
Package ‘DALEXtra’
July 29, 2020

Title Extension for 'DALEX' Package

Version 1.3.2

Description Provides wrapper of various machine learning models.
In applied machine learning, there
is a strong belief that we need to strike a balance
between interpretability and accuracy.
However, in field of the interpretable machine learning,
there are more and more new ideas for explaining black-box models,
that are implemented in 'R'.
'DALEXtra' creates 'DALEX' Biecek (2018) <arXiv:1806.08915> ex-
plainer for many type of models
including those created using 'python' 'scikit-learn' and 'keras' libraries, and 'java' 'h2o' library.
Important part of the package is Champion-Challenger analysis and innovative approach
to model performance across subsets of test data presented in Funnel Plot.
Third branch of 'DALEXtra' package is aspect importance analysis
that provides instance-level explanations for the groups of explanatory variables.

Depends R (>= 3.5.0), DALEX (>= 1.3)

License GPL

Encoding UTF-8

LazyData true

RoxygenNote 7.1.0

Imports reticulate, ggplot2, glmnet, ggdendro, gridExtra

Suggests auditor, ingredients, gbm, ggrepel, h2o, mlr, mlr3,
randomForest, rmarkdown, rpart, xgboost, testthat, covr

URL https://ModelOriented.github.io/DALEXtra/,

https://github.com/ModelOriented/DALEXtra

BugReports https://github.com/ModelOriented/DALEXtra/issues

NeedsCompilation no

Author Szymon Maksymiuk [aut, cre] (<https://orcid.org/0000-0002-3120-1601>),
Przemyslaw Biecek [aut] (<https://orcid.org/0000-0001-8423-1823>),
Katarzyna Pekala [aut],

1

https://ModelOriented.github.io/DALEXtra/
https://github.com/ModelOriented/DALEXtra
https://github.com/ModelOriented/DALEXtra/issues

2 R topics documented:

Anna Kozak [ctb],
Hubert Baniecki [ctb]

Maintainer Szymon Maksymiuk <sz.maksymiuk@gmail.com>

Repository CRAN

Date/Publication 2020-07-28 23:42:12 UTC

R topics documented:

aspect_importance . 3
aspect_importance_single . 5
champion_challenger . 7
create_env . 8
explain_h2o . 9
explain_keras . 11
explain_mlr . 14
explain_mlr3 . 16
explain_scikitlearn . 18
explain_xgboost . 21
funnel_measure . 23
get_sample . 25
group_variables . 26
model_info.WrappedModel . 26
overall_comparison . 28
plot.aspect_importance . 29
plot.funnel_measure . 30
plot.overall_comparison . 31
plot.training_test_comparison . 33
plot_aspects_importance_grouping . 34
plot_group_variables . 35
print.funnel_measure . 36
print.overall_comparison . 37
print.scikitlearn_set . 38
print.training_test_comparison . 39
training_test_comparison . 40
triplot . 41
yhat.WrappedModel . 43

Index 45

aspect_importance 3

aspect_importance Calculates the feature groups importance (called aspects importance)
for a selected observation

Description

Aspect Importance function takes a sample from a given dataset and modifies it. Modification is
made by replacing part of its aspects by values from the observation. Then function is calculating
the difference between the prediction made on modified sample and the original sample. Finally, it
measures the impact of aspects on the change of prediction by using the linear model or lasso.

Usage

aspect_importance(x, ...)

S3 method for class 'explainer'
aspect_importance(
x,
new_observation,
aspects,
N = 100,
sample_method = "default",
n_var = 0,
f = 2,
show_cor = FALSE,
...

)

Default S3 method:
aspect_importance(
x,
data,
predict_function = predict,
new_observation,
aspects,
N = 100,
label = class(x)[1],
sample_method = "default",
n_var = 0,
f = 2,
show_cor = FALSE,
...

)

lime(x, ...)

4 aspect_importance

Arguments

x an explainer created with the DALEX::explain() function or a model to be ex-
plained.

... other parameters
new_observation

selected observation with columns that corresponds to variables used in the
model

aspects list containting grouping of features into aspects

N number of observations to be sampled (with replacement) from data

sample_method sampling method in get_sample

n_var maximum number of non-zero coefficients after lasso fitting, if zero than linear
regression is used

f frequency in get_sample

show_cor show if all features in aspect are pairwise positivly correlated, works only if
dataset contains solely numeric values

data dataset, it will be extracted from x if it’s an explainer NOTE: It is best when
target variable is not present in the data

predict_function

predict function, it will be extracted from x if it’s an explainer

label name of the model. By default it’s extracted from the ’class’ attribute of the
model.

Value

An object of the class aspect_importance. Contains dataframe that describes aspects’ importance.

Examples

library("DALEX")

model_titanic_glm <- glm(survived == 1 ~
class+gender+age+sibsp+parch+fare+embarked,
data = titanic_imputed,
family = "binomial")

explain_titanic_glm <- explain(model_titanic_glm,
data = titanic_imputed[,-8],
y = titanic_imputed$survived == 1,
verbose = FALSE)

aspects <- list(wealth = c("class", "fare"),
family = c("sibsp", "parch"),
personal = c("gender", "age"),
embarked = "embarked")

aspect_importance(explain_titanic_glm,
new_observation = titanic_imputed[1,],

aspect_importance_single 5

aspects = aspects)

library("randomForest")
model_titanic_rf <- randomForest(survived ~ class + gender + age + sibsp +

parch + fare + embarked,
data = titanic_imputed)

explain_titanic_rf <- explain(model_titanic_rf,
data = titanic_imputed[,-8],
y = titanic_imputed$survived == 1,
verbose = FALSE)

aspect_importance(explain_titanic_rf,
new_observation = titanic_imputed[1,],
aspects = aspects)

aspect_importance_single

Aspects importance for single aspects

Description

Calculates aspect_importance for single aspects (every aspect contains only one feature).

Usage

aspect_importance_single(x, ...)

S3 method for class 'explainer'
aspect_importance_single(
x,
new_observation,
N = 100,
sample_method = "default",
n_var = 0,
f = 2,
...

)

Default S3 method:
aspect_importance_single(
x,
data,
predict_function = predict,

6 aspect_importance_single

new_observation,
N = 100,
label = class(x)[1],
sample_method = "default",
n_var = 0,
f = 2,
...

)

Arguments

x an explainer created with the DALEX::explain() function or a model to be ex-
plained.

... other parameters
new_observation

selected observation with columns that corresponds to variables used in the
model, should be without target variable

N number of observations to be sampled (with replacement) from data

sample_method sampling method in get_sample

n_var how many non-zero coefficients for lasso fitting, if zero than linear regression is
used

f frequency in in get_sample

data dataset, it will be extracted from x if it’s an explainer NOTE: Target variable
shouldn’t be present in the data

predict_function

predict function, it will be extracted from x if it’s an explainer

label name of the model. By default it’s extracted from the ’class’ attribute of the
model.

Value

An object of the class ’aspect_importance’. Contains dataframe that describes aspects’ importance.

Examples

library("DALEX")

model_titanic_glm <- glm(survived == 1 ~ class + gender + age +
sibsp + parch + fare + embarked,
data = titanic_imputed,
family = "binomial")

aspect_importance_single(model_titanic_glm, data = titanic_imputed[,-8],
new_observation = titanic_imputed[1,-8])

champion_challenger 7

champion_challenger Compare machine learning models

Description

Determining if one model is better than the other one is a difficult task. Mostly because there is a
lot of fields that have to be covered to make such a judgemnt. Overall performance, performance
on the crucial subset, distribution of residuals, those are only few among many ideas related to
that issue. Following function allow user to create a report based on various sections. Each says
something different about relation between champion and challengers. DALEXtra package share 3
base sections which are funnel_measure overall_comparison and training_test_comparison
but any object that has generic plot function can be inculded at report.

Usage

champion_challenger(
sections,
dot_size = 4,
output_dir_path = getwd(),
output_name = "Report",
model_performance_table = FALSE,
title = "ChampionChallenger",
author = Sys.info()[["user"]],
...

)

Arguments

sections - list of sections to be attached to report. Could be sections available with
DALEXtra which are funnel_measure training_test_comparison, overall_comparison
or any other explanation that can work with plot function. Please provide name
for not standard sections, that will be presented as section titles. Oterwise class
of the object will be used.

dot_size - dot_size argument passed to plot.funnel_measure if funnel_measure sec-
tion present

output_dir_path

- path to directory where Report should be created. By default it is current
working directory.

output_name - name of the Report. By default it is "Report"
model_performance_table

- If TRUE and overall_comparison section present, table of scores will be
displayed.

title - Title for report, by default it is "ChampionChallenger".

author - Author of , report. By default it is current user name.

... - other parameters passed to rmarkdown::render.

8 create_env

Value

rmarkdown report

Examples

library("mlr")
library("DALEXtra")
task <- mlr::makeRegrTask(
id = "R",
data = apartments,
target = "m2.price"

)
learner_lm <- mlr::makeLearner(

"regr.lm"
)
model_lm <- mlr::train(learner_lm, task)
explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")

learner_rf <- mlr::makeLearner(
"regr.randomForest"
)
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")

learner_gbm <- mlr::makeLearner(
"regr.gbm"
)
model_gbm <- mlr::train(learner_gbm, task)
explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "GBM")

plot_data <- funnel_measure(explainer_lm, list(explainer_rf, explainer_gbm),
nbins = 5, measure_function = DALEX::loss_root_mean_square)

champion_challenger(list(plot_data), dot_size = 3)

create_env Create your conda virtual env with DALEX

Description

Python objects may be loaded into R. However, it requiers versions of the Python and libraries to
match between both machines. This functions allow user to create conda virtual environment based
on provided .yml file.

explain_h2o 9

Usage

create_env(yml, condaenv)

Arguments

yml a path to the .yml file. If OS is Windows conda has to be added to the PATH first

condaenv path to main conda folder. If OS is Unix You may want to specify it. When
passed with windows, param will be omitted.

Value

Name of created virtual env.

Author(s)

Szymon Maksymiuk

Examples

Not run:
create_env(system.file("extdata", "testing_environment.yml", package = "DALEXtra"))

End(Not run)

explain_h2o Create explainer from your h2o model

Description

DALEX is designed to work with various black-box models like tree ensembles, linear models, neu-
ral networks etc. Unfortunately R packages that create such models are very inconsistent. Different
tools use different interfaces to train, validate and use models. One of those tools, we would like to
make more accessible is H2O.

Usage

explain_h2o(
model,
data = NULL,
y = NULL,
weights = NULL,
predict_function = NULL,
residual_function = NULL,
...,
label = NULL,
verbose = TRUE,
precalculate = TRUE,

10 explain_h2o

colorize = TRUE,
model_info = NULL,
type = NULL

)

Arguments

model object - a model to be explained

data data.frame or matrix - data that was used for fitting. If not provided then will
be extracted from the model. Data should be passed without target column (this
shall be provided as the y argument). NOTE: If target variable is present in the
data, some of the functionalities my not work properly.

y numeric vector with outputs / scores. If provided then it shall have the same size
as data

weights numeric vector with sampling weights. By default it’s NULL. If provided then it
shall have the same length as data

predict_function

function that takes two arguments: model and new data and returns numeric
vector with predictions

residual_function

function that takes three arguments: model, data and response vector y. It should
return a numeric vector with model residuals for given data. If not provided,
response residuals (y − ŷ) are calculated.

... other parameters

label character - the name of the model. By default it’s extracted from the ’class’
attribute of the model

verbose if TRUE (default) then diagnostic messages will be printed

precalculate if TRUE (default) then ’predicted_values’ and ’residuals’ are calculated when
explainer is created.

colorize if TRUE (default) then WARNINGS, ERRORS and NOTES are colorized. Will work
only in the R console.

model_info a named list (package, version, type) containg information about model. If
NULL, DALEX will seek for information on it’s own.

type type of a model, either classification or regression. If not specified then
type will be extracted from model_info.

Value

explainer object (explain) ready to work with DALEX

Examples

load packages and data

explain_keras 11

library(h2o)
library(DALEXtra)

data <- DALEX::titanic_imputed

init h2o
h2o.init()

stop h2o progress printing
h2o.no_progress()

split the data
h2o_split <- h2o.splitFrame(as.h2o(data))
train <- h2o_split[[1]]
test <- as.data.frame(h2o_split[[2]])
h2o automl takes target as factor
train$survived <- as.factor(train$survived)

fit a model
automl <- h2o.automl(y = "survived",
training_frame = train,
max_runtime_secs = 30)

create an explainer for the model
explainer <- explain_h2o(automl,
data = test,
y = test$survived,
label = "h2o")

titanic_test <- read.csv(system.file("extdata", "titanic_test.csv", package = "DALEXtra"))
titanic_train <- read.csv(system.file("extdata", "titanic_train.csv", package = "DALEXtra"))
titanic_h2o <- h2o::as.h2o(titanic_train)
titanic_h2o["survived"] <- h2o::as.factor(titanic_h2o["survived"])
titanic_test_h2o <- h2o::as.h2o(titanic_test)
model <- h2o::h2o.gbm(
training_frame = titanic_h2o,
y = "survived",
distribution = "bernoulli",
ntrees = 500,
max_depth = 4,
min_rows = 12,
learn_rate = 0.001
)
explain_h2o(model, titanic_test[,1:17], titanic_test[,18])

h2o.shutdown(prompt = FALSE)

explain_keras Wrapper for Python Keras Models

12 explain_keras

Description

Keras models may be loaded into R environment like any other Python object. This function helps
to inspect performance of Python model and compare it with other models, using R tools like
DALEX. This function creates an object that is easily accessible R version of Keras model exported
from Python via pickle file.

Usage

explain_keras(
path,
yml = NULL,
condaenv = NULL,
env = NULL,
data = NULL,
y = NULL,
weights = NULL,
predict_function = NULL,
residual_function = NULL,
...,
label = NULL,
verbose = TRUE,
precalculate = TRUE,
colorize = TRUE,
model_info = NULL,
type = NULL

)

Arguments

path a path to the pickle file. Can be used without other arguments if you are sure
that active Python version match pickle version.

yml a path to the yml file. Conda virtual env will be recreated from this file. If OS is
Windows conda has to be added to the PATH first

condaenv If yml param is provided, a path to the main conda folder. If yml is null, a name
of existing conda environment.

env A path to python virtual environment.

data test data set that will be passed to explain.

y vector that will be passed to explain.

weights numeric vector with sampling weights. By default it’s NULL. If provided then it
shall have the same length as data

predict_function

predict function that will be passed into explain. If NULL, default will be used.
residual_function

residual function that will be passed into explain. If NULL, default will be
used.

... other parameters

explain_keras 13

label label that will be passed into explain. If NULL, default will be used.
verbose bool that will be passed into explain. If NULL, default will be used.
precalculate if TRUE (default) then ’predicted_values’ and ’residuals’ are calculated when

explainer is created.
colorize if TRUE (default) then WARNINGS, ERRORS and NOTES are colorized. Will work

only in the R console.
model_info a named list (package, version, type) containg information about model. If

NULL, DALEX will seek for information on it’s own.
type type of a model, either classification or regression. If not specified then

type will be extracted from model_info.

Value

An object of the class ’explainer’.

Example of Python code avialble at documentation explain_scikitlearn

Errors use case
Here is shortened version of solution for specific errors

There already exists environment with a name specified by given .yml file
If you provide .yml file that in its header contatins name exact to name of environment that already
exists, existing will be set active without changing it.
You have two ways of solving that issue. Both connected with anaconda prompt. First is removing
conda env with command:
conda env remove --name myenv
And execute function once again. Second is updating env via:
conda env create -f environment.yml

Conda cannot find specified packages at channels you have provided.
That error may be casued by a lot of things. One of those is that specified version is too old to be
avaialble from offcial conda repo. Edit Your .yml file and add link to proper repository at channels
section.

Issue may be also connected with the platform. If model was created on the platform with dif-
ferent OS yo may need to remove specific version from .yml file.
-numpy=1.16.4=py36h19fb1c0_0
-numpy-base=1.16.4=py36hc3f5095_0
In the example above You have to remove =py36h19fb1c0_0 and =py36hc3f5095_0
If some packages are not availbe for anaconda at all, use pip statement

If .yml file seems not to work, virtual env can be created manually using anaconda promt.
conda create -n name_of_env python=3.4
conda install -n name_of_env name_of_package=0.20

Author(s)

Szymon Maksymiuk

14 explain_mlr

Examples

library("DALEXtra")
Not run:

Explainer build (Keep in mind that 9th column is target)
test_data <-
read.csv(

"https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv",
sep = ",")
Keep in mind that when pickle is being built and loaded,
not only Python version but libraries versions has to match aswell
explainer <- explain_keras(system.file("extdata", "keras.pkl", package = "DALEXtra"),
conda = "myenv",
data = test_data[,1:8], y = test_data[,9])
plot(model_performance(explainer))

Predictions with newdata
predict(explainer, test_data[1:10,1:8])

End(Not run)

explain_mlr Create explainer from your mlr model

Description

DALEX is designed to work with various black-box models like tree ensembles, linear models, neu-
ral networks etc. Unfortunately R packages that create such models are very inconsistent. Different
tools use different interfaces to train, validate and use models. One of those tools, which is one of
the most popular one is mlr package. We would like to present dedicated explain function for it.

Usage

explain_mlr(
model,
data = NULL,
y = NULL,
weights = NULL,
predict_function = NULL,
residual_function = NULL,
...,
label = NULL,
verbose = TRUE,
precalculate = TRUE,
colorize = TRUE,
model_info = NULL,
type = NULL

)

explain_mlr 15

Arguments

model object - a model to be explained

data data.frame or matrix - data that was used for fitting. If not provided then will
be extracted from the model. Data should be passed without target column (this
shall be provided as the y argument). NOTE: If target variable is present in the
data, some of the functionalities my not work properly.

y numeric vector with outputs / scores. If provided then it shall have the same size
as data.

weights numeric vector with sampling weights. By default it’s NULL. If provided then it
shall have the same length as data

predict_function

function that takes two arguments: model and new data and returns numeric
vector with predictions

residual_function

function that takes three arguments: model, data and response vector y. It should
return a numeric vector with model residuals for given data. If not provided,
response residuals (y − ŷ) are calculated.

... other parameters

label character - the name of the model. By default it’s extracted from the ’class’
attribute of the model

verbose if TRUE (default) then diagnostic messages will be printed

precalculate if TRUE (default) then ’predicted_values’ and ’residuals’ are calculated when
explainer is created.

colorize if TRUE (default) then WARNINGS, ERRORS and NOTES are colorized. Will work
only in the R console.

model_info a named list (package, version, type) containg information about model. If
NULL, DALEX will seek for information on it’s own.

type type of a model, either classification or regression. If not specified then
type will be extracted from model_info.

Value

explainer object (explain) ready to work with DALEX

Examples

library("DALEXtra")
titanic_test <- read.csv(system.file("extdata", "titanic_test.csv", package = "DALEXtra"))
titanic_train <- read.csv(system.file("extdata", "titanic_train.csv", package = "DALEXtra"))
library("mlr")
task <- mlr::makeClassifTask(
id = "R",
data = titanic_train,
target = "survived"
)
learner <- mlr::makeLearner(

16 explain_mlr3

"classif.gbm",
par.vals = list(

distribution = "bernoulli",
n.trees = 500,
interaction.depth = 4,
n.minobsinnode = 12,
shrinkage = 0.001,
bag.fraction = 0.5,
train.fraction = 1

),
predict.type = "prob"

)
gbm <- mlr::train(learner, task)
explain_mlr(gbm, titanic_test[,1:17], titanic_test[,18])

explain_mlr3 Create explainer from your mlr model

Description

DALEX is designed to work with various black-box models like tree ensembles, linear models, neu-
ral networks etc. Unfortunately R packages that create such models are very inconsistent. Different
tools use different interfaces to train, validate and use models. One of those tools, which is one of
the most popular one is mlr3 package. We would like to present dedicated explain function for it.

Usage

explain_mlr3(
model,
data = NULL,
y = NULL,
weights = NULL,
predict_function = NULL,
residual_function = NULL,
...,
label = NULL,
verbose = TRUE,
precalculate = TRUE,
colorize = TRUE,
model_info = NULL,
type = NULL

)

Arguments

model object - a fitted learned created with mlr3.

explain_mlr3 17

data data.frame or matrix - data that was used for fitting. If not provided then will
be extracted from the model. Data should be passed without target column (this
shall be provided as the y argument). NOTE: If target variable is present in the
data, some of the functionalities my not work properly.

y numeric vector with outputs / scores. If provided then it shall have the same size
as data

weights numeric vector with sampling weights. By default it’s NULL. If provided then it
shall have the same length as data

predict_function

function that takes two arguments: model and new data and returns numeric
vector with predictions

residual_function

function that takes three arguments: model, data and response vector y. It should
return a numeric vector with model residuals for given data. If not provided,
response residuals (y − ŷ) are calculated.

... other parameters

label character - the name of the model. By default it’s extracted from the ’class’
attribute of the model

verbose if TRUE (default) then diagnostic messages will be printed.

precalculate if TRUE (default) then ’predicted_values’ and ’residuals’ are calculated when
explainer is created.

colorize if TRUE (default) then WARNINGS, ERRORS and NOTES are colorized. Will work
only in the R console.

model_info a named list (package, version, type) containg information about model. If
NULL, DALEX will seek for information on it’s own.

type type of a model, either classification or regression. If not specified then
type will be extracted from model_info.

Value

explainer object (explain) ready to work with DALEX

Examples

library("DALEXtra")
library(mlr3)
titanic_imputed$survived <- as.factor(titanic_imputed$survived)
task_classif <- TaskClassif$new(id = "1", backend = titanic_imputed, target = "survived")
learner_classif <- lrn("classif.rpart", predict_type = "prob")
learner_classif$train(task_classif)
explain_mlr3(learner_classif, data = titanic_imputed,

y = as.numeric(as.character(titanic_imputed$survived)))

task_regr <- TaskRegr$new(id = "2", backend = apartments, target = "m2.price")
learner_regr <- lrn("regr.rpart")
learner_regr$train(task_regr)

18 explain_scikitlearn

explain_mlr3(learner_regr, data = apartments, apartments$m2.price)

explain_scikitlearn Wrapper for Python Scikit-Learn Models

Description

scikit-learn models may be loaded into R environment like any other Python object. This function
helps to inspect performance of Python model and compare it with other models, using R tools like
DALEX. This function creates an object that is easily accessible R version of scikit-learn model
exported from Python via pickle file.

Usage

explain_scikitlearn(
path,
yml = NULL,
condaenv = NULL,
env = NULL,
data = NULL,
y = NULL,
weights = NULL,
predict_function = NULL,
residual_function = NULL,
...,
label = NULL,
verbose = TRUE,
precalculate = TRUE,
colorize = TRUE,
model_info = NULL,
type = NULL

)

Arguments

path a path to the pickle file. Can be used without other arguments if you are sure
that active Python version match pickle version.

yml a path to the yml file. Conda virtual env will be recreated from this file. If OS is
Windows conda has to be added to the PATH first

condaenv If yml param is provided, a path to the main conda folder. If yml is null, a name
of existing conda environment.

env A path to python virtual environment.

data test data set that will be passed to explain.

y vector that will be passed to explain.

explain_scikitlearn 19

weights numeric vector with sampling weights. By default it’s NULL. If provided then it
shall have the same length as data

predict_function

predict function that will be passed into explain. If NULL, default will be used.
residual_function

residual function that will be passed into explain. If NULL, default will be
used.

... other parameters

label label that will be passed into explain. If NULL, default will be used.

verbose bool that will be passed into explain. If NULL, default will be used.

precalculate if TRUE (default) then ’predicted_values’ and ’residuals’ are calculated when
explainer is created.

colorize if TRUE (default) then WARNINGS, ERRORS and NOTES are colorized. Will work
only in the R console.

model_info a named list (package, version, type) containg information about model. If
NULL, DALEX will seek for information on it’s own.

type type of a model, either classification or regression. If not specified then
type will be extracted from model_info.

Value

An object of the class ’explainer’. It has additional field param_set when user can check parameters
of scikitlearn model

Example of Python code

from pandas import DataFrame, read_csv
import pandas as pd
import pickle
import sklearn.ensemble
model = sklearn.ensemble.GradientBoostingClassifier()
model = model.fit(titanic_train_X, titanic_train_Y)
pickle.dump(model, open("gbm.pkl", "wb"), protocol = 2)

In order to export environment into .yml, activating virtual env via activate name_of_the_env
and execution of the following shell command is necessary
conda env export > environment.yml

Errors use case
Here is shortened version of solution for specific errors

There already exists environment with a name specified by given .yml file
If you provide .yml file that in its header contatins name exact to name of environment that already
exists, existing will be set active without changing it.

20 explain_scikitlearn

You have two ways of solving that issue. Both connected with anaconda prompt. First is removing
conda env with command:
conda env remove --name myenv
And execute function once again. Second is updating env via:
conda env create -f environment.yml

Conda cannot find specified packages at channels you have provided.
That error may be casued by a lot of things. One of those is that specified version is too old to be
avaialble from offcial conda repo. Edit Your .yml file and add link to proper repository at channels
section.

Issue may be also connected with the platform. If model was created on the platform with dif-
ferent OS yo may need to remove specific version from .yml file.
-numpy=1.16.4=py36h19fb1c0_0
-numpy-base=1.16.4=py36hc3f5095_0
In the example above You have to remove =py36h19fb1c0_0 and =py36hc3f5095_0
If some packages are not availbe for anaconda at all, use pip statement

If .yml file seems not to work, virtual env can be created manually using anaconda promt.
conda create -n name_of_env python=3.4
conda install -n name_of_env name_of_package=0.20

Author(s)

Szymon Maksymiuk

Examples

Not run:
Explainer build (Keep in mind that 18th column is target)

titanic_test <- read.csv(system.file("extdata", "titanic_test.csv", package = "DALEXtra"))
Keep in mind that when pickle is being built and loaded,
not only Python version but libraries versions has to match aswell

explainer <- explain_scikitlearn(system.file("extdata", "scikitlearn.pkl", package = "DALEXtra"),
yml = system.file("extdata", "testing_environment.yml", package = "DALEXtra"),
data = titanic_test[,1:17], y = titanic_test$survived)
plot(model_performance(explainer))

Predictions with newdata
predict(explainer, titanic_test[1:10,1:17])

End(Not run)

explain_xgboost 21

explain_xgboost Create explainer from your xgboost model

Description

DALEX is designed to work with various black-box models like tree ensembles, linear models, neu-
ral networks etc. Unfortunately R packages that create such models are very inconsistent. Different
tools use different interfaces to train, validate and use models. One of those tools, we would like to
make more accessible is xgboost.

Usage

explain_xgboost(
model,
data = NULL,
y = NULL,
weights = NULL,
predict_function = NULL,
residual_function = NULL,
...,
label = NULL,
verbose = TRUE,
precalculate = TRUE,
colorize = TRUE,
model_info = NULL,
type = NULL,
encode_function = NULL,
true_labels = NULL

)

Arguments

model object - a model to be explained

data data.frame or matrix - data that was used for fitting. If not provided then will
be extracted from the model. Data should be passed without target column (this
shall be provided as the y argument). NOTE: If target variable is present in the
data, some of the functionalities my not work properly.

y numeric vector with outputs / scores. If provided then it shall have the same size
as data. For classif task has to be numerci in range [0, nclasses)

weights numeric vector with sampling weights. By default it’s NULL. If provided then it
shall have the same length as data

predict_function

function that takes two arguments: model and new data and returns numeric
vector with predictions

22 explain_xgboost

residual_function

function that takes three arguments: model, data and response vector y. It should
return a numeric vector with model residuals for given data. If not provided,
response residuals (y − ŷ) are calculated.

... other parameters

label character - the name of the model. By default it’s extracted from the ’class’
attribute of the model

verbose if TRUE (default) then diagnostic messages will be printed

precalculate if TRUE (default) then ’predicted_values’ and ’residuals’ are calculated when
explainer is created.

colorize if TRUE (default) then WARNINGS, ERRORS and NOTES are colorized. Will work
only in the R console.

model_info a named list (package, version, type) containg information about model. If
NULL, DALEX will seek for information on it’s own.

type type of a model, either classification or regression. If not specified then
type will be extracted from model_info.

encode_function

fuction(data, ...) that if executed with data parameters returns encoded dataframe
that was used to fit model. Xgboost does not handle factors on it’s own so such
function is needed to aquire better explanations.

true_labels vecotr of y before encoding.

Value

explainer object (explain) ready to work with DALEX

Examples

library("xgboost")
library("DALEXtra")
library("mlr")
8th column is target that has to be omitted in X data
data <- as.matrix(createDummyFeatures(titanic_imputed[,-8]))
model <- xgboost(data, titanic_imputed$survived, nrounds = 10,

params = list(objective = "binary:logistic"),
prediction = TRUE)

explainer with encode functiom
explainer_1 <- explain_xgboost(model, data = titanic_imputed[,-8],

titanic_imputed$survived,
encode_function = function(data) {

as.matrix(createDummyFeatures(data))
})
plot(predict_parts(explainer_1, titanic_imputed[1,-8]))

explainer without encode function
explainer_2 <- explain_xgboost(model, data = data, titanic_imputed$survived)
plot(predict_parts(explainer_2, data[1,,drop = FALSE]))

funnel_measure 23

funnel_measure Caluculate difference in performance in models across different cate-
gories

Description

Function funnel_measure allows users to compare two models based on their explainers. It parti-
tions dataset on which models were builded and creates categories according to quantiles of columns
in parition data. nbins parameter determinates number of qunatiles. For each category differ-
ence in provided measure is being calculated. Positive value of that differnece means that Cham-
pion model has better performance in specified category, while negative value means that one of the
Challengers was better. Function allows to compare multiple Challengers at once.

Usage

funnel_measure(
champion,
challengers,
measure_function = NULL,
nbins = 5,
partition_data = champion$data,
cutoff = 0.01,
cutoff_name = "Other",
factor_conversion_threshold = 7,
show_info = TRUE,
categories = NULL

)

Arguments

champion - explainer of champion model.

challengers - explainer of challenger model or list of explainers.
measure_function

- measure function that calculates performance of model based on true observa-
tion and prediction. Order of parameters is important and should be (y, y_hat).
The measure calculated by the function should have the property that lower score
value indicates better model. If NULL, RMSE will be used for regression, one
minus auc for classification and crossentropy for multiclass classification.

nbins - Number of qunatiles (partition points) for numeric columns. In case when
more than one qunatile have the same value, there will be less partition points.

partition_data - Data by which test dataset will be paritioned for computation. Can be either
data.frame or character vector. When second is passed, it has to indicate names
of columns that will be extracted fromm test data. By default full test data. If
data.frame, number of rows has to be equal to number of rows in test data.

cutoff - Threshold for categorical data. Entries less frequent than specified value will
be merged into one category.

24 funnel_measure

cutoff_name - Name for new category that arised after merging entries less frequent than
cutoff

factor_conversion_threshold

- Numeric columns with lower number of unique values than value of this pa-
rameter will be treated as factors

show_info - Logical value indicating if progress bar should be shown.

categories - a named list of variable names that will be plotted in a different colour. By
deafault it is partitioned on Explanatory, External and Target.

Value

An object of the class funnel_measure

It is a named list containing following fields:

• data data.frame that consists of columns:

– Variable Variable according to which partitions were made
– Measure Difference in measures. Positive value indicates that champion was better, while

negative that challenger.
– Label String that defines subset of Variable values (partition rule).
– Challenger Label of challenger explainer that was used in Measure

– Category a category of the variable passed to function

• models_info data.frame containig inforamtion about models used in analysys

Examples

library("mlr")
library("DALEXtra")
task <- mlr::makeRegrTask(

id = "R",
data = apartments,
target = "m2.price"

)
learner_lm <- mlr::makeLearner(

"regr.lm"
)
model_lm <- mlr::train(learner_lm, task)
explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")

learner_rf <- mlr::makeLearner(
"regr.randomForest"

)
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")

learner_gbm <- mlr::makeLearner(
"regr.gbm"

)
model_gbm <- mlr::train(learner_gbm, task)

get_sample 25

explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "GBM")

plot_data <- funnel_measure(explainer_lm, list(explainer_rf, explainer_gbm),
nbins = 5, measure_function = DALEX::loss_root_mean_square)

plot(plot_data)

get_sample Function for getting binary matrix

Description

Function creates binary matrix, to be used in aspect_importance method. It starts with a zero matrix.
Then it replaces some zeros with ones. It either randomly replaces one or two zeros per row. Or
replace random number of zeros per row - average number of replaced zeros can be controled by
parameter f. Function doesn’t allow the returned matrix to have rows with only zeros.

Usage

get_sample(n, p, sample_method = c("default", "binom"), f = 2)

Arguments

n number of rows

p number of columns

sample_method sampling method

f frequency for binomial sampling

Value

a binary matrix

Examples

Not run:
get_sample(100,6,"binom",3)

End(Not run)

26 model_info.WrappedModel

group_variables Groups numeric features into aspects

Description

Divides correlated features into groups, called aspects. Division is based on correlation cutoff level.

Usage

group_variables(
x,
p = 0.5,
clust_method = "complete",
draw_tree = FALSE,
draw_abline = TRUE

)

Arguments

x dataframe with only numeric columns

p correlation value for cut-off level

clust_method the agglomeration method to be used, see hclust methods

draw_tree if TRUE, function plots tree that illustrates grouping

draw_abline if TRUE, function plots vertical line at cut-off level

Value

list of aspects

Examples

library("DALEX")
dragons_data <- dragons[,c(2,3,4,7,8)]
group_variables(dragons_data, p = 0.7, clust_method = "complete")

model_info.WrappedModel

Exract info from model

Description

This generic function let user extract base information about model. The function returns a named
list of class model_info that contain about package of model, version and task type. For wrappers
like mlr or caret both, package and wrapper inforamtion are stored

model_info.WrappedModel 27

Usage

S3 method for class 'WrappedModel'
model_info(model, is_multiclass = FALSE, ...)

S3 method for class 'H2ORegressionModel'
model_info(model, is_multiclass = FALSE, ...)

S3 method for class 'H2OBinomialModel'
model_info(model, is_multiclass = FALSE, ...)

S3 method for class 'H2OMultinomialModel'
model_info(model, is_multiclass = FALSE, ...)

S3 method for class 'scikitlearn_model'
model_info(model, is_multiclass = FALSE, ...)

S3 method for class 'keras'
model_info(model, is_multiclass = FALSE, ...)

S3 method for class 'LearnerRegr'
model_info(model, is_multiclass = FALSE, ...)

S3 method for class 'LearnerClassif'
model_info(model, is_multiclass = FALSE, ...)

S3 method for class 'GraphLearner'
model_info(model, is_multiclass = FALSE, ...)

S3 method for class 'xgb.Booster'
model_info(model, is_multiclass = FALSE, ...)

Arguments

model - model object

is_multiclass - if TRUE and task is classification, then multitask classification is set. Else is
omitted. If model_info was executed withing explain function. DALEX will
recognize subtype on it’s own. @param is_multiclass

... - another arguments
Currently supported packages are:

• mlr models created with mlr package
• h2o models created with h2o package
• scikit-learn models created with scikit-learn pyhton library and ac-

cesed via reticulate

• keras models created with keras pyhton library and accesed via reticulate
• mlr3 models created with mlr3 package
• xgboost models created with xgboost package

28 overall_comparison

Value

A named list of class model_info

overall_comparison Compare champion with challengers globally

Description

The function creates objects that present global model perfromance using various measures. Those
date can be easily ploted with plot function. It uses auditor package to create model_performance
of all passed explainers. Keep in mind that type of task has to be specified.

Usage

overall_comparison(champion, challengers, type)

Arguments

champion - explainer of champion model.

challengers - explainer of challenger model or list of explainers.

type - type of the task. Either classification or regression

Value

An object of the class overall_comparison

It is a named list containing following fields:

• radar list of model_performance objects and other parameters that will be passed to generic
plot function

• accordance data.frame object of champion responses and challenger’s corresponding to them.
Used to plot accordance.

• models_info data.frame containig inforamtion about models used in analysys.

Examples

library("DALEXtra")
library("mlr")
task <- mlr::makeRegrTask(

id = "R",
data = apartments,
target = "m2.price"

)
learner_lm <- mlr::makeLearner(

"regr.lm"
)
model_lm <- mlr::train(learner_lm, task)

plot.aspect_importance 29

explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")

learner_rf <- mlr::makeLearner(
"regr.randomForest"

)
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")

learner_gbm <- mlr::makeLearner(
"regr.gbm"

)
model_gbm <- mlr::train(learner_gbm, task)
explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "gbm")

data <- overall_comparison(explainer_lm, list(explainer_gbm, explainer_rf), type = "regression")
plot(data)

plot.aspect_importance

Function for plotting aspect_importance results

Description

This function plots the results of aspect_importance.

Usage

S3 method for class 'aspect_importance'
plot(
x,
...,
bar_width = 10,
aspects_on_axis = TRUE,
add_importance = FALSE,
digits_to_round = 2,
text_size = 3

)

Arguments

x object of aspect_importance class

... other parameters

bar_width bar width
aspects_on_axis

if TRUE, labels on axis Y show aspect names, oherwise they show features
names

add_importance if TRUE, plot is annotated with values of aspects importance

30 plot.funnel_measure

digits_to_round

integer indicating the number of decimal places used for rounding values of
aspects importance shown on the plot

text_size size of labels annotating values of aspects importance, if applicable

Value

a ggplot2 object

Examples

library("DALEX")

model_titanic_glm <- glm(survived == 1 ~
class+gender+age+sibsp+parch+fare+embarked,
data = titanic_imputed,
family = "binomial")

explain_titanic_glm <- explain(model_titanic_glm,
data = titanic_imputed[,-8],
y = titanic_imputed$survived == 1,
verbose = FALSE)

aspects <- list(wealth = c("class", "fare"),
family = c("sibsp", "parch"),
personal = c("gender", "age"),
embarked = "embarked")

plot(aspect_importance(explain_titanic_glm,
new_observation = titanic_imputed[1,],
aspects = aspects))

plot.funnel_measure Funnel plot for difference in measures

Description

Function plot.funnel_measure creates funnel plot of differences in measures for two models
across variable areas. It uses data created with ’funnel_measure’ function.

Usage

S3 method for class 'funnel_measure'
plot(x, ..., dot_size = 0.5)

plot.overall_comparison 31

Arguments

x - funnel_measure object created with funnel_measure function.

... - other parameters

dot_size - size of the dot on plots. Passed to geom_point.

Value

ggplot object

Examples

library("mlr")
library("DALEXtra")
task <- mlr::makeRegrTask(

id = "R",
data = apartments,
target = "m2.price"

)
learner_lm <- mlr::makeLearner(

"regr.lm"
)
model_lm <- mlr::train(learner_lm, task)
explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")

learner_rf <- mlr::makeLearner(
"regr.randomForest"

)
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")

learner_gbm <- mlr::makeLearner(
"regr.gbm"

)
model_gbm <- mlr::train(learner_gbm, task)
explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "GBM")

plot_data <- funnel_measure(explainer_lm, list(explainer_rf, explainer_gbm),
nbins = 5, measure_function = DALEX::loss_root_mean_square)

plot(plot_data)

plot.overall_comparison

Plot function for overall_comparison

32 plot.overall_comparison

Description

The function plots data created with overall_comparison. For radar plot it uses auditor’s plot_radar.
Keep in mind that the function creates two plots returned as list.

Usage

S3 method for class 'overall_comparison'
plot(x, ...)

Arguments

x - data created with overall_comparison

... - other parameters

Value

A named list of ggplot objects.

It consists of:

• radar_plot plot created with plot_radar

• accordance_plot accordance plot of responses. OX axis stand for champion response, while
OY for one of challengers responses. Colour indicates on challenger.

Examples

library("DALEXtra")
library("mlr")
task <- mlr::makeRegrTask(

id = "R",
data = apartments,
target = "m2.price"

)
learner_lm <- mlr::makeLearner(

"regr.lm"
)
model_lm <- mlr::train(learner_lm, task)
explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")

learner_rf <- mlr::makeLearner(
"regr.randomForest"

)
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")

learner_gbm <- mlr::makeLearner(
"regr.gbm"

)
model_gbm<- mlr::train(learner_gbm, task)
explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "GBM")

plot.training_test_comparison 33

data <- overall_comparison(explainer_lm, list(explainer_gbm, explainer_rf), type = "regression")
plot(data)

plot.training_test_comparison

Plot and compare performance of model between training and test set

Description

Function plot.training_test_comparison plots dependecy between model performance on test
and trainig dataset based on training_test_comparison object. Green line indicates y = x line.

Usage

S3 method for class 'training_test_comparison'
plot(x, ...)

Arguments

x - object created with training_test_comparison function.

... - other parameters

Value

ggplot object

Examples

library("mlr")
library("DALEXtra")
task <- mlr::makeRegrTask(
id = "R",
data = apartments,
target = "m2.price"

)
learner_lm <- mlr::makeLearner(
"regr.lm"

)
model_lm <- mlr::train(learner_lm, task)
explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")

learner_rf <- mlr::makeLearner(
"regr.randomForest"
)
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")

34 plot_aspects_importance_grouping

learner_gbm <- mlr::makeLearner(
"regr.gbm"
)
model_gbm <- mlr::train(learner_gbm, task)
explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "GBM")

data <- training_test_comparison(explainer_lm, list(explainer_gbm, explainer_rf),
training_data = apartments,
training_y = apartments$m2.price)

plot(data)

plot_aspects_importance_grouping

Function plots tree with aspect importance values

Description

This function plots tree that shows order of feature grouping and aspect importance values of every
newly created aspect.

Usage

plot_aspects_importance_grouping(
x,
data,
predict_function = predict,
new_observation,
N = 100,
clust_method = "complete",
absolute_value = FALSE,
cumulative_max = FALSE,
show_labels = TRUE,
axis_lab_size = 10,
text_size = 3

)

Arguments

x a model to be explained

data dataset, should be without target variable
predict_function

predict function
new_observation

selected observation with columns that corresponds to variables used in the
model, should be without target variable

plot_group_variables 35

N number of observations to be sampled (with replacement) from data

clust_method the agglomeration method to be used, see hclust methods

absolute_value if TRUE, aspect importance values will be drawn as absolute values

cumulative_max if TRUE, aspect importance shown on tree will be max value of children and
node aspect importance values

show_labels if TRUE, plot will have annotated axis Y

axis_lab_size size of labels on axis Y, if applicable

text_size size of labels annotating values of aspects importance

Value

ggplot

Examples

library(DALEX)
apartments_num <- apartments[,unlist(lapply(apartments, is.numeric))]
apartments_num_lm_model <- lm(m2.price ~ ., data = apartments_num)
apartments_num_new_observation <- apartments_num[2,-1]
apartments_num_mod <- apartments_num[,-1]
plot_aspects_importance_grouping(x = apartments_num_lm_model,
data = apartments_num_mod, new_observation = apartments_num_new_observation)

plot_group_variables Plots tree with correlation values

Description

Plots tree that illustrates the results of group_variables function.

Usage

plot_group_variables(
x,
p,
show_labels = TRUE,
draw_abline = TRUE,
axis_lab_size = 10,
text_size = 3

)

36 print.funnel_measure

Arguments

x hclust object

p correlation value for cutoff level

show_labels if TRUE, plot will have annotated axis Y

draw_abline if TRUE, cutoff line will be drawn

axis_lab_size size of labels on axis Y, if applicable

text_size size of labels annotating values of correlations

Value

tree plot

Examples

library("DALEX")
dragons_data <- dragons[,c(2,3,4,7,8)]
group_variables(dragons_data, p = 0.7, clust_method = "complete",

draw_tree = TRUE)

print.funnel_measure Print funnel_measure object

Description

Print funnel_measure object

Usage

S3 method for class 'funnel_measure'
print(x, ...)

Arguments

x an object of class funnel_measure

... other parameters

Examples

library("DALEXtra")
library("mlr")
task <- mlr::makeRegrTask(

id = "R",
data = apartments,
target = "m2.price"

print.overall_comparison 37

)
learner_lm <- mlr::makeLearner(

"regr.lm"
)
model_lm <- mlr::train(learner_lm, task)
explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")

learner_rf <- mlr::makeLearner(
"regr.randomForest"

)
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")

learner_gbm <- mlr::makeLearner(
"regr.gbm"

)
model_gbm <- mlr::train(learner_gbm, task)
explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "GBM")

plot_data <- funnel_measure(explainer_lm, list(explainer_rf, explainer_gbm),
nbins = 5, measure_function = DALEX::loss_root_mean_square)

print(plot_data)

print.overall_comparison

Print overall_comparison object

Description

Print overall_comparison object

Usage

S3 method for class 'overall_comparison'
print(x, ...)

Arguments

x an object of class overall_comparison

... other parameters

Examples

library("DALEXtra")
library("mlr")
task <- mlr::makeRegrTask(

id = "R",

38 print.scikitlearn_set

data = apartments,
target = "m2.price"

)
learner_lm <- mlr::makeLearner(

"regr.lm"
)
model_lm <- mlr::train(learner_lm, task)
explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")

learner_rf <- mlr::makeLearner(
"regr.randomForest"

)
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")

learner_gbm <- mlr::makeLearner(
"regr.gbm"

)
model_gbm <- mlr::train(learner_gbm, task)
explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "gbm")

data <- overall_comparison(explainer_lm, list(explainer_gbm, explainer_rf), type = "regression")
print(data)

print.scikitlearn_set Prints scikitlearn_set class

Description

Prints scikitlearn_set class

Usage

S3 method for class 'scikitlearn_set'
print(x, ...)

Arguments

x a list from explainer created with explain_scikitlearn

... other arguments

print.training_test_comparison 39

print.training_test_comparison

Print funnel_measure object

Description

Print funnel_measure object

Usage

S3 method for class 'training_test_comparison'
print(x, ...)

Arguments

x an object of class funnel_measure

... other parameters

Examples

library("mlr")
library("DALEXtra")
task <- mlr::makeRegrTask(
id = "R",
data = apartments,
target = "m2.price"

)
learner_lm <- mlr::makeLearner(
"regr.lm"

)
model_lm <- mlr::train(learner_lm, task)
explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")

learner_rf <- mlr::makeLearner(
"regr.randomForest"
)
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")

learner_gbm <- mlr::makeLearner(
"regr.gbm"
)
model_gbm <- mlr::train(learner_gbm, task)
explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "GBM")

data <- training_test_comparison(explainer_lm, list(explainer_gbm, explainer_rf),
training_data = apartments,
training_y = apartments$m2.price)

print(data)

40 training_test_comparison

training_test_comparison

Compare performance of model between training and test set

Description

Function training_test_comparison calculates performance of the provided model based on
specified measure function. Response of the model is caluclated based on test data, extracted from
the explainer and training data, provided by the user. Output can be easily shown with print or
plot function.

Usage

training_test_comparison(
champion,
challengers,
training_data,
training_y,
measure_function = NULL

)

Arguments

champion - explainer of champion model.

challengers - explainer of challenger model or list of explainers.

training_data - data without target column that will be passed to predict function and then to
measure function. Keep in mind that they have to differ from data passed to an
explainer.

training_y - target column for training_data
measure_function

- measure function that calculates performance of model based on true observa-
tion and prediction. Order of parameters is important and should be (y, y_hat).
By default it is RMSE.

Value

An object of the class training_test_comparison.

It is a named list containig:

• data data.frame with following columns

– measure_test performance on test set
– measure_train performance on training set
– label label of explainer
– type flag that indicates if explainer was passed as champion or as challenger.

• models_info data.frame containig inforamtion about models used in analysys

triplot 41

Examples

library("mlr")
library("DALEXtra")
task <- mlr::makeRegrTask(
id = "R",
data = apartments,
target = "m2.price"

)
learner_lm <- mlr::makeLearner(
"regr.lm"

)
model_lm <- mlr::train(learner_lm, task)
explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")

learner_rf <- mlr::makeLearner(
"regr.randomForest"
)
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")

learner_gbm <- mlr::makeLearner(
"regr.gbm"
)
model_gbm <- mlr::train(learner_gbm, task)
explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "GBM")

data <- training_test_comparison(explainer_lm, list(explainer_gbm, explainer_rf),
training_data = apartments,
training_y = apartments$m2.price)

plot(data)

triplot Three plots that sum up automatic aspect importance grouping

Description

This function shows:

• plot for aspect_importance with single aspect

• tree that shows aspect_importance for every newly expanded aspect

• clustering tree.

Usage

triplot(x, ...)

S3 method for class 'explainer'
triplot(

42 triplot

x,
new_observation,
N = 500,
clust_method = "complete",
absolute_value = FALSE,
cumulative_max = FALSE,
add_importance_labels = TRUE,
show_axis_y_duplicated_labels = FALSE,
axis_lab_size = 10,
text_size = 3,
...

)

Default S3 method:
triplot(
x,
data,
predict_function = predict,
new_observation,
N = 500,
clust_method = "complete",
absolute_value = FALSE,
cumulative_max = FALSE,
add_importance_labels = TRUE,
show_axis_y_duplicated_labels = FALSE,
abbrev_labels = 0,
axis_lab_size = 10,
text_size = 3,
...

)

Arguments

x an explainer created with the DALEX::explain() function or a model to be ex-
plained.

... other parameters
new_observation

selected observation with columns that corresponds to variables used in the
model, should be without target variable

N number of rows to be sampled from data

clust_method the agglomeration method to be used, see hclust methods

absolute_value if TRUE, aspect importance values will be drawn as absolute values

cumulative_max if TRUE, aspect importance shown on tree will be max value of children and
node aspect importance values

add_importance_labels

if TRUE, first plot is annotated with values of aspects importance

yhat.WrappedModel 43

show_axis_y_duplicated_labels

if TRUE, every plot will have annotated axis Y

axis_lab_size size of labels on axis

text_size size of labels annotating values of aspects importance and correlations

data dataset, it will be extracted from x if it’s an explainer NOTE: Target variable
shouldn’t be present in the data

predict_function

predict function, it will be extracted from x if it’s an explainer

abbrev_labels if greater than 0, labels for axis Y in single aspect importance plot will be ab-
breviated according to this parameter

Examples

library(DALEX)
apartments_num <- apartments[,unlist(lapply(apartments, is.numeric))]
apartments_num_lm_model <- lm(m2.price ~ ., data = apartments_num)
apartments_num_new_observation <- apartments_num[30,-1]
apartments_num_mod <- apartments_num[,-1]
triplot(x = apartments_num_lm_model,

data = apartments_num_mod,
new_observation = apartments_num_new_observation,
add_importance_labels = FALSE)

yhat.WrappedModel Wrapper over the predict function

Description

These functios are default predict functions. Each function returns a single numeric score for each
new observation. Those functions are very important since informations from many models have to
be extracted with various techniques.

Usage

S3 method for class 'WrappedModel'
yhat(X.model, newdata, ...)

S3 method for class 'H2ORegressionModel'
yhat(X.model, newdata, ...)

S3 method for class 'H2OBinomialModel'
yhat(X.model, newdata, ...)

S3 method for class 'H2OMultinomialModel'
yhat(X.model, newdata, ...)

44 yhat.WrappedModel

S3 method for class 'scikitlearn_model'
yhat(X.model, newdata, ...)

S3 method for class 'keras'
yhat(X.model, newdata, ...)

S3 method for class 'LearnerRegr'
yhat(X.model, newdata, ...)

S3 method for class 'LearnerClassif'
yhat(X.model, newdata, ...)

S3 method for class 'GraphLearner'
yhat(X.model, newdata, ...)

S3 method for class 'xgb.Booster'
yhat(X.model, newdata, ...)

Arguments

X.model object - a model to be explained

newdata data.frame or matrix - observations for prediction

... other parameters that will be passed to the predict function

Details

Currently supported packages are:

• mlr see more in explain_mlr

• h2o see more in explain_h2o

• scikit-learn see more in explain_scikitlearn

• keras see more in explain_keras

• mlr3 see more in explain_mlr3

• xgboost see more in explain_xgboost

Value

An numeric vector of predictions

Index

aspect_importance, 3
aspect_importance_single, 5

champion_challenger, 7
create_env, 8

explain, 10, 12, 13, 15, 17–19, 22
explain_h2o, 9, 44
explain_keras, 11, 44
explain_mlr, 14, 44
explain_mlr3, 16, 44
explain_scikitlearn, 13, 18, 38, 44
explain_xgboost, 21, 44

funnel_measure, 7, 23, 31

geom_point, 31
get_sample, 4, 6, 25
group_variables, 26

hclust, 26, 35, 42

lime (aspect_importance), 3

model_info.GraphLearner
(model_info.WrappedModel), 26

model_info.H2OBinomialModel
(model_info.WrappedModel), 26

model_info.H2OMultinomialModel
(model_info.WrappedModel), 26

model_info.H2ORegressionModel
(model_info.WrappedModel), 26

model_info.keras
(model_info.WrappedModel), 26

model_info.LearnerClassif
(model_info.WrappedModel), 26

model_info.LearnerRegr
(model_info.WrappedModel), 26

model_info.scikitlearn_model
(model_info.WrappedModel), 26

model_info.WrappedModel, 26

model_info.xgb.Booster
(model_info.WrappedModel), 26

model_performance, 28

overall_comparison, 7, 28, 32

plot.aspect_importance, 29
plot.funnel_measure, 7, 30
plot.overall_comparison, 31
plot.training_test_comparison, 33
plot_aspects_importance_grouping, 34
plot_group_variables, 35
plot_radar, 32
print.funnel_measure, 36
print.overall_comparison, 37
print.scikitlearn_set, 38
print.training_test_comparison, 39

training_test_comparison, 7, 33, 40
triplot, 41

yhat.GraphLearner (yhat.WrappedModel),
43

yhat.H2OBinomialModel
(yhat.WrappedModel), 43

yhat.H2OMultinomialModel
(yhat.WrappedModel), 43

yhat.H2ORegressionModel
(yhat.WrappedModel), 43

yhat.keras (yhat.WrappedModel), 43
yhat.LearnerClassif

(yhat.WrappedModel), 43
yhat.LearnerRegr (yhat.WrappedModel), 43
yhat.scikitlearn_model

(yhat.WrappedModel), 43
yhat.WrappedModel, 43
yhat.xgb.Booster (yhat.WrappedModel), 43

45

	aspect_importance
	aspect_importance_single
	champion_challenger
	create_env
	explain_h2o
	explain_keras
	explain_mlr
	explain_mlr3
	explain_scikitlearn
	explain_xgboost
	funnel_measure
	get_sample
	group_variables
	model_info.WrappedModel
	overall_comparison
	plot.aspect_importance
	plot.funnel_measure
	plot.overall_comparison
	plot.training_test_comparison
	plot_aspects_importance_grouping
	plot_group_variables
	print.funnel_measure
	print.overall_comparison
	print.scikitlearn_set
	print.training_test_comparison
	training_test_comparison
	triplot
	yhat.WrappedModel
	Index

