
Package ‘DEoptimR’
November 19, 2016

Version 1.0-8

Date 2016-11-19

Title Differential Evolution Optimization in Pure R

Maintainer Eduardo L. T. Conceicao <mail@eduardoconceicao.org>

Description Differential Evolution (DE) stochastic algorithms for global
optimization of problems with and without constraints.
The aim is to curate a collection of its state-of-the-art variants that
(1) do not sacrifice simplicity of design,
(2) are essentially tuning-free, and
(3) can be efficiently implemented directly in the R language.
Currently, it only provides an implementation of the 'jDE' algorithm by
Brest et al. (2006) <doi:10.1109/TEVC.2006.872133>.

Imports stats

Enhances robustbase

License GPL (>= 2)

ByteCompile yes

Author Eduardo L. T. Conceicao [aut, cre],
Martin Maechler [ctb]

Repository CRAN

Repository/R-Forge/Project robustbase

Repository/R-Forge/Revision 746

Repository/R-Forge/DateTimeStamp 2016-11-19 14:54:56

Date/Publication 2016-11-19 18:16:34

NeedsCompilation no

R topics documented:
JDEoptim . 2

Index 9

1

2 JDEoptim

JDEoptim Nonlinear Constrained and Unconstrained Optimization via Differen-
tial Evolution

Description

An bespoke implementation of the ‘jDE’ variant by Brest et al. (2006) doi: 10.1109/TEVC.2006.872133.

Usage

JDEoptim(lower, upper, fn,
constr = NULL, meq = 0, eps = 1e-05,
NP = 10*d, Fl = 0.1, Fu = 1,
tau_F = 0.1, tau_CR = 0.1, tau_pF = 0.1,
jitter_factor = 0.001,
tol = 1e-15, maxiter = 200*d, fnscale = 1,
compare_to = c("median", "max"),
add_to_init_pop = NULL,
trace = FALSE, triter = 1,
details = FALSE, ...)

Arguments

lower, upper numeric vectors of lower or upper bounds, respectively, for the parameters to be
optimized over. Must be finite (is.finite) as they bound the hyper rectangle
of the initial random population.

fn (nonlinear) objective function to be minimized. It takes as first argument the
vector of parameters over which minimization is to take place. It must return the
value of the function at that point.

constr an optional function for specifying the nonlinear constraints under which we
want to minimize fn. Nonlinear equalities should be given first and defined to
equal zero (hj(X) = 0), followed by nonlinear inequalities defined as lesser
than zero (gi(X) ≤ 0). This function takes the vector of parameters as its
first argument and returns a real vector with the length of the total number of
constraints. It defaults to NULL, meaning that bound-constrained minimization
is used.

meq an optional positive integer specifying that the first meq constraints are treated
as equality constraints, all the remaining as inequality constraints. Defaults to 0
(inequality constraints only).

eps maximal admissible constraint violation for equality constraints. An optional
real vector of small positive tolerance values with length meq used in the trans-
formation of equalities into inequalities of the form |hj(X)| − ε ≤ 0. A scalar
value is expanded to apply to all equality constraints. Default is 1e-5.

NP an optional positive integer giving the number of candidate solutions in the ran-
domly distributed initial population. Defaults to 10*length(lower).

http://doi.org/10.1109/TEVC.2006.872133

JDEoptim 3

Fl an optional scalar which represents the minimum value that the scaling factor F
could take. Default is 0.1, which is almost always satisfactory.

Fu an optional scalar which represents the maximum value that the scaling factor F
could take. Default is 1, which is almost always satisfactory.

tau_F an optional scalar which represents the probability that the scaling factor F is
updated. Defaults to 0.1, which is almost always satisfactory.

tau_CR an optional constant value which represents the probability that the crossover
probability CR is updated. Defaults to 0.1, which is almost always satisfactory.

tau_pF an optional scalar which represents the probability that the mutation probability
pF in the mutation strategy DE/rand/1/either-or is updated. Defaults to 0.1.

jitter_factor an optional tuning constant for jitter. If NULL only dither is used. Defaults to
0.001.

tol an optional positive scalar giving the tolerance for the stopping criterion. Default
is 1e-15.

maxiter an optional positive integer specifying the maximum number of iterations that
may be performed before the algorithm is halted. Defaults to 200*length(lower).

fnscale an optional positive scalar specifying the typical magnitude of fn. It is used only
in the stopping criterion. Defaults to 1. See ‘Details’.

compare_to an optional character string controlling which function should be applied to the
fn values of the candidate solutions in a generation to be compared with the
so-far best one when evaluating the stopping criterion. If “median” the median
function is used; else, if “max” the max function is used. It defaults to “median”.
See ‘Details’.

add_to_init_pop

an optional real vector of length length(lower) or matrix with length(lower)
rows specifying initial values of the parameters to be optimized which are ap-
pended to the randomly generated initial population. It defaults to NULL.

trace an optional logical value indicating if a trace of the iteration progress should be
printed. Default is FALSE.

triter an optional positive integer that controls the frequency of tracing when trace = TRUE.
Default is triter = 1, which means that iteration : < value of stopping test >
(value of best solution) best solution { index of violated constraints }
is printed at every iteration.

details an optional logical value. If TRUE the output will contain the parameters in the
final population and their respective fn values. Defaults to FALSE.

... optional additional arguments passed to fn() and constr() if that is not NULL.

Details

Overview: The setting of the control parameters of standard Differential Evolution (DE) is crucial
for the algorithm’s performance. Unfortunately, when the generally recommended values for
these parameters (see, e.g., Storn and Price, 1997) are unsuitable for use, their determination
is often difficult and time consuming. The jDE algorithm proposed in Brest et al. (2006)
employs a simple self-adaptive scheme to perform the automatic setting of control parameters
scale factor F and crossover rate CR.

4 JDEoptim

This implementation differs from the original description, most notably in the use of the
DE/rand/1/either-or mutation strategy (Price et al., 2005), combination of jitter with dither
(Storn 2008), and for immediately replacing each worse parent in the current population by
its newly generated better or equal offspring (Babu and Angira 2006) instead of updating the
current population with all the new solutions at the same time as in classical DE.

Constraint Handling: Constraint handling is done using the approach described in Zhang and
Rangaiah (2012), but with a different reduction updating scheme for the constraint relaxation
value (µ). Instead of doing it once for every generation or iteration, the reduction is triggered
for two cases when the constraints only contain inequalities. Firstly, every time a feasible
solution is selected for replacement in the next generation by a new feasible trial candidate so-
lution with a better objective function value. Secondly, whenever a current infeasible solution
gets replaced by a feasible one. If the constraints include equalities, then the reduction is not
triggered in this last case. This constitutes an original feature of the implementation.
The performance of the constraint handling technique is severely impaired by a small feasi-
ble region. Therefore, equality constraints are particularly difficult to handle due to the tiny
feasible region they define. So, instead of explicitly including all equality constraints in the
formulation of the optimization problem, it might prove advantageous to eliminate some of
them. This is done by expressing one variable xk in terms of the remaining others for an
equality constraint hj(X) = 0 where X = [x1, . . . , xk, . . . , xd] is the vector of solutions,
thereby obtaining a relationship as xk = Rk,j([x1, . . . , xk−1, xk+1, . . . , xd]). But this means
that both the variable xk and the equality constraint hj(X) = 0 can be removed altogether
from the original optimization formulation, since the value of xk can be calculated during the
search process by the relationship Rk,j . Notice, however, that two additional inequalities

lk ≤ Rk,j([x1, . . . , xk−1, xk+1, . . . , xd]) ≤ uk,

where the values lk and uk are the lower and upper bounds of xk, respectively, must be pro-
vided in order to obtain an equivalent formulation of the problem. For guidance and examples
on applying this approach see Wu et al. (2015).

Discrete and Integer Variables: Any DE variant is easily extended to deal with mixed integer non-
linear programming problems using a small variation of the technique presented by Lampinen
and Zelinka (1999). Integer values are obtained by means of the floor() function only for
the evaluation of the objective function. This is because DE itself works with continuous
variables. Additionally, each upper bound of the integer variables should be added by 1.
Notice that the final solution needs to be converted with floor() to obtain its integer elements.

Stopping Criterion: The algorithm is stopped if

compare_to{[fn(X1), . . . , fn(Xnpop)]} − fn(Xbest)

fnscale
≤ tol

where the “best” individual Xbest is the feasible solution with the lowest objective func-
tion value in the population and the total number of elements in the population, npop, is
NP+NCOL(add_to_init_pop). This is a variant of the Diff criterion studied by Zielinski and
Laur (2008), which was found to yield the best results.

Value

A list with the following components:

par The best set of parameters found.

JDEoptim 5

value The value of fn corresponding to par.

iter Number of iterations taken by the algorithm.

convergence An integer code. 0 indicates successful completion. 1 indicates that the iteration
limit maxiter has been reached.

and if details = TRUE:

poppar Matrix of dimension (length(lower), npop), with columns corresponding to
the parameter vectors remaining in the population.

popcost The values of fn associated with poppar, vector of length npop.

Note

It is possible to perform a warm start, i.e., starting from the previous run and resume optimization,
using NP = 0 and the component poppar for the add_to_init_pop argument.

Author(s)

Eduardo L. T. Conceicao <mail@eduardoconceicao.org>

References

Babu, B. V. and Angira, R. (2006) Modified differential evolution (MDE) for optimization of non-
linear chemical processes. Computers and Chemical Engineering 30, 989–1002.

Brest, J., Greiner, S., Boskovic, B., Mernik, M. and Zumer, V. (2006) Self-adapting control pa-
rameters in differential evolution: a comparative study on numerical benchmark problems. IEEE
Transactions on Evolutionary Computation 10, 646–657.

Lampinen, J. and Zelinka, I. (1999). Mechanical engineering design optimization by differential
evolution; in Corne, D., Dorigo, M. and Glover, F., Eds., New Ideas in Optimization. McGraw-Hill,
pp. 127–146.

Price, K. V., Storn, R. M. and Lampinen, J. A. (2005) Differential Evolution: A practical approach
to global optimization. Springer, Berlin, pp. 117–118.

Storn, R. (2008) Differential evolution research — trends and open questions; in Chakraborty, U.
K., Ed., Advances in differential evolution. SCI 143, Springer-Verlag, Berlin, pp. 11–12.

Storn, R. and Price, K. (1997) Differential evolution - a simple and efficient heuristic for global
optimization over continuous spaces. Journal of Global Optimization 11, 341–359.

Wu, G., Pedrycz, W., Suganthan, P. N. and Mallipeddi, R. (2015) A variable reduction strategy for
evolutionary algorithms handling equality constraints. Applied Soft Computing 37, 774–786.

Zhang, H. and Rangaiah, G. P. (2012) An efficient constraint handling method with integrated differ-
ential evolution for numerical and engineering optimization. Computers and Chemical Engineering
37, 74–88.

Zielinski, K. and Laur, R. (2008) Stopping criteria for differential evolution in constrained single-
objective optimization; in Chakraborty, U. K., Ed., Advances in differential evolution. SCI 143,
Springer-Verlag, Berlin, pp. 111–138.

6 JDEoptim

See Also

Function DEoptim() in the DEoptim package has many more options than JDEoptim(), but does
not allow constraints in the same flexible manner.

Examples

NOTE: Examples were excluded from testing
to reduce package check time.

Use a preset seed so test values are reproducible.
set.seed(1234)

Bound-constrained optimization

Griewank function
#
-600 <= xi <= 600, i = {1, 2, ..., n}
The function has a global minimum located at
x* = (0, 0, ..., 0) with f(x*) = 0. Number of local minima
for arbitrary n is unknown, but in the two dimensional case
there are some 500 local minima.
#
Source:
Ali, M. Montaz, Khompatraporn, Charoenchai, and
Zabinsky, Zelda B. (2005).
A numerical evaluation of several stochastic algorithms
on selected continuous global optimization test problems.
Journal of Global Optimization 31, 635-672.
griewank <- function(x) {

1 + crossprod(x)/4000 - prod(cos(x/sqrt(seq_along(x))))
}

JDEoptim(rep(-600, 10), rep(600, 10), griewank,
tol = 1e-7, trace = TRUE, triter = 50)

Nonlinear constrained optimization

0 <= x1 <= 34, 0 <= x2 <= 17, 100 <= x3 <= 300
The global optimum is
(x1, x2, x3; f) = (0, 16.666667, 100; 189.311627).
#
Source:
Westerberg, Arthur W., and Shah, Jigar V. (1978).
Assuring a global optimum by the use of an upper bound
on the lower (dual) bound.
Computers and Chemical Engineering 2, 83-92.
fcn <-

list(obj = function(x) {
35*x[1]^0.6 + 35*x[2]^0.6

},
eq = 2,

JDEoptim 7

con = function(x) {
x1 <- x[1]; x3 <- x[3]
c(600*x1 - 50*x3 - x1*x3 + 5000,

600*x[2] + 50*x3 - 15000)
})

JDEoptim(c(0, 0, 100), c(34, 17, 300),
fn = fcn$obj, constr = fcn$con, meq = fcn$eq,
tol = 1e-7, trace = TRUE, triter = 50)

Designing a pressure vessel
Case A: all variables are treated as continuous
#
1.1 <= x1 <= 12.5*, 0.6 <= x2 <= 12.5*,
0.0 <= x3 <= 240.0*, 0.0 <= x4 <= 240.0
Roughly guessed*
The global optimum is (x1, x2, x3, x4; f) =
(1.100000, 0.600000, 56.99482, 51.00125; 7019.031).
#
Source:
Lampinen, Jouni, and Zelinka, Ivan (1999).
Mechanical engineering design optimization
by differential evolution.
In: David Corne, Marco Dorigo and Fred Glover (Editors),
New Ideas in Optimization, McGraw-Hill, pp 127-146
pressure_vessel_A <-

list(obj = function(x) {
x1 <- x[1]; x2 <- x[2]; x3 <- x[3]; x4 <- x[4]
0.6224*x1*x3*x4 + 1.7781*x2*x3^2 +
3.1611*x1^2*x4 + 19.84*x1^2*x3

},
con = function(x) {

x1 <- x[1]; x2 <- x[2]; x3 <- x[3]; x4 <- x[4]
c(0.0193*x3 - x1,

0.00954*x3 - x2,
750.0*1728.0 - pi*x3^2*x4 - 4/3*pi*x3^3)

})

JDEoptim(c(1.1, 0.6, 0.0, 0.0),
c(12.5, 12.5, 240.0, 240.0),
fn = pressure_vessel_A$obj,
constr = pressure_vessel_A$con,
tol = 1e-7, trace = TRUE, triter = 50)

Mixed integer nonlinear programming

Designing a pressure vessel
Case B: solved according to the original problem statements
steel plate available in thicknesses multiple
of 0.0625 inch
#
wall thickness of the
shell 1.1 [18*0.0625] <= x1 <= 12.5 [200*0.0625]

8 JDEoptim

heads 0.6 [10*0.0625] <= x2 <= 12.5 [200*0.0625]
0.0 <= x3 <= 240.0, 0.0 <= x4 <= 240.0
The global optimum is (x1, x2, x3, x4; f) =
(1.125 [18*0.0625], 0.625 [10*0.0625],
58.29016, 43.69266; 7197.729).
pressure_vessel_B <-

list(obj = function(x) {
x1 <- floor(x[1])*0.0625
x2 <- floor(x[2])*0.0625
x3 <- x[3]; x4 <- x[4]
0.6224*x1*x3*x4 + 1.7781*x2*x3^2 +
3.1611*x1^2*x4 + 19.84*x1^2*x3

},
con = function(x) {

x1 <- floor(x[1])*0.0625
x2 <- floor(x[2])*0.0625
x3 <- x[3]; x4 <- x[4]
c(0.0193*x3 - x1,

0.00954*x3 - x2,
750.0*1728.0 - pi*x3^2*x4 - 4/3*pi*x3^3)

})

res <- JDEoptim(c(18, 10, 0.0, 0.0),
c(200+1, 200+1, 240.0, 240.0),
fn = pressure_vessel_B$obj,
constr = pressure_vessel_B$con,
tol = 1e-7, trace = TRUE, triter = 50)

res
Now convert to integer x1 and x2
c(floor(res$par[1:2]), res$par[3:4])

Index

DEoptim, 6

function, 2

is.finite, 2

JDEoptim, 2

9

	JDEoptim
	Index

