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1 Calibration of Regression Diagnostics

Indications of departures from regression assumptions in diagnostic plots may
reflect sampling variation. This is an especial issue for relatively small datasets.
Diagnostic plots for a number of sets of simulated data may be an essential aid
to judgement. In e↵ect, the observed diagnostic plot is judged against a simu-
lated sampling distribution for such plots.

1.1 A ’simple’ straight line regression example

We use data, from the DAAG PACKAGE, that compares record times for
Northern Island hill races between males and females:

library(DAAG, warn.conflicts = FALSE)

library(latticeExtra)

## Loading required package: RColorBrewer

The data that are plotted in Figure 1 are, as they stand, problematic for least
squares fitting. A least squares line has nevertheless been added to the plot.
The discussion that immediately follows is designed to highlight problems that
would largely be avoided if a logarithmic transformation had first been applied
to the data:
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Figure 1: Record times for hill
races are compared – females ver-
sus males. A least squares line is
added. The diagnostic plot of resid-
uals against fitted values (which=1),
using the plot method for an lm
object, is shown alongside. The
“curve” is a crude attempt to iden-
tify any pattern in the residuals.

Code is:
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plot(timef~time, data=nihills,

xlab="Male record times",

ylab="Female record times")

mftime.lm <- lm(timef ~ time, data=nihills)

abline(mftime.lm)

plot(mftime.lm, which=1)

1.2 The function plotSimScat()

The function plotSimScat() is designed for use with straight line regression.
It plots either actual data values and simulated values against the x-variable, or
residuals and simulated residuals.

Figure 2 shows four scatterplots that overlay residuals from the actual data
with residuals that are simulated from the model. The coe�cients used are
those for the fitted least squares line, and the standard deviation is the estimate
that is returned by R’s lm() function.
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Figure 2: The plots are four simu-
lations of points. The coe�cients
used, and the standard deviation, are
from the fitted least squares line.

The largest simulated value lies consistently above the data value. Code is:

mftime.lm <- lm(timef ~ time, data = nihills)

gph <- plotSimScat(mftime.lm, layout = c(4, 1), show = "residuals")

gph <- update(gph, xlab = "Record times for males (h)",

ylab = "Record times for females (h)")

print(gph)

2 Diagnostic Plots for Simulated Data – plotSimDiags()

The function plotSimDiags() can be used with any lm object, or object of
a class that inherits from lm. For simplicity, the function is used here with
a straight line regression object. Here are the diagnostic plots, for the object
mftime.lm that was created earlier, from use of plot.lm().
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Figure 3: Diagnostic plots from the
regession of timef on time.

Residuals versus fitted values: Figure 4 shows simulations for the first panel
(Residuals vs Fitted) above. With just one explanatory variable, the di↵erence
between plotting against ↵̂+ �̂x and plotting against x (as in Figure 2 using
plotSimScat()) amounts only to a change of labeling on the x-axis. The plot
against x-values in Figure 2 had the convenience that it allowed exactly the
same x-axis labeling for each di↵erent simulation.
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Figure 4: Residuals versus fitted
values, for four sets of simulated
data.

Code is:

plotSimDiags(obj=mftime.lm, which=1, layout=c(4,1))

The simulations indicate that, in these circumstances, there can be a pattern
in the smooth curve that is added that is largely due to the one data value is
widely separated from other data values.

A check for normality: Figure 3 (the second plot) identified two large nega-
tive residuals and one large positive residual.

Are the deviations from a line much what might be expected given sta-
tistical variation? Figure 5 shows normal probability plots for four sets of
simulated data:
Code is as for Figure 4, but with the argument which=2.

Is the variance constant?: At the low end of the range in Figure 3 (the third
plot), the variance hardly changes with increasing fitted value. The sudden
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Figure 5: Normal probability plots
for four sets of simulated data.

bend upwards in the smooth curve is due to the large absolute values of the
residuals for the three largest fitted values.

Figure 6 shows the equivalent plots for four sets of simulated data. None of
the plots show the same increase in scale with fitted value as in the third panel
of Figure 3.
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Figure 6: Scale-location plots for
four sets of simulated data.

Code is as for Figure 4, but with the argument which=3.

Issues of leverage: Figure 3 (the third plot) warned that there are severe prob-
lems with leverage, as was already obvious from the scatterplot in Figure 1.
Here, there is not much point in doing a simulation. We already know from the
previous simulations that the large residual that is associated with the highest
leverage point is unlikely to be due to statistical variation.

Here, however, are plots for simulated data:
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Figure 7: Scale-location plots for
four sets of simulated data.
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Code is as for Figure 4, but with the argument which=5.

2.1 All 4 diagnostic plots in the same call

Do for example:

gphs1to6 <- plotSimDiags(obj = mftime.lm, which = 1:6,

layout = c(4, 2))

Then do, for example:

update(gphs1to6[[1]], layout = c(4, 2))
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This way of proceeding has the advantage that the same simulated data
values are used for all diagnostics, without the need to set a prior random
number seed.

Further checks: It bears emphasizing that, depending on the nature of the
data, there may be further checks and tests that should be applied. Data that
have been collected over a significant period of time is an important special
case. Departures from a fitted line may well show a pattern with time. The
functions acf() and pacf() should be used to check for autocorrelation in
the residuals.
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