
Package ‘DDIwR’
September 15, 2019

Version 0.4

Date 2019-09-15

Title DDI with R

Depends R (>= 3.3.0)

Imports admisc (>= 0.4), haven, readr, tibble, xml2

Description
Useful functions for various DDI (Data Documentation Initiative) related inputs and outputs.

License GPL (>= 2)

NeedsCompilation no

Author Adrian Dusa [aut, cre]

Maintainer Adrian Dusa <dusa.adrian@unibuc.ro>

Repository CRAN

Date/Publication 2019-09-15 21:10:02 UTC

R topics documented:

DDIwR-package . 1
convert . 2
exportDDI . 4
getMetadata . 7
setupfile . 8

Index 12

DDIwR-package Useful functions for various DDI (Data Documentation Initiative) re-
lated outputs.

1

2 convert

Description

This package provides various functions to read DDI based metadata documentation, and write
dedicated setup files for R, SPSS, Stata and SAS to read an associated .csv file containing the raw
data, apply labels for variables and values and also deal with the treatment of missing values.

It can also generate a DDI metadata file out of an R information object, which can be used to export
directly to the standard statistical packages files (such as SPSS, Stata and SAS), using the versatile
package haven. For R, the default object to store data and matadata is a tibble.

The research leading to the initial functions in this package has received funding from the Euro-
pean Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 262608
(DwB - Data without Boundaries)

Details

Package: DDIwR
Type: Package
Version: 0.4
Date: 2019-09-15
License: GPL (>= 2)

Author(s)

Authors:
Adrian Dusa
Department of Sociology
University of Bucharest
<dusa.adrian@unibuc.ro>

Maintainer:
Adrian Dusa

convert Convert a dataset from one statistical software to another

Description

This function converts (or transfers) between R, Stata, SPSS, SAS, and DDI XML files. Unlike the
regular import / export functions from packages haven or rio, this function uses the DDI standard
as an exchange platform and also attempts a conversion of the missing values.

Usage

convert(from, to, embed = FALSE, binpath = "", ...)

convert 3

Arguments

from A path to a file, or a tibble object

to Character, the name of a software package or a path to a specific file

embed Boolean, embed the data when generating a DDI XML file

binpath Path to the binary executable file, to run a recoding script

... Additional parameters passed to exporting functions, see the Details section

Details

When the argument to specifies a certain statistical package ("R", "Stata", "SPSS" or "SAS"), the
name of the destination file will be the same as the name of the input file from the argument to,
with an automatically added software specific extension.

Alternatively, the argument to can be specified as a path to a specific file, in which case the software
package is determined from its file extension. The following extentions are currently recognized:
.xml for DDI, .rds for R, .dta for Stata, .sav for SPSS and .sas7bdat for SAS.

The argument binpath is used only for Stata (if installed on the local machine), to coerce regular
missing values to their specific missing values using letters from a to z, given that package haven
does not convert Stata missing values by default. Specifying the path to the binary executable file is
also a Boolean signal to attempt converting the missing values via an automatic script that recodes
all unique missing values to the same letters, the lowest numerical value being assigned to the letter
a.

Additional parameters can be specified via the three dots argument ..., that are passed to the
respective functions from package haven. For instance the function write_dta() has an additional
argument called version (from 8 to a maximum and default value of 14) when writing a Stata file.

Note that this function creates a target file in the same directory as the source file, which is different
from importing the source file into R. To import a file, users should refer to the specific functions
from package haven, such as read_sav() or read_dta() etc., and be aware the result object is a
tibble.

The current version reads and creates DDI Codebook version 2.5, with future versions to extend the
functionality for DDI Lifecycle versions 3.x and link to the future package DDI4R for the UML
model based version 4. It extends the standard DDI Codebook by offering the possibility to embed
a CSV version of the raw data into the XML file containing the Codebook, into a notes child of the
fileDscr component. This type of Codebook is unique to this package and automatically detected
when converting to another statistical software.

Future versions will attempt to extend converting the missing values to SAS types, but otherwise
users can also use a setup file produced by function setupfile() and run the commands manually.

When importing a file, the R object of choice is a tibble because is the only type of object in R
that allows specifying multiple (coded) missing values. It also plays nicely with the SPSS types of
variables, which are the most commonly used in the social sciences.

Author(s)

Adrian Dusa

4 exportDDI

References

DDI - Data Documentation Initiative, see https://www.ddialliance.org/

See Also

setupfile, getMetadata, tibble, labelled, labelled_spss

Examples

Not run:
Assuming an SPSS file called test.sav is located in the working directory
the following command will extract the metadata in a DDI Codebook and
produce a test.xml file in the same directory
convert("test.sav", to = "DDI")

It is possible to include the data in the XML file, using:
convert("test.sav", to = "DDI", embed = TRUE)

To produce a Stata file:
convert("test.sav", to = "Stata")

Since Stata has different types of missing values than SPSS, it is
possible to transform these missing values via an automatically run script
using the argument "binpath", assuming that Stata is installed

The paths to the binaries differ in various operating systems. A possible
path for Windows, for Stata version 12 could be:
binpath <- "C:/Progra~1/Stata12/Stata.exe"

For MacOS, the path could be:
binpath <- "/Applications/Stata/Stata.app/Contents/MacOS/Stata"

The final command, which also converts to Stata types of missing values
convert("test.sav", to = "Stata", binpath = binpath)

End(Not run)

exportDDI Export to a DDI metadata file

Description

This function creates a DDI version 2.5, XML file structure.

Usage

exportDDI(codebook, file = "", embed = TRUE, OS = "", indent = 4)

https://www.ddialliance.org/

exportDDI 5

Arguments

codebook A list object containing the metadata, or a path to a directory where these objects
are located, for batch processing

file either a character string naming a file or a connection open for writing. "" indi-
cates output to the console.

embed Embed the CSV datafile in the XML file, if present.

OS The target operating system, for the eol - end of line character(s)

indent Indent width, in number of spaces

Details

The information object is essentially a list having two main list components:

- fileDscr, if the data is provided in a subcomponent named datafile

- dataDscr, having as many components as the number of variables in the (meta)data. For each
variable, there should a mandatory subcomponent called label (that contains the variable’s label)
and, if the variable is of a categorical type, another subcomponent called values.

Additional informations about the variables can be specified as further subcomponents, combining
DDI specific data but also other information that might not be covered by DDI:

- measurement is the equivalent of the specific DDI attribute nature of the var element, and it
accepts these values: "nominal", "ordinal", "interval", "ratio", "percent", and "other".

- type is useful for multiple reasons. A first one, if the variable is numerical, is to differentiate
between discrete and contin values of the attribute intrvl from the same DDI element var. An-
other reason is to help identifying pure string variables (containing text), when the subcomponent
type is equal to "char". It is also used for the subelement varFormat of the element var. Finally,
another reason is to differentiate between pure categorical ("cat") and pure numerical ("num")
variables, as well as mixed ones, among which "numcat" referring to a numerical variable with
very few values (such as the number of children), for which it is possible to also produce a table of
frequencies along the numerical summaries. There are also categorical variables that can be inter-
preted as numeric ("catnum"), such as a Likert type response scale with 7 values, where numerical
summaries are also routinely performed along with the usual table of frequencies.

- missing is an important subcomponent, indicating which of the values in the variable are going
to be treated as missing values, and it is going to be exported as the attribute missing of the DDI
subelement catgry.

There are many more possible attributes and DDI elements to be added in the information object,
future versions of this function will likely expand.

For the moment, only DDI codebook version 2.5 is exported, but DDI Lifecycle is also possible.

The argument OS can be either:
"windows" (default), or "Windows", "Win", "win",
"MacOS", "Darwin", "Apple", "Mac", "mac",
"Linux", "linux".

The end of line separator changes only when the target OS is different from the running OS.

The argument indent controls how many spaces will be used in the XML file, to indent the different
subelements.

6 exportDDI

Value

An XML file containing a DDI version 2.5 metadata.

See Also

http://www.ddialliance.org/Specification/DDI-Codebook/2.5/XMLSchema/field_level_
documentation.html

Examples

codeBook <- list(dataDscr = list(
ID = list(

label = "Questionnaire ID",
type = "num",
measurement = "interval"

),
V1 = list(

label = "Label for the first variable",
values = c(

"No" = 0,
"Yes" = 1,
"Not applicable" = -7,
"Not answered" = -9),

missing = c(-9, -7),
type = "cat",
measurement = "nominal"

),
V2 = list(

label = "Label for the second variable",
values = c(

"Very little" = 1,
"Little" = 2,
"So, so" = 3,
"Much" = 4,
"Very much" = 5,
"Don't know" = -8),

missing = c(-8),
type = "cat",
measurement = "ordinal"

),
V3 = list(

label = "Label for the third variable",
values = c(

"First answer" = "A",
"Second answer" = "B",
"Don't know" = -8),

missing = c(-8),
type = "cat",
measurement = "nominal"

),
V4 = list(

label = "Number of children",

http://www.ddialliance.org/Specification/DDI-Codebook/2.5/XMLSchema/field_level_documentation.html
http://www.ddialliance.org/Specification/DDI-Codebook/2.5/XMLSchema/field_level_documentation.html

getMetadata 7

values = c(
"Don't know" = -8,
"Not answered" = -9),

missing = c(-9, -8),
type = "numcat",
measurement = "ratio"

),
V5 = list(

label = "Political party reference",
type = "char",

txt = "When the respondent indicated his political party reference, his/her open response
was recoded on a scale of 1-99 with parties with a left-wing orientation coded on the low end
of the scale and parties with a right-wing orientation coded on the high end of the scale.
Categories 90-99 were reserved miscellaneous responses."
)))

Not run:
exportDDI(codeBook, file = "codebook.xml")

End(Not run)

getMetadata Extract metadata information

Description

Extract a list containing the variable labels, value labels and any available information about missing
values.

Usage

getMetadata(x, save = FALSE, OS = "Windows", ...)

Arguments

x A path to a file, or a tibble object
save Boolean, save an .R file in the same directory
OS The target operating system, for the eol - end of line separator, if saving the file
... Additional arguments for this function (internal uses only)

Details

This function reads an XML file containing a DDI codebook version 2.5, or an SPSS file and returns
a list containing the variable labels, value labels, plus some other useful information.

It is also possible to extract a limited information from a Stata file, but especially the missing values
are not yet imported by package haven.

It additionally attempts to automatically detect a type for each variable:

8 setupfile

cat: categorical
num: numerical

numcat: numerical variable with very few values (ex. number of children)
for which a table of frequencies is possible in addition to frequencies

By default, this function extracts the metadata into an R list object, but when the argument save is
activated, the argument OS (case insensitive) can be either:
"Windows" (default), or "Win",
"MacOS", "Darwin", "Apple", "Mac",
"Linux".

The end of line separator changes only when the target OS is different from the running OS.

For the moment, only DDI version 2.5 (Codebook) is supported, but DDI version 3.2 (Lifecycle) is
planned to be implemented.

Value

A list containing all variables, their corresponding variable labels and value labels, and (if applica-
ble) missing values if imported and found.

Author(s)

Adrian Dusa

setupfile Create setup files for SPSS, Stata, SAS and R

Description

This function creates a setup file, based on a list of variable and value labels.

Usage

setupfile(codeBook, file = "", type = "all", csv = "", OS = "", ...)

Arguments

codeBook A list object containing the metadata, or a path to a directory where these objects
are located, for batch processing

file Character, the (path to the) setup file to be created

type The type of setup file, can be: "SPSS", "Stata", "SAS", "R", or "all" (default)

csv The original dataset, used to create the setup file commands, or a path to the
directory where the .csv files are located, for batch processing

OS The target operating system, for the eol - end of line character(s)

... Other arguments, see Details below

setupfile 9

Details

When the a path to a metadata directory is specified for the argument codebook, then next argument
file is silently ignored and all created setup files are saved in a directory called "Setup Files" that
(if not already found) is created in the working directory.

The argument file expects the name of the final setup file being saved on the disk. If not specified,
the name of the object provided for the codebook argument will be used as a filename.

If file is specified, the argument type is automatically determined from the file’s extension, oth-
erwise when type = "all", the function produces one setup file for each supported type.

Missing values are expected to be supplied with the information object obj, otherwise the argument
missing expects either:
- a vector of missing values (e.g. -1, -2, -3, if such values refer to missings throughout the entire
dataset), or
- a vector of labels that should be interpreted as missings

If batch processing multiple files, the function will inspect all files in the provided directory, and
retain only those with the extension .R or .r or DDI versions with the extension .xml or .XML (it
will subsequently generate an error if the .R files do not contain an object list, or if the .xml files do
not contain a DDI structured metadata file).

If the metadata directory contains a subdirectory called "data" or "Data", it will match the name
of the metadata file with the name of the .csv file (their names have to be *exactly* the same,
irrespective of their extension).

The csv argument can provide a data frame object produced by reading the .csv file, or a path
to the directory where the .csv files are located. If the user doesn’t provide something for this
argument, the function will check the existence of a subdirectory called data in the directory where
the metadata files are located.

In batch mode, the code starts with the argument delim = ",", but if the .csv file is delimited
differently it will also try hard to find other delimiters that will match the variable names in the
metadata file. At the initial version 0.1-0, the automatically detected delimiters include ";" and
"\t".

The argument OS (case insensitive) can be either:
"Windows" (default), or "Win",
"MacOS", "Darwin", "Apple", "Mac",
"Linux".

The end of line character(s) changes only when the target OS is different from the running OS.

Value

A setup file to complement the imported raw dataset.

Examples

codeBook <- list(dataDscr = list(
ID = list(

label = "Questionnaire ID",
type = "num",

10 setupfile

measurement = "interval"
),
V1 = list(

label = "Label for the first variable",
values = c(

"No" = 0,
"Yes" = 1,
"Not applicable" = -7,
"Not answered" = -9),

missing = c(-9, -7),
type = "cat",
measurement = "nominal"

),
V2 = list(

label = "Label for the second variable",
values = c(

"Very little" = 1,
"Little" = 2,
"So, so" = 3,
"Much" = 4,
"Very much" = 5,
"Don't know" = -8),

missing = c(-8),
type = "cat",
measurement = "ordinal"

),
V3 = list(

label = "Label for the third variable",
values = c(

"First answer" = "A",
"Second answer" = "B",
"Don't know" = -8),

missing = c(-8),
type = "cat",
measurement = "nominal"

),
V4 = list(

label = "Number of children",
values = c(

"Don't know" = -8,
"Not answered" = -9),

missing = c(-9, -8),
type = "numcat",
measurement = "ratio"

)))

Not run:
IMPORTANT:
make sure to set the working directory to a directory with read/write permissions
setwd("/path/to/read/write/directory")

path.to.csv <- file.path(system.file(package = "DDIwR"), "data", "test.csv.gz")

setupfile 11

setupfile(codeBook)

if the csv data file is available
setupfile(codeBook, csv="/path/to/csv/file.csv")

generating a specific type of setup file
setupfile(codeBook, file = "codeBook.do") # type = "Stata" is unnecessary

other types of possible utilizations, using paths to specific files
an XML file containing a DDI metadata object

setupfile("/path/to/the/metadata/file.xml", csv="/path/to/csv/file.csv")

or in batch mode, specifying entire directories
setupfile("/path/to/the/metadata/directory", csv="/path/to/csv/directory")

End(Not run)

Index

∗Topic functions
convert, 2
exportDDI, 4
getMetadata, 7
setupfile, 8

∗Topic package
DDIwR-package, 1

convert, 2

DDIwR (DDIwR-package), 1
DDIwR-package, 1

exportDDI, 4

getMetadata, 4, 7

labelled, 4
labelled_spss, 4

read_dta, 3
read_sav, 3

setupfile, 3, 4, 8

tibble, 4

write_dta, 3

12

	DDIwR-package
	convert
	exportDDI
	getMetadata
	setupfile
	Index

