Package 'DAISIE'

April 13, 2017
Type PackageTitle Dynamical Assembly of Islands by Speciation, Immigration andExtinction
Version 1.4
Date 2017-04-12
Depends R (>= 3.0.0)
Imports deSolve, grDevices, graphics, stats, utils, DDD (> 3.0),subplex, Matrix, tensor
Suggests testthat
Author Rampal S. Etienne, Luis M. Valente, Albert B. Phillimore \& Bart Haegeman
Maintainer Rampal S. Etienne r.s.etienne@rug.nl
License GPL-2
Description Simulates and computes the (maximum) likelihood of a dynamical model of is-land biota assembly through speciation, immigration and extinction. See Va-lente et al. 2015. Ecology Letters 18: 844-852, DOI:10.1111/ele.12461.
NeedsCompilation no
Repository CRAN
Date/Publication 2017-04-13 17:50:28 UTC
R topics documented:
DAISIE-package 2
DAISIE_convertprobdist 3
DAISIE_dataprep 4
DAISIE_ExpEIN 8
DAISIE_loglik_all 9
DAISIE_margprobdist 12
DAISIE_ML 13
DAISIE_numcol 19
DAISIE_plot_age_diversity 21
DAISIE_plot_island 22
DAISIE_plot_sims 23
DAISIE_probdist 25
DAISIE_sim 26
DAISIE_tutorial 30
Galapagos_datalist 30
Galapagos_datalist_2types 31
Galapagos_datatable 32
islands_10reps_RAW 33
islands_1type_1000reps 34
islands_2types_1000reps 35
Macaronesia_datalist 36
Index 39
DAISIE-package Dynamical Assembly of Islands by Speciation, Immigration and Ex-
tinction

Description

DAISIE is an island biogeography model that assumes island biota assembly is governed by immigration, extinction and speciation through cladogenesis and anagenesis. This likelihood-based statistical package can simulate islands and estimate parameters of the DAISIE model based on phylogenetic/phylogeographic data. Cladogenesis and immigration rates can be dependent on diversity.

Details

Package: DAISIE
Type: Package
Version: 1.4
Date: 2017-04-12
License: GPL 2.0

DAISIE_ML computes the parameters that maximizes the loglikelihood computed by DAISIE_loglik_all for one island/archipelago

DAISIE_ML2 computes the parameters that maximizes the loglikelihood for a set of islands / archipelagoes
DAISIE_sim simulates islands with given parameters
DAISIE_tutorial opens a step-by-step tutorial with example from Galapagos islands
DAISIE_loglik_all computes the loglikelihood of a given parameterization of the DAISIE model for a data set of colonization and branching times
DAISIE_plot_sims produces species-through-time plots based on simulated islands
DAISIE_dataprep converts data in table format to the list format accepted by DAISIE_loglik_all and DAISIE_ML

DAISIE_ExpEIN computes the expected number of endemics, non-endemics and their sum for a given time and set of parameters
DAISIE_probdist calculates the joint distribution of the number of endemics and non-endemics for a given set of parameter values, a given mainland species pool size and a given set of times

DAISIE_margprobdist calculates the marginal distribution of the number of endemics and nonendemics and their sum for a given set of parameter values, a given mainland species pool size and a given set of times
DAISIE_numcol calculates expectation and marginal distribution of the number of colonizations (lineages) for a given set of parameter values, a given mainland species pool size and a given set of times

Author(s)

Rampal S. Etienne, Luis M. Valente, Albert B. Phillimore \& Bart Haegeman
Maintainer: Rampal S. Etienne r.s.etienne@rug.nlrep(0:(D1-1), each = D2)

References

Valente, L., A.B. Phillimore \& R.S. Etienne (2015). Equilibrium and non-equilibrium dynamics simultaneously operate in the Galapagos islands. Ecology Letters 18: 844-852, DOI:10.1111/ele.12461.

Valente, L., R.S. Etienne \& L. Davalos (2017). Recent extinctions disturb path to equilibrium diversity in Caribbean bats. Nature Ecology and Evolution 1: 0026. DOI:10.1038/s41559-0160026.

See Also

DDD

```
DAISIE_convertprobdist
```

Converts the joint distribution of endemics and non-endemics under the DAISIE model to list format

Description

This function converts the joint distribution of the number of endemics and non-endemics from the matrix format of DAISIE_probdist to a list format

```
Usage
    DAISIE_convertprobdist(
        pb
        )
```


Arguments

pb
Probability distribution in matrix format as output by DAISIE_probdist

Value

A list of length nrow(pb) containing matrices of square dimensions of size sqrt(ncol - 1) containing the joint probabilities with endemics in the rows and non-endemics in the columns. The last element of the list is a vector a times at which the joint probability distribution is evaluated.

Author(s)

Rampal S. Etienne

References

Valente, L.M., A.B. Phillimore and R.S. Etienne (2015). Equilibrium and non-equilibrium dynamics simultaneously operate in the Galapagos islands. Ecology Letters 18: 844-852.

Examples

```
### Compute the probability distribution at t = 4 and t = 8, for a mainland pool
# size of }250\mathrm{ potential colonists and a vector of 5 parameters (cladogenesis, extinction,
# clade-level carrying capacity, immigration, anagenesis) starting from an empty
# island; output in list format
pb = DAISIE_probdist(
    pars1 = c(0.3,0.35, Inf,0.75,0.012),
    pars2 = c(100, 250),
    tvec = c(4,8),
    initEI = c(0,0),
    initprobs = NULL
    )
DAISIE_convertprobdist(pb)
```

DAISIE_dataprep Prepare colonisation and branching time data to run in DAISIE.

Description

This function produces a data object that can be run in DAISIE likelihood computation/optimization functions. The function converts a user-specified table to a DAISIE-compatible format. See Galapagos_datatable.Rdata for a template of an input table.)

Usage

```
DAISIE_dataprep(
datatable,
island_age,
M,
number_clade_types = 1,
list_type2_clades = NA,
prop_type2_pool = "proportional",
```

```
epss = 1E-5
```

)

Arguments

datatable Data frame (table) with user-specified data. See file Galapagos_datatable.Rdata for a template of an input table. Each row on the table represents and independent colonisation event. Table has the following four columns.
\$Clade_name - name of independent colonization event
\$Status - One of the following categories:

* "Non_endemic": applies to non-endemic species for cases where both island and non-island populations of the species have been sampled)
* "Non_endemic_MaxAge": applies to non-endemic species for cases where island individuals of the species have not been sampled and only the age of the species is available)
* "Endemic": applies to endemic species and is applicable for both cladogenetic and anagenetic species
* "Endemic_MaxAge": applies to endemic species for cases where island individuals of the species have not been sampled and only the age of the species is available. This could apply to endemic species that have recently gone extinct because of antropogenic causes that are (evidently) not modelled, and for which no DNA data is available.
* "Endemic\&Non_Endemic": when endemic clade is present and its mainland ancestor has re-colonized
\$Missing_species - Number of island species that were not sampled for particular clade (only applicable for "Endemic" clades)
\$Branching_times - Stem age of the population/species in the case of "Nonendemic", "Non-endemic_MaxAge" and "Endemic" anagenetic species. For "Endemic" cladogenetic species these should be branching times of the radiation including the stem age of the radiation.
island_age Age of island in appropriate units
M
The size of the mainland pool, i.e the number of species that can potentially colonize the island
number_clade_types
Number of clade types. Default: number_clade_types = 1 all species are considered to belong to same macroevolutionary process. If number_clade_types $=$ 2 , there are two types of clades with distinct macroevolutionary processes.
list_type2_clades
If number_clade_types $=2$, list_type2_clades specifies the names of the clades that have a distinct macroevolutionary process. The names must match those in the \$Clade_name column of the source data table (e.g. list_type2_clades = "Finches"). If number_clade_types = 1, then list_type2_clades = NA should be specified (default)
prop_type2_pool
Specifies the fraction of potential mainland colonists that have a distinct macroevolutionary process. Applies only if number_clade_types $=2$. Default "propor-
tional" sets the fraction to be proportional to the number of clades of distinct macroevolutionary process that have colonised the island. Alternatively, the user can specify a value between 0 and 1 (e.g. if mainland pool size is 1000 and prop_type2_pool $=0.02$ then number of type 2 species is 20).
epss Default $=1 \mathrm{E}-5$ should be appropriate in most cases. This value is used to set the maximum age of colonisation of "Non_endemic_MaxAge" and "Endemic_MaxAge" species to an age that is slightly younger than the island for cases when the age provided for that species is older than the island. The new maximum age is then used as an upper bound to integrate over all possible colonisation times.

Details

The output is an R list containing the data formatted to be run on other DAISIE functions.

Value

datalist $\quad \mathrm{R}$ list object containing data:
The first element of the list has two or three components:
\$island_age - the island age
Then, depending on whether a distinction between species types is made, we have:
\$not_present - the number of mainland lineages that are not present on the island
or:
\$not_present_type1 - the number of mainland lineages of type 1 that are not present on the island
\$not_present_type2 - the number of mainland lineages of type 2 that are not present on the island
The following elements of the list each contains information on a single colonist lineage on the island and has 5 components:
\$colonist_name - the name of the species or clade that colonized the island \$branching_times - island age and stem age of the population/species in the case of "Non-endemic", "Non-endemic_MaxAge" and "Endemic" anagenetic species. For "Endemic" cladogenetic species these are island age and branching times of the radiation including the stem age of the radiation.
\$stac - the status of the colonist

* Non_endemic_MaxAge: 1
* Endemic: 2
* Endemic\&Non_Endemic: 3
* Non_endemic: 4
* Endemic_MaxAge: 5
\$missing_species - number of island species that were not sampled for particular clade (only applicable for endemic clades)
$\$$ type_1or2 - whether the colonist belongs to type 1 or type 2

Author(s)

Luis M Valente

References

Valente, L.M., A.B. Phillimore and R.S. Etienne (2015). Equilibrium and non-equilibrium dynamics simultaneously operate in the Galapagos islands. Ecology Letters 18: 844-852.

Examples

```
### Create Galapagos data object where all taxa have the same macroevolutionary process
data(Galapagos_datatable)
DAISIE_dataprep(
    datatable = Galapagos_datatable,
    island_age = 4,
    M = 1000
    )
### Create Galapagos data object with a distinct macroevolutionary processes
# for the Darwin's finches. One process applies to type 1 species (all species
# except for Darwin's finches) and the other applies only to type 2 species
# (Darwin's finches). Set fraction of potential colonists of type 2 to be
# proportional to the number of type2 clades present on the island.
data(Galapagos_datatable)
DAISIE_dataprep(
    datatable = Galapagos_datatable,
    island_age = 4,
    M = 1000,
    number_clade_types = 2,
    list_type2_clades = "Finches"
    )
### Create Galapagos data object with a distinct macroevolutionary processes
# for the Darwin's finches. One process applies to type 1 species (all species
# except for Darwin's finches) and the other applies only to type 2 species
# (Darwin's finches). Set fraction of potential colonists of type 2 to be 0.163.
data(Galapagos_datatable)
DAISIE_dataprep(
    datatable = Galapagos_datatable,
    island_age = 4,
    M = 1000,
    number_clade_types = 2,
    list_type2_clades = "Finches",
    prop_type2_pool = 0.163
    )
``` DAISIE model

\section*{Description}

This function calculates the expected number of endemics, non-endemics and the sum of these for a given set of parameter values, a given mainland species pool size and a given time

\section*{Usage}

DAISIE_ExpEIN(
t,
pars,
M,
initEI \(=c(0,0)\)
)

\section*{Arguments}
t
pars pars
pars[1] corresponds to lambda^ \({ }^{\wedge}\) (cladogenesis rate) pars[2] corresponds to mu (extinction rate)
pars[3] corresponds to K (clade-level carrying capacity)
pars[4] corresponds to gamma (immigration rate)
pars[5] corresponds to lambda^a (anagenesis rate)
M The size of the mainland pool, i.e the number of species that can potentially colonize the island
initEI The initial values of the number of endemics and non-endemics

\section*{Value}
out The output is a list with three elements:
ExpE The number of endemic species
ExpI The number of non-endemic species
ExpN The sum of the number of endemics and non-endemics

\section*{Author(s)}

Rampal S. Etienne

\section*{References}

Valente, L.M., A.B. Phillimore and R.S. Etienne (2015). Equilibrium and non-equilibrium dynamics simultaneously operate in the Galapagos islands. Ecology Letters 18: 844-852.

\section*{Examples}
```


### Compute the expected values at t = 4, for a mainland pool size of 1000 potential

# colonists and a vector of 5 parameters (cladogenesis, extinction, clade-level carrying

# capacity, immigration, anagenesis)

DAISIE_ExpEIN(
t = 4,
pars = c(0.5,0.1,Inf,0.01,0.4),
M = 1000
)

```
DAISIE_loglik_all Computes the loglikelihood of the DAISIE model given data and a set
of model parameters

\section*{Description}

Computes the loglikelihood of the DAISIE model given colonization and branching times for lineages on an island, and a set of model parameters

\section*{Usage}

DAISIE_loglik_all(
pars1,
pars2,
datalist,
methode = "lsodes"
)

\section*{Arguments}
pars1 Contains the model parameters:
pars1[1] corresponds to lambda^c (cladogenesis rate)
pars1[2] corresponds to mu (extinction rate)
pars1[3] corresponds to K (clade-level carrying capacity)
pars1[4] corresponds to gamma (immigration rate)
pars1[5] corresponds to lambda^a (anagenesis rate)
pars1[6] corresponds to lambda^c (cladogenesis rate) for an optional subset of the species
pars1[7] corresponds to mu (extinction rate) for an optional subset of the species
pars1[8] corresponds to K (clade-level carrying capacity) for an optional subset of the species
pars1[9] corresponds to gamma (immigration rate) for an optional subset of the species
pars1[10] corresponds to lambda^a (anagenesis rate) for an optional subset of
the species
pars1[11] corresponds to p_f (fraction of mainland species that belongs to the second subset of species
The elements 6:10 and 11 are optional, that is,pars1 should either contain 5, 10 or 11 elements. If 10 , then the fraction of potential colonists of type 2 is computed from the data. If 11, then pars 1[11] is used, overruling any information in the data.
pars2 Contains the model settings
pars2[1] corresponds to \(1 x=\) length of ODE variable \(x\)
pars2[2] corresponds to ddmodel = diversity-dependent model, model of diversitydependence, which can be one of
ddmodel \(=0\) : no diversity dependence
ddmodel \(=1:\) linear dependence in speciation rate
ddmodel \(=11\) : linear dependence in speciation rate and in immigration rate ddmodel \(=2\) : exponential dependence in speciation rate ddmodel \(=21\) : exponential dependence in speciation rate and in immigration rate
pars2[3] corresponds to cond \(=\) setting of conditioning
cond \(=0\) : conditioning on island age
cond \(=1:\) conditioning on island age and non-extinction of the island biota
pars2[4] sets whether parameters and likelihood should be printed (1) or not (0)
datalist Data object containing information on colonisation and branching times. This object can be generated using the DAISIE_dataprep function, which converts a user-specified data table into a data object, but the object can of course also be entered directly. It is an R list object with the following elements.
The first element of the list has two or three components:
\$island_age - the island age
Then, depending on whether a distinction between types is made, we have:
\$not_present - the number of mainland lineages that are not present on the island
or:
\$not_present_type1 - the number of mainland lineages of type 1 that are not present on the island
\$not_present_type2 - the number of mainland lineages of type 2 that are not present on the island

The remaining elements of the list each contains information on a single colonist lineage on the island and has 5 components:
\$colonist_name - the name of the species or clade that colonized the island \$branching_times - island age and stem age of the population/species in the
case of Non-endemic, Non-endemic_MaxAge and Endemic anagenetic species. For cladogenetic species these should be island age and branching times of the radiation including the stem age of the radiation.
\$stac - the status of the colonist
* Non_endemic_MaxAge: 1
* Endemic: 2
* Endemic\&Non_Endemic: 3
* Non_endemic: 4
* Endemic_MaxAge: 5
\$missing_species - number of island species that were not sampled for particular clade (only applicable for endemic clades)
\(\$\) type1or 2 - whether the colonist belongs to type 1 or type 2
methode Method of the ODE-solver. See package deSolve for details. Default is "lsodes"

\section*{Details}

The output is a loglikelihood value

\section*{Value}

The loglikelihood

\section*{Author(s)}

Rampal S. Etienne \& Bart Haegeman

\section*{References}

Valente, L.M., A.B. Phillimore and R.S. Etienne (2015). Equilibrium and non-equilibrium dynamics simultaneously operate in the Galapagos islands. Ecology Letters 18: 844-852.

\section*{See Also}

DAISIE_ML, DAISIE_sim

\section*{Examples}
```

data(Galapagos_datalist_2types)
pars1 = c(0.195442017,0.087959583,Inf,0.002247364,0.873605049,
3755.202241,8.909285094,14.99999923,0.002247364,0.873605049,0.163)
pars2 = c(100,11,0,1)
DAISIE_loglik_all(pars1,pars2,Galapagos_datalist_2types)

```

DAISIE_margprobdist The marginal distribution of endemics and non-endemics under the DAISIE model

\section*{Description}

This function calculates the marginal distribution of the number of endemics and non-endemics and their sum for a given set of parameter values, a given mainland species pool size and a given set of times

\section*{Usage}

DAISIE_margprobdist(
pars1,
pars2,
tvec,
initEI \(=c(0,0)\),
initprobs = NULL,
\(\mathrm{pb}=\mathrm{NULL}\)
)

\section*{Arguments}
pars1 Vector of model parameters:
pars1[1] corresponds to lambda^c (cladogenesis rate)
pars1[2] corresponds to mu (extinction rate)
pars1[3] corresponds to K (clade-level carrying capacity)
pars1[4] corresponds to gamma (immigration rate)
pars1 [5] corresponds to lambda^a (anagenesis rate)
pars2 Vector of settings:
pars2[1] corresponds to res, the maximum number of endemics or non-endemics for which the ODE system is solved; this must be much larger than the actual number for which the probability needs to be calculated.)
pars2[2] corresponds to \(M\), size of the mainland pool, i.e the number of species that can potentially colonize the island.
tvec The times at which the probabilities need to be computed.
initEI The initial values for the number of endemics and non-endemics; either this or initprobs must be NULL
initprobs The initial probability distribution for the number of endemics and non-endemics; either this or initEI must be NULL
\(\mathrm{pb} \quad\) Rather than computing the joint distribution from given parameter values, one can also specify a precomputed probability distribution in the matrix format of DAISIE_probdist.

Value
out
A list of three vectors:
pE The probability distribution of the number of endemic species pI The probability distribution of the number of non-endemic species pN The probability distribution of the sum of the number of endemics and nonendemics

\section*{Author(s)}

Rampal S. Etienne

\section*{References}

Valente, L.M., A.B. Phillimore and R.S. Etienne (2015). Equilibrium and non-equilibrium dynamics simultaneously operate in the Galapagos islands. Ecology Letters 18: 844-852.

\section*{Examples}
```


### Compute the marginal probability distributions at t = 4 and t = 8, for a mainland

# pool size of 250 potential colonists and a vector of 5 parameters (cladogenesis,

# extinction, clade-level carrying capacity, immigration, anagenesis) starting from

# an empty island

DAISIE_margprobdist(
pars1 = c(0.3,0.35, Inf,0.75,0.012),
pars2 = c(100, 250),
tvec = c(4,8),
initEI = c(5,1),
initprobs = NULL
)

```
DAISIE_ML

Maximization of the loglikelihood under the DAISIE model

\section*{Description}

This function computes the maximum likelihood estimates of the parameters of the DAISIE model for data from lineages colonizing an island. It also outputs the corresponding loglikelihood that can be used in model comparisons.

\section*{Usage}

DAISIE_ML(
datalist,
datatype = 'single',
initparsopt,
idparsopt,
```

parsfix,
idparsfix,
idparsnoshift = 6:10,
idparsmat = NULL,
res = 100,
ddmodel = 0,
cond = 0,
eqmodel = 0,
x_E = 0.95,
x_I = 0.98,
tol = c(1e-04, 1e-05, 1e-07),
maxiter = 1000 * round((1.25)^length(idparsopt)),
methode = 'lsodes',
optimmethod = 'subplex'
)

```

\section*{Arguments}
datalist Data object containing information on colonisation and branching times. This object can be generated using the DAISIE_dataprep function, which converts a user-specified data table into a data object, but the object can of course also be entered directly. It is an R list object with the following elements.
The first element of the list has two three components:
\$island_age - the island age
Then, depending on whether a distinction between types is made, we have:
\$not_present - the number of mainland lineages that are not present on the island
or:
\$not_present_type1 - the number of mainland lineages of type 1 that are not present on the island
\$not_present_type2 - the number of mainland lineages of type 2 that are not present on the island

The remaining elements of the list each contains information on a single colonist lineage on the island and has 5 components:
\$colonist_name - the name of the species or clade that colonized the island \$branching_times - island age and stem age of the population/species in the case of Non-endemic, Non-endemic_MaxAge and Endemic anagenetic species. For cladogenetic species these should be island age and branching times of the radiation including the stem age of the radiation.
\$stac - the status of the colonist
* Non_endemic_MaxAge: 1
* Endemic: 2
* Endemic\&Non_Endemic: 3
* Non_endemic: 4
\$missing_species - number of island species that were not sampled for particular clade (only applicable for endemic clades)
\(\$\) type1or 2 - whether the colonist belongs to type 1 or type 2
\(\begin{array}{ll}\text { datatype } & \begin{array}{l}\text { Sets the type of data: 'single' for a single island or archipelago treated as one, } \\ \text { and 'multiple' for multiple archipelagoes potentially sharing the same parame- } \\ \text { ters }\end{array} \\ \text { initparsopt } & \begin{array}{l}\text { The initial values of the parameters that must be optimized }\end{array} \\ \text { idparsopt } & \text { The ids of the parameters that must be optimized. The ids are defined as follows: }\end{array}\)
\(\mathrm{id}=1\) corresponds to lambda^\({ }^{\wedge}\) (cladogenesis rate)
id \(=2\) corresponds to mu (extinction rate)
id \(=3\) corresponds to K (clade-level carrying capacity)
\(\mathrm{id}=4\) corresponds to gamma (immigration rate)
\(\mathrm{id}=5\) corresponds to lambda^a (anagenesis rate)
id \(=6\) corresponds to lambda^c (cladogenesis rate) for an optional subset of the species
id \(=7\) corresponds to mu (extinction rate) for an optional subset of the species
id \(=8\) corresponds to K (clade-level carrying capacity) for an optional subset of the species
id \(=9\) corresponds to gamma (immigration rate) for an optional subset of the species
id \(=10\) corresponds to lambda^a (anagenesis rate) for an optional subset of the species
id \(=11\) corresponds to p_f (fraction of mainland species that belongs to the second subset of species
idparsfix The ids of the parameters that should not be optimized, e.g. \(c(1,3)\) if lambda^c and K should not be optimized.
parsfix The values of the parameters that should not be optimized
idparsnoshift For datatype = 'single' only: The ids of the parameters that should not be different between two groups of species; This can only apply to ids \(6: 10\), e.g. idparsnoshift \(=c(6,7)\) means that lambda \({ }^{\wedge} c\) and mu have the same values for both groups
idparsmat For datatype = 'multiple' only: Matrix containing the ids of the parameters, linking them to initparsopt and parsfix. Per island system we use the following order:
* \(\mathrm{lac}=(\) initial \()\) cladogenesis rate
* \(\mathrm{mu}=\) extinction rate
* \(\mathrm{K}=\) maximum number of species possible in the clade
* gam = (initial) immigration rate
* laa = (initial) anagenesis rate

Example: idparsmat \(=\operatorname{rbind}(c(1,2,3,4,5), c(1,2,3,6,7))\) has different rates of immigration and anagenesis for the two islands.
res Sets the maximum number of species for which a probability must be computed, must be larger than the size of the largest clade
\begin{tabular}{ll}
ddmodel & \begin{tabular}{l}
Sets the model of diversity-dependence: \\
ddmodel \(=0:\) no diversity dependence \\
ddmodel \(=1:\) linear dependence in speciation rate \\
ddmodel \(=11\) : linear dependence in speciation rate and in immigration rate \\
ddmodel \(=2:\) exponential dependence in speciation rate \\
ddmodel \(=21:\) exponential dependence in speciation rate and in immigration \\
rate
\end{tabular} \\
cond & \begin{tabular}{l}
cond \(=0:\) conditioning on island age \\
cond \(=1:\) conditioning on island age and non-extinction of the island biota
\end{tabular} \\
eqmodel & \begin{tabular}{l}
Sets the equilibrium constraint that can be used during the likelihood optimiza- \\
tion. Only available for datatype = 'single'.
\end{tabular} \\
eqmodel = \(0:\) no equilibrium is assumed \\
eqmodel \(=13:\) near-equilibrium is assumed on endemics using deterministic \\
equation for endemics and immigrants. Endemics must be within x_E of the \\
equilibrium value \\
eqmodel \(=15:\) near-equilibrium is assumed on endemics and immigrants using \\
deterministic equation for endemics and immigrants. Endemics must be within \\
x_E of the equilibrium value, while non-endemics must be within x_I of the \\
equilibrium value
\end{tabular}

\section*{Details}

The result of sort(c(idparsopt, idparsfix, idparsnoshift)) should be identical to \(\mathrm{c}(1: 10)\). If not, an error is reported that the input is incoherent. The same happens when the length of initparsopt is different from the length of idparsopt, and the length of parsfix is different from the length of idparsfix.
Including the 11th parameter (p_f) in either idparsopt or idparsfix (and therefore initparsopt or parsfix) is optional. If this parameter is not specified, then the information in the data is used, otherwise the information in the data is overruled.

\section*{Value}

The output is a dataframe containing estimated parameters and maximum loglikelihood.
lambda_c gives the maximum likelihood estimate of lambda^c, the rate of cladogenesis
mu
K
gamma
lambda_a
lambda_c2
mu2 gives the maximum likelihood estimate of mu2, the extinction rate for the optional second group of species
K2 gives the maximum likelihood estimate of K2, the carrying-capacity for the optional second group of species
gamma2 gives the maximum likelihood estimate of gamma2, the immigration rate for the optional second group of species
lambda_a2 gives the maximum likelihood estimate of lambda^a2, the rate of anagenesis for the optional second group of species
loglik gives the maximum loglikelihood
df gives the number of estimated parameters, i.e. degrees of feedom
conv gives a message on convergence of optimization; conv \(=0\) means convergence

\section*{Author(s)}

Rampal S. Etienne

\section*{References}

Valente, L.M., A.B. Phillimore and R.S. Etienne (2015). Equilibrium and non-equilibrium dynamics simultaneously operate in the Galapagos islands. Ecology Letters 18: 844-852. <DOI:10.1111/ele.12461>.

\section*{See Also}

DAISIE_loglik_all, DAISIE_sim

\section*{Examples}
```

cat("

### When all species have the same rates, and we want to optimize all 5 parameters,

# we use:

data(Galapagos_datalist)
DAISIE_ML(
datalist = Galapagos_datalist,
initparsopt = c(2.5,2.7,20,0.009,1.01),
ddmodel = 11,

```
```

    idparsopt = 1:5,
    parsfix = NULL,
    idparsfix = NULL
    )

```
\#\#\# When all species have the same rates, and we want to optimize all parameters
\# except K (which we set equal to Inf), we use:
data(Galapagos_datalist)
DAISIE_ML(
 datalist = Galapagos_datalist,
 initparsopt \(=c(2.5,2.7,0.009,1.01)\),
 idparsopt = c(1,2,4,5),
 parsfix = Inf,
 idparsfix \(=3\)
)
\#\#\# When all species have the same rates except that the finches have a different \# rate of cladogenesis, and we want to optimize all parameters except K (which we \# set equal to Inf), fixing the proportion of finch-type species at 0.163 , we use:
data(Galapagos_datalist_2types)
DAISIE_ML(
 datalist = Galapagos_datalist_2types,
 initparsopt \(=c(0.38,0.55,0.004,1.1,2.28)\),
 idparsopt \(=c(1,2,4,5,6)\),
 parsfix \(=c(\operatorname{Inf}, \operatorname{Inf}, 0.163)\),
 idparsfix \(=c(3,8,11)\),
 idparsnoshift \(=c(7,9,10)\)
)
\#\#\# When all species have the same rates except that the finches have a different \# rate of cladogenesis, extinction and a different \(K\), and we want to optimize all \# parameters, fixing the proportion of finch-type species at 0.163 , we use:
```

data(Galapagos_datalist_2types)
DAISIE_ML(
datalist = Galapagos_datalist_2types,
ddmodel = 11,
initparsopt = c(0.19,0.09,0.002,0.87,20,8.9,15),
idparsopt = c(1,2,4,5,6,7,8),
parsfix = c(Inf,0.163),
idparsfix = c(3,11),
idparsnoshift = c(9,10)
)

```
\#\#\# When all species have the same rates except that the finches have a different \# rate of extinction, and we want to optimize all parameters except \(K\) (which we \# set equal to Inf), and we also\# want to estimate the fraction of finch species \# in the mainland pool. we use:
data(Galapagos_datalist_2types)
```

DAISIE_ML(
datalist = Galapagos_datalist_2types,
initparsopt = c(2.48,2.7,0.009,1.01,2.25,0.163),
idparsopt = c(1, 2,4,5,7,11),
parsfix = c(Inf,Inf),
idparsfix = c(3,8),
idparsnoshift = c(6,9,10)
)

```
\#\#\# When we have two islands with the same rates except for immigration and anagenesis rate,
\# and we want to optimize all parameters, we use:
data(Galapagos_datalist)
DAISIE_ML(
 datalist = list(Galapagos_datalist,Galapagos_datalist),
 datatype = 'multiple',
 initparsopt \(=c(2.5,2.7,20,0.009,1.01,0.009,1.01)\),
 idparsmat \(=\operatorname{rbind}(1: 5, c(1: 3,6,7))\),
 idparsopt \(=1: 7\),
 parsfix = NULL,
 idparsfix = NULL
)
\#\#\# When we consider the four Macaronesia archipelagoes and set all parameters the same \# except for rates of cladogenesis, extinction and immigration for Canary Islands, \# rate of cladogenesis is fixed to 0 for the other archipelagoes, \# diversity-dependence is assumed to be absent
\# and we want to optimize all parameters, we use:
```

data(Macaronesia_datalist)

```
DAISIE_ML(
 datalist = Macaronesia_datalist,
 datatype = 'multiple',
 initparsopt \(=c(1.053151832,0.052148979,0.512939011,0.133766934,0.152763179)\),
 idparsmat \(=\) rbind \((1: 5, c(6,2,3,7,5), 1: 5,1: 5)\),
 idparsopt \(=c(2,4,5,6,7)\),
 parsfix \(=c(0\), Inf \()\),
 idparsfix \(=c(1,3)\)
)
")

DAISIE_numcol The expectation and marginal distribution of the number of colonizations (lineages) under the DAISIE model

\section*{Description}

This function calculates expectation and marginal distribution of the number of colonizations (lineages) for a given set of parameter values, a given mainland species pool size and a given set of times

\section*{Usage}
```

DAISIE_numcol(
pars1,
pars2,
tvec,
initEI = NULL
)

```

\section*{Arguments}
pars1 Vector of model parameters:
pars1[1] corresponds to lambda^c (cladogenesis rate) pars1[2] corresponds to mu (extinction rate)
pars1[3] corresponds to K (clade-level carrying capacity)
pars1[4] corresponds to gamma (immigration rate)
pars1 [5] corresponds to lambda^a (anagenesis rate)
pars2 Vector of settings:
pars2[1] corresponds to res, the maximum number of endemics or non-endemics for which the ODE system is solved; this must be much larger than the actual number for which the probability needs to be calculated.) pars2[2] corresponds to M , size of the mainland pool, i.e the number of species that can potentially colonize the island.
tvec The times at which the probabilities need to be computed.
initEI A list with the initial values for the number of endemics and non-endemics in each colonizing lineage; when it is NULL, it is assumed that the island is empty

\section*{Value}
out A list of three vectors:
expC The expectation of the number of colonizations/lineages at the given times pC The probability distribution of the number of colonizations (lineages) at the given times

\section*{Author(s)}

Rampal S. Etienne

\section*{References}

Valente, L.M., A.B. Phillimore and R.S. Etienne (2015). Equilibrium and non-equilibrium dynamics simultaneously operate in the Galapagos islands. Ecology Letters 18: 844-852.

\section*{Examples}
```


### Compute the marginal probability distributions at t = 4 and t = 8, for a mainland

# pool size of }250\mathrm{ potential colonists and a vector of 5 parameters (cladogenesis,

# extinction, clade-level carrying capacity, immigration, anagenesis) starting from

# an empty island

DAISIE_numcol(
pars1 = c(0.3,0.35, Inf,0.75,0.012),
pars2 = c(100,250),
tvec = c(4,8),
initEI = list(c(0,1),c(0, 2),c(3,1))
)

```
DAISIE_plot_age_diversity
Plot clade age against clade diversity.

\section*{Description}

Plots clade age against clade diversity for all clades for which colonisation time is known.

\section*{Usage}

DAISIE_plot_age_diversity(island, title = 'Clade age vs clade diversity', island_age = NA)

\section*{Arguments}
\begin{tabular}{ll}
island & \begin{tabular}{l}
Island data object. Can be in DAISIE list format (see Galapagos_datalist and \\
DAISIE_data_prep for examples) or in table format (see Galapagos_datatable \\
for an example)
\end{tabular} \\
title & \begin{tabular}{l}
Title of the plot
\end{tabular} \\
island_age & \begin{tabular}{l}
If island input is in table format, the age of the island must be specified. If island \\
input is in DAISIE list format, this option will override the island age specified \\
in the island list.
\end{tabular}
\end{tabular}

\section*{Details}

R plot showing for each clade in the island object the time of colonisation and the diversity of the clade. Only clades for which colonisation time is known are plotted. Blue - endemic; black -non-endemic. \(\mathrm{C}=\) number of independent colonisations on island, \(\mathrm{N}=\) number of species on the island

\section*{Value}

R plot.

\section*{Author(s)}

Luis Valente

\section*{References}

Valente, L.M., A.B. Phillimore and R.S. Etienne (2015). Equilibrium and non-equilibrium dynamics simultaneously operate in the Galapagos islands. Ecology Letters 18: 844-852.

\section*{See Also}
```

DAISIE_simDAISIE_plot_island

```

\section*{Examples}
```


### Plot Galapagos age-diversity for Galapagos dataset

```
data(Galapagos_datalist)
DAISIE_plot_age_diversity(Galapagos_datalist)

DAISIE_plot_island Plot colonisation and branching time of species found on an island dataset.

\section*{Description}

Produces an image with the times of colonisation, branching times, clade name and clade status for all clades found in a given dataset.

\section*{Usage}

DAISIE_plot_island(
island,
island_age=NA)

\section*{Arguments}
island Island data object. Can be in DAISIE list format (see Galapagos_datalist and DAISIE_data_prep for examples) or in table format (see Galapagos_datatable for an example)
island_age If island input is in table format, the age of the island must be specified. If island input is in DAISIE list format, this option will override the island age specified in the island list.

\section*{Details}

R plot showing for each clade in the island object: time of colonisation, branching times, species status (endemic or non-endemic), total number of species in clade (n), number of species not sampled (m).

\section*{Value}

R plot.

\section*{Author(s)}

Luis Valente

\section*{References}

Valente, L.M., A.B. Phillimore and R.S. Etienne (2015). Equilibrium and non-equilibrium dynamics simultaneously operate in the Galapagos islands. Ecology Letters 18: 844-852.

\section*{See Also}
```

DAISIE_sim DAISIE_plot_age_diversity

```

\section*{Examples}
```


### Plot Galapagos islands dataset

data(Galapagos_datalist)
DAISIE_plot_island(Galapagos_datalist)

```
DAISIE_plot_sims Plot island species-through-time (STT) plots

\section*{Description}

Produces STT plots. If only one type of species is present in the simulated islands, STT is plotted for all species. If two types are present, three plots are produced: STT for all, STT for type 1 and STT for type 2.

\section*{Usage}

DAISIE_plot_sims(island_replicates
)

\section*{Arguments}
island_replicates
Island replicates in DAISIE format (Produced in DAISIE_sim with format=TRUE option, or in DAISIE_format_sim)

\section*{Details}

R plots with number of total, endemic and non-endemic STTs for different types of species for the entire time span the islands were simulated. 2.5-97.5th percentiles are plotted in light grey, 25-75th percentiles plotted in dark grey.

\section*{Value}

R plot.

\section*{Author(s)}

Luis Valente

\section*{References}

Valente, L.M., A.B. Phillimore and R.S. Etienne (2015). Equilibrium and non-equilibrium dynamics simultaneously operate in the Galapagos islands. Ecology Letters 18: 844-852.

\section*{See Also}
```

DAISIE_simDAISIE_format_CS

```

\section*{Examples}
```


### Plot islands with single process (only one type of species)

data(islands_1type_1000reps)
DAISIE_plot_sims(island_replicates = islands_1type_1000reps)

### Plot island with type 1 and type 2

data(islands_2types_1000reps)
DAISIE_plot_sims(island_replicates = islands_2types_1000reps)

```

The joint distribution of endemics and non-endemics under the DAISIE model

\section*{Description}

This function calculates the joint distribution of the number of endemics and non-endemics for a given set of parameter values, a given mainland species pool size and a given set of times
```

Usage
DAISIE_probdist(
pars1,
pars2,
tvec,
initEI = c(0,0),
initprobs = NULL
)

```

\section*{Arguments}
\[
\begin{array}{ll}
\text { pars1 } & \text { Vector of model parameters: } \\
& \begin{array}{l}
\text { pars1[1] corresponds to lambda^c (cladogenesis rate) } \\
\text { pars1[2] corresponds to mu (extinction rate) } \\
\text { pars1[3] corresponds to K (clade-level carrying capacity) } \\
\text { pars1[4] corresponds to gamma (immigration rate) } \\
\text { pars1[5] corresponds to lambda^a (anagenesis rate) }
\end{array} \\
\text { Vector of settings: }
\end{array} \quad \begin{aligned}
& \text { pars2[1] corresponds to res, the maximum number of endemics or non-endemics } \\
& \text { for which the ODE system is solved; this must be much larger than the actual } \\
& \text { number for which the probability needs to be calculated.) } \\
& \text { pars2[2] corresponds to M, size of the mainland pool, i.e the number of species } \\
& \text { that can potentially colonize the island. }
\end{aligned}
\]

\section*{Details}

To obtain a matrix of probabilities with endemics in rows and non-endemics in columns for a certain time, one can run DAISIE_convertprobdist

\section*{Value}

A matrix of dimensions \(1+\) length(tvec) and pars[2]^2 +1\(]\) where the first column contains the times at which the probabilities are evaluated and the other columns contain the joint probabilities.

\section*{Author(s)}

Rampal S. Etienne

\section*{References}

Valente, L.M., A.B. Phillimore and R.S. Etienne (2015). Equilibrium and non-equilibrium dynamics simultaneously operate in the Galapagos islands. Ecology Letters 18: 844-852.

\section*{Examples}
```


### Compute the probability distribution at t = 4 and t = 8, for a mainland pool

# size of 250 potential colonists and a vector of 5 parameters (cladogenesis,

# extinction, clade-level carrying capacity, immigration, anagenesis) starting

# from an empty island

DAISIE_probdist(
pars1 = c(0.3,0.35, Inf,0.75,0.012),
pars2 = c(100, 250),
tvec = c(4,8),
initEI = c(0,0),
initprobs = NULL
)

```
 DAISIE_sim Simulate islands with given parameters.

\section*{Description}

This function simulates islands with given cladogenesis, extinction, Kprime, immigration and anagenesis parameters. If a single parameter set is provided (5 parameters) it simulates islands where all species have the same macro-evolutionary process. If two paramater sets (10 parameters) are provided, it simulates islands where two different macro-evolutionary processes operate, one applying to type 1 species and other to type 2 species.

\section*{Usage}

DAISIE_sim(
time,
M,
pars,
replicates,
divdepmodel = 'CS',
prop_type2_pool = NA,
```

replicates_apply_type2 = TRUE,
sample_freq = 25,
plot_sims = TRUE,
...)

```

\section*{Arguments}
time Length of the simulation in time units. For example, if an island is know to be 4 million years old, setting time \(=4\) will simulate entire life span of the island; setting time \(=2\) will stop the simulation at the mid-life of the island.

M The size of the mainland pool, i.e the number of species that can potentially colonize the island
pars Contains the model parameters:
pars[1] corresponds to lambda^c (cladogenesis rate)
pars[2] corresponds to mu (extinction rate)
pars[3] corresponds to K (clade-level carrying capacity). Set K=Inf for nondiversity dependence.
pars [4] corresponds to gamma (immigration rate)
pars[5] corresponds to lambda^a (anagenesis rate)
pars[6] corresponds to lambda^c (cladogenesis rate) for type 2 species
pars[7] corresponds to mu (extinction rate) for type 2 species
pars [8] corresponds to \(K\) (clade-level carrying capacity) for type 2 species. Set
\(K=\operatorname{Inf}\) for non-diversity dependence.
pars[9] corresponds to gamma (immigration rate) for type 2 species
pars[10] corresponds to lambda^a (anagenesis rate) for type 2 species
The elements 6:10 are optional and are required only when type 2 species are included.
replicates \(\quad\) Number of island replicates to be simulated.
divdepmodel Option divdepmodel='CS' runs model with clade-specific carrying capacity, where diversity-dependence operates only within single clades, i.e. only among species originating from the same mainland colonist. Option divdepmodel= 'IW' runs model with island-wide carrying capacity, where diversity-dependence operates within and among clades.
prop_type2_pool
Fraction of mainland species that belongs to the second subset of species (type 2). Applies only when two types of species are simulated (length(pars)=10).
replicates_apply_type2
Applies only when two types of species are being simulated. Default replicates_apply_type2=TRUE runs simulations until the number of islands where a type 2 species has colonised is equal to the specified number of replicates. This is recommended if prop_type2_pool is small or if the rate of immigration of type two species (pars[9]) is low, meaning that more replicates are needed to achieve an adequate sample size of islands with type 2 species. Setting replicates_apply_type2=FALSE, simulates islands up to specified number of replicates regardless of whether type 2 species have colonised or not.
sample_freq Specifies the number of units time should be divided by for plotting purposes. Larger values will lead to plots with higher definition, but will also run slower.
plot_sims Default=TRUE plots species-through-time (STT) plots. It detects how many types of species are present. If only one type of species is present, STT is plotted for all species. If two types are present, three plots are produced: STT for all, STT for type 1 and STT for type 2.

Any arguments to pass on to plotting functions.

\section*{Details}

Returns R list object that contains the simulated islands.

\section*{Value}

Each simulated dataset is an element of the list, which can be called using [[x]]. For example if the object is called island_replicates, the 1st replicate can be called using island_replicates[[1]] Each of the island replicates is a list in itself. The first (e.g. island_replicates[[x]][[1]]) element of that list has the following components:
\$island_age - the island age
Then, depending on whether a distinction between types is made, we have:
\$not_present - the number of mainland lineages that are not present on the island
or:
\$not_present_type1 - the number of mainland lineages of type 1 that are not present on the island
\$not_present_type2 - the number of mainland lineages of type 2 that are not present on the island
\$stt_all - STT table for all species on the island (nI - number of non-endemic species; nA - number of anagenetic species, nC - number of cladogenetic species, present - number of independent colonisations present)
\(\$ s t t _s t t _t y p e 1-S T T\) table for type 1 species on the island - only if 2 types of species were simulated (nI - number of non-endemic species; nA - number of anagenetic species, nC - number of cladogenetic species, present - number of independent colonisations present)
\$stt_stt_type2 - STT table for type 2 species on the island - only if 2 types of species were simulated (nI - number of non-endemic species; nA - number of anagenetic species, nC - number of cladogenetic species, present - number of independent colonisations present)
\(\$ b r t s _t a b l e\) - Only for simulations under 'IW'. Table containing information on order of events in the data, for use in maximum likelihood optimization.)

The subsequent elements of the list each contain information on a single colonist lineage on the island and has 4 components:
\$branching_times - island age and stem age of the population/species in the case of Non-endemic, Non-endemic_MaxAge and Endemic anagenetic species. For cladogenetic species these should be island age and branching times of the radiation including the stem age of the radiation.
\$stac - the status of the colonist
* Non_endemic_MaxAge: 1
* Endemic: 2
* Endemic\&Non_Endemic: 3
* Non_endemic: 4
\$missing_species - number of island species that were not sampled for particular clade (only applicable for endemic clades)
\$type_1or2 - whether the colonist belongs to type 1 or type 2

\section*{Author(s)}

Luis Valente and Albert Phillimore

\section*{References}

Valente, L.M., A.B. Phillimore and R.S. Etienne (2015). Equilibrium and non-equilibrium dynamics simultaneously operate in the Galapagos islands. Ecology Letters 18: 844-852.

\section*{See Also}

DAISIE_format_CS DAISIE_plot_sims

\section*{Examples}
```

cat("

## Simulate 40 islands for 4 million years, where all species have equal

## rates, and plot the species-through-time plot. Pool size 1000.

pars_equal = c(2.550687345,2.683454548,Inf,0.00933207,1.010073119)
island_replicates_equal = DAISIE_sim(
time = 4,
M = 1000,
pars = pars_equal,
replicates = 40
)

## Simulate 15 islands for 4 million years with two types of species (type1

## and type 2), and plot the species-through-time plot. Pool size 1000. Fraction

## of type 2 species in source pool is 0.163. Function will simulate until number of islands

## where type 2 species has colonised is equal to number specified in replicates.

pars_type1 = c(0.195442017,0.087959583,Inf,0.002247364,0.873605049)
pars_type2 = c(3755.202241,8.909285094,14.99999923,0.002247364,0.873605049)
island_replicates_2types = DAISIE_sim(
time = 4,
M = 1000,
pars = c(pars_type1,pars_type2),
replicates = 15,
prop_type2_pool = 0.163
)
")

```

\section*{Description}

This function opens a PDF file that contains a step-by-step tutorial on how to run DAISIE functions, using the Galapagos avian dataset from Valente, Phillimore \& Etienne 2015 as an example

\section*{Usage}

DAISIE_tutorial()

\section*{Details}

Opens a PDF file containing the tutorial

\section*{Author(s)}

Luis Valente and Rampal S. Etienne

\section*{References}

Valente, L.M., A.B. Phillimore and R.S. Etienne (2015). Equilibrium and non-equilibrium dynamics simultaneously operate in the Galapagos islands. Ecology Letters 18: 844-852.

Galapagos_datalist Colonization and branching times of 8 terrestrial avifaunal clades in list format, accepted by DAISIE_ML and DAISIE_loglik_all

\section*{Description}

A list containing the colonization and branching times of the terrestrial avifauna in the Galapagos where no distinction is made between types of colonists. This list can be generated using the DAISIE_dataprep function, which converts a user-specified data table into a data object, but the object can of course also be entered directly. It is an R list object with the following elements.

The first element of the list has two components:
\$island_age - the island age
\$not_present - the number of mainland lineages that are not present on the island
The following 8 elements of the list each contains information on a single colonist lineage on the island and has 5 components:
\$colonist_name - the name of the species or clade that colonized the island \$branching_times - island age and stem age of the population/species in the case of Non-endemic,

Non-endemic_MaxAge and Endemic anagenetic species. For cladogenetic species these should be island age and branching times of the radiation including the stem age of the radiation.
\$stac - the status of the colonist
* Non_endemic_MaxAge: 1
* Endemic: 2
* Endemic\&Non_Endemic: 3
* Non_endemic: 4
\$missing_species - number of island species that were not sampled for particular clade (only applicable for endemic clades)
\(\$\) type1or 2 - whether the colonist belongs to type 1 or type 2 . In this dataset all are equal to 1 .

\section*{Usage}
data(Galapagos_datalist)

\section*{Format}

A list with 9 elements the first of which contains 2 elements and the following 8 containing 5 components.

\section*{Source}

Valente, L.M., A.B. Phillimore and R.S. Etienne (2015). Equilibrium and non-equilibrium dynamics simultaneously operate in the Galapagos islands. Ecology Letters 18: 844-852.

\section*{See Also}

DAISIE_dataprep, DAISIE_ML

\section*{Description}

A list containing the colonization and branching times of the terrestrial avifauna in the Galapagos. This list can be generated using the DAISIE_dataprep function, which converts a user-specified data table into a data object, but the object can of course also be entered directly. It is an R list object with the following elements.

The first element of the list has three components:
\$island_age - the island age
\$not_present_type1 - the number of mainland lineages of type 1 that are not present on the island \$not_present_type2 - the number of mainland lineages of type 2 that are not present on the island

The following 8 elements of the list each contains information on a single colonist lineage on the island and has 5 components:
\$colonist_name - the name of the species or clade that colonized the island
\$branching_times - island age and stem age of the population/species in the case of Non-endemic, Non-endemic_MaxAge and Endemic anagenetic species. For cladogenetic species these should be island age and branching times of the radiation including the stem age of the radiation.
\$stac - the status of the colonist
* Non_endemic_MaxAge: 1
* Endemic: 2
* Endemic\&Non_Endemic: 3
* Non_endemic: 4
\$missing_species - number of island species that were not sampled for particular clade (only applicable for endemic clades)
\(\$\) type1or 2 - whether the colonist belongs to type 1 or type 2 . In this dataset only the finches are type 2
```

Usage
data(Galapagos_datalist_2types)

```

\section*{Format}

A list with 9 elements the first of which contains 3 elements and the following 8 containing 5 components.

\section*{Source}

Valente, L.M., A.B. Phillimore and R.S. Etienne (2015). Equilibrium and non-equilibrium dynamics simultaneously operate in the Galapagos islands. Ecology Letters 18: 844-852.

\author{
See Also \\ DAISIE_dataprep, DAISIE_ML
}
\[
\begin{array}{ll}
\text { Galapagos_datatable } & \begin{array}{l}
\text { Colonization and branching times of } 8 \text { terrestrial avifaunal clades in } \\
\text { table format }
\end{array}
\end{array}
\]

\section*{Description}

A table containing the colonization and branching times of the terrestrial avifauna in the Galapagos. Each row on the table represents and independent colonisation event. The table has four columns.
\$Clade_name - name of independent colonization event
\$Status - One of the following categories:
* Non_endemic: for cases where both island and non-island populations of the species have been sampled)
* Non_endemic_MaxAge: for cases where island population of the species has not been sampled and only the age of the species is available)
* Endemic: applicable for both cladogenetic or anagenetic species
* Endemic\&Non_Endemic: when endemic clade and mainland ancestor has re-colonized
\$Missing_species - Number of island species that were not sampled for particular clade (only applicable for endemic clades)
\$Branching_times - Stem age of the population/species in the case of Non-endemic, Non-endemic_MaxAge and Endemic anagenetic species. For cladogenetic species these should be branching times of the radiation including the stem age of the radiation.

\section*{Usage \\ data(Galapagos_datatable)}

\section*{Format}

A table with 8 rows and 4 columns.

\section*{Source}

Valente, L.M., A.B. Phillimore and R.S. Etienne (2015). Equilibrium and non-equilibrium dynamics simultaneously operate in the Galapagos islands. Ecology Letters 18: 844-852.

\section*{See Also}

DAISIE_dataprep, DAISIE_ML

\section*{islands_10reps_RAW 1000 islands in RAW format simulated with the ML parameters of the CR model for the Galapagos data}

\section*{Description}

Each simulated dataset is an element of the list, which can be called using e.g. islands_10reps_RAW[[1]] Each of the island replicates is a list in itself. The first (e.g. islands_10reps_RAW[[x]][[1]]) element of that list has the following components:
The following elements of the RAW list each contain information on a single colonist lineage on the island and has 5 components:
\$branching_times - island age and stem age of the population/species in the case of Non-endemic, Non-endemic_MaxAge and Endemic anagenetic species. For cladogenetic species these should be island age and branching times of the radiation including the stem age of the radiation.
\$stac - the status of the colonist
* Not_present: \(0 \backslash \mathrm{cr}\) * Non_endemic_MaxAge: 1
* Endemic: 2
* Endemic\&Non_Endemic: 3
* Non_endemic: 4
\$stt_table - Species-through-time table for the descendants of the mainland species (nI - number of non-endemic species; nA - number of anagenetic species, nC - number of cladogenetic species) \$missing_species - number of island species that were not sampled for particular clade (only applicable for endemic clades)

\section*{Usage}
data(islands_10reps_RAW)

\section*{Format}

A list with 10 items.

\section*{Source}

Valente, L.M., A.B. Phillimore and R.S. Etienne (2015). Equilibrium and non-equilibrium dynamics simultaneously operate in the Galapagos islands. Ecology Letters 18: 844-852.

\section*{See Also}

DAISIE_sim, DAISIE_plot_sims
```

islands_1type_1000reps
1000 islands in DAISIE format simulated with the ML parameters of
the CR model for the Galapagos data

```

\section*{Description}

Each simulated dataset is an element of the list, which can be called using e.g.islands_1type_1000reps[[1]]
Each of the island replicates is a list in itself. The first (e.g. islands_1type_1000reps[[x]][[1]]) ele-
ment of that list has the following components:
\$island_age - the island age
\$not_present - the number of mainland lineages that are not present on the island
\$stt_all - STT table for all species on the island (nI - number of non-endemic species; nA - number of anagenetic species, nC - number of cladogenetic species, present - number of independent colonisations present)

The subsequent elements of the list each contain information on a single colonist lineage on the island and has 3 components:
\$branching_times - island age and stem age of the population/species in the case of Non-endemic, Non-endemic_MaxAge and Endemic anagenetic species. For cladogenetic species these should be island age and branching times of the radiation including the stem age of the radiation.
\$stac - the status of the colonist
* Non_endemic_MaxAge: 1
* Endemic: 2
* Endemic\&Non_Endemic: 3
* Non_endemic: 4
\$missing_species - number of island species that were not sampled for particular clade (only applicable for endemic clades)
```

Usage
data(islands_1type_1000reps)

```

\section*{Format}

A list with 1000 items.

\section*{Source}

Valente, L.M., A.B. Phillimore and R.S. Etienne (2015). Equilibrium and non-equilibrium dynamics simultaneously operate in the Galapagos islands. Ecology Letters 18: 844-852.

\section*{See Also}

DAISIE_sim, DAISIE_plot_sims
```

islands_2types_1000reps

```

1000 islands in DAISIE format simulated with the ML parameters of the CR_lamc_mu_K model for the Galapagos data (2 types of species)

\section*{Description}

Each simulated dataset is an element of the list, which can be called using e.g. islands_2types_1000reps[[1]]
Each of the island replicates is a list in itself. The first (e.g. islands_2types_1000reps[[x]][[1]]) element of that list has the following components:
\$island_age - the island age
\$not_present_type1 - the number of mainland lineages of type 1 that are not present on the island \$not_present_type2 - the number of mainland lineages of type 2 that are not present on the island \$stt_all - STT table for all species on the island (nI - number of non-endemic species; nA - number of anagenetic species, nC - number of cladogenetic species, present - number of independent colonisations present)
\$stt_stt_type1-STT table for type 1 species on the island (nI - number of non-endemic species; nA - number of anagenetic species, nC - number of cladogenetic species, present - number of independent colonisations present)
\(\$ s t t _s t t _t y p e 2\) - STT table for type 2 species on the island (nI - number of non-endemic species; nA - number of anagenetic species, nC - number of cladogenetic species, present - number of independent colonisations present)

The subsequent elements of the list each contain information on a single colonist lineage on the island and has 4 components:
\(\$ b r a n c h i n g _t i m e s ~-~ i s l a n d ~ a g e ~ a n d ~ s t e m ~ a g e ~ o f ~ t h e ~ p o p u l a t i o n / s p e c i e s ~ i n ~ t h e ~ c a s e ~ o f ~ N o n-e n d e m i c, ~\) Non-endemic_MaxAge and Endemic anagenetic species. For cladogenetic species these should be island age and branching times of the radiation including the stem age of the radiation.
\$stac - the status of the colonist
* Non_endemic_MaxAge: 1
* Endemic: 2
* Endemic\&Non_Endemic: 3
* Non_endemic: 4
\$missing_species - number of island species that were not sampled for particular clade (only applicable for endemic clades)
\(\$\) type_1or2 - whether the colonist belongs to type 1 or type 2
```

Usage
data(islands_2types_1000reps)

```

\section*{Format}

A list with 1000 items.

\section*{Source}

Valente, L.M., A.B. Phillimore and R.S. Etienne (2015). Equilibrium and non-equilibrium dynamics simultaneously operate in the Galapagos islands. Ecology Letters 18: 844-852.

\section*{See Also}

DAISIE_sim, DAISIE_plot_sims
\[
\begin{array}{ll}
\text { Macaronesia_datalist } & \text { Colonization and branching times of terrestrial avifaunal clades from } \\
& \text { Azores, Canary Islands, Cape Verde and Madeira in list format, ac- } \\
\text { cepted by DAISIE_ML and DAISIE_loglik_all }
\end{array}
\]

\section*{Description}

A list containing the colonization and branching times of the terrestrial avifauna in 4 archipelagos: Azores, Canary Islands, Cape Verde and Madeira. It is an R list object with the 4 main elements corresponding to each of the archipelagos (e.g. Macaronesia_datalist[[1]] calls the Azores data). Each of the four elements is then made of several elemants:

The first element of the list for an archipelago has two components:
\$island_age - the island age
\$not_present - the number of mainland lineages that are not present on the island
The following elements of the list each contains information on a single colonist lineage on the island and has 5 components:
\$colonist_name - the name of the species or clade that colonized the island
\(\$ b r a n c h i n g _t i m e s ~-~ i s l a n d ~ a g e ~ a n d ~ s t e m ~ a g e ~ o f ~ t h e ~ p o p u l a t i o n / s p e c i e s ~ i n ~ t h e ~ c a s e ~ o f ~ N o n-e n d e m i c, ~\) Non-endemic_MaxAge, Endemic_MaxAge and Endemic anagenetic species. For cladogenetic species the island age and branching times of the radiation including the stem age of the radiation are shown.
\$stac - the status of the colonist
* Non_endemic_MaxAge: 1
* Endemic: 2
* Endemic\&Non_Endemic: 3
* Non_endemic: 4
* Endemic_MaxAge: 5
\$missing_species - number of island species that were not sampled for particular clade (only applicable for endemic clades)
\(\$\) type1or 2 - whether the colonist belongs to type 1 or type 2 . In this dataset all are equal to 1 .

Usage
data(Macaronesia_datalist)

\section*{Format}

A list with 4 main elements for each archipelago. Each element has several sub-elements.

\section*{Source}

Valente L., Illera J.C, Havenstein K., Pallien T., Etienne R.S., Tiedemann R. Macroevolutionary dynamics in Atlantic island avifaunas: were MacArthur \& Wilson right about equilibrium? Under review.

See Also
DAISIE_dataprep, DAISIE_ML

\section*{Index}
```

*Topic datasets
Galapagos_datalist, 30
Galapagos_datalist_2types, 31
Galapagos_datatable, 32
islands_10reps_RAW, 33
islands_1type_1000reps, 34
islands_2types_1000reps,35
Macaronesia_datalist,36
*Topic models
DAISIE-package, 2
DAISIE_convertprobdist, 3
DAISIE_dataprep,4
DAISIE_ExpEIN, 8
DAISIE_loglik_all,9
DAISIE_margprobdist,12
DAISIE_ML, 13
DAISIE_numcol, 19
DAISIE_plot_age_diversity,21
DAISIE_plot_island, 22
DAISIE_plot_sims, 23
DAISIE_probdist, 25
DAISIE_sim,26
DAISIE_tutorial,30
DAISIE (DAISIE-package), 2
DAISIE-package, 2
DAISIE_convertprobdist,3
DAISIE_dataprep, 4, 31-33,38
DAISIE_ExpEIN, 8
DAISIE_format_CS, 24, 29
DAISIE_loglik_all, 9,17
DAISIE_loglik_CS (DAISIE_loglik_all), 9
DAISIE_margprobdist,12
DAISIE_ML, 11, 13, 31-33,38
DAISIE_numcol, 19
DAISIE_plot_age_diversity, 21, 23
DAISIE_plot_island, 22, 22
DAISIE_plot_sims, 23, 29, 34-36
DAISIE_probdist, 25
DAISIE_sim, 11, 17, 22-24, 26, 34-36

```

\author{
*Topic datasets
}
```

Galapagos_datalist, 30
Galapagos_datalist_2types, 31
Galapagos_datatable, 32
islands_10reps_RAW, 33
islands_1type_1000reps, 34
islands_2types_1000reps, 35
Macaronesia_datalist, 36
*Topic models
DAISIE-package, 2
DAISIE_convertprobdist, 3
DAISIE_dataprep, 4
DAISIE_ExpEIN, 8
DAISIE_loglik_all, 9
DAISIE_margprobdist, 12
DAISIE_ML, 13
DAISIE_numcol, 19
DAISIE_plot_age_diversity, 21
DAISIE_plot_island, 22
DAISIE_probdist, 25
DAISIE_sim, 26
DAISIE_tutorial, 30
DAISIE (DAISIE-package), 2
DAISIE-package, 2
DAISIE_convertprobdist, 3
dAISI_
DASIE_ExpEIN, 8
_Cs, 24, 29
DAISIE_loglik_CS (DAISIE_loglik_all), 9
DAISIE_margprobdist, 12
DAISIE_ML, 11, 13, 31-33, 38
DAISIE_numcol, 19
DAISIE_plot_age_diversity, 21, 23
DAISIE_plot_island, 22, 22
DAISIE_plot_sims, 23, 29, 34-36
AISIE_probdist, 25
DAISIE_sim, 11, 17, 22-24, 26, 34-36

```

DAISIE_tutorial, 30
Galapagos_datalist, 30
Galapagos_datalist_2types, 31
Galapagos_datatable, 32
islands_10reps_RAW, 33
islands_1type_1000reps, 34
islands_2types_1000reps, 35
Macaronesia_datalist, 36```

