Package ‘DAP’

March 5, 2018
Type Package

Title Discriminant Analysis via Projections

Version 1.0

Date 2018-03-05

Author Tianying Wang and Irina Gaynanova

Maintainer Tianying Wang <tianying@stat.tamu.edu>

Description An implementation of Discriminant Analysis via Projections (DAP) method for high-
dimensional binary classification in the case of unequal covariance matrices. See Irina Gay-
nanova and Tianying Wang (2018) <arXiv:1711.04817v2>.

License GPL (>=2)
Imports MASS, stats
LazyData TRUE

URL http://github.com/irinagain/DAP

BugReports http://github.com/irinagain/DAP/issues
RoxygenNote 6.0.1

NeedsCompilation yes

Repository CRAN

Date/Publication 2018-03-05 20:05:33 UTC

R topics documented:

dap-package e
apply_DAP . . . e
classify DAP e
cv_DAP . . e
solve_DAP_C e e
solve_DAP_seq e
standardizeData e e e

Index

http://github.com/irinagain/DAP
http://github.com/irinagain/DAP/issues

2 apply_DAP

dap-package Discriminant Analysis via Projections

Description

This package provides tools for discriminant analysis on binary classification. It contains func-
tions apply_DAP, classify_DAP, cv_DAP, solve_DAP_C, solve_DAP, solve_DAP_seq for
implementing the method Discriminant Analysis via Projections.

Author(s)

Irina Gaynanova and Tianying Wang.

References

Gaynanova, 1. and Wang, T. "Sparse quadratic classification rules via linear dimension reduction”.
arxiv.org/abs/1711.04817 (2018+)

apply_DAP Apply DAP for binary classification

Description
Applies Discriminant Analysis via Projections to perform binary classification on the test dataset
based on the training data.

Usage

apply_DAP(xtrain, ytrain, xtest, ytest = NULL, lambda_seq = NULL,
n_lambda = 50, maxmin_ratio = 0.1, nfolds = 5, eps = 1e-04,
maxiter = 10000, myseed = 1001, prior = TRUE)

Arguments

xtrain A n x p training dataset; n observations on the rows and p features on the
columns.

ytrain A n vector of training group labels, either 1 or 2.

xtest A m x p testing dataset; m observations on the rows and p features on the
columns.

ytest An optional m vector of testing group labels, either 1 or 2. If supplied, the func-
tion returns misclassification error rate; if NULL, the function returns predicted
labels for xtest. Default is NULL.

lambda_seq An optional sequence of tunning parameters lambda. Default is NULL, and the

function generates its own sequence.

apply_DAP

n_lambda

maxmin_ratio

nfolds

eps

maxiter

myseed

prior

Details

Number of lambda values, the default is 50.

Smallest value for lambda, as a fraction of maximal value for which all coeffi-
cients are zero. The default is 0.1.

Number of folds for cross-validation, the default is 5.

Convergence threshold for the block-coordinate decent algorithm based on the
maximum element-wise change in V. The default is 1e-4.

Maximum number of iterations, the default is 10000.

Optional specification of random seed for generating the folds, the default value
is 1001.

A logical indicating whether to put larger weights to the groups of larger size;
the default value is TRUE.

If no feature is selected by DAP, the function will return error of 0.5 and no ypred, indicating that
the classifier is no better than random guessing.

Value
A list of
error
ypred

features

feature_id

Examples

Misclassification error rate (if ytest is provided).
Predicted labels on the test set (if ytest is NULL).
Number of selected features.

Index of selected features.

This is an example for apply_DAP

Generate data

n_train = 50
n_test = 50
p = 100

mul = rep(@, p)
mu2 = rep(3, p)
Sigmal = diag(p)

Sigma2 = @.5% diag(p)

Build training data and test data
x1 = MASS::mvrnorm(n = n_train, mu = mul, Sigma = Sigmal)

X2

MASS: :mvrnorm(n = n_train, mu = mu2, Sigma

Sigma2)

xtrain = rbind(x1, x2)

x1_test = MASS::mvrnorm(n = n_test, mu
x2_test = MASS::mvrnorm(n = n_test, mu = mu2, Sigma

mul, Sigma = Sigmal)
Sigma2)

xtest = rbind(x1_test, x2_test)
ytrain = c(rep(1, n_train), rep(2, n_train))
ytest = c(rep(1, n_test), rep(2, n_test))

Apply DAP

classity_DAP

Given ytest, the function will return a miclassification error rate.
ClassificationError = apply_DAP(xtrain, ytrain, xtest, ytest)

Without ytest,

the function will return predictions.

Ypredict = apply_DAP(xtrain, ytrain, xtest)

classify_DAP

Classification via DAP

Description

Classify observations in the test set using the supplied matrix V and the training data.

Usage

classify_DAP(xtrain, ytrain, xtest, V, prior = TRUE)

Arguments

xtrain

ytrain

Xxtest

\%

prior

Value

A n x p training dataset; n observations on the rows and p features on the
columns.

A n vector of training group labels, either 1 or 2.

A m x p testing dataset; m observations on the rows and p features on the
columns.

A p x 2 projection matrix.

A logical indicating whether to put larger weights to the groups of larger size;
the default value is TRUE.

Predicted class labels for the test data.

Examples

This is an example for classify_DAP

Generate data
n_train = 50
n_test = 50

p = 100

mul = rep(@, p)
mu2 = rep(3, p)
Sigmal = diag(p)

Sigma2 = 0.5% diag(p)

cv_DAP 5

Build training data and test data

x1 = MASS::mvrnorm(n = n_train, mu = mul, Sigma = Sigmal)

X2 = MASS::mvrnorm(n = n_train, mu = mu2, Sigma = Sigma2)
xtrain = rbind(x1, x2)

x1_test = MASS::mvrnorm(n = n_test, mu = mul, Sigma = Sigmal)
x2_test = MASS::mvrnorm(n = n_test, mu = mu2, Sigma = Sigma2)
xtest = rbind(x1_test, x2_test)

ytrain = c(rep(1, n_train), rep(2, n_train))

Standardize the data
out_s = standardizeData(xtrain, ytrain, center = FALSE)

Find V
out.proj = solve_DAP_C(X1 = out_s$X1, X2 = out_s$X2, lambda = 0.3)
V = cbind(diag(1/out_s$coef1)%*%out.proj$Vl,1],diag(1/out_s$coef2)%*% out.proj$Vvl,21)

Predict y using classify_DAP
ypred = classify_DAP(xtrain, ytrain, xtest, V = V)

cv_DAP Cross-validation for DAP

Description
Chooses optimal tuning parameter lambda for DAP based on the k-fold cross-validation to minimize
the misclassification error rate

Usage

cv_DAP(X, Y, lambda_seq, nfolds = 5, eps = 1e-04, maxiter = 1000,
myseed = 1001, prior = TRUE)

Arguments

X A n x p training dataset; n observations on the rows and p features on the
columns.

Y A n vector of training group labels, either 1 or 2.

lambda_seq A sequence of tuning parameters to choose from.

nfolds Number of folds for cross-validation, the default is 5.

eps Convergence threshold for the block-coordinate decent algorithm based on the
maximum element-wise change in V. The default is le-4.

maxiter Maximum number of iterations, the default is 10000.

myseed Optional specification of random seed for generating the folds, the default value
is 1001.

prior A logical indicating whether to put larger weights to the groups of larger size;

the default value is TRUE.

Value

A list of

lambda_seq
cvm

cvse
lambda_min

lambda_1se

nfeature_mat

error_mat

Examples

solve_ DAP C

The sequence of tuning parameters used.

The mean cross-validated error rate - a vector of length length(lambda_seq)
The estimated standard error vector corresponding to cvm.

Value of tuning parameter corresponding to the minimal error in cvm.

The largest value of tuning parameter such that the correspondig error is within
1 standard error of the minimal error in cvm.

A nfolds x length(lambda_seq) matrix of the number of selected features.

A nfolds x length(lambda_seq) matrix of the error rates.

This is an example for cv_DAP

Generate data

n_train = 50
n_test = 50

p = 100

mul = rep(@, p)
mu2 = rep(3, p)
Sigmal = diag(p)

Sigma2 = @.5* diag(p)

Build training data
x1 = MASS::mvrnorm(n = n_train, mu = mul, Sigma = Sigmal)

x2 = MASS::mvrnorm(n = n_train, mu = mu2, Sigma

Sigma2)

xtrain = rbind(x1, x2)

ytrain = c(rep(1,

Apply cv_DAP

n_train), rep(2, n_train))

fit = cv_DAP(X = xtrain, Y = ytrain, lambda_seq = c(0.2, 0.3, 0.5, 0.7, 0.9))

solve_DAP_C

Solves DAP optimization problem for a given lambda value

Description

Uses block-coordinate descent algorithm to solve DAP problem.

Usage

solve_DAP_C(X1,

X2, lambda, Vinit = NULL, eps = 1e-04, maxiter = 10000)

solve_ DAP C

Arguments

X1

X2
lambda
Vinit

eps

maxiter

Value
A list of

'
nfeature

iter

Warnings

A nl x p matrix of group 1 data (scaled).
A n2 x p matrix of group 2 data (scaled).
A value of the tuning parameter lambda.

Optional starting point, the default is NULL, and the algorithm starts with the
matrix of zeros.

Convergence threshold for the block-coordinate decent algorithm based on the
maximum element-wise change in V. The default is le-4.

Maximum number of iterations, the default is 10000.

A p x 2 projection matrix to be used in DAP classification algorithm.
Number of nonzero features.

Number of iterations until convergence.

Please use scaled X1 and X2 for this function, they can be obtained using standardizeData to do

SO.

Examples

This is an example for solve_DAP_C

Generate data
n_train = 50
n_test = 50

p = 100

mul = rep(@, p)
mu2 = rep(3, p)
Sigmal = diag(p)

Sigma2 = 0.5% diag(p)

Build training data
x1 = MASS::mvrnorm(n = n_train, mu = mul, Sigma = Sigmal)

x2 = MASS::mvrnorm(n = n_train, mu = mu2, Sigma

Sigma2)

xtrain = rbind(x1, x2)

ytrain =

c(rep(1, n_train), rep(2, n_train))

Standardize the data
out_s = standardizeData(xtrain, ytrain, center = FALSE)

Apply solve_DAP_C
out = solve_DAP_C(X1 = out_s$X1, X2 = out_s$X2, lambda = 0.3)

solve_DAP_seq

solve_DAP_seq

Solves DAP optimization problem for a given sequence of lambda val-
ues

Description

Uses block-coordinate descent algorithm with warm initializations, starts with the maximal supplied

lambda value.

Usage

solve_DAP_seq(X1, X2, lambda_seq, eps = 1e-04, maxiter = 10000,

feature_max =

Arguments

X1
X2
lambda_seq

eps

maxiter

feature_max

Value

A list of

lambda_seq
V1_mat

V2_mat

nfeature_vec

Examples

nrow(X1) + nrow(X2))

A nl x p matrix of group 1 data (scaled).
A n2 x p matrix of group 2 data (scaled).
A supplied sequence of tunning parameters.

Convergence threshold for the block-coordinate decent algorithm based on the
maximum element-wise change in V. The default is le-4.

Maximum number of iterations, the default is 10000.

An upper bound on the number of nonzero features in the solution; the default
value is the total sample size. The algorithm trims the supplied lambda_seq to
eliminate solutions that exceed feature_max.

A sequence of considered lambda values.

A p x m matrix with columns corresponding to the 1st projection vector V1
found at each lambda from lambda_seq.

A p x m matrix with columns corresponding to the 2nd projection vector V2
found at each lambda from lambda_seq.

A sequence of corresponding number of selected features for each value in
lambda_seq.

This is an example for solve_DAP_seq

Generate data
n_train = 50
n_test = 50

p = 100

standardizeData 9

mul = rep(@, p)
mu2 rep(3, p)
Sigmal = diag(p)
Sigma2 = @.5* diag(p)

Build training data

x1 = MASS::mvrnorm(n = n_train, mu = mul, Sigma = Sigmal)
X2 = MASS::mvrnorm(n = n_train, mu = mu2, Sigma = Sigma2)
xtrain = rbind(x1, x2)

ytrain = c(rep(1, n_train), rep(2, n_train))

Standardize the data
out_s = standardizeData(xtrain, ytrain, center = FALSE)

#i##Htuse solve_proj_seq
fit = solve_DAP_seq(X1 = out_s$X1, X2 = out_s$X2, lambda_seq = c(0.2, 0.3, 0.5, 0.7, 0.9))

standardizeData Divides the features matrix into two standardized submatrices

Description

Given matrix X with corresponding class labels in Y, the function column-centers X, divides it into
two submatrices corresponding to each class, and scales the columns of each submatrix to have
eucledean norm equal to one.

Usage

standardizeData(X, Y, center = TRUE)

Arguments

X A n x p training dataset; n observations on the rows and p features on the

columns.

Y A n vector of training group labels, either 1 or 2.

center A logical indicating whether X should be centered, the default is TRUE.
Value

A list of

X1 A nl x p standardized matrix with observations from group 1.

X2 A n2 x p standardized matrix with observations from group 2.

coef1 Back-scaling coefficients for X1.

coef?2 Back-scaling coefficients for X2.

Xmean Column means of the matrix X before centering.

10 standardizeData

Examples

An example for the function standardizeData

Generate data
n_train = 50

n_test = 50

p = 100

mul = rep(@, p)
mu2 = rep(3, p)

Sigmal = diag(p)
Sigma2 = 0.5% diag(p)

Build training data

x1 = MASS::mvrnorm(n = n_train, mu = mul, Sigma = Sigmal)
x2 = MASS::mvrnorm(n = n_train, mu = mu2, Sigma = Sigma2)
xtrain = rbind(x1, x2)

ytrain = c(rep(1, n_train), rep(2, n_train))

Standardize data
out_s = standardizeData(xtrain, ytrain, center = FALSE)

Index

+Topic package
dap-package, 2

apply_DAP, 2

classify_DAP, 4
cv_DAP, 5

dap-package, 2

solve_DAP_C, 6
solve_DAP_seq, 8
standardizeData, 9

11

	dap-package
	apply_DAP
	classify_DAP
	cv_DAP
	solve_DAP_C
	solve_DAP_seq
	standardizeData
	Index

