Package 'DDD'

June 3, 2020

Type Package Title Diversity-Dependent Diversification Version 4.4 Date 2020-06-02 **Depends** R (>= 3.5.0) Imports deSolve, ape, phytools, subplex, Matrix, expm, SparseM Suggests testthat, testit Author Rampal S. Etienne & Bart Haegeman Maintainer Rampal S. Etienne <r.s.etienne@rug.nl> License GPL-3 **Encoding** UTF-8 Description Implements maximum likelihood and bootstrap methods based on the diversity-dependent birth-death process to test whether speciation or extinction are diversity-dependent, under various models including various types of key innovations. See Etienne et al. 2012, Proc. Roy. Soc. B 279: 1300-1309, <DOI:10.1098/rspb.2011.1439>, Etienne & Haegeman 2012, Am. Nat. 180: E75-E89, <DOI:10.1086/667574> and Etienne et al. 2016. Meth. Ecol. Evol. 7: 1092-1099, <DOI:10.1111/2041-210X.12565>. Also contains functions to simulate the diversity-dependent process. RoxygenNote 7.1.0 NeedsCompilation yes **Repository** CRAN

Date/Publication 2020-06-02 23:20:23 UTC

R topics documented:

bd_loglik 2

bd_ML	4
brts2phylo	7
conv	7
dd_KI_loglik	8
dd_KI_ML	10
dd_KI_sim	14
dd_loglik	16
dd_LR	18
dd_ML	21
dd_MS_loglik	24
dd_MS_ML	26
dd_MS_sim	30
dd_multiple_KI_loglik	31
dd_sim	33
dd_SR_loglik	35
dd_SR_ML	37
dd_SR_sim	40
L2brts	42
L2phylo	43
optimizer	44
phylo2L	45
rng_respecting_sample	46
roundn	47
sample2	48
simplex	49
td_sim	50
transform_pars	51
untransform_pars	51
	52

Index

bd_loglik

Loglikelihood for diversity-independent diversification model

Description

This function computes loglikelihood of a diversity-independent diversification model for a given set of branching times and parameter values.

Usage

bd_loglik(pars1, pars2, brts, missnumspec, methode = "lsoda")

bd_loglik

Arguments

pars1	Vector of parameters:
	<pre>pars1[1] corresponds to lambda0 (speciation rate) pars1[2] corresponds to mu0 (extinction rate) pars1[3] corresponds to lambda1 (decline parameter in speciation rate) or K in diversity-dependence-like models pars1[4] corresponds to mu1 (decline parameter in extinction rate)</pre>
pars2	Vector of model settings:
	<pre>pars2[1] sets the model of time-dependence: - pars2[1] == 0 no time dependence - pars2[1] == 1 speciation and/or extinction rate is exponentially declining with time - pars2[1] == 2 stepwise decline in speciation rate as in diversity-dependence without extinction - pars2[1] == 3 decline in speciation rate following deterministic logistic equa- tion for ddmodel = 1 - pars2[1] == 4 decline in speciation rate such that the expected number of species matches with that of ddmodel = 1 with the same mu</pre>
	<pre>pars2[2] sets the conditioning: - pars[2] == 0 conditioning on stem or crown age - pars[2] == 1 conditioning on stem or crown age and non-extinction of the phylogeny - pars[2] == 2 conditioning on stem or crown age and on the total number of extant taxa (including missing species) - pars[2] == 3 conditioning on the total number of extant taxa (including missing species)</pre>
	 pars[2] == 0 conditioning on stem or crown age pars[2] == 1 conditioning on stem or crown age and non-extinction of the phylogeny pars[2] == 2 conditioning on stem or crown age and on the total number of extant taxa (including missing species) pars[2] == 3 conditioning on the total number of extant taxa (including missing species)
	 pars[2] == 0 conditioning on stem or crown age pars[2] == 1 conditioning on stem or crown age and non-extinction of the phylogeny pars[2] == 2 conditioning on stem or crown age and on the total number of extant taxa (including missing species) pars[2] == 3 conditioning on the total number of extant taxa (including missing species) pars[2] == 3 conditioning on the total number of extant taxa (including missing species) pars[2] == 3 conditioning on the total number of extant taxa (including missing species) pars[2] == 3 conditioning on the total number of extant taxa (including missing species)
brts missnumspec methode	 pars[2] == 0 conditioning on stem or crown age pars[2] == 1 conditioning on stem or crown age and non-extinction of the phylogeny pars[2] == 2 conditioning on stem or crown age and on the total number of extant taxa (including missing species) pars[2] == 3 conditioning on the total number of extant taxa (including missing species) pars[3] sets whether the likelihood is for the branching times (0) or the phylogeny (1) pars2[4] sets whether the parameters and likelihood should be shown on screen

Value

The loglikelihood

Author(s)

Rampal S. Etienne, Bart Haegeman & Cesar Martinez

References

```
Etienne, R.S. et al. 2012, Proc. Roy. Soc. B 279: 1300-1309, doi: 10.1098/rspb.2011.1439
Etienne, R.S. & B. Haegeman 2012. Am. Nat. 180: E75-E89, doi: 10.1086/667574
```

See Also

bd_ML

Examples

```
bd_loglik(pars1 = c(0.5,0.1), pars2 = c(0,1,1,0,2), brts = 1:10,
missnumspec = 0)
```

bd	_ML
----	-----

Maximization of the loglikelihood under the diversity-independent, possibly time-dependent diversification model

Description

This function computes the maximum likelihood estimates of the parameters of a diversity-independent diversification model for a given set of phylogenetic branching times. It also outputs the corresponding loglikelihood that can be used in model comparisons.

Usage

```
bd_ML(
  brts,
 initparsopt = c(0.1, 0.05 * (tdmodel <= 1) + 10 * (length(brts) + missnumspec) *
    (tdmodel > 1)),
  idparsopt = c(1, 2 + (tdmodel > 1)),
  idparsfix = (1:4)[-idparsopt],
  parsfix = rep(0, 4)[idparsfix],
 missnumspec = 0,
  tdmodel = 0,
  cond = 1,
  btorph = 1,
  soc = 2,
  tol = c(0.001, 1e-04, 1e-06),
  maxiter = 1000 * round((1.25)^length(idparsopt)),
  changeloglikifnoconv = FALSE,
  optimmethod = "subplex",
  num_cycles = 1,
 methode = "lsoda",
  verbose = FALSE
)
```

bd_ML

brts	A set of branching times of a phylogeny, all positive
initparsopt	The initial values of the parameters that must be optimized
idparsopt	The ids of the parameters that must be optimized, e.g. 1:3 for intrinsic speciation rate, extinction rate and carrying capacity. The ids are defined as follows: id == 1 corresponds to lambda0 (speciation rate) id == 2 corresponds to mu0 (extinction rate) id == 3 corresponds to lamda1 (parameter controlling decline in speciation rate with time) id == 4 corresponds to mu1 (parameter controlling decline in extinction rate
	with time)
idparsfix	The ids of the parameters that should not be optimized, e.g. $c(1,3)$ if lambda0 and lambda1 should not be optimized, but only mu0 and mu1. In that case idparsopt must be $c(2,4)$. The default is to fix all parameters not specified in idparsopt.
parsfix	The values of the parameters that should not be optimized
missnumspec	The number of species that are in the clade but missing in the phylogeny
tdmodel	Sets the model of time-dependence: tdmodel == 0 : constant speciation and extinction rates tdmodel == 1 : speciation and/or extinction rate is exponentially declining with time
	tdmodel == 2 : stepwise decline in speciation rate as in diversity-dependence without extinction tdmodel == 3 : decline in speciation rate following deterministic logistic equa-
	tion for ddmodel = 1 tdmodel == 4 : decline in speciation rate such that the expected number of species matches with that of ddmodel = 1 with the same mu
cond	Conditioning: cond == 0 : conditioning on stem or crown age cond == 1 : conditioning on stem or crown age and non-extinction of the phy- logeny cond == 2 : conditioning on stem or crown age and on the total number of extant tens (including mission enseign)
	taxa (including missing species) cond == 3 : conditioning on the total number of extant taxa (including missing species)
btorph	Sets whether the likelihood is for the branching times (0) or the phylogeny (1)
SOC	Sets whether stem or crown age should be used (1 or 2)
tol	Sets the tolerances in the optimization. Consists of: reltolx = relative tolerance of parameter values in optimization reltolf = relative tolerance of function value in optimization abstolx = absolute tolerance of parameter values in optimization
maxiter	Sets the maximum number of iterations in the optimization
changeloglikif	noconv if TRUE the loglik will be set to -Inf if ML does not converge
	in the 2 are regime will be set to this in will does not converge

optimmethod	Method used in optimization of the likelihood. Current default is 'subplex'. Alternative is 'simplex' (default of previous versions)
num_cycles	the number of cycles of opimization. If set at Inf, it will do as many cycles as needed to meet the tolerance set for the target function.
methode	The method used to solve the master equation under tdmodel = 4, default is 'lsoda'.
verbose	Show the parameters and loglikelihood for every call to the loglik function

Details

The output is a dataframe containing estimated parameters and maximum loglikelihood. The computed loglikelihood contains the factor q! m! /(q + m)! where q is the number of species in the phylogeny and m is the number of missing species, as explained in the supplementary material to Etienne et al. 2012.

Value

A dataframe with the following elements:

lambda0	gives the maximum likelihood estimate of lambda0
mu0	gives the maximum likelihood estimate of mu0
lambda1	gives the maximum likelihood estimate of lambda1
mu1	gives the maximum likelihood estimate of mu1
loglik	gives the maximum loglikelihood
df	gives the number of estimated parameters, i.e. degrees of feedom
conv	gives a message on convergence of optimization; $conv = 0$ means convergence

Author(s)

Rampal S. Etienne & Bart Haegeman

References

- Etienne, R.S. et al. 2012, Proc. Roy. Soc. B 279: 1300-1309, doi: 10.1098/rspb.2011.1439

- Etienne, R.S. & B. Haegeman 2012. Am. Nat. 180: E75-E89, doi: 10.1086/667574

See Also

bd_loglik

Examples

```
cat("Estimating parameters for a set of branching times brts with the default settings:")
brts = 1:20
bd_ML(brts = brts, cond = 1)
```

Function to convert a set of branching times into a phylogeny with random topology This code is taken from the package TESS by Sebastian Hoehna, where the function is called tess.create.phylo

Description

brts2phylo

Converting a set of branching times to a phylogeny

Usage

brts2phylo(times, root = FALSE, tip.label = NULL)

Arguments

times	Set of branching times
root	When root is FALSE, the largest branching time will be assumed to be the crown age. When root is TRUE, it will be the stem age.
tip.label	Tip labels. If set to NULL, the labels will be t1, t2, etc.

Value

phy	A phylogeny of the phylo type
-----	-------------------------------

Author(s)

Rampal S. Etienne

References

- Etienne, R.S. et al. 2012, Proc. Roy. Soc. B 279: 1300-1309, doi: 10.1098/rspb.2011.1439

- Etienne, R.S. & B. Haegeman 2012. Am. Nat. 180: E75-E89, doi: 10.1086/667574

Function to do convolution of two vectors

Description

Convolution of two vectors

Usage

conv(x, y)

Arguments

х	first vector
У	second vector

Value

vector that is the convolution of x and y

Author(s)

Rampal S. Etienne

References

Etienne, R.S. et al. 2012, Proc. Roy. Soc. B 279: 1300-1309, doi: 10.1098/rspb.2011.1439
Etienne, R.S. & B. Haegeman 2012. Am. Nat. 180: E75-E89, doi: 10.1086/667574

Examples

conv(1:10,1:10)

dd_KI_loglik	Loglikelihood for diversity-dependent diversification models with de-
	coupling of a subclade from a main clade at time $t = t_d$

Description

This function computes loglikelihood of a diversity-dependent diversification model for a given set of branching times and parameter values where the diversity-dependent dynamics of a subclade decouple from the dynamics of the main clade at time t_d, potentially accompanied by a shift in parameters.

Usage

```
dd_KI_loglik(pars1, pars2, brtsM, brtsS, missnumspec, methode = "lsoda")
```

Arguments

```
pars1
```

Vector of parameters:

pars1[1] corresponds to lambda_M (speciation rate) of the main clade pars1[2] corresponds to mu_M (extinction rate) of the main clade pars1[3] corresponds to K_M (clade-level carrying capacity) of the main clade pars1[4] corresponds to lambda_S (speciation rate) of the subclade pars1[5] corresponds to mu_S (extinction rate) of the subclade pars1[6] corresponds to K_S (clade-level carrying capacity) of the subclade pars1[7] corresponds to t_d (the time of decoupling)

Vector of model settings:
pars2[1] sets the maximum number of species for which a probability must be computed. This must be larger than 1 + missnumspec + length(brts).
<pre>pars2[2] sets the model of diversity-dependence: - pars2[2] == 1 linear dependence in speciation rate with parameter K (= diver- sity where speciation = extinction)</pre>
- pars2[2] == 1.3 linear dependence in speciation rate with parameter K' (= diversity where speciation = 0)
- pars2[2] == 2 exponential dependence in speciation rate with parameter K (= diversity where speciation = extinction)
- pars2[2] == 2.1 variant of exponential dependence in speciation rate with offset at infinity
 pars2[2] == 2.2 1/n dependence in speciation rate pars2[2] == 2.3 exponential dependence in speciation rate with parameter x (= exponent)
- pars2[2] == 3 linear dependence in extinction rate
 - pars2[2] == 4 exponential dependence in extinction rate - pars2[2] == 4.1 variant of exponential dependence in extinction rate with
offset at infinity - pars2[2] == 4.2 1/n dependence in extinction rate
- par sz[z] 4.2 1/11 dependence in extinction fate
<pre>pars2[3] sets the conditioning: - pars2[3] == 0 no conditioning (or just crown age) - pars2[3] == 1 conditioning on non-extinction of the phylogeny - pars2[3] == 2 conditioning on number of species and crown age; not yet im-</pre>
<pre>plemented - pars2[3] == 3 conditioning on number of species only; not yet implemented - pars2[3] == 4 conditioning on survival of the subclade</pre>
- pars2[3] == 5 conditioning on survival of all subclades and of both crown lin- eages in the main clade. This assumes that subclades that have already shifted do not undergo another shift, i.e. shifts only occur in the main clade.
pars2[4] Obsolete.
pars2[5] sets whether the parameters and likelihood should be shown on screen (1) or not (0)
pars2[6] sets whether the first data point is stem age (1) or crown age (2)
pars2[7] sets whether the old (incorrect) likelihood should be used (0), or whether the new corrected likelihood should be used (1).
A set of branching times of the main clade in the phylogeny, all positive
A set of branching times of the subclade in the phylogeny, all positive
The number of species that are in the clade but missing in the phylogeny. One can specify the sum of the missing species in main clade and subclade or a vector c(missnumspec_M,missnumspec_S) with missing species in main clade

and subclade respectively.

methode The method used to solve the master equation, default is 'analytical' which uses matrix exponentiation; alternatively numerical ODE solvers can be used, such as 'lsoda' or 'ode45'. These were used in the package before version 3.1.

Value

The loglikelihood

Author(s)

Rampal S. Etienne & Bart Haegeman

References

- Etienne, R.S. et al. 2012, Proc. Roy. Soc. B 279: 1300-1309, doi: 10.1098/rspb.2011.1439
- Etienne, R.S. & B. Haegeman 2012. Am. Nat. 180: E75-E89, doi: 10.1086/667574

See Also

dd_KI_ML, dd_loglik dd_SR_loglik

Examples

```
pars1 = c(0.25,0.12,25.51,1.0,0.16,8.61,9.8)
pars2 = c(200,1,0,18.8,1,2)
missnumspec = 0
brtsM = c(25.2,24.6,24.0,22.5,21.7,20.4,19.9,19.7,18.8,17.1,15.8,11.8,9.7,8.9,5.7,5.2)
brtsS = c(9.6,8.6,7.4,4.9,2.5)
dd_KI_loglik(pars1,pars2,brtsM,brtsS,missnumspec,methode = 'ode45')
```

dd	ΚI	ML

Maximization of the loglikelihood under a diversity-dependent diversification model with decoupling of a subclade's diversication dynamics from the main clade's dynamics

Description

This function computes the maximum likelihood estimates of the parameters of a diversity-dependent diversification model with decoupling of the diversification dynamics of a subclade from the dynamics of the main clade for a given set of phylogenetic branching times of main clade and subclade and the time of splitting of the lineage that will form the subclade. It also outputs the corresponding loglikelihood that can be used in model comparisons.

dd_KI_ML

Usage

```
dd_KI_ML(
 brtsM,
 brtsS,
  tsplit,
  initparsopt = c(0.5, 0.1, 2 * (1 + length(brtsM) + missnumspec[1]), 2 * (1 +
   length(brtsS) + missnumspec[length(missnumspec)]), (tsplit + max(brtsS))/2),
  parsfix = NULL,
  idparsopt = c(1:3, 6:7),
  idparsfix = NULL,
 idparsnoshift = (1:7)[c(-idparsopt, (-1)^(length(idparsfix) != 0) * idparsfix)],
  res = 10 * (1 + length(c(brtsM, brtsS)) + sum(missnumspec)),
  ddmodel = 1,
 missnumspec = 0,
  cond = 1,
  soc = 2,
  tol = c(0.001, 1e-04, 1e-06),
 maxiter = 1000 * round((1.25)^length(idparsopt)),
  changeloglikifnoconv = FALSE,
  optimmethod = "subplex",
  num_cycles = 1,
 methode = "analytical",
 correction = FALSE,
 verbose = FALSE
```

Arguments

)

brtsM	A set of branching times of the main clade in a phylogeny, all positive
brtsS	A set of branching times of the subclade in a phylogeny, all positive
tsplit	The branching time at which the lineage forming the subclade branches off, positive
initparsopt	The initial values of the parameters that must be optimized
parsfix	The values of the parameters that should not be optimized
idparsopt	The ids of the parameters that must be optimized, e.g. 1:7 for all parameters. The ids are defined as follows: id == 1 corresponds to lambda_M (speciation rate) of the main clade id == 2 corresponds to mu_M (extinction rate) of the main clade id == 3 corresponds to K_M (clade-level carrying capacity) of the main clade id == 4 corresponds to lambda_S (speciation rate) of the subclade id == 5 corresponds to mu_S (extinction rate) of the subclade id == 6 corresponds to K_S (clade-level carrying capacity) of the subclade id == 7 corresponds to t_d (the time of decoupling)
idparsfix	The ids of the parameters that should not be optimized, e.g. $c(1,3,4,6)$ if lambda and K should not be optimized, but only mu. In that case idparsopt must be c(2,5,7). The default is to fix all parameters not specified in idparsopt.

idparsnoshift	The ids of the parameters that should not shift; This can only apply to ids 4, 5 and 6, e.g. idparsnoshift = $c(4,5)$ means that lambda and mu have the same
	values before and after tshift
res	sets the maximum number of species for which a probability must be computed, must be larger than 1 + max(length(brtsM),length(brtsS))
ddmodel	sets the model of diversity-dependence:
	ddmodel == 1: linear dependence in speciation rate with parameter K (= diversity where speciation = extinction)
	ddmodel == 1.3: linear dependence in speciation rate with parameter K' (= diversity where speciation = 0)
	ddmodel == 2: exponential dependence in speciation rate with parameter K (= diversity where speciation = extinction)
	ddmodel == 2.1 : variant of exponential dependence in speciation rate with off- set at infinity
	<pre>ddmodel == 2.2 : 1/n dependence in speciation rate ddmodel == 2.3 : exponential dependence in speciation rate with parameter x (= exponent)</pre>
	ddmodel == 3 : linear dependence in extinction rate
	ddmodel == 4 : exponential dependence in extinction rate
	ddmodel == 4.1 : variant of exponential dependence in extinction rate with off- set at infinity
	ddmodel == 4.2 : 1/n dependence in extinction rate with offset at infinity
missnumspec	The number of species that are in the clade but missing in the phylogeny. One can specify the sum of the missing species in main clade and subclade or a vector c(missnumspec_M,missnumspec_S) with missing species in main clade and subclade respectively.
cond	Conditioning:
	cond == 0: no conditioning
	cond == 1 : conditioning on non-extinction of the phylogeny
SOC	Sets whether stem or crown age should be used (1 or 2); stem age only works when $cond = 0$
tol	Sets the tolerances in the optimization. Consists of:
	reltolx = relative tolerance of parameter values in optimization
	reltolf = relative tolerance of function value in optimization
	abstolx = absolute tolerance of parameter values in optimization
maxiter	Sets the maximum number of iterations in the optimization
changeloglikifr	noconv if TRUE the loglik will be set to -Inf if ML does not converge
optimmethod	Method used in optimization of the likelihood. Current default is 'subplex'.
optimiethod	Alternative is 'simplex' (default of previous versions)
num_cycles	the number of cycles of opimization. If set at Inf, it will do as many cycles as needed to meet the tolerance set for the target function.
methode	The method used to solve the master equation, default is 'analytical' which uses matrix exponentiation; alternatively numerical ODE solvers can be used, such as 'lsoda' or 'ode45'. These were used in the package before version 3.1.

dd_KI_ML

correction	Sets whether the correction should be applied (TRUE) or not (FALSE)
verbose	Show the parameters and loglikelihood for every call to the loglik function

Details

The output is a dataframe containing estimated parameters and maximum loglikelihood. The computed loglikelihood contains the factor q! m!/(q + m)! where q is the number of species in the phylogeny and m is the number of missing species, as explained in the supplementary material to Etienne et al. 2012.

Value

lambda_M	gives the maximum likelihood estimate of lambda of the main clade
mu_M	gives the maximum likelihood estimate of mu of the main clade
K_M	gives the maximum likelihood estimate of K of the main clade
lambda_2	gives the maximum likelihood estimate of lambda of the subclade
mu_S	gives the maximum likelihood estimate of mu of the subclade
K_S	gives the maximum likelihood estimate of K of the subclade
t_d	gives the time of the decoupling event
loglik	gives the maximum loglikelihood
df	gives the number of estimated parameters, i.e. degrees of feedom
conv	gives a message on convergence of optimization; $conv = 0$ means convergence

Note

The optimization may get trapped in local optima. Try different starting values to search for the global optimum.

Author(s)

Rampal S. Etienne & Bart Haegeman

References

- Etienne, R.S. et al. 2012, Proc. Roy. Soc. B 279: 1300-1309, doi: 10.1098/rspb.2011.1439
- Etienne, R.S. & B. Haegeman 2012. Am. Nat. 180: E75-E89, doi: 10.1086/667574

See Also

dd_KI_loglik, dd_ML, dd_SR_ML,

Examples

```
cat("This will estimate parameters for two sets of branching times brtsM, brtsS\n")
cat("without conditioning.\n")
cat("The tolerance of the optimization is set high so runtime is fast in this example.\n")
cat("In real applications, use the default or more stringent settins for tol.\n")
brtsM = 4:10
brtsS = seq(0.1,3.5,0.7)
tsplit = 5
dd_KI_ML(brtsM = brtsM, brtsS = brtsS, tsplit = tsplit, idparsopt = c(1:3,6,7),
initparsopt = c(0.885, 2e-14, 6.999, 6.848, 4.001), idparsfix = NULL,
parsfix = NULL,idparsnoshift = c(4,5), cond = 0, tol = c(3E-1,3E-1,3E-1),
optimmethod = 'simplex')
```

dd	ΚI	sim
···-		

Function to simulate a key innovation in macro-evolution with the innovative clade decoupling from the diversity-dependent diversification dynamics of the main clade

Description

Simulating a diversity-dependent diversification process where at a given time a new clade emerges with different inherent speciation rate and extinction rate and clade-level carrying capacity and with decoupled dynamics

Usage

```
dd_KI_sim(pars, age, ddmodel = 1)
```

Arguments

pars	Vector of parameters:
	<pre>pars[1] corresponds to lambda_M (speciation rate of the main clade) pars[2] corresponds to mu_M (extinction rate of the main clade) pars[3] corresponds to K_M (clade-level carrying capacity of the main clade) pars[4] corresponds to lambda_S (speciation rate of the subclade) pars[5] corresponds to mu_S (extinction rate of the subclade) pars[5] corresponds to K_S (clade-level carrying capacity of the subclade) pars[7] tinn, the time the shift in rates occurs in the lineage leading to the subclade</pre>
age	Sets the crown age for the simulation
ddmodel	Sets the model of diversity-dependence: ddmodel == 1 : linear dependence in speciation rate with parameter K (= diver- sity where speciation = extinction)

14

ddmodel == 1.3 : linear dependence in speciation rate with parameter K' (= oversity where speciation = 0)	di-
ddmodel == 2: exponential dependence in speciation rate with parameter K	(=
diversity where speciation = extinction)	
ddmodel == 2.1 : variant of exponential dependence in speciation rate with o	ff-
set at infinity	
ddmodel == 2.2: 1/n dependence in speciation rate	
ddmodel == 2.3 : exponential dependence in speciation rate with parameter	x
(= exponent)	
ddmodel == 3 : linear dependence in extinction rate	
ddmodel == 4 : exponential dependence in extinction rate	
ddmodel == 4.1 : variant of exponential dependence in extinction rate with o	ff-
set at infinity	

ddmodel == 4.2 : 1/n dependence in extinction rate with offset at infinity

Value

out	 A list with the following elements: The first element is the tree of extant species in phylo format The second element is the tree of all species, including extinct species, in phylo format The third element is a matrix of all species where the first column is the time at which a species is born the second column is the label of the parent of the species; positive and negative values only indicate whether the species belongs to the left or right crown lineage the third column is the label of the daughter species itself; positive and negative values only indicate whether the species belongs to the left or right crown lineage the fourth column is the time of extinction of the species If the fourth element equals -1, then the species is still extant. the fifth column indicates whether the species belong to the main clade (0) or the subclade (1)
	The fifth element is the subclade tree of all species (without stem) The sixth element is the same as the first, except that it has attributed 0 for the main clade and 1 for the subclade
	The seventh element is the same as the Second, except that it has attributed 0 for the main clade and 1 for the subclade The sixth and seventh element will be NULL if the subclade does not exist (be- cause it went extinct).

Author(s)

Rampal S. Etienne

References

```
Etienne, R.S. et al. 2012, Proc. Roy. Soc. B 279: 1300-1309, doi: 10.1098/rspb.2011.1439
Etienne, R.S. & B. Haegeman 2012. Am. Nat. 180: E75-E89, doi: 10.1086/667574
```

Examples

```
dd_KI_sim(c(0.2,0.1,20,0.1,0.05,30,4),10)
```

dd_loglik

Loglikelihood for diversity-dependent diversification models

Description

This function computes loglikelihood of a diversity-dependent diversification model for a given set of branching times and parameter values.

Usage

dd_loglik(pars1, pars2, brts, missnumspec, methode = "analytical")

pars1	Vector of parameters:
	pars1[1] corresponds to lambda (speciation rate) pars1[2] corresponds to mu (extinction rate) pars1[3] corresponds to K (clade-level carrying capacity)
pars2	Vector of model settings:
	pars2[1] sets the maximum number of species for which a probability must be computed. This must be larger than 1 + missnumspec + length(brts).
	 pars2[2] sets the model of diversity-dependence: pars2[2] == 1 linear dependence in speciation rate with parameter K (= diversity where speciation = extinction) pars2[2] == 1.3 linear dependence in speciation rate with parameter K' (= diversity where speciation = 0) pars2[2] == 1.4 : positive diversity-dependence in speciation rate with parameter K' (= diversity where speciation rate reaches half its maximum); lambda = lambda0 * S/(S + K') where S is species richness pars2[2] == 1.5 : positive and negative diversity-dependence in speciation rate with parameter K' (= diversity where Speciation = 0); lambda = lambda0 * S/K' * (1 - S/K') where S is species richness pars2[2] == 2 exponential dependence in speciation rate with parameter K (= diversity where speciation) pars2[2] == 2.1 variant of exponential dependence in speciation rate with offset at infinity

	 pars2[2] == 2.2 1/n dependence in speciation rate pars2[2] == 2.3 exponential dependence in speciation rate with parameter x (= exponent) pars2[2] == 3 linear dependence in extinction rate pars2[2] == 4 exponential dependence in extinction rate pars2[2] == 4.1 variant of exponential dependence in extinction rate with offset at infinity pars2[2] == 4.2 1/n dependence in extinction rate pars2[2] == 5 linear dependence in speciation and extinction rate
	<pre>pars2[3] sets the conditioning: - pars2[3] == 0 conditioning on stem or crown age - pars2[3] == 1 conditioning on stem or crown age and non-extinction of the phylogeny - pars2[3] == 2 conditioning on stem or crown age and on the total number of extant taxa (including missing species) - pars2[3] == 3 conditioning on the total number of extant taxa (including miss- ing species)</pre>
	pars2[4] sets whether the likelihood is for the branching times (0) or the phylogeny (1)
	pars2[5] sets whether the parameters and likelihood should be shown on screen (1) or not (0)
	pars2[6] sets whether the first data point is stem age (1) or crown age (2)
brts	A set of branching times of a phylogeny, all positive
missnumspec	The number of species that are in the clade but missing in the phylogeny
methode	The method used to solve the master equation, default is 'analytical' which uses matrix exponentiation; alternatively numerical ODE solvers can be used, such as 'lsoda' or 'ode45'. These were used in the package before version 3.1.

Value

The loglikelihood

Author(s)

Rampal S. Etienne & Bart Haegeman

References

- Etienne, R.S. et al. 2012, Proc. Roy. Soc. B 279: 1300-1309, doi: 10.1098/rspb.2011.1439

- Etienne, R.S. & B. Haegeman 2012. Am. Nat. 180: E75-E89, doi: 10.1086/667574

See Also

dd_ML, dd_SR_loglik, dd_KI_loglik

Examples

```
dd_loglik(pars1 = c(0.5,0.1,100), pars2 = c(100,1,1,1,0,2), brts = 1:10, missnumspec = 0)
```

dd_LR

Bootstrap likelihood ratio test of diversity-dependent diversification model

Description

This function computes the maximum likelihood and the associated estimates of the parameters of a diversity-dependent diversification model for a given set of phylogenetic branching times. It then performs a bootstrap likelihood ratio test of the diversity-dependent (DD) model against the constant-rates (CR) birth-death model. Finally, it computes the power of this test.

Usage

```
dd_LR(
  brts,
  initparsoptDD,
  initparsoptCR,
 missnumspec,
 outputfilename = NULL,
  seed = 42,
  endmc = 1000,
  alpha = 0.05,
 plotit = TRUE,
  res = 10 * (1 + length(brts) + missnumspec),
  ddmodel = 1,
  cond = 1,
 btorph = 1,
  soc = 2,
  tol = c(0.001, 1e-04, 1e-06),
 maxiter = 2000,
  changeloglikifnoconv = FALSE,
 optimmethod = "subplex",
 methode = "analytical"
)
```

brts	A set of branching times of a phylogeny, all positive
initparsoptDD	The initial values of the parameters that must be optimized for the diversity- dependent (DD) model: lambda_0, mu and K
initparsoptCR	The initial values of the parameters that must be optimized for the constant-rates (CR) model: lambda and mu
missnumspec	The number of species that are in the clade but missing in the phylogeny

outputfilename	The name (and location) of the file where the output will be saved. Default is no save.
seed	The seed for the pseudo random number generator for simulating the bootstrap data
endmc	The number of bootstraps
alpha	The significance level of the test
plotit	Boolean to plot results or not
res	Sets the maximum number of species for which a probability must be computed, must be larger than 1 + length(brts)
ddmodel	Sets the model of diversity-dependence: ddmodel == 1 : linear dependence in speciation rate with parameter K (= diver- sity where speciation = extinction) ddmodel == 1 . 3 : linear dependence in speciation rate with parameter K' (= di- versity where speciation = 0) ddmodel == 2 : exponential dependence in speciation rate with parameter K (= diversity where speciation = extinction) ddmodel == 2 . 1 : variant of exponential dependence in speciation rate with off- set at infinity ddmodel == 2 . 2 : 1/n dependence in speciation rate ddmodel == 2 . 3 : exponential dependence in speciation rate with parameter x (= exponent) ddmodel == 3 : linear dependence in extinction rate ddmodel == 4 : exponential dependence in extinction rate ddmodel == 4 . 1 : variant of exponential dependence in extinction rate ddmodel == 4 . 2 : 1/n dependence in extinction rate ddmodel == 4 . 2 : 1/n dependence in extinction rate with off- set at infinity ddmodel == 5 : linear dependence in extinction rate with offset at infinity ddmodel == 5 : linear dependence in speciation rate with offset at infinity ddmodel == 5 : linear dependence in speciation rate with offset at infinity ddmodel == 5 : linear dependence in speciation rate with offset at infinity ddmodel == 5 : linear dependence in speciation rate with offset at infinity
cond	Conditioning: cond == 0 : conditioning on stem or crown age cond == 1 : conditioning on stem or crown age and non-extinction of the phy- logeny cond == 2 : conditioning on stem or crown age and on the total number of extant taxa (including missing species) cond == 3 : conditioning on the total number of extant taxa (including missing species) Note: cond == 3 assumes a uniform prior on stem age, as is the standard in constant-rate birth-death models, see e.g. D. Aldous & L. Popovic 2004. Adv. Appl. Prob. 37: 1094-1115 and T. Stadler 2009. J. Theor. Biol. 261: 58-66.
btorph	Sets whether the likelihood is for the branching times (0) or the phylogeny (1)
SOC	Sets whether stem or crown age should be used (1 or 2)
tol	Sets the tolerances in the optimization. Consists of: reltolx = relative tolerance of parameter values in optimization reltolf = relative tolerance of function value in optimization abstolx = absolute tolerance of parameter values in optimization

maxiter	Sets the maximum number of iterations in the optimization
changeloglikifnoconv	
	if TRUE the loglik will be set to -Inf if ML does not converge
optimmethod	Method used in optimization of the likelihood. Current default is 'subplex'. Alternative is 'simplex' (default of previous versions)
methode	The method used to solve the master equation, default is 'analytical' which uses matrix exponentiation; alternatively numerical ODE solvers can be used, such as 'lsoda' or 'ode45'. These were used in the package before version 3.1.

Details

The output is a list with 3 elements:

Value

treeCR	a list of trees generated under the constant-rates model using the ML parameters under the CR model
treeDD	a list of trees generated under the diversity-dependent model using the ML parameters under the diversity-dependent model
out	 a dataframe with the parameter estimates and maximum likelihoods for diversity-dependent and constant-rates models \$model - the model used to generate the data. 0 = unknown (for real data), 1 = CR, 2 = DD \$mc - the simulation number for each model \$lambda_CR - speciation rate estimated under CR \$mu_CR - extinction rate estimated under CR \$LL_CR - maximum likelihood estimated under CR \$conv_CR - convergence code for likelihood optimization; conv = 0 means convergence \$lambda_DD1 - initial speciation rate estimated under DD for first set of initial values \$mu_DD1 - extinction rate estimated under DD for first set of initial values \$LL_DD1 - clade-wide carrying-capacity estimated under DD for first set of initial values \$LL_DD1 - convergence code for likelihood optimization for first set of initial values \$conv_DD1 - convergence code for likelihood optimization for first set of initial values \$LL_DD1 - maximum likelihood estimated under DD for first set of initial values \$conv_DD1 - convergence code for likelihood optimization for first set of initial values \$mu_DD2 - initial speciation rate estimated under DD for second set of initial values \$mu_DD2 - extinction rate estimated under DD for second set of initial values \$mu_DD2 - convergence code for likelihood optimization for second set of initial values \$LL_DD2 - maximum likelihood estimated under DD for second set of initial values \$LL_DD2 - convergence code for likelihood optimization for second set of initial values \$LL_DD2 - convergence code for likelihood optimization for second set of initial values \$LL_DD2 - convergence code for likelihood optimization for second set of initial values \$LL_DD2 - convergence code for likelihood optimization for second set of initial values \$LL_DD2 - convergence code for likelihood optimization for second set of initial values
pvalue	p-value of the test

LRalpha	Likelihood ratio at the signifiance level alpha
poweroftest	power of the test for significance level alpha

Author(s)

Rampal S. Etienne & Bart Haegeman

References

- Etienne, R.S. et al. 2016. Meth. Ecol. Evol. 7: 1092-1099, doi: 10.1111/2041-210X.12565
- Etienne, R.S. et al. 2012, Proc. Roy. Soc. B 279: 1300-1309, doi: 10.1098/rspb.2011.1439
- Etienne, R.S. & B. Haegeman 2012. Am. Nat. 180: E75-E89, doi: 10.1086/667574

See Also

dd_loglik, dd_ML

dd_ML	Maximization of the loglikelihood under a diversity-dependent diver-
	sification model

Description

This function computes the maximum likelihood estimates of the parameters of a diversity-dependent diversification model for a given set of phylogenetic branching times. It also outputs the corresponding loglikelihood that can be used in model comparisons.

Usage

```
dd_ML(
  brts,
  initparsopt = initparsoptdefault(ddmodel, brts, missnumspec),
  idparsopt = 1:length(initparsopt),
  idparsfix = (1:(3 + (ddmodel == 5)))[-idparsopt],
  parsfix = parsfixdefault(ddmodel, brts, missnumspec, idparsopt),
  res = 10 * (1 + length(brts) + missnumspec),
  ddmodel = 1,
  missnumspec = 0,
  cond = 1,
  btorph = 1,
  soc = 2,
  tol = c(0.001, 1e-04, 1e-06),
  maxiter = 1000 * round((1.25)^length(idparsopt)),
  changeloglikifnoconv = FALSE,
  optimmethod = "subplex",
  num_cycles = 1,
  methode = "analytical",
  verbose = FALSE
)
```

brts	A set of branching times of a phylogeny, all positive
initparsopt	The initial values of the parameters that must be optimized
idparsopt	The ids of the parameters that must be optimized, e.g. 1:3 for intrinsic speciation rate, extinction rate and carrying capacity. The ids are defined as follows: id == 1 corresponds to lambda (speciation rate) id == 2 corresponds to mu (extinction rate) id == 3 corresponds to K (clade-level carrying capacity) $id == 4$ corresponds to r (r = b/a where mu = mu_0 + b * N and lambda = lambda_0 - a * N) (This is only available when ddmodel = 5)
idparsfix	The ids of the parameters that should not be optimized, e.g. $c(1,3)$ if lambda and K should not be optimized, but only mu. In that case idparsopt must be 2. The default is to fix all parameters not specified in idparsopt.
parsfix	The values of the parameters that should not be optimized
res	Sets the maximum number of species for which a probability must be computed, must be larger than 1 + length(brts)
ddmodel	Sets the model of diversity-dependence: ddmodel == 1 : linear dependence in speciation rate with parameter K (= diver- sity where speciation = extinction) ddmodel == 1.3 : linear dependence in speciation rate with parameter K' (= di- versity where speciation = 0) ddmodel == 1.4 : positive diversity-dependence in speciation rate with param- eter K' (= diversity where speciation rate reaches half its maximum); lambda = lambda0 * S/(S + K') where S is species richness ddmodel == 1.5 : positive and negative dependence in speciation rate with pa- rameter K' (= diversity where speciation = 0); lambda = lambda0 * S/K' * (1 - S/K') where S is species richness ddmodel == 2 : exponential dependence in speciation rate with parameter K (= diversity where speciation = extinction) ddmodel == 2.1 : variant of exponential dependence in speciation rate with off- set at infinity ddmodel == 2.3 : exponential dependence in speciation rate with parameter x (= exponent) ddmodel == 4 : exponential dependence in extinction rate ddmodel == 4 : exponential dependence in extinction rate ddmodel == 4.1 : variant of exponential dependence in extinction rate with off- set at infinity ddmodel == 4.1 : variant of exponential dependence in extinction rate
	ddmodel == 5 : linear dependence in speciation and extinction rate
missnumspec	The number of species that are in the clade but missing in the phylogeny
cond	Conditioning: cond == 0 : conditioning on stem or crown age
	cond == 0 : conditioning on stem of crown age and non-extinction of the phy- logeny

 cond == 2 : conditioning on stem or crown age and on the total number of extant taxa (including missing species) cond == 3 : conditioning on the total number of extant taxa (including missing species) Note: cond == 3 assumes a uniform prior on stem age, as is the standard in constant-rate birth-death models, see e.g. D. Aldous & L. Popovic 2004. Adv. Appl. Prob. 37: 1094-1115 and T. Stadler 2009. J. Theor. Biol. 261: 58-66. 		
Sets whether the likelihood is for the branching times (0) or the phylogeny (1)		
Sets whether stem or crown age should be used (1 or 2)		
Sets the tolerances in the optimization. Consists of: reltolx = relative tolerance of parameter values in optimization reltolf = relative tolerance of function value in optimization abstolx = absolute tolerance of parameter values in optimization		
Sets the maximum number of iterations in the optimization		
changeloglikifnoconv		
if TRUE the loglik will be set to -Inf if ML does not converge		
Method used in optimization of the likelihood. Current default is 'subplex'. Alternative is 'simplex' (default of previous versions)		
the number of cycles of opimization. If set at Inf, it will do as many cycles as needed to meet the tolerance set for the target function.		
The method used to solve the master equation, default is 'analytical' which uses matrix exponentiation; alternatively numerical ODE solvers can be used, such as 'lsoda' or 'ode45'. These were used in the package before version 3.1.		
Show the parameters and loglikelihood for every call to the loglik function		

Details

The output is a dataframe containing estimated parameters and maximum loglikelihood. The computed loglikelihood contains the factor q! m! / (q + m)! where q is the number of species in the phylogeny and m is the number of missing species, as explained in the supplementary material to Etienne et al. 2012.

Value

lambda	gives the maximum likelihood estimate of lambda
mu	gives the maximum likelihood estimate of mu
К	gives the maximum likelihood estimate of K
r	(only if ddmodel == 5) gives the ratio of linear dependencies in speciation and extinction rates
loglik	gives the maximum loglikelihood
df	gives the number of estimated parameters, i.e. degrees of feedom
conv	gives a message on convergence of optimization; conv = 0 means convergence

Author(s)

Rampal S. Etienne & Bart Haegeman

References

Etienne, R.S. et al. 2012, Proc. Roy. Soc. B 279: 1300-1309, doi: 10.1098/rspb.2011.1439
Etienne, R.S. & B. Haegeman 2012. Am. Nat. 180: E75-E89, doi: 10.1086/667574

See Also

dd_loglik, dd_SR_ML, dd_KI_ML,

Examples

dd_MS_loglik	Loglikelihood for macro-evolutionary succession under diversity-
	dependent diversification with the key innovation at time $t = t_d$

Description

This function computes the loglikelihood of a diversity-dependent diversification model for a given set of branching times and parameter values where the diversity-dependent dynamics of an innovative subclade have different parameters from the dynamics of the main clade from time t_d, but both are governed by the same carrying capacity and experience each other's diversity.

Usage

```
dd_MS_loglik(pars1, pars2, brtsM, brtsS, missnumspec, methode = "analytical")
```

pars1	Vector of parameters:
	pars1[1] corresponds to lambda_M (speciation rate) of the main clade pars1[2] corresponds to mu_M (extinction rate) of the main clade pars1[3] corresponds to K_M (clade-level carrying capacity) of the main clade pars1[4] corresponds to lambda_M (speciation rate) of the subclade pars1[5] corresponds to mu_S (extinction rate) of the subclade pars1[6] corresponds to t_d (the time of the key innovation)
pars2	Vector of model settings:
	pars2[1] sets the maximum number of species for which a probability must be computed. This must be larger than 1 + missnumspec + length(brts).

	<pre>pars2[2] sets the model of diversity-dependence: - pars2[2] == 1 linear dependence in speciation rate with parameter K (= diver- sity where speciation = extinction) - pars2[2] == 1.3 linear dependence in speciation rate with parameter K' (= diversity where speciation = 0) - pars2[2] == 2 exponential dependence in speciation rate with parameter K (= diversity where speciation = extinction) - pars2[2] == 2.1 variant of exponential dependence in speciation rate with offset at infinity - pars2[2] == 2.2 l/n dependence in speciation rate - pars2[2] == 2.3 exponential dependence in speciation rate with parameter x (= exponent) - pars2[2] == 3 linear dependence in extinction rate - pars2[2] == 4 exponential dependence in extinction rate - pars2[2] == 4.1 variant of exponential dependence in extinction rate - pars2[2] == 4.1 variant of exponential dependence in extinction rate - pars2[2] == 4.2 l/n dependence in extinction rate - pars2[2] == 4.2 l/n dependence in extinction rate - pars2[2] == 4.2 l/n dependence in extinction rate - pars2[3] sets the conditioning: - pars2[3] == 0 no conditioning - pars2[3] == 1 conditioning on non-extinction of the phylogeny pars2[4] sets the time of splitting of the branch that will undergo the key inno- vation leading to different parameters</pre>
	pars2[5] sets whether the parameters and likelihood should be shown on screen (1) or not (0)
	pars2[6] sets whether the first data point is stem age (1) or crown age (2) pars2[7] sets whether the old (incorrect) likelihood should be used (0) or whether new corrected version should be used (1)
brtsM	A set of branching times of the main clade in the phylogeny, all positive
brtsS	A set of branching times of the subclade in the phylogeny, all positive
missnumspec	The number of species that are in the clade but missing in the phylogeny. One can specify the sum of the missing species in main clade and subclade or a vector c(missnumspec_M,missnumspec_S) with missing species in main clade and subclade respectively.
methode	The method used to solve the master equation, default is 'analytical' which uses matrix exponentiation; alternatively numerical ODE solvers can be used, such as 'lsoda' or 'ode45'. These were used in the package before version 3.1.

Value

The loglikelihood

Author(s)

Rampal S. Etienne & Bart Haegeman

References

- Etienne, R.S. et al. 2012, Proc. Roy. Soc. B 279: 1300-1309, doi: 10.1098/rspb.2011.1439

- Etienne, R.S. & B. Haegeman 2012. Am. Nat. 180: E75-E89, doi: 10.1086/667574

See Also

dd_MS_ML, dd_loglik, dd_KI_loglik, dd_SR_loglik

Examples

```
pars1 = c(0.2,0.1,40,1.0,0.1,9.8)
pars2 = c(200,1,0,18.8,1,2)
missnumspec = 0
brtsM = c(25.2,24.6,24.0,22.5,21.7,20.4,19.9,19.7,18.8,17.1,15.8,11.8,9.7,8.9,5.7,5.2)
brtsS = c(9.6,8.6,7.4,4.9,2.5)
dd_MS_loglik(pars1,pars2,brtsM,brtsS,missnumspec,methode = 'ode45')
```

dd_MS_ML	Maximization of the loglikelihood under a diversity-dependent diversi-
	fication model with decoupling of a subclade's diversication dynamics
	from the main clade's dynamics

Description

This function computes the maximum likelihood estimates of the parameters of a diversity-dependent diversification model where the diversity-dependent dynamics of an innovative subclade have different parameters from the dynamics of the main clade from time t_d, but both are governed by the same carrying capacity and experience each other's diversity. Required is given set of phylogenetic branching times of main clade and subclade and the time of splitting of the lineage that will form the subclade. The function also outputs the corresponding loglikelihood that can be used in model comparisons.

Usage

```
dd_MS_ML(
    brtsM,
    brtsS,
    tsplit,
    initparsopt = c(0.5, 0.1, 2 * (1 + length(brtsM) + length(brtsS) + sum(missnumspec)),
        (tsplit + max(brtsS))/2),
    parsfix = NULL,
    idparsopt = c(1:3, 6),
```

```
idparsfix = NULL,
idparsnoshift = (1:6)[c(-idparsopt, (-1)^(length(idparsfix) != 0) * idparsfix)],
res = 10 * (1 + length(c(brtsM, brtsS)) + sum(missnumspec)),
ddmodel = 1.3,
missnumspec = 0,
cond = 0,
soc = 2,
tol = c(0.001, 1e-04, 1e-06),
maxiter = 1000 * round((1.25)^length(idparsopt)),
changeloglikifnoconv = FALSE,
optimmethod = "subplex",
num_cycles = 1,
methode = "analytical",
correction = FALSE,
verbose = FALSE
```

Arguments

)

brtsM	A set of branching times of the main clade in a phylogeny, all positive
brtsS	A set of branching times of the subclade in a phylogeny, all positive
tsplit	The branching time at which the lineage forming the subclade branches off, positive
initparsopt	The initial values of the parameters that must be optimized
parsfix	The values of the parameters that should not be optimized
idparsopt	The ids of the parameters that must be optimized, e.g. 1:7 for all parameters. The ids are defined as follows: id == 1 corresponds to lambda_M (speciation rate) of the main clade id == 2 corresponds to mu_M (extinction rate) of the main clade id == 3 corresponds to K_M (clade-level carrying capacity) of the main clade id == 4 corresponds to lambda_S (speciation rate) of the subclade id == 5 corresponds to mu_S (extinction rate) of the subclade id == 6 corresponds to t_d (the time of the key innovation)
idparsfix	The ids of the parameters that should not be optimized, e.g. $c(1,3,4,6)$ if lambda and K should not be optimized, but only mu. In that case idparsopt must be c(2,5,7). The default is to fix all parameters not specified in idparsopt.
idparsnoshift	The ids of the parameters that should not shift; This can only apply to ids 4, 5 and 6, e.g. idparsnoshift = $c(4,5)$ means that lambda and mu have the same values before and after tshift
res	sets the maximum number of species for which a probability must be computed, must be larger than 1 + max(length(brtsM),length(brtsS))
ddmodel	sets the model of diversity-dependence: ddmodel == 1: linear dependence in speciation rate with parameter K (= diver- sity where speciation = extinction) ddmodel == 1.3: linear dependence in speciation rate with parameter K' (= di- versity where speciation = 0)

	<pre>ddmodel == 2 : exponential dependence in speciation rate with parameter K (= diversity where speciation = extinction) ddmodel == 2.1 : variant of exponential dependence in speciation rate with off- set at infinity ddmodel == 2.2 : 1/n dependence in speciation rate ddmodel == 2.3 : exponential dependence in speciation rate with parameter x (= exponent) ddmodel == 3 : linear dependence in extinction rate ddmodel == 4 : exponential dependence in extinction rate ddmodel == 4.1 : variant of exponential dependence in extinction rate with off- set at infinity ddmodel == 4.2 : 1/n dependence in extinction rate with off- set at infinity</pre>
missnumspec	The number of species that are in the clade but missing in the phylogeny. One can specify the sum of the missing species in main clade and subclade or a vector c(missnumspec_M,missnumspec_S) with missing species in main clade and subclade respectively.
cond	Conditioning: cond == 0 : no conditioning cond == 1 : conditioning on non-extinction of the phylogeny
SOC	Sets whether stem or crown age should be used (1 or 2); stem age only works when $cond = 0$
tol	Sets the tolerances in the optimization. Consists of: reltolx = relative tolerance of parameter values in optimization reltolf = relative tolerance of function value in optimization abstolx = absolute tolerance of parameter values in optimization
maxiter	Sets the maximum number of iterations in the optimization
changeloglikifr	
	if TRUE the loglik will be set to -Inf if ML does not converge
optimmethod	Method used in optimization of the likelihood. Current default is 'subplex'. Alternative is 'simplex' (default of previous versions)
num_cycles	the number of cycles of opimization. If set at Inf, it will do as many cycles as needed to meet the tolerance set for the target function.
methode	The method used in the ode solver, default is ode45
correction	Sets whether the correction should be applied (TRUE) or not (FALSE)
verbose	Show the parameters and loglikelihood for every call to the loglik function

Details

The output is a dataframe containing estimated parameters and maximum loglikelihood. The computed loglikelihood contains the factor q! m!/(q + m)! where q is the number of species in the phylogeny and m is the number of missing species, as explained in the supplementary material to Etienne et al. 2012.

Value

lambda_M	gives the maximum likelihood estimate of lambda of the main clade
mu_M	gives the maximum likelihood estimate of mu of the main clade
K_M	gives the maximum likelihood estimate of K of the main clade
lambda_2	gives the maximum likelihood estimate of lambda of the subclade
mu_S	gives the maximum likelihood estimate of mu of the subclade
t_d	gives the time of the key innovation event
loglik	gives the maximum loglikelihood
df	gives the number of estimated parameters, i.e. degrees of feedom
conv	gives a message on convergence of optimization; $conv = 0$ means convergence

Note

The optimization may get trapped in local optima. Try different starting values to search for the global optimum.

Author(s)

Rampal S. Etienne & Bart Haegeman

References

- Etienne, R.S. et al. 2012, Proc. Roy. Soc. B 279: 1300-1309, doi: 10.1098/rspb.2011.1439
- Etienne, R.S. & B. Haegeman 2012. Am. Nat. 180: E75-E89, doi: 10.1086/667574

See Also

dd_MS_loglik, dd_ML, dd_KI_ML, dd_SR_ML,

Examples

dd_MS_sim

Description

Simulating a diversity-dependent diversification process where at a given time a new clade emerges with different inherent speciation rate and extinction rate

Usage

dd_MS_sim(pars, age, ddmodel = 1.3)

lineage

pars	Vector of parameters:
	<pre>pars[1] corresponds to lambda_M (speciation rate of the main clade) pars[2] corresponds to mu_M (extinction rate of the main clade) pars[3] corresponds to K' (maximum number of species or a proxy for it in case of exponential decline in speciation rate) pars[4] corresponds to lambda_S (speciation rate of the novel subclade) pars[5] corresponds to mu_S (extinction rate) pars[6] tinn, the time the shift in rates occurs in the lineage leading to the subclade</pre>
age	Sets the crown age for the simulation
ddmodel	Sets the model of diversity-dependence: ddmodel == 1.3 : linear dependence in speciation rate with parameter K' (= di- versity where speciation = 0); ddmodel = 1 will be interpreted as this model ddmodel == 2.1 : variant of exponential dependence in speciation rate with off- set at infinity; ddmodel = 2 will be interpreted as this model ddmodel == 2.2 : 1/n dependence in speciation rate ddmodel == 2.3 : exponential dependence in speciation rate with parameter x (= exponent)
Value	
out	 A list with the following elements: The first element is the tree of extant species in phylo format The second element is the tree of all species, including extinct species, in phylo format The third element is a matrix of all species where the first column is the time at which a species is born the second column is the label of the parent of the species; positive and negative values only indicate whether the species belongs to the left or right crown

- the third column is the label of the daughter species itself; positive and negative values only indicate whether the species belongs to the left or right crown lineage

- the fourth column is the time of extinction of the species

If the fourth element equals -1, then the species is still extant.

- the fifth column indicates whether the species belong to the main clade (0) or the subclade (1)

The fourth element is the subclade tree of extant species (without stem)

The fifth element is the subclade tree of all species (without stem)

The sixth element is the same as the first, except that it has attributed 0 for the main clade and 1 for the subclade

The seventh element is the same as the Second, except that it has attributed 0 for the main clade and 1 for the subclade

The sixth and seventh element will be NULL if the subclade does not exist (because it went extinct).

Author(s)

Rampal S. Etienne

References

- Etienne, R.S. et al. 2012, Proc. Roy. Soc. B 279: 1300-1309, doi: 10.1098/rspb.2011.1439

- Etienne, R.S. & B. Haegeman 2012. Am. Nat. 180: E75-E89, doi: 10.1086/667574

Examples

dd_MS_sim(c(0.2,0.1,20,0.1,0.05,4),10)

dd_multiple_KI_loglik Loglikelihood for diversity-dependent diversification models with multiple decoupling (rate shift) events

Description

This function computes loglikelihood of a diversity-dependent diversification model for a given set of branching times and parameter values where the diversity-dependent dynamics of subclades decouple from the dynamics of main clades, potentially accompanied by a shift in parameters.

Usage

```
dd_multiple_KI_loglik(
   pars1_list,
   pars2,
   brts_k_list,
   missnumspec_list,
   reltol = 1e-14,
   abstol = 1e-16,
```

```
methode = "lsoda"
)
```

Arguments

pars1_list	list of paramater sets one for each rate regime (subclade). The parameters are: lambda (speciation rate), mu (extinction rate), and K (clade-level carrying capacity).
pars2	Vector of model settings:
	pars2[1] sets the maximum number of species for which a probability must be computed. This must be larger than 1 + missnumspec + length(brts).
	<pre>pars2[2] sets the model of diversity-dependence: - pars2[2] == 1 linear dependence in speciation rate with parameter K (= diver- sity where speciation = extinction)</pre>
	- pars2[2] == 1.3 linear dependence in speciation rate with parameter K' (= diversity where speciation = 0)
	- pars2[2] == 2 exponential dependence in speciation rate with parameter K (= diversity where speciation = extinction)
	- pars2[2] == 2.1 variant of exponential dependence in speciation rate with offset at infinity
	- pars2[2] == 2.2 1/n dependence in speciation rate
	<pre>- pars2[2] == 2.3 exponential dependence in speciation rate with parameter x (= exponent)</pre>
	- pars2[2] == 3 linear dependence in extinction rate
	<pre>- pars2[2] == 4 exponential dependence in extinction rate</pre>
	- pars2[2] == 4.1 variant of exponential dependence in extinction rate with offset at infinity
	- pars2[2] == 4.2 1/n dependence in extinction rate
	pars2[3] sets the conditioning:
	- pars2[3] == 0 no conditioning (or just crown age)
	 pars2[3] == 1 conditioning on non-extinction of the phylogeny pars2[3] == 2 conditioning on number of species and crown age; not yet im-
	plemented
	 - pars2[3] == 3 conditioning on number of species only; not yet implemented - pars2[3] == 4 conditioning on survival of the subclade
	- pars2[3] == 5 conditioning on survival of all subclades and of both crown lin-
	eages in the main clade. This assumes that subclades that have already shifted
	do not undergo another shift, i.e. shifts only occur in the main clade.
	pars2[4] Obsolete.
	pars2[5] sets whether the parameters and likelihood should be shown on screen (1) or not (0)
	pars2[6] sets whether the first data point is stem age (1) or crown age (2)

32

	pars2[7] sets whether the old (incorrect) likelihood should be used (0), or whether the new corrected likelihood should be used (1).
brts_k_list	list of matrices, one for each rate regime (subclade). Each matrix has in the first row the branching times including the shift/decoupling time and the present time (0) in negative time (i.e. $10 \text{ mya} = -10$). In the second row it has the number of lineages, i.e. starting at 2 for a phylogeny with a crown and increasing by one at each branching time and decreasing by one at each decoupling/shift time. The last element is the same as the second last.
missnumspec_li	st
	list containing the number of missing species for each clade. If only a single number m of missing species is known for the entire phylogeny, then each el- ement of the list should be 0:m. One can also create this from m using the function create_missnumspec_list
reltol	relative tolerance in integration of the ODE system, default at 1e-14
abstol	tolerance tolerance in integration of the ODE system, default at 1e-16
methode	The method used to solve the master equation, default is 'analytical' which uses matrix exponentiation; alternatively numerical ODE solvers can be used, such as 'lsoda' or 'ode45'. These were used in the package before version 3.1.

dd_sim	Function to simulate the diversity-dependent diversification process
--------	--

Description

Simulating the diversity-dependent diversification process

Usage

dd_sim(pars, age, ddmodel = 1)

pars	Vector of parameters:
	<pre>pars[1] corresponds to lambda (speciation rate) pars[2] corresponds to mu (extinction rate) pars[3] corresponds to K (clade-level carrying capacity)</pre>
age	Sets the crown age for the simulation
ddmodel	Sets the model of diversity-dependence: ddmodel == 1 : linear dependence in speciation rate with parameter K (= diver- sity where speciation = extinction) ddmodel == 1.3 : linear dependence in speciation rate with parameter K' (= di- versity where speciation = 0) ddmodel == 2 : exponential dependence in speciation rate with parameter K (=

diversity where speciation = extinction) ddmodel == 2.1 : variant of exponential dependence in speciation rate with off-
set at infinity
ddmodel == 2.2: 1/n dependence in speciation rate
ddmodel == 2.3: exponential dependence in speciation rate with parameter x
(= exponent)
ddmodel == 3 : linear dependence in extinction rate
ddmode1 == 4 : exponential dependence in extinction rate
ddmodel == 4.1 : variant of exponential dependence in extinction rate with off-
set at infinity
ddmodel == 4.2: 1/n dependence in extinction rate with offset at infinity
ddmodel == 5 : linear dependence in speciation and extinction rate

Value

A list with the following four elements: The first element is the tree of extant species in phylo format
The second element is the tree of all species, including extinct species, in phylo format
The third element is a matrix of all species where

the first column is the time at which a species is born
the second column is the label of the parent of the species; positive and negative values only indicate whether the species belongs to the left or right crown lineage
the third column is the label of the daughter species itself; positive and negative values only indicate whether the species belongs to the left or right crown lineage
the fourth column is the time of extinction of the species. If this equals -1, then the species is still extant.

The fourth element is the set of branching times of the tree of extant species.

Author(s)

Rampal S. Etienne

References

- Etienne, R.S. et al. 2012, Proc. Roy. Soc. B 279: 1300-1309, doi: 10.1098/rspb.2011.1439

- Etienne, R.S. & B. Haegeman 2012. Am. Nat. 180: E75-E89, doi: 10.1086/667574

Examples

dd_sim(c(0.2,0.1,20),10)

dd_SR_loglik

Loglikelihood for diversity-dependent diversification models with a shift in the parameters at time t = tshift

Description

This function computes loglikelihood of a diversity-dependent diversification model for a given set of branching times and parameter values where the parameters are allowed to shift at time t = tshift

Usage

```
dd_SR_loglik(pars1, pars2, brts, missnumspec, methode = "analytical")
```

pars1	Vector of parameters:
	pars1[1] corresponds to lambda (speciation rate) before the shift pars1[2] corresponds to mu (extinction rate) before the shift pars1[3] corresponds to K (clade-level carrying capacity) before the shift pars1[4] corresponds to lambda (speciation rate) after the shift pars1[5] corresponds to mu (extinction rate) after the shift pars1[6] corresponds to K (clade-level carrying capacity) after the shift pars1[7] corresponds to tshift (the time of shift)
pars2	Vector of model settings:
	pars2[1] sets the maximum number of species for which a probability must be computed. This must be larger than 1 + missnumspec + length(brts).
	 pars2[2] sets the model of diversity-dependence: pars2[2] == 1 linear dependence in speciation rate with parameter K (= diversity where speciation = extinction) pars2[2] == 1.3 linear dependence in speciation rate with parameter K' (= diversity where speciation = 0) pars2[2] == 2 exponential dependence in speciation rate with parameter K (= diversity where speciation = extinction) pars2[2] == 2.1 variant of exponential dependence in speciation rate with offset at infinity pars2[2] == 2.2 l/n dependence in speciation rate pars2[2] == 2.3 exponential dependence in speciation rate with parameter x (= exponent) pars2[2] == 3 linear dependence in extinction rate pars2[2] == 4 exponential dependence in extinction rate pars2[2] == 4.1 variant of exponential dependence in extinction rate with offset at infinity

	<pre>pars2[3] sets the conditioning: - pars2[3] == 0 no conditioning - pars2[3] == 1 conditioning on non-extinction of the phylogeny - pars2[3] == 2 conditioning on non-extinction of the phylogeny and on the to- tal number of extant taxa (including missing species)</pre>
	pars2[4] sets whether the likelihood is for the branching times (0) or the phylogeny (1)
	pars2[5] sets whether the parameters and likelihood should be shown on screen (1) or not (0)
	pars2[6] sets whether the first data point is stem age (1) or crown age (2)
brts	A set of branching times of a phylogeny, all positive
missnumspec	The number of species that are in the clade but missing in the phylogeny
methode	The method used to solve the master equation, default is 'analytical' which uses matrix exponentiation; alternatively numerical ODE solvers can be used, such as 'lsoda' or 'ode45'. These were used in the package before version 3.1.

Value

The loglikelihood

Author(s)

Rampal S. Etienne & Bart Haegeman

References

- Etienne, R.S. et al. 2012, Proc. Roy. Soc. B 279: 1300-1309, doi: 10.1098/rspb.2011.1439
- Etienne, R.S. & B. Haegeman 2012. Am. Nat. 180: E75-E89, doi: 10.1086/667574

See Also

dd_SR_ML, dd_loglik, dd_KI_loglik

Examples

dd_SR_ML

Maximization of the loglikelihood under a diversity-dependent diversification model with a shift in the parameters

Description

This function computes the maximum likelihood estimates of the parameters of a diversity-dependent diversification model with shifting parameters at time t = tshift for a given set of phylogenetic branching times. It also outputs the corresponding loglikelihood that can be used in model comparisons.

Usage

```
dd_SR_ML(
 brts,
 initparsopt = c(0.5, 0.1, 2 * (1 + length(brts) + missnumspec), 2 * (1 + length(brts))
    + missnumspec), max(brts)/2),
  parsfix = NULL,
  idparsopt = c(1:3, 6:7),
  idparsfix = NULL,
 idparsnoshift = (1:7)[c(-idparsopt, (-1)^(length(idparsfix) != 0) * idparsfix)],
  res = 10 * (1 + length(brts) + missnumspec),
 ddmodel = 1,
 missnumspec = 0,
  cond = 1,
 btorph = 1,
  soc = 2,
  allbp = FALSE,
  tol = c(0.001, 1e-04, 1e-06),
 maxiter = 1000 * round((1.25)^length(idparsopt)),
  changeloglikifnoconv = FALSE,
  optimmethod = "subplex",
  num_cycles = 1,
 methode = "analytical",
  verbose = FALSE
)
```

Arguments

brts	A set of branching times of a phylogeny, all positive
initparsopt	The initial values of the parameters that must be optimized
parsfix	The values of the parameters that should not be optimized
idparsopt	The ids of the parameters that must be optimized, e.g. 1:7 for all parameters. The ids are defined as follows: id == 1 corresponds to lambda (speciation rate) before the shift id == 2 corresponds to mu (extinction rate) before the shift

	id == 3 corresponds to K (clade-level carrying capacity) before the shift id == 4 corresponds to lambda (speciation rate) after the shift id == 5 corresponds to mu (extinction rate) after the shift id == 6 corresponds to K (clade-level carrying capacity) after the shift
	id == 0 corresponds to K (clade-level carrying capacity) after the shift id == 7 corresponds to tshift (the time of shift)
idparsfix	The ids of the parameters that should not be optimized, e.g. $c(1,3,4,6)$ if lambda and K should not be optimized, but only mu. In that case idparsopt must be c(2,5,7). The default is to fix all parameters not specified in idparsopt.
idparsnoshift	The ids of the parameters that should not shift; This can only apply to ids 4, 5 and 6, e.g. idparsnoshift = $c(4,5)$ means that lambda and mu have the same values before and after tshift
res	sets the maximum number of species for which a probability must be computed, must be larger than 1 + length(brts)
ddmodel	sets the model of diversity-dependence: ddmodel == 1 : linear dependence in speciation rate ddmodel == 2 : exponential dependence in speciation rate ddmodel == 2.1 : variant of exponential dependence in speciation rate with offset at infinity ddmodel == 2.2 : 1/n dependence in speciation rate ddmodel == 3 : linear dependence in extinction rate ddmodel == 4 : exponential dependence in extinction rate ddmodel == 4.1 : variant of exponential dependence in extinction rate with offset at infinity ddmodel == 4.2 : 1/n dependence in extinction rate with offset at infinity
missnumspec	The number of species that are in the clade but missing in the phylogeny
cond	Conditioning: cond == 0 : no conditioning cond == 1 : conditioning on non-extinction of the phylogeny cond == 2 : conditioning on non-extinction of the phylogeny and on the total number of extant taxa (including missing species) cond == 3 : conditioning on the total number of extant taxa (including missing species)
	Note: cond == 3 assumes a uniform prior on stem age, as is the standard in constant-rate birth-death models, see e.g. D. Aldous & L. Popovic 2004. Adv. Appl. Prob. 37: 1094-1115 and T. Stadler 2009. J. Theor. Biol. 261: 58-66.
btorph	Sets whether the likelihood is for the branching times (0) or the phylogeny (1)
SOC	Sets whether stem or crown age should be used (1 or 2)
allbp	Sets whether a search should be done with various initial conditions, with tshift at each of the branching points (TRUE/FALSE)
tol	Sets the tolerances in the optimization. Consists of: reltolx = relative tolerance of parameter values in optimization reltolf = relative tolerance of function value in optimization abstolx = absolute tolerance of parameter values in optimization
maxiter	Sets the maximum number of iterations in the optimization

dd_SR_ML

changeloglikifnoconv

	if TRUE the loglik will be set to -Inf if ML does not converge
optimmethod	Method used in optimization of the likelihood. Current default is 'subplex'. Alternative is 'simplex' (default of previous versions)
num_cycles	the number of cycles of opimization. If set at Inf, it will do as many cycles as needed to meet the tolerance set for the target function.
methode	The method used to solve the master equation, default is 'analytical' which uses matrix exponentiation; alternatively numerical ODE solvers can be used, such as 'lsoda' or 'ode45'. These were used in the package before version 3.1.
verbose	Show the parameters and loglikelihood for every call to the loglik function

Details

The output is a dataframe containing estimated parameters and maximum loglikelihood. The computed loglikelihood contains the factor q! m!/(q + m)! where q is the number of species in the phylogeny and m is the number of missing species, as explained in the supplementary material to Etienne et al. 2012.

Value

lambda_1	gives the maximum likelihood estimate of lambda before the shift
mu_1	gives the maximum likelihood estimate of mu before the shift
K_1	gives the maximum likelihood estimate of K before the shift
lambda_2	gives the maximum likelihood estimate of lambda after the shift
mu_2	gives the maximum likelihood estimate of mu after the shift
K_2	gives the maximum likelihood estimate of K after the shift
t_shift	gives the time of the shift
loglik	gives the maximum loglikelihood
df	gives the number of estimated parameters, i.e. degrees of feedom
conv	gives a message on convergence of optimization; $conv = 0$ means convergence

Note

The optimization may get trapped in local optima. Try different starting values to search for the global optimum.

Author(s)

Rampal S. Etienne & Bart Haegeman

References

- Etienne, R.S. et al. 2012, Proc. Roy. Soc. B 279: 1300-1309, doi: 10.1098/rspb.2011.1439
- Etienne, R.S. & B. Haegeman 2012. Am. Nat. 180: E75-E89, doi: 10.1086/667574

See Also

dd_SR_loglik, dd_ML, dd_KI_ML,

Examples

SR	

Function to simulate the diversity-dependent diversification process with a shift in one or more of the parameters

Description

Simulating the diversity-dependent diversification process with a parameter shift at a certain time

Usage

```
dd_SR_sim(pars, age, ddmodel = 1)
```

Arguments

pars	Vector of parameters:
	<pre>pars[1] corresponds to lambda1 (speciation rate before the rate shift) pars[2] corresponds to mu1 (extinction rate before the rate shift) pars[3] corresponds to K1 (clade-level carrying capacity before the rate shift) pars[4] corresponds to lambda2 (speciation rate after the rate shift) pars[5] corresponds to mu2 (extinction rate after the rate shift) pars[6] corresponds to K2 (clade-level carrying capacity after the rate shift) pars[7] corresponds to the time of shift</pre>
age	Sets the crown age for the simulation
ddmodel	<pre>Sets the model of diversity-dependence: ddmodel == 1 : linear dependence in speciation rate with parameter K (= diver- sity where speciation = extinction) ddmodel == 1.3 : linear dependence in speciation rate with parameter K' (= di- versity where speciation = 0) ddmodel == 2 : exponential dependence in speciation rate with parameter K (= diversity where speciation = extinction)</pre>

40

ddmodel == 2.1 : variant of exponential dependence in speciation rate with off-
set at infinity
ddmodel == 2.2: 1/n dependence in speciation rate
ddmodel == 2.3 : exponential dependence in speciation rate with parameter x
(= exponent)
ddmodel == 3 : linear dependence in extinction rate
ddmodel == 4 : exponential dependence in extinction rate
ddmodel == 4.1 : variant of exponential dependence in extinction rate with off-
set at infinity
ddmodel == 4.2: 1/n dependence in extinction rate with offset at infinity
ddmodel == 5 : linear dependence in speciation and extinction rate

Value

out	A list with the following four elements: The first element is the tree of extant species in phylo format
	The second element is the tree of all species, including extinct species, in phylo
	format
	The third element is a matrix of all species where
	- the first column is the time at which a species is born
	- the second column is the label of the parent of the species; positive and nega-
	tive values only indicate whether the species belongs to the left or right crown
	lineage
	- the third column is the label of the daughter species itself; positive and nega-
	tive values only indicate whether the species belongs to the left or right crown
	lineage
	- the fourth column is the time of extinction of the species If this equals -1, then
	the species is still extant.
	The fourth element is the set of branching times of the tree of extant species.

Author(s)

Rampal S. Etienne

References

- Etienne, R.S. et al. 2012, Proc. Roy. Soc. B 279: 1300-1309, doi: 10.1098/rspb.2011.1439

- Etienne, R.S. & B. Haegeman 2012. Am. Nat. 180: E75-E89, doi: 10.1086/667574

Examples

dd_SR_sim(c(0.2,0.1,20,0.2,0.1,40,5),10)

L2brts

Function to convert a table with speciation and extinction events to a set of branching times

Description

Converting a table with speciation and extinction events to a set of branching times

Usage

L2brts(L, dropextinct = T)

Arguments

L	Matrix of events as produced by dd_sim:	
	 the first column is the time at which a species is born in Mya the second column is the label of the parent of the species; positive and negative values indicate whether the species belongs to the left or right crown lineage the third column is the label of the daughter species itself; positive and negative values indicate whether the species belongs to the left or right crown lineage the fourth column is the time of extinction of the species; if the fourth element equals -1, then the species is still extant. 	
dropextinct	Sets whether the phylogeny should drop species that are extinct at the present	

Value

brts A set of	branc	hing	times
---------------	-------	------	-------

Author(s)

Rampal S. Etienne

References

Etienne, R.S. et al. 2012, Proc. Roy. Soc. B 279: 1300-1309, doi: 10.1098/rspb.2011.1439
Etienne, R.S. & B. Haegeman 2012. Am. Nat. 180: E75-E89, doi: 10.1086/667574

Examples

sim = dd_sim(c(0.2,0.1,20),10)
phy = L2brts(sim\$L)
plot(phy)

L2phylo

Function to convert a table with speciation and extinction events to a phylogeny

Description

Converting a table with speciation and extinction events to a phylogeny

Usage

L2phylo(L, dropextinct = T)

Arguments

L	Matrix of events as produced by dd_sim:	
	 the first column is the time at which a species is born in Mya the second column is the label of the parent of the species; positive and negative values indicate whether the species belongs to the left or right crown lineage the third column is the label of the daughter species itself; positive and negative values indicate whether the species belongs to the left or right crown lineage the fourth column is the time of extinction of the species; if the fourth element equals -1, then the species is still extant. 	
dropextinct	Sets whether the phylogeny should drop species that are extinct at the present	

Value

phy A phylogeny of the phylo type

Author(s)

Rampal S. Etienne

References

Etienne, R.S. et al. 2012, Proc. Roy. Soc. B 279: 1300-1309, doi: 10.1098/rspb.2011.1439
Etienne, R.S. & B. Haegeman 2012. Am. Nat. 180: E75-E89, doi: 10.1086/667574

Examples

sim = dd_sim(c(0.2,0.1,20),10)
phy = L2phylo(sim\$L)
plot(phy)

optimizer

Description

A wrapper to use several optimization routines, currently only 'simplex' (a method adopted from Matlab, or 'subplex', from the R package subplex). The function is called from several packages by the same author.

Usage

```
optimizer(
    optimmethod = "simplex",
    optimpars = c(1e-04, 1e-04, 1e-06, 1000),
    num_cycles = 1,
    fun,
    trparsopt,
    jitter = 0,
    ...
)
```

Arguments

optimmethod	The method to use for optimization, either 'simplex' or 'subplex'
optimpars	Parameters of the optimization: relative tolerance in function arguments, rela- tive tolerance in function value, absolute tolerance in function arguments, and maximum number of iterations
num_cycles	Number of cycles of the optimization. When set to Inf, the optimization will be repeated until the result is, within the tolerance, equal to the starting values, with a maximum of 10 cycles.
fun	Function to be optimized
trparsopt	Initial guess of the parameters to be optimized
jitter	Perturbation of an initial parameter value when precisely equal to 0.5; this is only relevant when subplex is chosen. The default value is 0, so no jitter is applied. A recommended value when using it is 1E-5.
	Any other arguments of the function to be optimimzed, or settings of the opti- mization routine

Value

out	A list containing optimal function arguments (par, the optimal function value
	(fvalues) and whether the optimization converged (conv)

phylo2L

Author(s)

Rampal S. Etienne

Examples

cat("No examples")

phylo2L	Function to convert phylogeny to a table with speciation and extinction
	events

Description

Converting a phylogeny to a table with speciation and extinction events

Usage

phylo2L(phy)

Arguments phy

A	phylogeny	of the	phylo type	•

Value

L

Matrix of events as produced by dd_sim:	
- the first column is the time at which a species is born in Mya	
- the second column is the label of the parent of the species; positiv	ve and nega-
tive values indicate whether the species belongs to the left or right cr	own lineage
- the third column is the label of the daughter species itself; positive	and negative
values indicate whether the species belongs to the left or right crow	n lineage
- the fourth column is the time of extinction of the species; if the for	urth element
equals -1, then the species is still extant.	

Author(s)

Liang Xu

References

- Etienne, R.S. et al. 2012, Proc. Roy. Soc. B 279: 1300-1309, doi: 10.1098/rspb.2011.1439
- Etienne, R.S. & B. Haegeman 2012. Am. Nat. 180: E75-E89, doi: 10.1086/667574

Examples

```
sim = dd_sim(c(0.2,0.1,20),10)
phy = sim$tas
L = phylo2L(phy)
phy2 = L2phylo(L, dropextinct = FALSE)
graphics::plot(phy)
graphics::plot(phy)
graphics::plot(phy2)
graphics::plot(L2phylo(sim$L, dropextinct = FALSE))
```

rng_respecting_sample Sampling in which zero probabilities are removed

Description

Sampling in which zero probabilities are removed

Usage

rng_respecting_sample(x, size, replace, prob)

Arguments

x	either a vector of one or more elements from which to choose, or a positive integer. See 'Details.'
size	a non-negative integer giving the number of items to choose.
replace	should sampling be with replacement?
prob	a vector of probability weights for obtaining the elements of the vector being sampled.

Value

a vector of length size with elements drawn from either x or from the integers 1:x.

Note

thanks to Pedro Neves for finding this feature in base::sample

Author(s)

Richel J.C. Bilderbeek

See Also

See sample for more details

46

roundn

Examples

```
# Number of draws
n <- 1000
# Do normal sampling
set.seed(42)
draws_1 <- DDD:::rng_respecting_sample(</pre>
 1:3, size = n, replace = TRUE, prob = c(1.0, 1.0, 1.0)
)
# Do a sampling with one element of probability zero
set.seed(42)
draws_2 <- DDD:::rng_respecting_sample(</pre>
 1:4, size = n, replace = TRUE, prob = c(1.0, 1.0, 1.0, 0.0)
)
testit::assert(sum(draws_2 == 4) == 0)
testit::assert(draws_1 == draws_2)
# Use base sampling will give different results,
# as it results in different RNG values
set.seed(42)
draws_3 <- sample(</pre>
  1:4, size = n, replace = TRUE, prob = c(1.0, 1.0, 1.0, 0.0)
)
testit::assert(sum(draws_3 == 4) == 0)
testit::assert(!all(draws_1 == draws_3))
```

roundn

Rounds up in the usual manner

Description

The standard round function in R rounds x.5 to the nearest even integer. This is odd behavior that is corrected in roundn

Usage

roundn(x, digits = 0)

Arguments

х	Number to be rounded
digits	Sets the number of decimals in rounding.

Value

n	A number
r i	A number

sample2

Author(s)

Rampal S. Etienne

Examples

```
round(2.5)
round(2.5)
round(3.5)
round(2.65,digits = 1)
roundn(2.65,digits = 1)
round(2.75,digits = 1)
roundn(2.75,digits = 1)
```

sample2

Takes samples in the usual manner

Description

The standard sample function in R samples from n numbers when x = n. This is unwanted behavior when the size of the vector to sample from changes dynamically. This is corrected in sample2

Usage

sample2(x, size, replace = FALSE, prob = NULL)

Arguments

х	A vector of one or more elements
size	A non-negative integer giving the number of items to choose.
replace	Should sampling be with replacement?
prob	A vector of probability weights for obtaining the elements of the vector being sampled.

Value

sam A vector of length size that is sampled from x.

Author(s)

Rampal S. Etienne

48

simplex

Examples

sample(x = 10,size = 5,replace = TRUE)
sample2(x = 10,size = 5,replace = TRUE)

simplex	Carries out optimization using a simplex algorithm (finding a mini- mum)

Description

Function to optimize target function using a simplex method adopted from Matlab

Usage

simplex(fun, trparsopt, optimpars, ...)

Arguments

fun	Function to be optimized
trparsopt	Initial guess of the parameters to be optimized
optimpars	Parameters of the optimization: relative tolerance in function arguments, rela- tive tolerance in function value, absolute tolerance in function arguments, and maximum number of iterations
	Any other arguments of the function to be optimimzed, or settings of the opti- mization routine

Value

out	A list containing optimal function arguments (par, the optimal function value
	(fvalues) and whether the optimization converged (conv)

Author(s)

•

Rampal S. Etienne

Examples

cat("No examples")

td_sim

Description

Simulates a phylogenetic tree branching according to a time-dependent process calibrated on the expected number of species under a diversity-dependent process over time.

Usage

td_sim(pars, age, ddmodel = 1, methode = "ode45")

Arguments

pars	Vector of parameters:
	pars[1] corresponds to lambda0 (speciation rate)
	pars[2] corresponds to mu0 (extinction rate)
	pars[3] corresponds to lambda1 (decline parameter in speciation rate) or K in diversity-dependence-like models
	pars[4] corresponds to mu1 (decline parameter in extinction rate)
age	crown age of the tree to simulate, i.e. the simulation time.
ddmodel	the diversity-dependent model used as reference for the time-dependent model.
methode	The method used to solve the master equation. See deSolve::ode() documen- tation for possible inputs

Value

A list with the following four elements: The first element is the tree of extant species in phylo format

The second element is the tree of all species, including extinct species, in phylo format

The third element is a matrix of all species where - the first column is the time at which a species is born

- the second column is the label of the parent of the species; positive and negative values only indicate whether the species belongs to the left or right crown lineage

- the third column is the label of the daughter species itself; positive and negative values only indicate whether the species belongs to the left or right crown lineage

- the fourth column is the time of extinction of the species. If this equals -1, then the species is still extant.

Author(s)

César Martinez, Rampal S. Etienne

transform_pars

Description

Function to transform pars in a way that is more useful for optimization: trpars <- sign(pars) * pars/(sign(pars) + pars);

Usage

```
transform_pars(pars)
```

Arguments

pars

Parameters to be transformed

Value

Transformed parameters

Author(s)

Rampal S. Etienne

untransform_pars	Untransforming parameters from -1 to 1 into parameters from -Inf to
	Inf.

Description

Function to untransform pars after optimization: pars <- sign(trpars) * trpars/(sign(trpars) - trpars);

Usage

```
untransform_pars(trpars)
```

Arguments

trpars Parameters to be untransformed

Value

Untransformed parameters

Author(s)

Rampal S. Etienne

Index

*Topic models bd_loglik, 2 $bd_ML, 4$ brts2phylo,7 conv, 7 dd_KI_loglik, 8 $dd_KI_ML, 10$ dd_KI_sim, 14 dd_loglik, 16 dd_LR, 18 dd_ML, 21 dd_MS_loglik, 24 dd_MS_ML, 26 dd_MS_sim, 30 dd_sim, 33 dd_SR_loglik, 35 $dd_SR_ML, 37$ dd_SR_sim, 40 L2brts, 42L2phylo, 43 optimizer, 44 phylo2L, 45 roundn, 47 sample2, 48 simplex, 49bd_loglik, 2, 6 bd_ML, 4, 4 brts2phylo,7 conv, 7 dd_KI_loglik, 8, 13, 17, 26, 36 dd_KI_ML, 10, 10, 24, 29, 40 dd_KI_sim, 14 dd_loglik, 10, 16, 21, 24, 26, 36 dd_LR, 18 dd_ML, 13, 17, 21, 21, 29, 40 dd_MS_loglik, 24, 29 dd_MS_ML, 26, 26

dd_MS_sim, 30 dd_multiple_KI_loglik, 31 dd_sim, 33 dd_SR_loglik, 10, 17, 26, 35, 40 dd_SR_ML, 13, 24, 29, 36, 37 dd_SR_sim, 40 L2brts, 42 L2phylo, 43 optimizer, 44 phylo2L, 45 rng_respecting_sample, 46 roundn, 47 sample, 46 sample2, 48 simplex, 49td_sim, 50 transform_pars, 51 untransform_pars, 51