersion is correct.

Author(s)

Florian Hartig

See Also

testResiduals, testUniformity, testOutliers, testZeroInflation, testGeneric, testTemporalAutocorrelation,
testSpatialAutocorrelation, testQuantiles

Examples

testData = createData(sampleSize = 200, overdispersion = 0.5, randomEffectVariance = 0)
fittedModel <- glm(observedResponse ~ Environment1 , family = "poisson”, data = testData)
simulationOutput <- simulateResiduals(fittedModel = fittedModel)

# the plot function runs 4 tests
# i) KS test i) Dispersion test iii) Outlier test iv) quantile test
plot(simulationOutput, quantreg = TRUE)

# testResiduals tests distribution, dispersion and outliers
testResiduals(simulationOutput)

#HHHH## Individual tests ##HHHHHE

# KS test for correct distribution of residuals
testUniformity(simulationOutput)

# Dispersion test

testDispersion(simulationOutput) # tests under and overdispersion
testDispersion(simulationOutput, alternative = "less") # only underdispersion
testDispersion(simulationOutput, alternative = "less") # only underdispersion
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# if model is refitted, a different test will be called
simulationOutput2 <- simulateResiduals(fittedModel = fittedModel, refit = TRUE, seed = 12)
testDispersion(simulationQutput2)

# often useful to test dispersion per group (e.g. binomial data, see vignette)
simulationOutput3 = recalculateResiduals(simulationOutput, group = testData$group)

testDispersion(simulationOQutput3)

# Outlier test (number of observations outside simulation envelope)
testOutliers(simulationOutput)

# testing zero inflation
testZeroInflation(simulationOutput)

# testing generic summaries

countOnes <- function(x) sum(x == 1) # testing for number of 1s
testGeneric(simulationOutput, summary = countOnes) # 1-inflation
testGeneric(simulationOutput, summary = countOnes, alternative = "less") # 1-deficit

means <- function(x) mean(x) # testing if mean prediction fits
testGeneric(simulationQutput, summary = means)

spread <- function(x) sd(x) # testing if mean sd fits
testGeneric(simulationOutput, summary = spread)

testGeneric Generic simulation test of a summary statistic

Description

This function tests if a user-defined summary differs when applied to simulated / observed data.

Usage
testGeneric(simulationQutput, summary, alternative = c("two.sided”, "greater”,
"less"), plot = T, methodName = "DHARMa generic simulation test")
Arguments
simulationOutput

an object of class DHARMa with simulated quantile residuals, either created
via simulateResiduals or by createDHARMa for simulations created outside
DHARMa

summary a function that can be applied to simulated / observed data. See examples below
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alternative a character string specifying whether the test should test if observations are
"greater”, "less" or "two.sided" compared to the simulated null hypothesis
plot whether to plot the simulated summary
methodName name of the test (will be used in plot)
Details

This function tests if a user-defined summary differs when applied to simulated / observed data.
the function can easily be remodeled to apply summaries on the residuals, by simply defining f =
function(x) summary (x - predictions), as done in testDispersion

Note

The function that you supply is applied on the data as it is represented in your fitted model, which
may not always correspond to how you think. This is important in particular when you use k/n
binomial data, and want to test for 1-inflation. As an example, if have k/20 observations, and you
provide your data via cbind (y, y-20), you have to test for 20-inflation (because this is how the data
is represented in the model). However, if you provide data via y/20, and weights = 20, you should
test for 1-inflation. In doubt, check how the data is internally represented in model.frame(model),
or via simulate(model)

Author(s)

Florian Hartig

See Also

testResiduals, testUniformity, testOutliers, testDispersion, testZeroInflation, testTemporalAutocorrelati
testSpatialAutocorrelation, testQuantiles

Examples

testData = createData(sampleSize = 200, overdispersion = 0.5, randomEffectVariance = 0)
fittedModel <- glm(observedResponse ~ Environmentl , family = "poisson”, data = testData)
simulationOutput <- simulateResiduals(fittedModel = fittedModel)

# the plot function runs 4 tests
# i) KS test i) Dispersion test iii) Outlier test iv) quantile test
plot(simulationOutput, quantreg = TRUE)

# testResiduals tests distribution, dispersion and outliers
testResiduals(simulationQutput)

#iHHH#HE Individual tests #iHHtH#H#HE

# KS test for correct distribution of residuals
testUniformity(simulationOutput)

# Dispersion test
testDispersion(simulationQutput) # tests under and overdispersion
testDispersion(simulationOutput, alternative = "less"”) # only underdispersion
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testDispersion(simulationOutput, alternative = "less") # only underdispersion
# if model is refitted, a different test will be called
simulationOutput2 <- simulateResiduals(fittedModel = fittedModel, refit = TRUE, seed = 12)
testDispersion(simulationQutput2)
# often useful to test dispersion per group (e.g. binomial data, see vignette)
simulationOutput3 = recalculateResiduals(simulationOutput, group = testData$group)
testDispersion(simulationQutput3)
# Outlier test (number of observations outside simulation envelope)
testOutliers(simulationOutput)
# testing zero inflation
testZerolInflation(simulationOutput)
# testing generic summaries
countOnes <- function(x) sum(x == 1) # testing for number of 1s
testGeneric(simulationOutput, summary = countOnes) # 1-inflation
testGeneric(simulationOutput, summary = countOnes, alternative = "less") # 1-deficit
means <- function(x) mean(x) # testing if mean prediction fits
testGeneric(simulationOutput, summary = means)
spread <- function(x) sd(x) # testing if mean sd fits
testGeneric(simulationOutput, summary = spread)

testOutliers Test for outliers

Description
This function tests if the number of observations outside the simulatio envelope are larger or smaller
than expected

Usage
testOutliers(simulationOutput, alternative = c("two.sided”, "greater”,

"less"), margin = c("both”, "upper”, "lower"), plot =T)
Arguments

simulationQutput
an object of class DHARMa with simulated quantile residuals, either created
via simulateResiduals or by createDHARMa for simulations created outside
DHARMa
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alternative a character string specifying whether the test should test if observations are
"greater”, "less" or "two.sided" (default) compared to the simulated null hy-
pothesis
margin whether to test for outliers only at the lower, only at the upper, or both sides
(default) of the simulated data distribution
plot if T, the function will create an additional plot
Details

DHARMa residuals are created by simulating from the fitted model, and comparing the simulated
values to the observed data. It can occur that all simulated values are higher or smaller than the
observed data, in which case they get the residual value of 0 and 1, respectively. I refer to these
values as simulation outliers, or simply outliers.

Because no data was simulated in the range of the observed value, we don’t know "how strongly"
these values deviate from the model expectation, so the term "outlier" should be used with a grain
of salt - it’s not a judgment about the magnitude of a deviation from an expectation, but simply that
we are outside the simulated range, and thus cannot say anything more about the location of the
residual.

Note also that the number of outliers will decrease as we increase the number of simulations. Under
the null hypothesis that the model is correct, we expect nData /(nSim +1) outliers at each margin of
the distribution. For a reason, consider that if the data and the model distribution are identical, the
probability that a given observation is higher than all simulations is 1/(nSim +1).

Based on this null expectation, we can test for an excess or lack of outliers. Per default, testOutliers()
looks for both, so if you get a significant p-value, you have to check if you have to many or too
few outliers. An excess of outliers is to be interpreted as too many values outside the simulation
envelope. This could be caused by overdispersion, or by what we classically call outliers. A lack of
outliers would be caused, for example, by underdispersion.

Author(s)

Florian Hartig

See Also
testResiduals, testUniformity, testDispersion, testZeroInflation, testGeneric, testTemporalAutocorrelatic

testSpatialAutocorrelation, testQuantiles

Examples

set.seed(123)
testData = createData(sampleSize = 200, overdispersion = 1, randomEffectVariance = 0)
fittedModel <- glm(observedResponse ~ Environment1 , family = "poisson”, data = testData)

simulationOutput <- simulateResiduals(fittedModel = fittedModel)

# default outlier test (with plot)
testOutliers(simulationOutput)

# note that default is to test outliers at both margins for both an excess and a lack



38 testOverdispersion

# of outliers. Here we see that we mostly have an excess of outliers at the upper
# margin. You see that it is an exces because the frequency of outliers is 0.055,
# while expected is 0.008

# Let's see what would have happened if we would just have checked the lower margin
testOutliers(simulationOutput, margin = "lower”, plot = FALSE)

# OK, now the frequency of outliers is @, so we have too few, but this is n.s. against
# the expectation

# just for completeness, what would have happened if we would have checked both
# margins, but just for a lack of outliers (i.e. underdispersion)

testOutliers(simulationOutput, alternative = "less"”, plot = FALSE)

testOverdispersion Simulated overdisperstion tests

Description

Simulated overdisperstion tests

Usage
testOverdispersion(simulationOutput, ...)
Arguments
simulationOutput
an object of class DHARMa with simulated quantile residuals, either created
via simulateResiduals or by createDHARMa for simulations created outside
DHARMa
additional arguments to testDispersion
Details

Deprecated, switch your code to using the testDispersion function
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testOverdispersionParametric
Parametric overdisperstion tests

Description

Parametric overdisperstion tests

Usage

testOverdispersionParametric(...)

Arguments

arguments will be ignored, the parametric tests is no longer recommend

Details

Deprecated, switch your code to using the testDispersion function. The function will do nothing,
arguments will be ignored, the parametric tests is no longer recommend

testPDistribution Plot distribution of p-values

Description

Plot distribution of p-values

Usage
testPDistribution(x, plot =T,
main = "p distribution \n expected is flat at 1", ...)
Arguments
X vector of p values
plot should the values be plottet
main title for the plot

additional arguments to hist

Author(s)

Florian Hartig



40 testQuantiles

testQuantiles Test for quantiles

Description

This function tests

Usage

testQuantiles(simulationOutput, predictor = NULL, quantiles = c(0.25, 0.5,
0.75), plot =T)

Arguments
simulationQOutput
an object of class DHARMa with simulated quantile residuals, either created
via simulateResiduals or by createDHARMa for simulations created outside
DHARMa
predictor an optional predictor variable to be used, instead of the predicted response (de-
fault)
quantiles the quantiles to be tested
plot if T, the function will create an additional plot
Details

The function fits quantile regressions (via package qgam) on the residuals, and compares their
location to the expected location (because of the uniform distributionm, the expected location is 0.5
for the 0.5 quantile).

A significant p-value for the splines means the fitted spline deviates from a flat line at the expected
location (p-values of intercept and spline are combined via Benjamini & Hochberg adjustment to
control the FDR)

The p-values of the splines are combined into a total p-value via Benjamini & Hochberg adjustment
to control the FDR.

Author(s)

Florian Hartig

See Also

testResiduals, testUniformity, testDispersion, testZeroInflation, testGeneric, testTemporalAutocorrelatic
testSpatialAutocorrelation, testOutliers
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Examples
testData = createData(sampleSize = 200, overdispersion = 0.0, randomEffectVariance = 0)
fittedModel <- glm(observedResponse ~ Environment1, family = "poisson”, data = testData)

simulationQutput <- simulateResiduals(fittedModel = fittedModel)

# run the quantile test

x = testQuantiles(simulationOutput)

x # the test shows a combined p-value, corrected for multiple testing
x$pvals # pvalues for the individual quantiles

x$qgamFits # access the fitted quantile regression

summary (x$qgamFits[[1]]) # summary of the first fitted quantile

# possible to test user-defined quantiles
testQuantiles(simulationOutput, quantiles = c(0.7))

# example with missing environmental predictor

fittedModel <- glm(observedResponse ~ 1 , family = "poisson”, data = testData)
simulationOQutput <- simulateResiduals(fittedModel = fittedModel)
testQuantiles(simulationOutput, predictor = testData$Environment1)

# the quantile test is automatically performed in

## Not run:

plot(simulationOutput)
plotResiduals(simulationOutput)

## End(Not run)

testResiduals

DHARMa general residual test

Description

Calls both uniformity and dispersion test

Usage

testResiduals(simulationOutput, plot = T)

Arguments
simulationQOutput
an object of class DHARMa with simulated quantile residuals, either created
via simulateResiduals or by createDHARMa for simulations created outside
DHARMa
plot if T, plots functions of the tests are called
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Details

This function is a wrapper for the various test functions implemented in DHARMa. Currently, this
function calls the testUniformity and the testDispersion functions. All other tests (see list
below) have to be called by hand.

Author(s)

Florian Hartig

See Also

testUniformity, testOutliers, testDispersion, testZeroInflation, testGeneric, testTemporalAutocorrelatior
testSpatialAutocorrelation, testQuantiles

Examples

testData = createData(sampleSize = 200, overdispersion = 0.5, randomEffectVariance = 0)
fittedModel <- glm(observedResponse ~ Environment1 , family = "poisson”, data = testData)
simulationOutput <- simulateResiduals(fittedModel = fittedModel)

# the plot function runs 4 tests
# i) KS test i) Dispersion test iii) Outlier test iv) quantile test
plot(simulationOutput, quantreg = TRUE)

# testResiduals tests distribution, dispersion and outliers
testResiduals(simulationOutput)

#iHH#H#H## Individual tests #iHHHHH

# KS test for correct distribution of residuals
testUniformity(simulationOutput)

# Dispersion test

testDispersion(simulationOutput) # tests under and overdispersion
testDispersion(simulationOutput, alternative = "less”) # only underdispersion
testDispersion(simulationOutput, alternative = "less") # only underdispersion

# if model is refitted, a different test will be called
simulationOutput2 <- simulateResiduals(fittedModel = fittedModel, refit = TRUE, seed = 12)
testDispersion(simulationQutput2)

# often useful to test dispersion per group (e.g. binomial data, see vignette)
simulationOutput3 = recalculateResiduals(simulationQOutput, group = testData$group)

testDispersion(simulationOQutput3)

# Outlier test (number of observations outside simulation envelope)
testOutliers(simulationOutput)

# testing zero inflation
testZeroInflation(simulationOutput)

# testing generic summaries
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countOnes <- function(x) sum(x == 1) # testing for number of 1s
testGeneric(simulationOutput, summary = countOnes) # 1-inflation
testGeneric(simulationQutput, summary = countOnes, alternative = "less") # 1-deficit

means <- function(x) mean(x) # testing if mean prediction fits
testGeneric(simulationQutput, summary = means)

spread <- function(x) sd(x) # testing if mean sd fits
testGeneric(simulationOutput, summary = spread)

testSimulatedResiduals
Residual tests

Description

Residual tests

Usage

testSimulatedResiduals(simulationOutput)

Arguments
simulationOutput
an object of class DHARMa with simulated quantile residuals, either created
via simulateResiduals or by createDHARMa for simulations created outside
DHARMa
Details

Deprecated, switch your code to using the testResiduals function

Author(s)

Florian Hartig
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testSpatialAutocorrelation
Test for spatial autocorrelation

Description

This function performs a standard test for spatial autocorrelation on the simulated residuals

Usage

testSpatialAutocorrelation(simulationOutput, x = NULL, y = NULL,
distMat = NULL, alternative = c(”"two.sided”, "greater”, "less"),
plot = T)

Arguments
simulationOutput
an object of class DHARMa with simulated quantile residuals, either created
via simulateResiduals or by createDHARMa for simulations created outside
DHARMa
X the x coordinate, in the same order as the data points. If not provided, random
values will be created
y the y coordinate, in the same order as the data points. If not provided, random
values will be created
distMat optional distance matrix. If not provided, a distance matrix will be calculated
based on x and y. See details for explanation
alternative a character string specifying whether the test should test if observations are
"greater”, "less" or "two.sided" compared to the simulated null hypothesis
plot whether to plot output
Details

The function performs Moran.I test from the package ape, based on the provided distance matrix of
the data points.

There are several ways to specify this distance. If a distance matrix (distMat) is provided, calcula-
tions will be based on this distance matrix, and X,y coordinates will only used for the plotting (if
provided) If distMat is not provided, the function will calculate the euclidian distances between X,y
coordinates, and test Moran.I based on these distances.

If no x/y values are provided, random values will be created. The sense of being able to run the
test with x/y = NULL (random values) is to test the rate of false positives under the current residual
structure (random x/y corresponds to HO: no spatial autocorrelation), e.g. to check if the test has
nominal error rates for particular residual structures.

Testing for spatial autocorrelation requires unique X,y values - if you have several observations per
location, either use the recalculateResiduals function to aggregate residuals per location, or extract
the residuals from the fitted object, and plot / test each of them independently for spatially repeated
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subgroups (a typical scenario would repeated spatial observation, in which case one could plot / test
each time step separately for temporal autocorrelation). Note that the latter must be done by hand,
outside testSpatial Autocorrelation.

Note

Important to note for all autocorrelation tests (spatial / temporal): the autocorrelation tests are valid
to check for residual autocorrelation in models that don’t assume such a correlation (in this case,
you can use conditional or unconditional simulations), or if there is remaining residual autocorre-
lation after accounting for it in a spatial/temporal model (in that case, you have to use conditional
simulations), but if checking unconditional simulations from a model with an autocorrelation struc-
ture on data that corresponds to this model, they will be significant, even if the model fully accounts
for this structure.

This behavior is not really a bug, but rather originates from the definition of the quantile residuals:
quantile residuals are calculated independently per data point, i.e. without consideratin of any
correlation structure between data points that may exist in the simulations. As a result, the simulated
distributions from a unconditional simulaton will typically not reflect the correlation structure that
is present in each single simulation, and the same is true for the subsequently calculated quantile
residuals.

The bottomline here is that spatial / temporal / other autoregressive models should either be tested
based on conditional simulations, or (ideally) custom tests should be used that are not based on
quantile residuals, but rather compare the correlation structure in the simulated data with the corre-
lation structure in the observed data.

Author(s)

Florian Hartig

See Also

testResiduals, testUniformity, testOutliers, testDispersion, testZeroInflation, testGeneric,
testTemporalAutocorrelation, testQuantiles

Examples

testData = createData(sampleSize = 40, family = gaussian())
fittedModel <- 1Im(observedResponse ~ Environmentl, data = testData)
res = simulateResiduals(fittedModel)

# Standard use
testSpatialAutocorrelation(res, x = testData$x, y = testDatas$y)

# If x and y is not provided, random values will be created
testSpatialAutocorrelation(res)

# Alternatively, one can provide a distance matrix
dM = as.matrix(dist(cbind(testData$x, testData$y)))
testSpatialAutocorrelation(res, distMat = dM)

# if there are multiple observations with the same x values,
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# create first ar group with unique values for each location
# then aggregate the residuals per location, and calculate
# spatial autocorreation on the new group

res2 = recalculateResiduals(res, group = testData$group)
testSpatialAutocorrelation(res)

# carefull when using REs to account for spatially clustered (but not grouped)
# data. this originates from https://github.com/florianhartig/DHARMa/issues/81

# Assume our data is divided into clusters, where observations are close together
# but not at te same point, and we suspect that observations in clusters are
# autocorrelated

clusters = 100
subsamples = 10
size = clusters * subsamples

testData = createData(sampleSize = size, family = gaussian(), numGroups = clusters )
testData$x = rnorm(clusters)[testData$group] + rnorm(size, sd = 0.01)
testData$y = rnorm(clusters)[testData$group] + rnorm(size, sd = 0.01)

# It's a good idea to use a RE to take out the cluster effects. This accounts
# for the autocorrelation within clusters

library(1me4)
fittedModel <- 1lmer(observedResponse ~ Environmentl + (1|group), data = testData)

# DHARMa default is to re-simulted REs - this means spatial pattern remains
# because residuals are still clustered

res = simulateResiduals(fittedModel)
testSpatialAutocorrelation(res, x = testData$x, y = testDatas$y)

# However, it should disappear if you just calculate an aggregate residuals per cluster
# Because at least how the data are simualted, cluster are spatially independent

res2 = recalculateResiduals(res, group = testData$group)
testSpatialAutocorrelation(res2,
X aggregate(testData$x, list(testData$group), mean)$x,
y = aggregate(testDatas$y, list(testData$group), mean)$x)

# For lme4, it's also possible to simulated residuals conditional on fitted

# REs (re.form). Conditional on the fitted REs (i.e. accounting for the clusters)
# the residuals should now be indepdendent. The remaining RSA we see here is

# probably due to the RE shrinkage

res = simulateResiduals(fittedModel, re.form = NULL)
testSpatialAutocorrelation(res, x = testData$x, y = testData$y)
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testTemporalAutocorrelation
Test for temporal autocorrelation

Description

This function performs a standard test for temporal autocorrelation on the simulated residuals

Usage
testTemporalAutocorrelation(simulationOutput, time = NULL,
alternative = c("two.sided”, "greater"”, "less"), plot = T)
Arguments
simulationOutput

an object with simulated residuals created by simulateResiduals

time the time, in the same order as the data points. If not provided, random values
will be created

alternative a character string specifying whether the test should test if observations are
"greater”, "less" or "two.sided" compared to the simulated null hypothesis

plot whether to plot output

Details

The function performs a Durbin-Watson test on the uniformly scaled residuals, and plots the resid-
uals against time. The DB test was originally be designed for normal residuals. In simulations, 1
didn’t see a problem with this setting though. The alternative is to transform the uniform residuals
to normal residuals and perform the DB test on those.

If no time values are provided, random values will be created. The sense of being able to run the test
with time = NULL (random values) is to test the rate of false positives under the current residual
structure (random time corresponds to HO: no spatial autocorrelation), e.g. to check if the test has
noninal error rates for particular residual structures (note that Durbin-Watson originally assumes
normal residuals, error rates seem correct for uniform residuals, but may not be correct if there are
still other residual problems).

Testing for temporal autocorrelation requires unique time values - if you have several observations
per time value, either use the recalculateResiduals function to aggregate residuals per time step, or
extract the residuals from the fitted object, and plot / test each of them independently for temporally
repeated subgroups (typical choices would be location / subject etc.). Note that the latter must be
done by hand, outside testSpatial Autocorrelation.

Note

Important to note for all autocorrelation tests (spatial / temporal): the autocorrelation tests are valid
to check for residual autocorrelation in models that don’t assume such a correlation (in this case,



48 testTemporal Autocorrelation

you can use conditional or unconditional simulations), or if there is remaining residual autocorre-
lation after accounting for it in a spatial/temporal model (in that case, you have to use conditional
simulations), but if checking unconditional simulations from a model with an autocorrelation struc-
ture on data that corresponds to this model, they will be significant, even if the model fully accounts
for this structure.

This behavior is not really a bug, but rather originates from the definition of the quantile residuals:
quantile residuals are calculated independently per data point, i.e. without consideratin of any
correlation structure between data points that may exist in the simulations. As a result, the simulated
distributions from a unconditional simulaton will typically not reflect the correlation structure that
is present in each single simulation, and the same is true for the subsequently calculated quantile
residuals.

The bottomline here is that spatial / temporal / other autoregressive models should either be tested
based on conditional simulations, or (ideally) custom tests should be used that are not based on
quantile residuals, but rather compare the correlation structure in the simulated data with the corre-
lation structure in the observed data.

Author(s)

Florian Hartig

See Also
testResiduals, testUniformity, testOutliers, testDispersion, testZeroInflation, testGeneric,

testSpatialAutocorrelation, testQuantiles

Examples

testData = createData(sampleSize = 40, family = gaussian())
fittedModel <- 1m(observedResponse ~ Environmentl, data = testData)
res = simulateResiduals(fittedModel)

# Standard use
testTemporalAutocorrelation(res, time = testData$time)

# If no time is provided, random values will be created
testTemporalAutocorrelation(res)

# If you have several observations per time step

49, family = gaussian())

timeSeries1 = createData(sampleSize
timeSeriesi1$location = 1
timeSeries2 = createData(sampleSize = 40, family = gaussian())
timeSeries2$location = 2

testData = rbind(timeSeries1, timeSeries2)

fittedModel <- 1Im(observedResponse ~ Environmentl, data = testData)
res = simulateResiduals(fittedModel)

# for this, you cannot do testTemporalAutocorrelation(res, time = testData$time)
# because here we would have observations with the same time, i.e.
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zero difference in time. We have two options a) aggregate observations
b) calculate / test per subset. Testing per subset might also be useful
if you have several locations, regardless of whether the times are
identical, because you would expect the autocorrelation structure to be
independent per location

% ¥ o

# testing grouped residuals

res = recalculateResiduals(res, group = testData$time)
testTemporalAutocorrelation(res, time = unique(testData$time))

# plotting and testing per subgroup

# extract subgroup
testData$Residuals = res$scaledResiduals
temp = testData[testData$location == 1,]

# plots and tests
plot(Residuals ~ time, data = temp)
Imtest: :dwtest(temp$Residuals ~ 1, order.by = temp$time)

testUniformity Test for overall uniformity

Description

This function tests the overall uniformity of the simulated residuals in a DHARMa object

Usage

testUniformity(simulationQutput, alternative = c(”two.sided”, "less"”,
"greater”), plot = T)

Arguments
simulationOutput
an object of class DHARMa with simulated quantile residuals, either created
via simulateResiduals or by createDHARMa for simulations created outside
DHARMa
alternative a character string specifying whether the test should test if observations are
"greater”, "less" or "two.sided" compared to the simulated null hypothesis. See
ks.test for details
plot if T, plots calls plotQQunif as well
Details

The function applies a ks. test for uniformity on the simulated residuals.
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Author(s)

Florian Hartig

See Also

testResiduals, testOutliers, testDispersion, testZeroInflation, testGeneric, testTemporalAutocorrelation,
testSpatialAutocorrelation, testQuantiles

Examples

testData = createData(sampleSize = 200, overdispersion = 0.5, randomEffectVariance = 0)
fittedModel <- glm(observedResponse ~ Environment1 , family = "poisson”, data = testData)
simulationOutput <- simulateResiduals(fittedModel = fittedModel)

# the plot function runs 4 tests
# i) KS test i) Dispersion test iii) Outlier test iv) quantile test
plot(simulationOutput, quantreg = TRUE)

# testResiduals tests distribution, dispersion and outliers
testResiduals(simulationOutput)

#i#H#H#H#H## Individual tests #iHHHHH

# KS test for correct distribution of residuals
testUniformity(simulationOutput)

# Dispersion test

testDispersion(simulationQutput) # tests under and overdispersion
testDispersion(simulationOutput, alternative = "less"”) # only underdispersion
testDispersion(simulationOutput, alternative = "less") # only underdispersion

# if model is refitted, a different test will be called
simulationOutput2 <- simulateResiduals(fittedModel = fittedModel, refit = TRUE, seed = 12)
testDispersion(simulationQutput2)

# often useful to test dispersion per group (e.g. binomial data, see vignette)
simulationOutput3 = recalculateResiduals(simulationOutput, group = testData$group)

testDispersion(simulationOQutput3)

# Outlier test (number of observations outside simulation envelope)
testOutliers(simulationOutput)

# testing zero inflation
testZeroInflation(simulationOutput)

# testing generic summaries

countOnes <- function(x) sum(x == 1) # testing for number of 1s
testGeneric(simulationOutput, summary = countOnes) # 1-inflation
testGeneric(simulationQOutput, summary = countOnes, alternative = "less") # 1-deficit

means <- function(x) mean(x) # testing if mean prediction fits
testGeneric(simulationQutput, summary = means)
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spread <- function(x) sd(x) # testing if mean sd fits
testGeneric(simulationOutput, summary = spread)

testZeroInflation Tests for zero-inflation

Description

This function compares the observed number of zeros with the zeros expected from simulations.

Usage
testZeroInflation(simulationOutput, ...)
Arguments
simulationOutput
an object of class DHARMa with simulated quantile residuals, either created
via simulateResiduals or by createDHARMa for simulations created outside
DHARMa
further arguments to testGeneric
Details

The plot shows the expected distribution of zeros against the observed values, the ratioObsSim
shows observed vs. simulated zeros. A value < 1 means that the observed data has less zeros than
expected, a value > 1 means that it has more zeros than expected (aka zero-inflation). Per default,
the function tests both sides.

Some notes about common problems / questions:

* Zero-inflation tests after fitting the model are crucial to see if you have zero-inflation. Just because
there are a lot of zeros doesn’t mean you have zero-inflation, see Warton, D. 1. (2005). Many zeros
does not mean zero inflation: comparing the goodness-of-fit of parametric models to multivariate
abundance data. Environmetrics 16(3), 275-289.

* That being said, zero-inflation tests are often not a reliable guide to decide wheter to add a zi term
or not. In general, model structures should be decided on ideally a priori, if that is not possible via
model selection techniques (AIC, BIC, WAIC, Bayes Factor). A zero-inflation test should only be
run after that decision, and to validate the decision that was taken.

Note

This function is a wrapper for testGeneric, where the summary argument is set to function(x)
sum(x == 0)
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Author(s)

Florian Hartig

See Also

testResiduals, testUniformity, testOutliers, testDispersion, testGeneric, testTemporalAutocorrelation,
testSpatialAutocorrelation, testQuantiles

Examples

testData = createData(sampleSize = 200, overdispersion = 0.5, randomEffectVariance = 0)
fittedModel <- glm(observedResponse ~ Environment1 , family = "poisson”, data = testData)
simulationOutput <- simulateResiduals(fittedModel = fittedModel)

# the plot function runs 4 tests
# i) KS test i) Dispersion test iii) Outlier test iv) quantile test
plot(simulationOutput, quantreg = TRUE)

# testResiduals tests distribution, dispersion and outliers
testResiduals(simulationOutput)

##HH#H### Individual tests #iHHH#HH

# KS test for correct distribution of residuals
testUniformity(simulationOutput)

# Dispersion test

testDispersion(simulationQutput) # tests under and overdispersion
testDispersion(simulationOutput, alternative = "less”) # only underdispersion
testDispersion(simulationOutput, alternative = "less") # only underdispersion

# if model is refitted, a different test will be called
simulationOutput2 <- simulateResiduals(fittedModel = fittedModel, refit = TRUE, seed = 12)
testDispersion(simulationQutput2)

# often useful to test dispersion per group (e.g. binomial data, see vignette)
simulationOutput3 = recalculateResiduals(simulationQutput, group = testData$group)

testDispersion(simulationOQutput3)

# Outlier test (number of observations outside simulation envelope)
testOutliers(simulationQutput)

# testing zero inflation
testZeroInflation(simulationOutput)

# testing generic summaries

countOnes <- function(x) sum(x == 1) # testing for number of 1s
testGeneric(simulationOutput, summary = countOnes) # 1-inflation
testGeneric(simulationQutput, summary = countOnes, alternative = "less") # 1-deficit

means <- function(x) mean(x) # testing if mean prediction fits
testGeneric(simulationQutput, summary = means)
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spread <- function(x) sd(x) # testing if mean sd fits
testGeneric(simulationOutput, summary = spread)

transformQuantiles Transform quantiles to pdf (deprecated)

Description

The purpose of this function was to transform the DHARMa quantile residuals (which have a uni-
form distribution) to a particular pdf. Since DHARMa 0.3.0, this functionality is integrated in the
residuals.DHARMa function. Please switch to using this function.

Usage

transformQuantiles(res, quantileFunction = gnorm, outlierValue = 7)

Arguments
res an object with simulated residuals created by simulateResiduals
quantileFunction

optional - a quantile function to transform the uniform 0/1 scaling of DHARMa
to another distribution

outlierValue if a quantile function with infinite support (such as dnorm) is used, residuals that
are 0/1 are mapped to -Inf / Inf. outlierValues allows to convert -Inf / Inf values
to an optional min / max value.
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