Package 'DAAG'

March 10, 2020

Version 1.24

Title Data Analysis and Graphics Data and Functions
Author John H. Maindonald and W. John Braun
Maintainer W. John Braun john.braun@ubc.ca
Description Various data sets used in examples and exercises in the book Maindonald, J.H. and Braun, W.J. $(2003,2007,2010){ }^{\text {}}$ Data Analysis and Graphics Using R".

LazyLoad true

LazyData true
Depends R (>= 2.10.0), lattice
Imports latticeExtra, methods
Suggests leaps, oz, lme4, quantreg, knitr, boot, rpart, randomForest, MASS, survival
ZipData yes
License GPL-3
VignetteBuilder knitr
Repository CRAN
NeedsCompilation no
Date/Publication 2020-03-10 09:20:06 UTC

R topics documented:

DAAG-package . 5
ACF1 . 5
ais . 6
align2D . 7
allbacks . 9
anesthetic . 10
ant111b . 11
antigua . 12
appletaste . 13
audists 13
aulatlong 14
austpop 15
bestsetNoise 16
biomass 19
bomregions 20
bomsoi 22
bomsoi2001 25
bostonc 28
bounce 28
capstring 29
carprice 30
Cars93.summary 32
cerealsugar 33
cfseal 33
cities 34
codling 35
compareTreecalcs 36
component.residual 37
confusion 38
cottonworkers 39
cps1 41
cricketer 42
cuckoohosts 43
cuckoos 44
CVbinary 46
CVlm 47
DAAGxdb 48
datafile 49
dengue 50
dewpoint 51
droughts 52
edcCO2 53
edcT 54
elastic 1 55
elastic2 56
elasticband 57
errorsINseveral 58
errorsINx 61
excessRisk 62
fossilfuel 64
fossum 64
frogs 65
frostedflakes 67
fruitohms 67
gaba 68
geophones 70
greatLakes 70
R topics documented: 3
grog 71
hardcopy 72
head.injury 73
headInjury 74
hills 75
hills2000 76
hotspots 77
hotspots2006 78
houseprices 79
humanpower 80
hurricNamed 81
intersalt 83
ironslag 84
jobs 84
kiwishade 86
leafshape 87
leafshape 17 88
leaftemp 90
leaftemp.all 91
litters 91
lmdiags 93
logisticsim 94
Lottario 95
lung 95
Manitoba.lakes 96
measles 96
medExpenses 97
mifem 97
mignonette 98
milk 99
modelcars 100
monica 101
moths 102
multilap 103
nassCDS 103
nasshead 105
nihills 106
nsw74demo 107
nsw74psid1 108
nsw74psid3 109
nsw74psidA 110
nswdemo 111
nswpsid1 113
obounce 114
oddbooks 114
onesamp 115
onet.permutation 116
onetPermutation 117
oneway.plot 118
onewayPlot 119
orings 120
overlapDensity 121
ozone 122
pair65 123
panel.corr 124
panelCorr 124
panelplot 125
pause 126
plotSampDist 127
plotSimDiags 129
plotSimScat 131
poissonsim 132
possum 133
possumsites 135
powerplot 136
poxetc 137
press 137
primates 138
progression 139
psid1 140
psid2 141
psid3 142
qreference 143
races2000 144
rainforest 145
rareplants 146
rice 146
rockArt 148
roller 166
sampdist 167
science. 168
seedrates 170
show.colors 171
simulateLinear 172
simulateSampDist 172
socsupport 174
softbacks 175
sorption 176
SP500close 177
SP500W90 177
spam7 178
stVincent 179
sugar 179
tinting 180
tomato 181
toycars 182
two65 183
twot.permutation 183
twotPermutation 184
vif 185
vince111b 186
vlt 187
wages 1833 188
whoops 188
worldRecords 189
zzDAAGxdb 190
Index 191
DAAG-package The R DAAG Package

Description

Various data sets and functions used or referred to in the book Maindonald, J.H. and Braun, W.J. (3rd edn 2010) "Data Analysis and Graphics Using R", plus other selected datasets and functions.

Details

For a list of, use library (help="DAAG").

Author(s)

Author: John H Maindonald
Maintainer: W John Braun john.braun@ubc.ca

Description

Numbers of aberrant crypt foci (ACF) in the section 1 of the colons of 22 rats subjected to a single dose of the carcinogen azoxymethane (AOM), sacrificed at 3 different times.

Usage

ACF1

Format

This data frame contains the following columns:
count The number of ACF observed in section 1 of each rat colon
endtime Time of sacrifice, in weeks following injection of AOM

Source

Ranjana P. Bird, Faculty of Human Ecology, University of Manitoba, Winnipeg, Canada.

References

E.A. McLellan, A. Medline and R.P. Bird. Dose response and proliferative characteristics of aberrant crypt foci: putative preneoplastic lesions in rat colon. Carcinogenesis, 12(11): 2093-2098, 1991.

Examples

```
sapply(split(ACF1$count,ACF1$endtime),var)
plot(count ~ endtime, data=ACF1, pch=16)
pause()
print("Poisson Regression - Example 8.3")
ACF.glm0 <- glm(formula = count ~ endtime, family = poisson, data = ACF1)
summary(ACF.glm0)
# Is there a quadratic effect?
pause()
ACF.glm <- glm(formula = count ~ endtime + I(endtime^2),
    family = poisson, data = ACF1)
summary(ACF.glm)
# But is the data really Poisson? If not, try quasipoisson:
pause()
ACF.glm <- glm(formula = count ~ endtime + I(endtime^2),
    family = quasipoisson, data = ACF1)
summary(ACF.glm)
```


Description

These data were collected in a study of how data on various characteristics of the bloood varied with sport body size and sex of the athlete.

Usage

data(ais)

Format

A data frame with 202 observations on the following 13 variables.
rec red blood cell count, in $10^{12} l^{-1}$
wec while blood cell count, in 10^{12} per liter
he hematocrit, percent
hg hemaglobin concentration, in g per decaliter
ferr plasma ferritins, $\mathrm{ng} d l^{-1}$
bmi Body mass index, $\mathrm{kg} \mathrm{cm}{ }^{-2} 10^{2}$
ssf sum of skin folds
pcBfat percent Body fat
lbm lean body mass, kg
ht height, cm
wt weight, kg
sex a factor with levels fm
sport a factor with levels B_Ball Field Gym Netball Row Swim T_400m T_Sprnt Tennis W_Polo

Details

Do blood hemoglobin concentrations of athletes in endurance-related events differ from those in power-related events?

Source

These data were the basis for the analyses that are reported in Telford and Cunningham (1991).

References

Telford, R.D. and Cunningham, R.B. 1991. Sex, sport and body-size dependency of hematology in highly trained athletes. Medicine and Science in Sports and Exercise 23: 788-794.
align2D Function to align points from ordination with known locations

Description

Find the linear transformation which, applied to one set of points in the (\$x\$,\$y\$) plane, gives the best match in a least squares sense to a second set of points.

Usage

align2D(lat, long, x1, x2, wts=NULL)

Arguments

lat	Latitude or other co-ordinate of point to align to
long	Longitude or other co-ordinate of point to align to
x1	First coordinate of point to align
x2	First coordinate of point to align
wts	If non-NULL, specifies weights for the points.

Details

Achieves the best match, in a least squares sense, between an ordination and known locations in two-dimensionaL space.

Value

fitlat	Fitted values of lat
fitlong	Fitted values of long
lat	Input values of lat
long	Input values of long

Note
An ordination that is designed to reproduce distances between points is specified only to within an arbitrary rotation about the centroid. What linear transformation of the points (\$x1\$, \$x2\$) given by the ordination gives the best match to the known co-ordinates?

Author(s)

John H Maindonald

Examples

```
if(require(DAAG)&require(oz)){
aupts <- cmdscale(audists)
xy <- align2D(lat = aulatlong$latitude, long = aulatlong$longitude,
    x1 = aupts[, 1], x2 = aupts[, 2], wts = NULL)
oz()
fitcoords <- align2D(lat=aulatlong$latitude,
                                    long=aulatlong$longitude,
                                    x1=aupts[,1], x2 = aupts[,2],
                    wts=NULL)
x <-with(fitcoords,
            as.vector(rbind(lat, fitlat, rep(NA,length(lat)))))
y <-with(fitcoords,
        as.vector(rbind(long, fitlong, rep(NA,length(long)))))
points(aulatlong, col="red", pch=16, cex=1.5)
lines(x, y, col="gray40", lwd=3)
}
```

```
## The function is currently defined as
function(lat, long, x1, x2, wts=NULL){
    ## Get best fit in space of (latitude, longitude)
    if(is.null(wts))wts <- rep(1,length(x1))
    fitlat <- predict(lm(lat ~ x1+x2, weights=wts))
    fitlong <- predict(lm(long ~ x1+x2, weights=wts))
    list(fitlat = fitlat, fitlong=fitlong, lat=lat, long=long)
}
```

allbacks
Measurements on a Selection of Books

Description

The allbacks data frame gives measurements on the volume and weight of 15 books, some of which are softback (pb) and some of which are hardback (hb). Area of the hardback covers is also included.

Usage

allbacks

Format

This data frame contains the following columns:
volume book volumes in cubic centimeters
area hard board cover areas in square centimeters
weight book weights in grams
cover a factor with levels hb hardback, pb paperback

Source

The bookshelf of J. H. Maindonald.

Examples

```
print("Multiple Regression - Example 6.1")
attach(allbacks)
volume.split <- split(volume, cover)
weight.split <- split(weight, cover)
plot(weight.split$hb ~ volume.split$hb, pch=16, xlim=range(volume), ylim=range(weight),
    ylab="Weight (g)", xlab="Volume (cc)")
points(weight.split$pb ~ volume.split$pb, pch=16, col=2)
pause()
allbacks.lm <- lm(weight ~ volume+area)
summary(allbacks.lm)
detach(allbacks)
```

```
pause()
anova(allbacks.lm)
pause()
model.matrix(allbacks.lm)
pause()
print("Example 6.1.1")
allbacks.lm0 <- lm(weight ~ -1+volume+area, data=allbacks)
summary(allbacks.lm0)
pause()
print("Example 6.1.2")
oldpar <- par(mfrow=c(2,2))
plot(allbacks.lm0)
par(oldpar)
allbacks.lm13 <- lm(weight ~ -1+volume+area, data=allbacks[-13,])
summary(allbacks.lm13)
pause()
print("Example 6.1.3")
round(coef(allbacks.lm0),2) # Baseline for changes
round(lm.influence(allbacks.lm0)$coef,2)
```

anesthetic Anesthetic Effectiveness

Description

Thirty patients were given an anesthetic agent maintained at a predetermined level (conc) for 15 minutes before making an incision. It was then noted whether the patient moved, i.e. jerked or twisted.

Usage

anesthetic

Format

This data frame contains the following columns:
move a binary numeric vector coded for patient movement $(0=$ no movement, $1=$ movement $)$
conc anesthetic concentration
logconc logarithm of concentration
nomove the complement of move

Details

The interest is in estimating how the probability of jerking or twisting varies with increasing concentration of the anesthetic agent.

Source

unknown

Examples

```
print("Logistic Regression - Example 8.1.4")
z <- table(anesthetic$nomove, anesthetic$conc)
tot <- apply(z, 2, sum) # totals at each concentration
prop <- z[2, ]/(tot) # proportions at each concentration
oprop <- sum(z[2, ])/sum(tot) # expected proportion moving if concentration had no effect
conc <- as.numeric(dimnames(z)[[2]])
plot(conc, prop, xlab = "Concentration", ylab = "Proportion", xlim = c(.5,2.5),
    ylim = c(0, 1), pch = 16)
chw <- par()$cxy[1]
text(conc - 0.75 * chw, prop, paste(tot), adj = 1)
abline(h = oprop, lty = 2)
pause()
anes.logit <- glm(nomove ~ conc, family = binomial(link = logit),
    data = anesthetic)
anova(anes.logit)
summary(anes.logit)
```

ant111b
Averages by block of corn yields, for treatment 111 only

Description

These data frames have averages by blocks (parcels) for the treatment 111.

Usage

ant111b

Format

A data frame with 36 observations on 9 variables.
site a factor with levels (ant111b:) DBAN LFAN NSAN ORAN OVAN TEAN WEAN WLAN
parcel a factor with levels I II III IV
code a numeric vector
island a numeric vector
id a numeric vector
plot a numeric vector
trt a numeric vector
ears a numeric vector
harvwt a numeric vector

Source

Andrews DF; Herzberg AM, 1985. Data. A Collection of Problems from Many Fields for the Student and Research Worker. Springer-Verlag. (pp. 339-353)

```
antigua Averages by block of yields for the Antigua Corn data
```


Description

These data frames have yield averages by blocks (parcels). The ant111b data set is a subset of this.

Usage

antigua

Format

A data frame with 324 observations on 7 variables.
id a numeric vector
site a factor with 8 levels.
block a factor with levels I II III IV
plot a numeric vector
trt a factor consisting of 12 levels
ears a numeric vector; note that -9999 is used as a missing value code.
harvwt a numeric vector; the average yield

Source

Andrews DF; Herzberg AM, 1985. Data. A Collection of Problems from Many Fields for the Student and Research Worker. Springer-Verlag. (pp. 339-353)
appletaste
Tasting experiment that compared four apple varieties

Description

Each of 20 tasters each assessed three out of the four varieties. The experiment was conducted according to a balanced incomplete block design.

Usage

data(appletaste)

Format

A data frame with 60 observations on the following 3 variables.
aftertaste a numeric vectorApple samples were rated for aftertaste, by making a mark on a continuous scale that ranged from 0 (extreme dislike) to 150 (like very much).
panelist a factor with levels abcdefghijklmnopqrst
product a factor with levels 298493649937

Examples

```
data(appletaste)
appletaste.aov <- aov(aftertaste ~ panelist + product, data=appletaste)
termplot(appletaste.aov)
```

audists Road distances between 10 Australian cities

Description

Distances between the Australian cities of Adelaide, Alice, Brisbane, Broome, Cairns, Canberra, Darwin, Melbourne, Perth and Sydney

Usage

audists

Format

The format is: Class 'dist', i.e., a distance matrix.

Source

Australian road map

Examples

```
data(audists)
    audists.cmd <- cmdscale(audists)
    xyplot(audists.cmd[,2] ~ audists.cmd[,1], groups=row.names(audists.cmd),
    panel = function(x, y, subscripts, groups)
                ltext(x = x, y = y, label = groups[subscripts],
                cex=1, fontfamily = "HersheySans"))
```

 aulatlong Latitudes and longitudes for ten Australian cities

Description

Latitudes and longitudes for Adelaide, Alice, Brisbane, Broome, Cairns, Canberra, Darwin, Melbourne, Perth and Sydney; i.e., for the cities to which the road distances in audists relate.

Usage

aulatlong

Format

A data frame with 10 observations on the following 2 variables.
latitude Latitude, as a decimal number
longitude Latitude, as a decimal number

Source

Map of Australia showing latitude and longitude information.

Examples

```
data(aulatlong)
## maybe str(aulatlong) ; plot(aulatlong) ...
```

```
    austpop
```

Population figures for Australian States and Territories

Description

Population figures for Australian states and territories for 1917, 1927, ..., 1997.

Usage

austpop

Format

This data frame contains the following columns:
year a numeric vector
NSW New South Wales population counts
Vic Victoria population counts
Qld Queensland population counts
SA South Australia population counts
WA Western Australia population counts
Tas Tasmania population counts
NT Northern Territory population counts
ACT Australian Capital Territory population counts
Aust Population counts for the whole country

Source

Australian Bureau of Statistics

Examples

```
print("Looping - Example 1.7")
growth.rates <- numeric(8)
for (j in seq(2,9)) {
        growth.rates[j-1] <- (austpop[9, j]-austpop[1, j])/austpop[1, j] }
growth.rates <- data.frame(growth.rates)
row.names(growth.rates) <- names(austpop[c(-1,-10)])
    # Note the use of row.names() to name the rows of the data frame
growth.rates
pause()
print("Avoiding Loops - Example 1.7b")
sapply(austpop[,-c(1,10)], function(x){(x[9]-x[1])/x[1]})
```

```
pause()
print("Plot - Example 1.8a")
attach(austpop)
plot(year, ACT, type="l") # Join the points ("l" = "line")
detach(austpop)
pause()
print("Exerice 1.12.9")
attach(austpop)
oldpar <- par(mfrow=c(2,4))
for (i in 2:9){
plot(austpop[,1], log(austpop[, i]), xlab="Year",
    ylab=names(austpop)[i], pch=16, ylim=c(0,10))}
par(oldpar)
detach(austpop)
```

bestsetNoise Best Subset Selection Applied to Noise

Description

Best subset selection applied to completely random noise. This function demonstrates how variable selection techniques in regression can often err in including explanatory variables that are indistinguishable from noise.

Usage

```
bestsetNoise(m = 100, n = 40, method = "exhaustive", nvmax = 3,
    X = NULL, y=NULL, intercept=TRUE,
    print.summary = TRUE, really.big = FALSE, ...)
bestset.noise(m = 100, n = 40, method = "exhaustive", nvmax = 3,
    X = NULL, y=NULL, intercept=TRUE,
    print.summary = TRUE, really.big = FALSE, ...)
bsnCV(m = 100, n = 40, method = "exhaustive", nvmax = 3,
    X = NULL, y=NULL, intercept=TRUE, nfolds = 2,
    print.summary = TRUE, really.big = FALSE)
bsnOpt(X = matrix(rnorm(25 * 10), ncol = 10), y = NULL, method = "exhaustive",
    nvmax = NULL, nbest = 1, intercept = TRUE, criterion = "cp",
    tcrit = NULL, print.summary = TRUE, really.big = FALSE,
    ...)
bsnVaryNvar(m = 100, nvar = nvmax:50, nvmax = 3, method = "exhaustive",
    intercept=TRUE,
```

```
plotit = TRUE, xlab = "# of variables from which to select",
ylab = "p-values for t-statistics", main = paste("Select 'best'",
    nvmax, "variables"),
details = FALSE, really.big = TRUE, smooth = TRUE)
```


Arguments

m
n
method Use exhaustive search, or backward selection, or forward selection, or sequential replacement.
nvmax \quad Number of explanatory variables in model.
X Use columns from this matrix. Alternatively, X may be a data frame, in which case a model matrix will be formed from it. If not NULL, m and n are ignored.
y If not supplied, random normal noise will be generated.
nbest Number of models, for each choice of number of columns of explanatory variables, to return (bsnOpt). If tcrit is non-NULL, it may be important to set this greater than one, in order to have a good chance of finding models with minimum absolute t-statistic greater than tcrit.
intercept Should an intercept be added?
nvar range of number of candidate variables (bsnVaryVvar).
nfolds For splitting the data into training and text sets, the number of folds.
criterion Criterion to use in choosing between models with different numbers of explanatory variables (bsnOpt). Alternatives are "bic", or "cip" or "adjr2".
tcrit Consider only those models for which the minimum absolute t-statistic is greater than tcrit.
print.summary Should summary information be printed.
plotit Plot a graph? (bsnVaryVvar)
$x l a b \quad x$-label for graph (bsnVaryVvar)
ylab $\quad y$-label for graph (bsnVaryVvar.)
main main title for graph (bsnVaryVvar.)
details Return detailed output list (bsnVaryVvar)
really.big Set to TRUE to allow (currently) for more than 50 explanatory variables.
smooth Fit smooth to graph? (bsnVaryVvar).
... Additional arguments, to be passed through to regsubsets().

Details

If X is not supplied, and in any case for bsnVaryNvar, a set of n predictor variables are simulated as independent standard normal, i.e. $\mathrm{N}(0,1)$, variates. Additionally a $\mathrm{N}(0,1)$ response variable is simulated. The function bsnOpt selects the 'best' model with nvmax or fewer explanatory variables, where the argument criterion specifies the criterion that will be used to choose between models
with different numbers of explanatory columns. Other functions select the 'best' model with nvmax explanatory columns. In any case, the selection is made using the regsubsets() function from the leaps package. (The leaps package must be installed for this function to work.)
The function bsnCV splits the data (randomly) into nfolds (2 or more) parts. It puts each part aside in turn for use to fit the model (effectively, test data), with the remaining data used for selecting the variables that will be used for fitting. One model fit is returned for each of the nfolds parts.

The function bsnVaryVvar makes repeated calls to bestsetNoise

Value

bestsetNoise returns the lm model object for the "best" model with nvmax explanatory columns.
bsnCV returns as many models as there are folds.
bsnVaryVvar silently returns either (details=FALSE) a matrix that has p-values of the coefficients for the 'best' choice of model for each different number of candidate variables, or (details=TRUE) a list with elements:
coef A matrix of sets of regression coefficients
SE A matrix of standard errors
pval A matrix of p-values
Matrices have one row for each choice of nvar. The statistics returned are for the 'best' model with nvmax explanatory variables.
bsnOpt silently returns a list with elements:
u1
'best' model (lm object) with nvmax or fewer columns of predictors. If tcrit is non-NULL, and there is no model for which all coefficients have t-statistics less than tcrit in absolute value, u1 will be NULL.
tcritFor each model, the minimum of the absolute values of the t-statistics. regsubsets_objThe object returned by the call to regsubsets.

Note

These functions are primarily designed to demonstrate the biases that can be expected, relative to theoretical estimates of standard errors of parameters and other fitted model statistics, when there is prior selection of the columns that are to be included in the model. With the exception of bsnVaryNvar, they can also be used with an X and y for actual data. In that case, the p-values should be compared with those obtained from repeated use of the function where y is random noise, as a check on the extent of selection effects.

Author(s)

J.H. Maindonald

See Also

Examples

```
    leaps.out <- try(require(leaps, quietly=TRUE))
    leaps.out.log <- is.logical(leaps.out)
    if ((leaps.out.log==TRUE)&(leaps.out==TRUE)){
    bestsetNoise(20,6) # 'best' 3-variable regression for 20 simulated observations
        # on 7 unrelated variables (including the response)
    bsnCV(20,6) # 'best' 3-variable regressions (one for each fold) for 20
        # simulated observations on 7 unrelated variables
        # (including the response)
    bsnVaryNvar(m = 50, nvar = 3:6, nvmax = 3, method = "exhaustive",
        plotit=FALSE, details=TRUE)
    bsnOpt()
    }
```

biomass Biomass Data

Description

The biomass data frame has 135 rows and 8 columns. The rainforest data frame is a subset of this one.

Usage

biomass

Format

This data frame contains the following columns:
dbh a numeric vector
wood a numeric vector
bark a numeric vector
fac26 a factor with 3 levels
root a numeric vector
rootsk a numeric vector
branch a numeric vector
species a factor with levels Acacia mabellae, C. fraseri, Acmena smithii, B. myrtifolia

Source

J. Ash, Australian National University

References

Ash, J. and Helman, C. (1990) Floristics and vegetation biomass of a forest catchment, Kioloa, south coastal N.S.W. Cunninghamia, 2: 167-182.

Description

Australian regional temperature data, Australian regional rainfall data, and Annual SOI, are given for the years 1900-2008 or 1900-2011 or 1900-2012. The regional rainfall and temperature data are area-weighted averages for the respective regions. The Southern Oscillation Index (SOI) is the difference in barometric pressure at sea level between Tahiti and Darwin.

Usage

bomregions

Format

This data frame contains the following columns:
Year Year
eastAVt Eastern temperature
seAVt Southeastern region average temperature (degrees C)
southAVt Southern temperature
swAVt Southwestern temperature
westAVt Western temperature
northAVt Northern temperature
mdbAVt Murray-Darling basin temperature
auAVt Australian average temperature, area-weighted mean
eastRain Eastern rainfall
seRain Southeast Australian annual rainfall (mm)
southRain Southern rainfall
swRain Southwest rainfall
westRain Western rainfall
northRain Northern rainfall
mdbRain Murray-Darling basin rainfall
auRain Australian average rainfall, area weighted
SOI Annual average Southern Oscillation Index
co2mlo Moana Loa CO2 concentrations, from 1959
co2law Moana Loa CO2 concentrations, 1900 to 1978
CO2 CO2 concentrations, composite series
sunspot Annual average sunspot counts

Source

Australian Bureau of Meteorology web pages:
http://www.bom.gov.au/climate/change/index. shtml
The CO2 series co2law, for Law Dome ice core data. is from http://cdiac.ornl.gov/trends/ co2/lawdome. html.
The CO2 series co2mlo is from Dr. Pieter Tans, NOAA/ESRL (https://www.esrl.noaa.gov/ gmd/ccgg/trends/)
The series CO2 is a composite series, obtained by adding 0.46 to he Law data for 1900 to 1958 , then following this with the Moana Loa data that is avaiable from 1959. The addition of 0.46 is designed so that the averages from the two series agree for the period 1959 to 1968
Sunspot data is from http://sidc.oma.be/sunspot-data/

References

D.M. Etheridge, L.P. Steele, R.L. Langenfelds, R.J. Francey, J.-M. Barnola and V.I. Morgan, 1998, Historical CO2 records from the Law Dome DE08, DE08-2, and DSS ice cores, in Trends: A Compendium of Data on Global Change, on line at Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A. http: // cdiac.ornl.gov/trends/co2/lawdome.html
Lavery, B., Joung, G. and Nicholls, N. 1997. An extended high-quality historical rainfall dataset for Australia. Australian Meteorological Magazine, 46, 27-38.

Nicholls, N., Lavery, B., Frederiksen, C. \backslash and Drosdowsky, W. 1996. Recent apparent changes in relationships between the El Nino - southern oscillation and Australian rainfall and temperature. Geophysical Research Letters 23: 3357-3360.
SIDC-team, World Data Center for the Sunspot Index, Royal Observatory of Belgium, Monthly Report on the International Sunspot Number, online catalogue of the sunspot index: http: //www. sidc.be/sunspot-data/, 1900-2011

Examples

```
plot(ts(bomregions[, c("mdbRain","SOI")], start=1900),
    panel=function(y,\ldots.)panel.smooth(bomregions$Year, y,...))
avrain <- bomregions[,"mdbRain"]
xbomsoi <- with(bomregions, data.frame(Year=Year, SOI=SOI,
            cuberootRain=avrain^0.33))
xbomsoi$trendSOI <- lowess(xbomsoi$SOI, f=0.1)$y
xbomsoi$trendRain <- lowess(xbomsoi$cuberootRain, f=0.1)$y
xbomsoi$detrendRain <-
    with(xbomsoi, cuberootRain - trendRain + mean(trendRain))
xbomsoi$detrendSOI <-
    with(xbomsoi, SOI - trendSOI + mean(trendSOI))
## Plot time series avrain and SOI: ts object xbomsoi
plot(ts(xbomsoi[, c("cuberootRain","SOI")], start=1900),
    panel=function(y,...)panel.smooth(xbomsoi$Year, y,...),
    xlab = "Year", main="", ylim=list(c(250, 800),c(-20,25)))
par(mfrow=c(1,2))
rainpos <- pretty(xbomsoi$cuberootRain^3, 6)
```

```
plot(cuberootRain ~ SOI, data = xbomsoi,
    ylab = "Rainfall (cube root scale)", yaxt="n")
axis(2, at = rainpos^0.33, labels=paste(rainpos))
mtext(side = 3, line = 0.8, "A", adj = -0.025)
with(xbomsoi, lines(lowess(cuberootRain ~ SOI, f=0.75)))
plot(detrendRain ~ detrendSOI, data = xbomsoi,
    xlab="Detrended SOI", ylab = "Detrended rainfall", yaxt="n")
axis(2, at = rainpos^0.33, labels=paste(rainpos))
with(xbomsoi, lines(lowess(detrendRain ~ detrendSOI, f=0.75)))
mtext(side = 3, line = 0.8, "B", adj = -0.025)
par(mfrow=c(1,1))
```

bomsoi Southern Oscillation Index Data

Description

The Southern Oscillation Index (SOI) is the difference in barometric pressure at sea level between Tahiti and Darwin. Annual SOI and Australian rainfall data, for the years 1900-2001, are given. Australia's annual mean rainfall is an area-weighted average of the total annual precipitation at approximately 370 rainfall stations around the country.

Usage

bomsoi

Format

This data frame contains the following columns:
Year a numeric vector
Jan average January SOI values for each year
Feb average February SOI values for each year
Mar average March SOI values for each year
Apr average April SOI values for each year
May average May SOI values for each year
Jun average June SOI values for each year
Jul average July SOI values for each year
Aug average August SOI values for each year
Sep average September SOI values for each year
Oct average October SOI values for each year
Nov average November SOI values for each year
Dec average December SOI values for each year
SOI a numeric vector consisting of average annual SOI values
avrain a numeric vector consisting of a weighted average annual rainfall at a large number of Australian sites
NTrain Northern Territory rain
northRain north rain
seRain southeast rain
eastRain east rain
southRain south rain
swRain southwest rain

Source

Australian Bureau of Meteorology web pages:
http://www.bom.gov.au/climate/change/rain02.txt and http://www.bom.gov.au/climate/current/soihtm1.shtml

References

Nicholls, N., Lavery, B., Frederiksen, C. \backslash and Drosdowsky, W. 1996. Recent apparent changes in relationships between the El Nino - southern oscillation and Australian rainfall and temperature. Geophysical Research Letters 23: 3357-3360.

Examples

```
plot(ts(bomsoi[, 15:14], start=1900),
    panel=function(y,...)panel.smooth(1900:2005, y,...))
pause()
# Check for skewness by comparing the normal probability plots for
# different a, e.g.
par(mfrow = c(2,3))
for (a in c(50, 100, 150, 200, 250, 300))
qqnorm(log(bomsoi[, "avrain"] - a))
    # a = 250 leads to a nearly linear plot
pause()
par(mfrow = c(1,1))
plot(bomsoi$SOI, log(bomsoi$avrain - 250), xlab = "SOI",
    ylab = "log(avrain = 250)")
lines(lowess(bomsoi$SOI)$y, lowess(log(bomsoi$avrain - 250))$y, lwd=2)
    # NB: separate lowess fits against time
lines(lowess(bomsoi$SOI, log(bomsoi$avrain - 250)))
pause()
xbomsoi <-
    with(bomsoi, data.frame(SOI=SOI, cuberootRain=avrain^0.33))
xbomsoi$trendSOI <- lowess(xbomsoi$SOI)$y
xbomsoi$trendRain <- lowess(xbomsoi$cuberootRain)$y
rainpos <- pretty(bomsoi$avrain, 5)
```

```
with(xbomsoi,
    {plot(cuberootRain ~ SOI, xlab = "SOI",
        ylab = "Rainfall (cube root scale)", yaxt="n")
    axis(2, at = rainpos^0.33, labels=paste(rainpos))
## Relative changes in the two trend curves
    lines(lowess(cuberootRain ~ SOI))
    lines(lowess(trendRain ~ trendSOI), lwd=2)
    })
pause()
xbomsoi$detrendRain <-
    with(xbomsoi, cuberootRain - trendRain + mean(trendRain))
xbomsoi$detrendSOI <-
    with(xbomsoi, SOI - trendSOI + mean(trendSOI))
oldpar <- par(mfrow=c(1,2), pty="s")
plot(cuberootRain ~ SOI, data = xbomsoi,
    ylab = "Rainfall (cube root scale)", yaxt="n")
axis(2, at = rainpos^0.33, labels=paste(rainpos))
with(xbomsoi, lines(lowess(cuberootRain ~ SOI)))
plot(detrendRain ~ detrendSOI, data = xbomsoi,
    xlab="Detrended SOI", ylab = "Detrended rainfall", yaxt="n")
axis(2, at = rainpos^0.33, labels=paste(rainpos))
with(xbomsoi, lines(lowess(detrendRain ~ detrendSOI)))
pause()
par(oldpar)
attach(xbomsoi)
xbomsoi.ma0 <- arima(detrendRain, xreg=detrendSOI, order=c(0,0,0))
# ordinary regression model
xbomsoi.ma12 <- arima(detrendRain, xreg=detrendSOI,
    order=c(0,0,12))
# regression with MA(12) errors -- all 12 MA parameters are estimated
xbomsoi.ma12
pause()
xbomsoi.ma12s <- arima(detrendRain, xreg=detrendSOI,
                seasonal=list(order=c(0,0,1), period=12))
# regression with seasonal MA(1) (lag 12) errors -- only 1 MA parameter
# is estimated
xbomsoi.ma12s
pause()
xbomsoi.maSel <- arima(x = detrendRain, order = c(0, 0, 12),
    xreg = detrendSOI, fixed = c(0, 0, 0,
    NA, rep(0, 4), NA, 0, NA, NA, NA, NA),
    transform.pars=FALSE)
# error term is MA(12) with fixed 0's at lags 1, 2, 3, 5, 6, 7, 8, 10
# NA's are used to designate coefficients that still need to be estimated
# transform.pars is set to FALSE, so that MA coefficients are not
# transformed (see help(arima))
detach(xbomsoi)
```

```
pause()
Box.test(resid(lm(detrendRain ~ detrendSOI, data = xbomsoi)),
    type="Ljung-Box", lag=20)
pause()
attach(xbomsoi)
    xbomsoi2.maSel <- arima(x = detrendRain, order = c(0, 0, 12),
                            xreg = poly(detrendSOI,2), fixed = c(0,
                            0, 0, NA, rep(0, 4), NA, 0, rep(NA,5)),
                    transform.pars=FALSE)
    xbomsoi2.maSel
qqnorm(resid(xbomsoi.maSel, type="normalized"))
detach(xbomsoi)
```

bomsoi2001 Southern Oscillation Index Data

Description

The Southern Oscillation Index (SOI) is the difference in barometric pressure at sea level between Tahiti and Darwin. Annual SOI and Australian rainfall data, for the years 1900-2001, are given. Australia's annual mean rainfall is an area-weighted average of the total annual precipitation at approximately 370 rainfall stations around the country.

Usage

bomsoi2001

Format

This data frame contains the following columns:
Year a numeric vector
Jan average January SOI values for each year
Feb average February SOI values for each year
Mar average March SOI values for each year
Apr average April SOI values for each year
May average May SOI values for each year
Jun average June SOI values for each year
Jul average July SOI values for each year
Aug average August SOI values for each year
Sep average September SOI values for each year
Oct average October SOI values for each year

Nov average November SOI values for each year
Dec average December SOI values for each year
SOI a numeric vector consisting of average annual SOI values
avrain a numeric vector consisting of a weighted average annual rainfall at a large number of Australian sites

Source

Australian Bureau of Meteorology web pages:
http://www.bom.gov.au/climate/change/rain02.txt and http://www.bom.gov.au/climate/current/soihtm1.shtml

References

Nicholls, N., Lavery, B., Frederiksen, C.l and Drosdowsky, W. 1996. Recent apparent changes in relationships between the El Nino - southern oscillation and Australian rainfall and temperature. Geophysical Research Letters 23: 3357-3360.

See Also

```
bomsoi
```


Examples

```
bomsoi <- bomsoi2001
plot(ts(bomsoi[, 15:14], start=1900),
    panel=function(y,...)panel.smooth(1900:2001, y,...))
pause()
# Check for skewness by comparing the normal probability plots for
# different a, e.g.
par(mfrow = c(2,3))
for (a in c(50, 100, 150, 200, 250, 300))
qqnorm(log(bomsoi[, "avrain"] - a))
    # a = 250 leads to a nearly linear plot
pause()
par(mfrow = c(1,1))
plot(bomsoi$SOI, log(bomsoi$avrain - 250), xlab = "SOI",
    ylab = "log(avrain = 250)")
lines(lowess(bomsoi$SOI)$y, lowess(log(bomsoi$avrain - 250))$y, lwd=2)
    # NB: separate lowess fits against time
lines(lowess(bomsoi$SOI, log(bomsoi$avrain - 250)))
pause()
xbomsoi <-
    with(bomsoi, data.frame(SOI=SOI, cuberootRain=avrain^0.33))
xbomsoi$trendSOI <- lowess(xbomsoi$SOI)$y
xbomsoi$trendRain <- lowess(xbomsoi$cuberootRain)$y
```

```
rainpos <- pretty(bomsoi$avrain, 5)
with(xbomsoi,
    {plot(cuberootRain ~ SOI, xlab = "SOI",
        ylab = "Rainfall (cube root scale)", yaxt="n")
    axis(2, at = rainpos^0.33, labels=paste(rainpos))
## Relative changes in the two trend curves
    lines(lowess(cuberootRain ~ SOI))
    lines(lowess(trendRain ~ trendSOI), lwd=2)
    })
pause()
xbomsoi$detrendRain <-
    with(xbomsoi, cuberootRain - trendRain + mean(trendRain))
xbomsoi$detrendSOI <-
    with(xbomsoi, SOI - trendSOI + mean(trendSOI))
oldpar <- par(mfrow=c(1,2), pty="s")
plot(cuberootRain ~ SOI, data = xbomsoi,
            ylab = "Rainfall (cube root scale)", yaxt="n")
axis(2, at = rainpos^0.33, labels=paste(rainpos))
with(xbomsoi, lines(lowess(cuberootRain ~ SOI)))
plot(detrendRain ~ detrendSOI, data = xbomsoi,
    xlab="Detrended SOI", ylab = "Detrended rainfall", yaxt="n")
axis(2, at = rainpos^0.33, labels=paste(rainpos))
with(xbomsoi, lines(lowess(detrendRain ~ detrendSOI)))
pause()
par(oldpar)
attach(xbomsoi)
xbomsoi.ma0 <- arima(detrendRain, xreg=detrendSOI, order=c(0,0,0))
# ordinary regression model
xbomsoi.ma12 <- arima(detrendRain, xreg=detrendSOI,
                    order=c(0,0,12))
# regression with MA(12) errors -- all 12 MA parameters are estimated
xbomsoi.ma12
pause()
xbomsoi.ma12s <- arima(detrendRain, xreg=detrendSOI,
                seasonal=list(order=c(0,0,1), period=12))
# regression with seasonal MA(1) (lag 12) errors -- only 1 MA parameter
# is estimated
xbomsoi.ma12s
pause()
xbomsoi.maSel <- arima(x = detrendRain, order = c(0, 0, 12),
                        xreg = detrendSOI, fixed = c(0, 0, 0,
                        NA, rep(0, 4), NA, 0, NA, NA, NA, NA),
                            transform.pars=FALSE)
# error term is MA(12) with fixed 0's at lags 1, 2, 3, 5, 6, 7, 8, 10
# NA's are used to designate coefficients that still need to be estimated
# transform.pars is set to FALSE, so that MA coefficients are not
# transformed (see help(arima))
```

```
    detach(xbomsoi)
    pause()
    Box.test(resid(lm(detrendRain ~ detrendSOI, data = xbomsoi)),
        type="Ljung-Box", lag=20)
    pause()
    attach(xbomsoi)
    xbomsoi2.maSel <- arima(x = detrendRain, order = c(0, 0, 12),
                    xreg = poly(detrendSOI,2), fixed = c(0,
                0, 0, NA, rep(0, 4), NA, 0, rep(NA,5)),
                transform.pars=FALSE)
    xbomsoi2.maSel
qqnorm(resid(xbomsoi.maSel, type="normalized"))
detach(xbomsoi)
```

bostonc Boston Housing Data-Corrected

Description

The corrected Boston housing data (from http://lib.stat.cmu.edu/datasets/).

Usage

bostonc

Format

A single vector containing the contents of "boston_corrected.txt".

Source

Harrison, D. and Rubinfeld, D.L. 'Hedonic prices and the demand for clean air', J. Environ. Economics \& Management, vol.5, 81-102, 1978. corrected by Kelley Pace (kpace@unix1.sncc.lsu.edu)
\qquad

Description

Return univariate plotting positions in which neighboring points are separated, if and as necessary, so that they are the specified minimum distance apart.

Usage

bounce (y, d, log = FALSE)

Arguments

y	A numeric vector of plotting positions
d	Minimum required distance between neighboring positions
log	TRUE if values are will be plotted on a logarithmic scale.

Details

The centroid(s) of groups of points that are moved relative to each other remain the same.

Value

A vector of values such that, when plotted along a line, neighboring points are the required minimum distance apart.

Note

If values are plotted on a logarithmic scale, d is the required distance apart on that scale. If a base other than 10 is required, set log equal to that base. (Note that base 10 is the default for plot with log=TRUE.)

Author(s)

John Maindonald

See Also

See also onewayPlot

Examples

```
bounce(c(4, 1.8, 2, 6), d=.4)
bounce(c(4, 1.8, 2, 6), d=.1, log=TRUE)
```

```
capstring
```


Description

This function is useful for use before plotting, if one wants capitalized axis labels or factor levels.

Usage

capstring(names)

Arguments

names a character vector

Value

a character vector with upper case initial values

Author(s)

W.J. Braun

Examples

capstring(names(tinting) $[\mathrm{c}(3,4)])$
library(lattice)
levels(tinting\$agegp) <- capstring(levels(tinting\$agegp))
xyplot(csoa ~ it | sex * agegp, data=tinting)

```
carprice US Car Price Data
```


Description

U.S. data extracted from Cars93, a data frame in the MASS package.

Usage

carprice

Format

This data frame contains the following columns:
Type Type of car, e.g. Sporty, Van, Compact
Min.Price Price for a basic model
Price Price for a mid-range model
Max.Price Price for a 'premium' model
Range.Price Difference between Max.Price and Min.Price
RoughRange Rough.Range plus some $\mathrm{N}(0, .0001)$ noise
gpm100 The number of gallons required to travel 100 miles
MPG.city Average number of miles per gallon for city driving
MPG.highway Average number of miles per gallon for highway driving

Source

MASS package

References

Venables, W.N.\ and Ripley, B.D., 4th edn 2002. Modern Applied Statistics with S. Springer, New York.

See also 'R' Complements to Modern Applied Statistics with S-Plus, available from http://www. stats.ox.ac.uk/pub/MASS3/

Examples

```
print("Multicollinearity - Example 6.8")
pairs(carprice[,-c(1,8,9)])
carprice1.lm <- lm(gpm100 ~ Type+Min.Price+Price+Max.Price+Range.Price,
    data=carprice)
round(summary(carprice1.lm)$coef,3)
pause()
alias(carprice1.lm)
pause()
carprice2.lm <- lm(gpm100 ~ Type+Min.Price+Price+Max.Price+RoughRange, data=carprice)
round(summary(carprice2.1m)$coef, 2)
pause()
carprice.lm <- lm(gpm100 ~ Type + Price, data = carprice)
round(summary(carprice.lm)$coef,4)
pause()
summary(carprice1.lm)$sigma # residual standard error when fitting all 3 price variables
pause()
summary(carprice.lm)$sigma # residual standard error when only price is used
pause()
vif(lm(gpm100 ~ Price, data=carprice)) # Baseline Price
pause()
vif(carprice1.lm) # includes Min.Price, Price & Max.Price
pause()
vif(carprice2.lm) # includes Min.Price, Price, Max.Price & RoughRange
pause()
vif(carprice.lm) # Price alone
```


Description

The Cars93. summary data frame has 6 rows and 4 columns created from information in the Cars93 data set in the Venables and Ripley MASS package. Each row corresponds to a different class of car (e.g. Compact, Large, etc.).

Usage

Cars93.summary

Format

This data frame contains the following columns:
Min.passengers minimum passenger capacity for each class of car
Max.passengers maximum passenger capacity for each class of car
No.of.cars number of cars in each class
abbrev a factor with levels C Compact, L Large, M Mid-Size, Sm Small, Sp Sporty, V Van

Source

Lock, R. H. (1993) 1993 New Car Data. Journal of Statistics Education 1(1)

References

MASS library

Examples

```
type <- Cars93.summary$abbrev
type <- Cars93.summary[,4]
type <- Cars93.summary[,"abbrev"]
type <- Cars93.summary[[4]] # Take the object that is stored
        # in the fourth list element.
type
pause()
attach(Cars93.summary)
    # R can now access the columns of Cars93.summary directly
abbrev
detach("Cars93.summary")
pause()
# To change the name of the \verb!abbrev! variable (the fourth column)
names(Cars93.summary)[4] <- "code"
```

```
    pause()
```

 \# To change all of the names, try
 names(Cars93.summary) <- c("minpass","maxpass","number","code")
 cerealsugar Percentage of Sugar in Breakfast Cereal

Description

Measurements of sugar content in frosted flakes breakfast cereal.

Usage

cerealsugar

Format

A vector of 100 measurements.

```
cfseal Cape Fur Seal Data
```


Description

The cfseal data frame has 30 rows and 11 columns consisting of weight measurements for various organs taken from 30 Cape Fur Seals that died as an unintended consequence of commercial fishing.

Usage

cfseal

Format

This data frame contains the following columns:
age a numeric vector
weight a numeric vector
heart a numeric vector
lung a numeric vector
liver a numeric vector
spleen a numeric vector
stomach a numeric vector
leftkid a numeric vector
rightkid a numeric vector
kidney a numeric vector
intestines a numeric vector

Source

Stewardson, C.L., Hemsley, S., Meyer, M.A., Canfield, P.J. and Maindonald, J.H. 1999. Gross and microscopic visceral anatomy of the male Cape fur seal, Arctocephalus pusillus pusillus (Pinnepedia: Otariidae), with reference to organ size and growth. Journal of Anatomy (Cambridge) 195: 235-255. (WWF project ZA-348)

Examples

```
print("Allometric Growth - Example 5.7")
cfseal.lm <- lm(log(heart) ~ log(weight), data=cfseal); summary(cfseal.lm)
plot(log(heart) ~ log(weight), data = cfseal, pch=16, xlab = "Heart Weight (g, log scale)",
ylab = "Body weight (kg, log scale)", axes=FALSE)
heartaxis <- 100*(2^seq(0,3))
bodyaxis <- c(20,40,60,100,180)
axis(1, at = log(bodyaxis), lab = bodyaxis)
axis(2, at = log(heartaxis), lab = heartaxis)
box()
abline(cfseal.lm)
```

cities Populations of Major Canadian Cities (1992-96)

Description

Population estimates for several Canadian cities.

Usage

cities

Format

This data frame contains the following columns:
CITY a factor, consisting of the city names
REGION a factor with 5 levels (ATL=Atlantic, $\mathrm{ON}=$ Ontario, $\mathrm{QC}=\mathrm{Quebec}, \mathrm{PR}=$ Prairies, WEST=Alberta and British Columbia) representing the location of the cities
POP1992 a numeric vector giving population in 1000's for 1992
POP1993 a numeric vector giving population in 1000's for 1993
POP1994 a numeric vector giving population in 1000's for 1994
POP1995 a numeric vector giving population in 1000's for 1995
POP1996 a numeric vector giving population in 1000's for 1996

Source

Statistics Canada

Examples

cities\$have <- factor((cities\$REGION=="ON")|(cities\$REGION=="WEST"))
plot(POP1996~POP1992, data=cities, col=as.integer(cities\$have))

codling Dose-mortality data, for fumigation of codling moth with methyl bromide

Description

Data are from trials that studied the mortality response of codling moth to fumigation with methyl bromide.

Usage

data(codling)

Format

A data frame with 99 observations on the following 10 variables.
dose Injected dose of methyl bromide, in gm per cubic meter
tot Number of insects in chamber
dead Number of insects dying
pobs Proportion dying
cm Control mortality, i.e., at dose 0
ct Concentration-time sum
Cultivar a factor with levels BRAEBURN FUJI GRANNY Gala ROYAL Red Delicious Splendour
gp a factor which has a different level for each different combination of Cultivar, year and rep (replicate).
year a factor with levels 19881989
numem a numeric vector: total number of control insects

Details

The research that generated these data was in part funded by New Zealand pipfruit growers. The published analysis was funded by New Zealand pipfruit growers. See also sorption.

Source

Maindonald, J.H.; Waddell, B.C.; Petry, R.J. 2001. Apple cultivar effects on codling moth (Lepidoptera: Tortricidae) egg mortality following fumigation with methyl bromide. Postharvest Biology and Technology 22: 99-110.

Description

Compare error rates, between different functions and different selection rules, for an approximately equal random division of the data into a training and test set.

Usage

compareTreecalcs(x = yesno ~ ., data = DAAG: spam7, cp = 0.00025, fun = c("rpart",
"randomForest"))

Arguments

$x \quad$ model formula
data an data frame in which to interpret the variables named in the formula
$\mathrm{cp} \quad$ setting for the cost complexity parameter cp , used by rpart()
fun one or both of "rpart" and "randomForest"

Details

Data are randomly divided into two subsets, I and II. The function(s) are used in the standard way for calculations on subset I, and error rates returined that come from the calculations carried out by the function(s). Predictions are made for subset II, allowing the calculation of a completely independent set of error rates.

Value

If rpart is specified in fun, the following:
rpSEcvI the estimated cross-validation error rate when rpart() is run on the training data (I), and the one-standard error rule is used
$\operatorname{rpcvI} \quad$ the estimated cross-validation error rate when rpart() is run on subset I, and the model used that gives the minimum cross-validated error rate
rpSEtest the error rate when the model that leads to rpSEcvI is used to make predictions for subset II
rptest the error rate when the model that leads to rpcvI is used to make predictions for subset II
nSErule number of splits required by the one standard error rule
nREmin number of splits to give the minimum error
If rpart is specified in fun, the following:
rfcvi the out-of-bag (OOB) error rate when randomForest () is run on subset I
rftest the error rate when the model that leads to rfcvI is used to make predictions for subset II

Author(s)

John Maindonald

```
component.residual Component + Residual Plot
```


Description

Component + Residual plot for a term in a lm model.

Usage

component.residual(lm.obj, which = 1, xlab = "Component", ylab = "C+R")

Arguments

lm.obj A lm object
which numeric code for the term in the 1 m formula to be plotted
$x l a b \quad$ label for the x -axis
$y l a b \quad$ label for the y-axis

Value

A scatterplot with a smooth curve overlaid.

Author(s)

J.H. Maindonald

See Also

lm

Examples

```
mice12.lm <- lm(brainwt ~ bodywt + lsize, data=litters)
oldpar <- par(mfrow = c(1,2))
component.residual(mice12.lm, 1, xlab = "Body weight", ylab= "t(Body weight) + e")
component.residual(mice12.lm, 2, xlab = "Litter size", ylab= "t(Litter size) + e")
par(oldpar)
```

confusion Given actual and predicted group assignments, give the confusion matrix

Description

Given actual and predicted group assignments, give the confusion matrix

Usage

confusion(actual, predicted, gpnames = NULL, rowcol=c("actual", "predicted"), printit = c("overall","confusion"), prior = NULL, digits=3)

Arguments

actual	Actual (prior) group assigments
predicted	Predicted group assigments.
gpnames	Names for groups, if different from levels(actual)
rowcol	For predicted categories to appear as rows, specify rowcol="predicted"
printit	Character vector. Print "overall", or "confusion" matrix, or both.
prior	Prior probabilities for groups, if different from the relative group frequencies
digits	Number of decimal digits to display in printed output

Details

Predicted group assignments should be estimated from cross-validation or from bootstrap out-ofbag data. Better still, work with assignments for test data that are completely separate from the data used to dervive the model.

Value

A list with elements overall (overall accuracy), confusion (confusion matrix) and prior (prior used for calculation of overall accuracy)

Author(s)

John H Maindonald

References

Maindonald and Braun: 'Data Analysis and Graphics Using R', 3rd edition 2010, Section 12.2.2

Examples

```
library(MASS)
library(DAAG)
cl <- lda(species ~ length+breadth, data=cuckoos, CV=TRUE)$class
confusion(cl, cuckoos$species)
## The function is currently defined as
function (actual, predicted, gpnames = NULL,
            rowcol = c("actual", "predicted"),
            printit = c("overall","confusion"),
            prior = NULL, digits = 3)
{
    if (is.null(gpnames))
        gpnames <- levels(actual)
    if (is.logical(printit)){
        if(printit)printit <- c("overall","confusion")
        else printit <- ""
    }
    tab <- table(actual, predicted)
    acctab <- t(apply(tab, 1, function(x) x/sum(x)))
    dimnames(acctab) <- list(Actual = gpnames, `Predicted (cv)` = gpnames)
    if (is.null(prior)) {
        relnum <- table(actual)
        prior <- relnum/sum(relnum)
        acc <- sum(tab[row(tab) == col(tab)])/sum(tab)
    }
    else {
        acc <- sum(prior * diag(acctab))
    }
    names(prior) <- gpnames
    if ("overall"%in%printit) {
        cat("Overall accuracy =", round(acc, digits), "\n")
        if(is.null(prior)){
            cat("This assumes the following prior frequencies:",
                    "\n")
            print(round(prior, digits))
        }
    }
    if ("confusion"%in%printit) {
        cat("\nConfusion matrix", "\n")
        print(round(acctab, digits))
    }
    invisible(list(overall=acc, confusion=acctab, prior=prior))
}
```


Description

Numbers are given in different categories of worker, in each of two investigations. The first source of information is the Board of Trade Census that was conducted on 1886. The second is a relatively informal survey conducted by US Bureau of Labor representatives in 1889, for use in official reports.

Usage

data(cottonworkers)

Format

A data frame with 14 observations on the following 3 variables.
census 1886 Numbers of workers in each of 14 different categories, according to the Board of Trade wage census that was conducted in 1886
survey1889 Numbers of workers in each of 14 different categories, according to data collected in 1889 by the US Bureau of Labor, for use in a report to the US Congress and House of Representatives
avwage Average wage, in pence, as estimated in the US Bureau of Labor survey

Details

The data in survey 1889 were collected in a relatively informal manner, by approaching individuals on the street. Biases might therefore be expected.

Source

United States congress, House of Representatives, Sixth Annual Report of the Commissioner of Labor, 1890, Part III, Cost of Living (Washington D.C. 1891); idem., Seventh Annual Report of the Commissioner of Labor, 1891, Part III, Cost of Living (Washington D.C. 1892)
Return of wages in the principal textile trades of the United Kingdom, with report therein. (P.P. 1889, LXX). United Kingdom Official Publication.

References

Boot, H. M. and Maindonald, J. H. 2007. New estimates of age- and sex- specific earnings and the male-female earnings gap in the British cotton industry, 1833-1906. Economic History Review. Published online 28-Aug-2007 doi: 10.1111/j.1468-0289.2007.00398.x

Examples

```
data(cottonworkers)
str(cottonworkers)
plot(survey1889 ~ census1886, data=cottonworkers)
plot(I(avwage*survey1889) ~ I(avwage*census1886), data=cottonworkers)
```

cps1 Labour Training Evaluation Data

Description

A non-experimental "control" group, used in various studies of the effect of a labor training program, alternative to the experimental control group in nswdemo.

Usage

cps1
cps2
cps3

Format

This data frame contains the following columns:
trt a numeric vector identifying the study in which the subjects were enrolled $(0=\operatorname{Control}, 1=$ treated).
age age (in years).
educ years of education.
black ($0=$ not black, $1=$ black).
hisp ($0=$ not hispanic, $1=$ hispanic).
marr $(0=$ not married, $1=$ married $)$.
nodeg ($0=$ completed high school, $1=$ dropout).
re74 real earnings in 1974.
re75 real earnings in 1975.
re78 real earnings in 1978.

Details

The cps1 and psid1 data sets are two non-experimental "control" groups, alternative to that in nswdemo, used in investigating whether use of such a non-experimental control group can be satisfactory. cps2 and cps3 are subsets of cps1, designed to be better matched to the experimental data than cps1. Similary psid2 and psid3 are subsets of psid1, designed to be better matched to the experimental data than psid1.

Source

http://www.nber.org/~rdehejia/nswdata.html

References

Dehejia, R.H. and Wahba, S. 1999. Causal effects in non-experimental studies: re-evaluating the evaluation of training programs. Journal of the American Statistical Association 94: 1053-1062.
Lalonde, R. 1986. Evaluating the economic evaluations of training programs. American Economic Review 76: 604-620.
Smith, J. A. and Todd, P.E. 2005,"Does Matching overcome LaLonde's critique of nonexperimental estimators", Journal of Econometrics 125: 305-353.
Dehejia, R.H. 2005. Practical propensity score matching: a reply to Smith and Todd. Journal of Econometrics 125: 355-364.

```
cricketer Lifespans of UK 1st class cricketers born 1840-1960
```


Description

Year and birth, lifespan, etc, of British first class cricketers, born 1840-1960, whose handedness could be determined from information in the Who's who of cricketers. The status (alive $=0$, dead $=1$), and lifetime or lifespan, is for 1992.

Usage

data(cricketer)

Format

A data frame with 5960 observations on the following 8 variables.
left a factor with levels right left
year numeric, year of birth
life numeric, lifetime or lifespan to 1992
dead numeric ($0=$ alive (censored), $1=$ dead, in 1992)
acd numeric ($0=$ not accidental or not dead, $1=$ accidental death $)$
kia numeric ($0=$ not killed in action, $1=$ killed in action $)$
inbed numeric ($0=$ did not die in bed, $1=$ died in bed)
cause a factor with levels alive acd (accidental death) inbed (died in bed)

Details

Note that those 'killed in action' (mostly during World Wars I and II) form a subset of those who died by accident.

Source

John Aggleton, Martin Bland. Data were collated as described in Aggleton et al.

References

Aggleton JP, Bland JM, Kentridge RW, Neave NJ 1994. Handedness and longevity: an archival study of cricketers. British Medical Journal 309, 1681-1684.
Bailey P, Thorne P, Wynne-Thomas P. 1993. Who's Who of Cricketers. 2nd ed, London, Hamlyn.
Bland M and Altman D. 2005. Do the left-handed die young? Significance 2, 166-170.

See Also

earlycrcktr.

Examples

```
data(cricketer)
numLH <- xtabs(~ left+year, data=cricketer)
propLH <- prop.table(numLH, margin=2)[2,]
yr <- as.numeric(colnames(numLH))
plot(propLH ~ yr)
cricketer$lh <- unclass(cricketer$left)-1
left2.hat <- fitted(lm(lh ~ poly(year,2), data=cricketer))
ord <- order(cricketer$year)
lines(left2.hat[ord] ~ cricketer$year[ord])
library(splines)
ns3.hat <- fitted(lm(lh ~ ns(year,3), data=cricketer))
lines(ns3.hat[ord] ~ cricketer$year[ord], col="red")
require(survival)
summary(coxph(Surv(life, kia) ~ bs(year,3) +left, data=cricketer))
cricketer$notacdDead <- with(cricketer, {dead[acd==1]<-0; dead})
summary(coxph(Surv(life, notacdDead) ~ ns(year,2) +left, data=cricketer))
```


Description

These data compare mean length, mean breadth, and egg color, between cuckoos and their hosts.

Usage

cuckoohosts

Format

A data frame with 10 observations on the following 12 variables.
clength mean length of cuckoo eggs in given host's nest
cl.sd standard deviation of cuckoo egg lengths
cbreadth mean breadth of cuckoo eggs in given host's nest
cb.sd standard deviation of cuckoo egg breadths
cnum number of cuckoo eggs
hlength length of host eggs
hl.sd standard deviation of host egg lengths
hbreadth breadth of host eggs
hb.sd standard deviation of host egg breadths
hnum number of host eggs
match number of eggs where color matched
nomatch number where color did not match

Details

Although from the same study that generated data in the data frame cuckoos, the data do not match precisely. The cuckoo egg lengths and breadths are from the tables on page 168, the host egg lengths and breadths from Appendix IV on page 176, and the color match counts from the table on page 171.

Source

Latter, O.H., 1902. The egg of cuculus canorus. an inquiry into the dimensions of the cuckoo's egg and the relation of the variations to the size of the eggs of the foster-parent, with notes on coloration, \&c. Biometrika, 1:164-176.

Examples

cuckoohosts
str(cuckoohosts)
plot(cuckoohosts)
with(cuckoohosts, plot(c(clength, hlength), c(cbreadth, hbreadth), col=rep(1:2,c(6,6))))
cuckoos Cuckoo Eggs Data

Description

Length and breadth measurements of 120 eggs lain in the nests of six different species of host bird.

Usage

cuckoos

Format

This data frame contains the following columns:
length the egg lengths in millimeters
breadth the egg breadths in millimeters
species a factor with levels hedge.sparrow, meadow.pipit, pied.wagtail, robin, tree.pipit, wren
id a numeric vector

Source

Latter, O.H. (1902). The eggs of Cuculus canorus. An Inquiry into the dimensions of the cuckoo's egg and the relation of the variations to the size of the eggs of the foster-parent, with notes on coloration, \&c. Biometrika i, 164.

References

Tippett, L.H.C. 1931: "The Methods of Statistics". Williams \& Norgate, London.

Examples

```
print("Strip and Boxplots - Example 2.1.2")
attach(cuckoos)
oldpar <- par(las = 2) # labels at right angle to axis.
stripchart(length ~ species)
boxplot(split(cuckoos$length, cuckoos$species),
            xlab="Length of egg", horizontal=TRUE)
detach(cuckoos)
par(oldpar)
pause()
print("Summaries - Example 2.2.2")
sapply(split(cuckoos$length, cuckoos$species), sd)
pause()
print("Example 4.1.4")
wren <- split(cuckoos$length, cuckoos$species)$wren
median(wren)
n <- length(wren)
sqrt(pi/2)*sd(wren)/sqrt(n) # this s.e. computation assumes normality
```


Description

These functions give training (internal) and cross-validation measures of predictive accuracy for regression with a binary response. The data are randomly divided between a number of 'folds'. Each fold is removed, in turn, while the remaining data are used to re-fit the regression model and to predict at the omitted observations.

Usage

CVbinary(obj, rand=NULL, nfolds=10, print.details=TRUE)
cv.binary (obj, rand=NULL, nfolds=10, print.details=TRUE)

Arguments

obj
rand a vector which assigns each observation to a fold
nfolds the number of folds
print. details logical variable $($ TRUE $=$ print detailed output, the default $)$

Value

cvhat predicted values from cross-validation
internal internal or (better) training predicted values
training training predicted values
acc.cv cross-validation estimate of accuracy
acc.internal internal or (better) training estimate of accuracy
acc.training training estimate of accuracy

Note

The term 'training' seems preferable to the term 'internal' in connection with predicted values, and the accuracy measure, that are based on the observations used to derive the model.

Author(s)

J.H. Maindonald

See Also

glm

Examples

```
frogs.glm <- glm(pres.abs ~ log(distance) + log(NoOfPools),
    family=binomial,data=frogs)
CVbinary(frogs.glm)
mifem.glm <- glm(outcome ~ ., family=binomial, data=mifem)
CVbinary(mifem.glm)
```

CV1m Cross-Validation for Linear Regression

Description

This function gives internal and cross-validation measures of predictive accuracy for multiple linear regression. (For binary logistic regression, use the CVbinary function.) The data are randomly assigned to a number of 'folds'. Each fold is removed, in turn, while the remaining data is used to re-fit the regression model and to predict at the deleted observations.

Usage

```
CVlm(data = DAAG::houseprices, form.lm = formula(sale.price ~ area),
    m = 3, dots = FALSE, seed = 29, plotit = c("Observed","Residual"),
    main="Small symbols show cross-validation predicted values",
    legend.pos="topleft", printit = TRUE)
cv.lm(data = DAAG::houseprices, form.lm = formula(sale.price ~ area),
    m = 3, dots = FALSE, seed = 29, plotit = c("Observed","Residual"),
    main="Small symbols show cross-validation predicted values",
    legend.pos="topleft", printit = TRUE)
```


Arguments

data	a data frame
form. 1 m	a formula or lm call or lm object
m	the number of folds
dots	uses pch=16 for the plotting character
seed	random number generator seed
plotit	This can be one of the text strings "Observed", "Residual", or a logical value. The logical TRUE is equivalent to "Observed", while FALSE is equivalent to "" (no plot)
main	main title for graph legend.pos
printit	"topleft", "top", "topright", "right", "center", "bot lomleft", "left", if TRUE, output is printed to the screen

Details

When plotit="Residual" and there is more than one explanatory variable, the fitted lines that are shown for the individual folds are approximations.

Value

The input data frame is returned, with additional columns Predicted (Predicted values using all observations) and cvpred (cross-validation predictions). The cross-validation residual sum of squares (ss) and degrees of freedom (df) are returned as attributes of the data frame.

Author(s)

J.H. Maindonald

See Also

lm, CVbinary

Examples

CV1m()
\#\# Not run:
CVlm(data=nihills, form.lm=formula(log(time) $\sim \log (c l i m b)+\log (d i s t))$,
plotit="Observed")
CVlm(data=nihills, form.lm=formula(log(time) $\sim \log (c l i m b)+\log (d i s t))$, plotit="Residual")
out <- CVlm(data=nihills, form.lm=formula(log(time) $\sim \log (c l i m b)+\log (d i s t))$, plotit="Observed")
out[c("ms","df")]
\#\# End(Not run)

DAAGxdb

List, each of whose elements hold rows of a file, in character format

Description

This is the default database for use with the function datafile, which uses elements of this list to place files in the working directory.

Usage

data(DAAGxdb)

Format

Successive elements in this list hold character vectors from which the corresponding files can be generated. The names of the list elements are fuel, fuel.csv, oneBadRow, scan-demo, molclock1, molclock2, and travelbooks.

Details

The files fuel.txt and fuel.csv are used in Chapter 1 of DAAGUR, while the files oneBadRow.txt and scan-demo.txt are used in Chapter 14 of DAAGUR.

References

Maindonald, J.H. and Braun, W.J. 2007. Data Analysis and Graphics Using R: An Example-Based Approach. 2nd edn, Cambridge University Press (DAAGUR).

Examples

data(DAAGxdb)
names (DAAGxdb)

```
datafile Write an ASCII data file to the working directory.
```


Description

Invoking this function writes one or more nominated files to the working directory. In particular, it may be used to write the files 'fuel.txt' and 'fuel.csv' that are used in Chapter 1 of DAAGUR, and the files 'oneBadRow.txt' and 'scan-demo.txt' that are used in Chapter 14 of DAAGUR.

Usage
 datafile(file = c("fuel", "travelbooks"), datastore = DAAG::DAAGxdb, altstore = DAAG::zzDAAGxdb, showNames = FALSE)

Arguments

\(\left.$$
\begin{array}{ll}\text { file } & \begin{array}{l}\text { character; with the defaults for datastore and altstore the options are "fuel", } \\
\text { for fuel.txt; "fuel.csv", for fuel.csv; "oneBadRow", for oneBadRow.txt; "scan- } \\
\text { demo", for scan-demo.txt; "molclock1", for molclock1.txt; "molclock2", for } \\
\text { molclock2.txt; "travelbooks", for travelbooks.txt; "bestTimes", for bestTimes.txt; }\end{array}
$$

"bostonc", for bostonc.txt\end{array}\right\}\)| Each element of this list is a character vector that holds the rows of a file. |
| :--- |
| datastore |
| altstore |
| An alternative list. The default alternative list is used for the two files that are |
| more than a few lines. |
| showNames |\quad| if TRUE, returns the names of available datasets. |
| :--- |

Value

An ASCII file is output to the current working directory. The names of all available datasets are returned invisibly.

Author(s)

J.H. Maindonald

Examples

```
datafile(file="", showNames=TRUE)
```

dengue Dengue prevalence, by administrative region

Description

Data record, for each of 2000 administrative regions, whether or not dengue was recorded at any time between 1961 and 1990.

Usage

data(dengue)

Format

A data frame with 2000 observations on the following 13 variables.
humid Average vapour density: 1961-1990
humid90 90th percentile of humid
temp Average temperature: 1961-1990
temp90 90th percentile of temp
h10pix maximum of humid, within a 10 pixel radius
h10pix90 maximum of humid90, within a 10 pixel radius
trees Percent tree cover, from satellite data
trees90 90th percentile of trees
NoYes Was dengue observed? (1=yes)
Xmin minimum longitude
Xmax maximum longitude
Ymin minimum latitude
Ymax maximum latitude

Details

This is derived from a data set in which the climate and tree cover information were given for each half degree of latitude by half degreee of longitude pixel. The variable NoYes was given by administrative region. The climate data and tree cover data given here are 50th or 90th percentiles, where percetiles were calculates across pixels for an administrative region.

Source

Simon Hales, Environmental Research New Zealand Ltd.

References

Hales, S., de Wet, N., Maindonald, J. and Woodward, A. 2002. Potential effect of population and climate change global distribution of dengue fever: an empirical model. The Lancet 2002; 360: 830-34.

Examples

str(dengue)
glm(NoYes ~ humid, data=dengue, family=binomial)
glm(NoYes \sim humid90, data=dengue, family=binomial)
dewpoint Dewpoint Data

Description

The dewpoint data frame has 72 rows and 3 columns. Monthly data were obtained for a number of sites (in Australia) and a number of months.

Usage

dewpoint

Format

This data frame contains the following columns:
maxtemp monthly minimum temperatures
mintemp monthly maximum temperatures
dewpt monthly average dewpoint for each combination of minimum and maximum temperature readings (formerly dewpoint)

Source

Dr Edward Linacre, visiting fellow in the Australian National University Department of Geography.

Examples

```
print("Additive Model - Example 7.5")
require(splines)
attach(dewpoint)
ds.lm <- lm(dewpt ~ bs(maxtemp,5) + bs(mintemp,5), data=dewpoint)
ds.fit <-predict(ds.lm, type="terms", se=TRUE)
oldpar <- par(mfrow=c(1,2))
plot(maxtemp, ds.fit$fit[,1], xlab="Maximum temperature",
    ylab="Change from dewpoint mean",type="n")
lines(maxtemp,ds.fit$fit[,1])
lines(maxtemp,ds.fit$fit[,1]-2*ds.fit$se[,1],lty=2)
lines(maxtemp,ds.fit$fit[,1]+2*ds.fit$se[,1],lty=2)
plot(mintemp,ds.fit$fit[,2],xlab="Minimum temperature",
    ylab="Change from dewpoint mean",type="n")
ord<-order(mintemp)
lines(mintemp[ord],ds.fit$fit[ord, 2])
lines(mintemp[ord],ds.fit$fit[ord,2]-2*ds.fit$se[ord, 2],lty=2)
lines(mintemp[ord],ds.fit$fit[ord,2]+2*ds.fit$se[ord, 2],lty=2)
detach(dewpoint)
par(oldpar)
```

droughts Periods Between Rain Events

Description

Data collected at Winnipeg International Airport (Canada) on periods (in days) between rain events.

Usage

droughts

Format

This data frame contains the following columns:
length the length of time from the completion of the last rain event to the beginning of the next rain event.
year the calendar year.

Examples

boxplot(length ~ year, data=droughts)
boxplot(log(length) ~ year, data=droughts)
hist(droughts\$length, main="Winnipeg Droughts", xlab="length (in days)")
hist(log(droughts\$length), main="Winnipeg Droughts", xlab="length (in days, log scale)")
edcCO2 EPICA Dome C Ice Core 800 KYr Carbon Dioxide Data

Description

Carbon dioxide record from the EPICA (European Project for Ice Coring in Antarctica) Dome C ice core covering 0 to 800 kyr BP.

Usage

data(edcCO2)

Format

A data frame with 1096 observations on the following 2 variables.
age Age in years before present (BP)
co2 CO2 level (ppmv)

Details

Data are a composite series.

Source

```
http://www.ncdc.noaa.gov/paleo/icecore/antarctica/domec/domec_epica_data.html
```


References

Luthi, D., M. et al. 2008. High-resolution carbon dioxide concentration record 650,000-800,000 years before present. Nature, Vol. 453, pp. 379-382, 15 May 2008. doi:10.1038/nature06949
Indermuhle, A., E. et al, 1999, Atmospheric CO2 concentration from 60 to 20 kyr BP from the Taylor Dome ice core, Antarctica. Geophysical Research Letters, 27, 735-738.

Monnin, E., A. et al. 2001. Atmospheric CO2 concentrations over the last glacial termination. Science, Vol. 291, pp. 112-114.
Petit, J.R. et al. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399: 429-436.

Siegenthaler, U. et al. 2005. Stable Carbon Cycle-Climate Relationship During the Late Pleistocene. Science, v. 310 , pp. 1313-1317, 25 November 2005.

Examples

data(edcCO2)

Description

Temperature record, using Deuterium as a proxy, from the EPICA (European Project for Ice Coring in Antarctica) Dome C ice core covering 0 to 800 kyr BP.

Usage

data(edcT)

Format

A data frame with 5788 observations on the following 5 variables.
Bag Bag number
ztop Top depth (m)
Age Years before 1950
Deuterium Deuterium dD data
dT Temperature difference from the average of the last 1000 years $\sim-54.5 \mathrm{degC}$

Details

Temperature was estimated from the deuterium data, after making various corrections.

Source

http://www.ncdc.noaa.gov/paleo/icecore/antarctica/domec/domec_epica_data.html

References

Jouzel, J., et al. 2007. EPICA Dome C Ice Core 800KYr Deuterium Data and Temperature Estimates. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series
\# 2007091. NOAA/NCDC Paleoclimatology Program, Boulder CO, USA.

Jouzel, J., et al. 2007. Orbital and Millennial Antarctic Climate Variability over the Past 800,000 Years. Science, Vol. 317, No. 5839, pp.793-797, 10 August 2007.

Examples

```
    data(edcT)
```

elastic1 Elastic Band Data Replicated

Description

The elastic 1 data frame has 7 rows and 2 columns giving, for each amount by which an elastic band is stretched over the end of a ruler, the distance that the band traveled when released.

Usage

elastic1

Format

This data frame contains the following columns:
stretch the amount by which the elastic band was stretched
distance the distance traveled

Source

J. H. Maindonald

Examples

```
## Not run:
plot(elastic1)
print("Inline Functions - Example 12.2.2")
sapply(elastic1, mean)
pause()
sapply(elastic1, function(x)mean(x))
pause()
sapply(elastic1, function(x)sum(log(x)))
pause()
print("Data Output - Example 12.3.2")
write.table(elastic1, file="bandsframe.txt")
## End(Not run)
```


Description

The elastic2 data frame has 9 rows and 2 columns giving, for each amount by which an elastic band is stretched over the end of a ruler, the distance that the band traveled when released.

Usage

elastic2

Format

This data frame contains the following columns:
stretch the amount by which the elastic band was stretched
distance the distance traveled

Source

J. H. Maindonald

Examples

```
plot(elastic2)
pause()
print("Chapter 5 Exercise")
yrange <- range(c(elastic1$distance, elastic2$distance))
xrange <- range(c(elastic1$stretch, elastic2$stretch))
plot(distance ~ stretch, data = elastic1, pch = 16, ylim = yrange, xlim =
xrange)
points(distance ~ stretch, data = elastic2, pch = 15, col = 2)
legend(xrange[1], yrange[2], legend = c("Data set 1", "Data set 2"), pch =
c(16, 15), col = c(1, 2))
elastic1.lm <- lm(distance ~ stretch, data = elastic1)
elastic2.lm <- lm(distance ~ stretch, data = elastic2)
abline(elastic1.lm)
abline(elastic2.lm, col = 2)
summary(elastic1.lm)
summary(elastic2.lm)
pause()
predict(elastic1.lm, se.fit=TRUE)
predict(elastic2.lm, se.fit=TRUE)
```


Description

The elasticband data frame has 7 rows and 2 columns giving, for each amount by which an elastic band is stretched over the end of a ruler, the distance that the band traveled when released.

Usage

elasticband

Format

This data frame contains the following columns:
stretch the amount by which the elastic band was stretched
distance the distance traveled

Source

J. H. Maindonald

Examples

```
## Not run:
print("Example 1.8.1")
attach(elasticband) # R now knows where to find stretch and distance
plot(stretch, distance) # Alternative: plot(distance ~ stretch)
detach(elasticband)
pause()
print("Output of Data Frames - Example 12.3.2")
write(t(elasticband),file="bands.txt",ncol=2)
sink("bands2.txt")
elasticband # NB: No output on screen
sink()
print("Lists - Example 12.7")
elastic.lm <- lm(distance ~ stretch, data=elasticband)
    names(elastic.lm)
    elastic.lm$coefficients
elastic.lm[["coefficients"]]
pause()
elastic.lm[[1]]
```

```
pause()
elastic.lm[1]
pause()
options(digits=3)
elastic.lm$residuals
pause()
elastic.lm$call
pause()
    mode(elastic.lm$call)
## End(Not run)
```

errorsINseveral Simulation of classical errors in x model, with multiple explanatory
variables.

Description

Simulates \$y-\$ and \$x-\$values for a classical "errors in \$x\$" linear regression model. One or more
 values that are measured without error.

Usage

errorsINseveral $(\mathrm{n}=1000$, $\mathrm{a} 0=2.5$, beta $=\mathrm{c}(1.5,0)$, mu $=12.5$, SDyerr $=0.5$, default.Vpar $=\operatorname{list}(S D x=2$, rho $=-0.5$, timesSDx = 1.5),
$V=$ with (default. Vpar, matrix(c(1, rho, rho, 1), ncol = 2) * SDx^2), xerrV = with (default.Vpar, matrix (c(1, 0, 0, 0), ncol = 2) * (SDx * timesSDx)^2), parset $=$ NULL, print.summary $=$ TRUE, plotit $=$ TRUE)

Arguments

n	Number of observations
a0	Intercept in linear regression model
beta	Regression coefficients. If one coefficient only is given, this will be repeated as many times as necessary
mu	Vector of covariate means. SDyerr default.Vpar
V	SD of \$y $\$$, conditional on the covariates measured without error
	Variance-covariance matrix for the z's, measured without error. (These are gen- erated from a multivariate normal distribution, mainly as a matter of conve- nience)

```
xerrV Variance-covariance matrix for the added "errors in x"
parset Parameter list (theme) in a form suitable for supplying to trellis.par.set().
print.summary If TRUE, print summary details of the regression results from the simulation.
plotit If TRUE, plot the fitted values for the model with covariates with error, against the fitted values for covariates without error.
```


Details

With default arguments, simulates a model in which two covariates are in contention, the first measured without error, and the second with coefficient 0 in the model that includes both covariates measured without error.

Value

ERRfree Data frame holding covariates without error, plus \$y
addedERR Data frame holding covariates with error, plus \$y\$

Author(s)

John Maindonald

References

Data Analysis and Graphics Using R, 3rd edn, Section 6.8.1

See Also

errorsINx

Examples

```
library(lattice)
function(n=1000, a0=2.5, beta=c(1.5,0), mu=12.5, SDyerr=0.5,
            default.Vpar=list(SDx=2, rho=-0.5, timesSDx=1.5),
            V=with(default.Vpar, matrix(c(1,rho,rho,1), ncol=2)*SDx^2),
            xerrV=with(default.Vpar, matrix(c(1,0,0,0), ncol=2)*(SDx*timesSDx)^2),
            parset=NULL, print.summary=TRUE, plotit=TRUE){
        m <- dim(V)[1]
        if(length(mu)==1)mu <- rep(mu,m)
        ow <- options(warn=-1)
        xxmat <- sweep(matrix(rnorm(m*n, 0, 1), ncol=m) %*% chol(V), 2, mu, "+")
        errxx <- matrix(rnorm(m*n, 0, 1), ncol=m) %*% chol(xerrV, pivot=TRUE)
        options(ow)
        dimnames(xxmat)[[2]] <- paste("z", 1:m, sep="")
        xxWITHerr <- xxmat+errxx
        xxWITHerr <- data.frame(xxWITHerr)
        names(xxWITHerr) <- paste("xWITHerr", 1:m, sep="")
        xxWITHerr[, "y"] <- a0 + xxmat %*% matrix(beta,ncol=1) + rnorm(n, sd=SDyerr)
        err.lm <- lm(y ~ ., data=xxWITHerr)
        xx <- data.frame(xxmat)
```

```
    names(xx) <- paste("z", 1:m, sep="")
    xx$y <- xxWITHerr$y
    xx.lm <- lm(y ~ ., data=xx)
    B <- coef(err.lm)
    b <- coef(xx.lm)
    SE <- summary(err.lm)$coef[,2]
    se <- summary(xx.lm)$coef[,2]
    if(print.summary){
        beta0 <- c(mean(xx$y)-sum(beta*apply(xx[,1:m],2,mean)), beta)
        tab <- rbind(beta0, b, B)
        dimnames(tab) <- list(c("Values for simulation",
                        "Estimates: no error in x1",
                        "LS Estimates: error in x1"),
                c("Intercept", paste("b", 1:m, sep="")))
        tabSE <- rbind(rep(NA,m+1),se,SE)
        rownames(tabSE) <- rownames(tab)
        colnames(tabSE) <- c("SE(Int)", paste("SE(", colnames(tab)[-1],")", sep=""))
        tab <- cbind(tab,tabSE)
        print(round(tab,3))
}
if(m==2 & print.summary){
    tau <- default.Vpar$timesSDx
    s1 <- sqrt(V[1,1])
    s2 <- sqrt(V[2,2])
        rho <- default.Vpar$rho
        s12 <- s1*sqrt(1-rho^2)
        lambda <- (1-rho^2)/(1-rho^2+tau^2)
        gam12 <- rho*sqrt(V[1,1]/V[2, 2])
        expB2 <- beta[2]+beta[1]*(1-lambda)*gam12
        print(c("Theoretical attenuation of b1" = lambda, "Theoretical b2" = expB2))
    }
if(is.null(parset))parset <- simpleTheme(col=c("gray40","gray40"),
            col.line=c("black","black"))
    if(plotit){
        library(lattice)
        zhat <- fitted(xx.lm)
        xhat <- fitted(err.lm)
        plt <- xyplot(xhat ~ zhat, aspect=1, scales=list(tck=0.5),
            panel=function(x,y,\ldots.){
                        panel.xyplot(x,y, type="p",\ldots..)
                        panel.abline(lm(y ~ x), lty=2)
                        panel.abline(0,1)
            },
            xlab="Fitted values; regress on exact z",
            ylab="Fitted values; regress on x = xWITHerr",
            key=list(space="top", columns=2,
                        text=list(lab=c("Line y=x", "Regression fit to points")),
                    lines=list(lty=1:2)),
                par.settings=parset
                )
        print(plt)}
    invisible(list(ERRfree=xx, addedERR=xxWITHerr))
}
```

errorsINx
Simulate data for straight line regression, with "errors in x ".

Description

Simulates $\$ \mathrm{y}-\$$ and $\$ \mathrm{x}-$ \$values for the straight line regression model, but with $\$ \mathrm{x}-$ \$values subject to random measurement error, following the classical "errors in x " model. Optionally, the x -values can be split into two groups, with one group shifted relative to the other

Usage

```
errorsINx(mu = 12.5, n = 200, a = 15, b = 1.5, SDx=2, SDyerr = 1.5,
                    timesSDx=(1:5)/2.5, gpfactor=if(missing(gpdiff))FALSE else TRUE,
                    gpdiff=if(gpfactor) 1.5 else 0, layout=NULL,
    parset = simpleTheme(alpha = 0.75, col = c("black","gray45"),
            col.line = c("black","gray45"), lwd=c(1,1.5), pch=c(1,2),
    lty=c(1,2)), print.summary=TRUE, plotit=TRUE, xrelation="same")
```


Arguments

mu Mean of $\$ \mathrm{z} \$$
$n \quad$ Number of points
a Intercept in model where $\$ \mathbf{z} \$$ is measured without error
b Slope in model where $\$ \mathrm{z} \$$ is measured without error
SDx \quad SD of $\$ z \$$-values, measured without error
SDyerr \quad SD of error term in y where $\$ \mathrm{z}$ \$ is measured without error
timesSDx \quad SD of measurement error is timesSDx, as a multiple of SDx
gpfactor \quad Should x-values be split into two groups, with one shifted relative to the other?
gpdiff Amount of shift of one group of z-values relative to the other
layout Layout for lattice graph, if requested
parset Parameters to be supplied to the lattice plot, if any
print.summary Print summary information on fits?
plotit logical: plot the data?
xrelation character: sets the x-axis relation component of scales to "same" or "free" or (though this does not make make sense here) "sliced".

Details

The argument timesSDx can be a numeric vector. One set of $\$ x \$$-values that are contaminated with measurement error is simulated for each element of timesSDx.

Value
gph the trellis graphics object
mat A matrix, with length(timesSDx)+2 columns. Values of $\$ \mathbf{z} \$$ are in the first column. There is one further column (x with error) for each element of timesSDx, followed by a column for $\$ y \$$. If there is a grouping variable, a further column identifies the groups.

Author(s)

John Maindonald

References

Data Analysis and Graphics Using R, 3rd edn, Section 6.7

Examples

library(lattice)
errorsINx()
errorsINx(gpdiff=2, timesSDx=1.25, SDyerr=2.5, $\mathrm{n}=80$)
excessRisk Create and analyze multiway frequency or weighted frequency table

Description

This function creates a multi-way table of counts for the response given a set of classifying factors. Output facilitates a check on how the factor specified as margin may, after accounting for other classifying factors, affect the response.

Usage

excessRisk(form = weight ~ seatbelt + airbag, response = "dead", margin = "airbag", data = DAAG::nassCDS, decpl = 4, printResults = TRUE)

Arguments

form	form is a formula in which classifying factors appear on the right, with an op- tional weight variable on the left.
response	response is a binary variable or two-level factor such that the response of inter- est is the relative number in the two levels.
margin	margin is the factor whose effect on the response, after accounting for other classifying factors, is of interest
data	data is a data frame in which variables and factors may be found decpl
decpl is the number of decimal places in proportions that appear in the output	

Details

The best way to understand what this function does may be to run it with the default parameters, and/or with examples that appear below.

Value

The function returns a data frame, with one row for each combination of levels of factors on the right of the formula, but excluding the factor specified as margin

Count for level 2 of response $\backslash \&$ level 1 of margin
Total tount for level 1 of margin
Count for level 2 of response $\backslash \&$ level 2 of margin
Total count for level 2 of margin
Proportion; divide count for level 1 of margin by total
Proportion; divide count for level 2 of margin by total
Excess count for level 2 of response in row; relative to the assumption that, in that row, there is no association between response and margin. This is the observed response (for the default arguments, number of dead) for level 2 (airbag deployed), less the number that would have been expected if the proportion had been that for level 1. (Negative values favor airbags.)

Author(s)

John Maindonald

References

See help(nassCDS)

See Also

xtabs

Examples

```
excessRisk()
excessRisk(weight ~ airbag+seatbelt+dvcat)
UCB <- as.data.frame.table(UCBAdmissions)
excessRisk(Freq~Gender, response="Admit", margin="Gender",data=UCB)
excessRisk(Freq~Gender+Dept, response="Admit", margin="Gender",data=UCB)
```

```
fossilfuel Fossil Fuel Data
```


Description

Estimates of total worldwide carbon emissions from fossil fuel use.

Usage

fossilfuel

Format

This data frame contains the following columns:
year a numeric vector giving the year the measurement was taken.
carbon a numeric vector giving the total worldwide carbon emissions from fossil fuel use, in millions of tonnes.

Source

Marland et al (2003)

Examples

plot(fossilfuel)

Description

The fossum data frame consists of nine morphometric measurements on each of 43 female mountain brushtail possums, trapped at seven sites from Southern Victoria to central Queensland. This is a subset of the possum data frame.

Usage

fossum

Format

This data frame contains the following columns:
case observation number
site one of seven locations where possums were trapped
Pop a factor which classifies the sites as Vic Victoria, other New South Wales or Queensland
sex a factor with levels f female, m male
age age
hdIngth head length
skullw skull width
totlngth total length
taill tail length
footlgth foot length
earconch ear conch length
eye distance from medial canthus to lateral canthus of right eye
chest chest girth (in cm)
belly belly girth (in cm)

Source

Lindenmayer, D. B., Viggers, K. L., Cunningham, R. B., and Donnelly, C. F. 1995. Morphological variation among columns of the mountain brushtail possum, Trichosurus caninus Ogilby (Phalangeridae: Marsupiala). Australian Journal of Zoology 43: 449-458.

Examples

boxplot(fossum\$totlngth)
frogs Frogs Data

Description

The frogs data frame has 212 rows and 11 columns. The data are on the distribution of the Southern Corroboree frog, which occurs in the Snowy Mountains area of New South Wales, Australia.

Usage

frogs

Format

This data frame contains the following columns:
pres.abs $0=$ frogs were absent, $1=$ frogs were present
northing reference point
easting reference point
altitude altitude, in meters
distance distance in meters to nearest extant population
NoOfPools number of potential breeding pools
NoOfSites (number of potential breeding sites within a 2 km radius
avrain mean rainfall for Spring period
meanmin mean minimum Spring temperature
meanmax mean maximum Spring temperature

Source

Hunter, D. (2000) The conservation and demography of the southern corroboree frog (Pseudophryne corroboree). M.Sc. thesis, University of Canberra, Canberra.

Examples

```
print("Multiple Logistic Regression - Example 8.2")
plot(northing ~ easting, data=frogs, pch=c(1,16)[frogs$pres.abs+1],
    xlab="Meters east of reference point", ylab="Meters north")
pairs(frogs[,4:10])
attach(frogs)
pairs(cbind(altitude,log(distance),log(NoOfPools),NoOfSites),
    panel=panel.smooth, labels=c("altitude","log(distance)",
    "log(NoOfPools)","NoOfSites"))
detach(frogs)
frogs.glm0 <- glm(formula = pres.abs ~ altitude + log(distance) +
    log(NoOfPools) + NoOfSites + avrain + meanmin + meanmax,
    family = binomial, data = frogs)
summary(frogs.glm0)
frogs.glm <- glm(formula = pres.abs ~ log(distance) + log(NoOfPools) +
meanmin +
    meanmax, family = binomial, data = frogs)
oldpar <- par(mfrow=c(2,2))
termplot(frogs.glm, data=frogs)
termplot(frogs.glm, data=frogs, partial.resid=TRUE)
cv.binary(frogs.glm0) # All explanatory variables
pause()
```

```
cv.binary(frogs.glm) # Reduced set of explanatory variables
for (j in 1:4){
    rand <- sample(1:10, 212, replace=TRUE)
    all.acc <- cv.binary(frogs.glm0, rand=rand, print.details=FALSE)$acc.cv
    reduced.acc <- cv.binary(frogs.glm, rand=rand, print.details=FALSE)$acc.cv
    cat("\nAll:", round(all.acc,3), " Reduced:", round(reduced.acc,3))
}
```

frostedflakes Frosted Flakes data

Description

The frosted flakes data frame has 101 rows and 2 columns giving the sugar concentration (in percent) for 25 g samples of a cereal as measured by 2 methods - high performance liquid chromatography (a slow accurate lab method) and a quick method using the infra-analyzer 400.

Usage

elastic1

Format

This data frame contains the following columns:
Lab careful laboratory analysis measurements using high performance liquid chromatography
IA400 measurements based on the infra-analyzer 400

Source

W. J. Braun
fruitohms Electrical Resistance of Kiwi Fruit

Description

Data are from a study that examined how the electrical resistance of a slab of kiwifruit changed with the apparent juice content.

Usage

fruitohms

Format

This data frame contains the following columns:
juice apparent juice content (percent)
ohms electrical resistance (in ohms)

Source

Harker, F. R. and Maindonald J.H. 1994. Ripening of nectarine fruit. Plant Physiology 106: 165 171.

Examples

```
plot(ohms ~ juice, xlab="Apparent juice content (%)", ylab="Resistance (ohms)", data=fruitohms)
lines(lowess(fruitohms$juice, fruitohms$ohms), lwd=2)
pause()
require(splines)
attach(fruitohms)
plot(ohms ~ juice, cex=0.8, xlab="Apparent juice content (%)",
    ylab="Resistance (ohms)", type="n")
fruit.lmb4 <- lm(ohms ~ bs(juice,4))
ord <- order(juice)
lines(juice[ord], fitted(fruit.lmb4)[ord], lwd=2)
ci <- predict(fruit.lmb4, interval="confidence")
lines(juice[ord], ci[ord,"lwr"])
lines(juice[ord], ci[ord,"upr"])
```

 gaba Effect of pentazocine on post-operative pain (average VAS scores)

Description

The table shows, separately for males and females, the effect of pentazocine on post-operative pain profiles (average VAS scores), with (mbac and fbac) and without (mpl and fpl) preoperatively administered baclofen. Pain scores are recorded every 20 minutes, from 10 minutes to 170 minutes.

Usage

gaba

Format

A data frame with 9 observations on the following 7 variables.
min a numeric vector
mbac a numeric vector
mpl a numeric vector
fbac a numeric vector
fpl a numeric vector
avbac a numeric vector
avplac a numeric vector

Details

15 females were given baclofen, as against 3 males. 7 females received the placebo, as against 16 males. Averages for the two treatments (baclofen/placebo), taken over all trial participants and ignoring sex, are misleading.

Source

Gordon, N. C. et al.(1995): 'Enhancement of Morphine Analgesia by the GABA B_{B} against Baclofen'. Neuroscience 69: 345-349.

Examples

```
data(gaba)
mr <- range(gaba$min)
tran <- range(gaba[, c("mbac","mpl","fbac","fpl")])
## Means by treatment and sex
par(mfrow=c(1,2))
plot(mr, tran, xlab = "Time post pentazocine (min)",
    ylab = "Reduction in VAS pain rating",
    type = "n", xlim = c(0, 170), ylim = tran)
points(gaba$min, gaba$fbac, pch = 1, col = 8, lwd = 2, lty = 2,
            type = "b")
points(gaba$min, gaba$fpl, pch = 0, col = 8, lwd = 2, lty = 2,
            type = "b")
points(gaba$min, gaba$mbac, pch = 16, col = 8, lty = 2, type = "b")
points(gaba$min, gaba$mpl, pch = 15, col = 8, lty = 2, type = "b")
box()
## Now plot means, by treatment, averaged over all participants
plot(mr, tran, xlab = "Time post pentazocine (min)",
    ylab = "Reduction in VAS pain rating",
    type = "n", xlim = c(0, 170), ylim = tran)
bac <- (15 * gaba$fbac + 3 * gaba$mbac)/18
plac <- (7 * gaba$fpl + 9 * gaba$mpl)/16
points(gaba$min, plac, pch = 15, lty = 1, col=1, type = "b")
points(gaba$min, bac, pch = 16, lty = 1, col=1, type = "b")
box()
par(mfrow=c(1,1))
```

geophones Seismic Timing Data

Description

The geophones data frame has 56 rows and 2 columns. Thickness of a layer of Alberta substratum as measured by a line of geophones.

Usage

geophones

Format

This data frame contains the following columns:
distance location of geophone.
thickness time for signal to pass through substratum.

Examples

plot(geophones)
lines(lowess(geophones, f=.25))
greatLakes Yearly averages of Great Lake heights: 1918-2009

Description

Heights, stored as a multivariate time series, are for the lakes Erie, Michigan/Huron, Ontario and St Clair

Usage

data(greatLakes)

Format

The format is: mts [1:92, 1:4] $174174174174174 \ldots$ - $\operatorname{attr}(*$, "dimnames")=List of 2 .. $\$$: NULL .. $\$$: chr [1:4] "Erie" "michHuron" "Ontario" "StClair" - attr(*, "tsp")= num [1:3] 191820091 $\operatorname{attr}(*$, "class") $=\operatorname{chr}[1: 2]$ "mts" "ts"

Details

For more details, go to the website that is the source of the data.

Source

http://www.lre.usace.army.mil/Missions/GreatLakesInformation/GreatLakesWaterLevels/ HistoricalData.aspx

Examples

data(greatLakes)
plot(greatLakes)
\#\# maybe str(greatLakes)

```
grog
```

Alcohol consumption in Australia and New Zealand

Description

Data are annual apparent alcohol consumption in Australia and New Zealand, in liters of pure alcohol content per annum, separately for beer, wine, and spirits (including spirit-based products).

Usage

```
    data(grog)
```


Format

A data frame with 18 observations on the following 5 variables.
Beer liters per annum
Wine liters per annum
Spirit liters per annum
Country a factor with levels Australia NewZealand
Year Year ending in June of the given year

Details

Data are total available pure alcohol content, for the three categories, divided by numbers of persons aged 15 years or more. The source data for New Zealand included quarterly figures from December 1997, and annual data to December for all years. The annual New Zealand figure to June 1998 required an estimate for September 1997 that was obtained by extrapolating back the third quarter trend line from later years.

Source

Australian data are from http://www.abs.gov.au. For New Zealand data, go to http://www. stats.govt.nz/infoshare/ Click on 'Industry sectors' and then on 'Alcohol Available for Consumption - ALC’.

Examples

```
data(grog)
library(lattice)
xyplot(Beer+Wine+Spirit ~ Year | Country, data=grog)
xyplot(Beer+Wine+Spirit ~ Year, groups=Country, data=grog, outer=TRUE)
```


Graphical Output for Hardcopy

Description

This function streamlines graphical output to the screen, pdf or ps files. File names for hard copy devices can be generated automatically from function names of the form g3. 2 or fig3. 2 (the choice of alphabetic characters prior to 3.2 is immaterial).

Usage

$$
\begin{aligned}
\text { hardcopy (width }= & 3.75, \text { height }=3.75, \text { color }=\text { FALSE, trellis }=\text { FALSE, } \\
& \text { device }=c(" ", " p d f ", " p s ") \text {, path }=\text { getwd(), file }= \\
& \text { NULL, format }=c(" n n-n n ", " \text { name" }) \text {, split }=" \backslash \backslash . ", \\
& \text { pointsize }=c(8,4), \text { fonts=NULL, horiz }=\text { FALSE, ...) }
\end{aligned}
$$

Arguments

width height	width of plot in inches (sic!) height of plot in inches (sic!)		
color	(lattice plots only) TRUE if plot is not black on white only		
trellis	TRUE if plot uses trellis graphics		
device	screen "", pdf or ps		
path	external path name		
file	name of file to hold output, else NULL		
format	Alternatives are "nn-nn" and "name". split		
character on which to split function name (file=NULL)		\quad	Pointsize. For trellis devices a vector of length 2 giving font sizes for text and
:---			
for points respectively			

Details

If a file name (file, without extension) is not supplied, the format argument determines how the name is constructed. With format="name", the function name is used. With format="nn-nn" and dotsplit unchanged from the default, a function name of the form g3.1 leads to the name 03-01. Here g can be replaced by any other non-numeric characters; the result is the same. The relevant extension is in any case added.

Value

Graphical output to screen, pdf or ps file.

Author(s)

J.H. Maindonald

See Also

```
postscript
```

head. injury Minor Head Injury (Simulated) Data

Description

The head.injury data frame has 3121 rows and 11 columns. The data were simulated according to a simple logistic regression model to match roughly the clinical characteristics of a sample of individuals who suffered minor head injuries.

Usage

head.injury

Format

This data frame contains the following columns:
age. 65 age factor $(0=$ under $65,1=$ over 65$)$.
amnesia.before amnesia before impact (less than 30 minutes $=0$, more than 30 minutes $=1$).
basal.skull.fracture ($0=$ no fracture, $1=$ fracture).
GCS.decrease Glasgow Coma Scale decrease ($0=$ no deterioration, $1=$ deterioration).
GCS. 13 initial Glasgow Coma Scale ($0=$ not ' 13 ', $1=$ ' 13 ').
GCS.15.2hours Glasgow Coma Scale after 2 hours ($0=$ not ' 15 ', $1=$ ' 15 ').
high.risk assessed by clinician as high risk for neurological intervention ($0=$ not high risk, $1=$ high risk).
loss.of.consciousness ($0=$ conscious, $1=$ loss of consciousness).
open.skull.fracture ($0=$ no fracture, $1=$ fracture)
vomiting ($0=$ no vomiting, $1=$ vomiting)
clinically.important.brain.injury any acute brain finding revealed on CT $(0=$ not present, $1=$ present).

References

Stiell, I.G., Wells, G.A., Vandemheen, K., Clement, C., Lesiuk, H., Laupacis, A., McKnight, R.D., Verbee, R., Brison, R., Cass, D., Eisenhauer, M., Greenberg, G.H., and Worthington, J. (2001) The Canadian CT Head Rule for Patients with Minor Head Injury, The Lancet. 357: 1391-1396.
headInjury Minor Head Injury (Simulated) Data

Description

The headInjury data frame has 3121 rows and 11 columns. The data were simulated according to a simple logistic regression model to match roughly the clinical characteristics of a sample of individuals who suffered minor head injuries.

Usage

headInjury

Format

This data frame contains the following columns:
age. 65 age factor $(0=$ under $65,1=$ over 65$)$.
amnesia.before amnesia before impact (less than 30 minutes $=0$, more than 30 minutes $=1$).
basal.skull.fracture ($0=$ no fracture, $1=$ fracture).
GCS.decrease Glasgow Coma Scale decrease ($0=$ no deterioration, $1=$ deterioration).
GCS. 13 initial Glasgow Coma Scale ($0=$ not ${ }^{\prime} 13$ ', $1=$ ' 13 ').
GCS.15.2hours Glasgow Coma Scale after 2 hours ($0=$ not ' 15 ', $1=$ ' 15 ').
high.risk assessed by clinician as high risk for neurological intervention ($0=$ not high risk, $1=$ high risk).
loss.of.consciousness ($0=$ conscious, $1=$ loss of consciousness).
open.skull.fracture ($0=$ no fracture, $1=$ fracture)
vomiting ($0=$ no vomiting, $1=$ vomiting)
clinically.important.brain.injury any acute brain finding revealed on CT $(0=$ not present, $1=$ present).

References

Stiell, I.G., Wells, G.A., Vandemheen, K., Clement, C., Lesiuk, H., Laupacis, A., McKnight, R.D., Verbee, R., Brison, R., Cass, D., Eisenhauer, M., Greenberg, G.H., and Worthington, J. (2001) The Canadian CT Head Rule for Patients with Minor Head Injury, The Lancet. 357: 1391-1396.

hills Scottish Hill Races Data

Description

The record times in 1984 for 35 Scottish hill races.

Usage

hills

Format

This data frame contains the following columns:
dist distance, in miles (on the map)
climb total height gained during the route, in feet
time record time in hours

Source

A.C. Atkinson (1986) Comment: Aspects of diagnostic regression analysis. Statistical Science 1, 397-402.

Also, in MASS library, with time in minutes.

References

A.C. Atkinson (1988) Transformations unmasked. Technometrics 30, 311-318. ["corrects" the time for Knock Hill from 78.65 to 18.65 . It is unclear if this based on the original records.]

Examples

```
print("Transformation - Example 6.4.3")
pairs(hills, labels=c("dist\n\n(miles)", "climb\n\n(feet)",
"time\n\n(hours)"))
pause()
pairs(log(hills), labels=c("dist\n\n(log(miles))", "climb\n\n(log(feet))",
    "time\n\n(log(hours))"))
pause()
hills0.loglm <- lm(log(time) ~ log(dist) + log(climb), data = hills)
oldpar <- par(mfrow=c(2,2))
plot(hills0.loglm)
pause()
hills.loglm <- lm(log(time) ~ log(dist) + log(climb), data = hills[-18,])
```

```
summary(hills.loglm)
plot(hills.loglm)
pause()
hills2.loglm <- lm(log(time) ~ log(dist)+log(climb)+log(dist):log(climb),
data=hills[-18,])
anova(hills.loglm, hills2.loglm)
pause()
step(hills2.loglm)
pause()
summary(hills.loglm, corr=TRUE)$coef
pause()
summary(hills2.loglm, corr=TRUE)$coef
par(oldpar)
pause()
print("Nonlinear - Example 6.9.4")
hills.nls0 <- nls(time ~ (dist^alpha)*(climb^beta), start =
    c(alpha = .909, beta = .260), data = hills[-18,])
summary(hills.nls0)
plot(residuals(hills.nls0) ~ predict(hills.nls0)) # residual plot
pause()
hills$climb.mi <- hills$climb/5280
hills.nls <- nls(time ~ alpha + beta*dist + gamma*(climb.mi^delta),
    start=c(alpha = 1, beta = 1, gamma = 1, delta = 1), data=hills[-18,])
summary(hills.nls)
plot(residuals(hills.nls) ~ predict(hills.nls)) # residual plot
```

hills2000 Scottish Hill Races Data - 2000

Description

The record times in 2000 for 56 Scottish hill races. We believe the data are, for the most part, trustworthy. This is the subset of races 2000 for which type is hill.

Usage

hills2000

Format

This data frame contains the following columns:
dist distance, in miles (on the map)
climb total height gained during the route, in feet
time record time in hours
timef record time in hours for females

Source

The Scottish Running Resource, http://www.hillrunning.co.uk

Examples

pairs(hills2000)
hotspots Hawaian island chain hotspot Potassium-Argon ages

Description

K-Ar Ages (millions of years) and distances (km) from Kilauea along the trend of the chain of Hawaian volcanic islands and other seamounts that are believed to have been created by a moving "hot spot". The age of Kilauea is given as 0-0.4 Ma.

Usage
 data(hotspots)

Format

A data frame with 36 observations on the following 6 variables.
ID Volcano identifier
name Name
distance Distance in kilometers
age K -Ar age in millions of years
error Standard error of estimate?
source Data source; see information on web site below.

Details

For details of the way that errors werre calculated, refer to the original papers. See also the comments under hotspots2006. In general, errors do not account for geological uncertainty.

Source

http://www.soest.hawaii.edu/GG/HCV/haw_formation.html

Examples

```
data(hotspots)
plot(age ~ distance, data=hotspots)
abline(lm(age ~ distance, data=hotspots))
```

hotspots2006 Hawaian island chain hotspot Argon-Argon ages

Description

Ar-Ar Ages (millions of years) and distances (km) from Kilauea along the trend of the chain of Hawaian volcanic islands and other seamounts that are believed to have been created by a moving "hot spot".

Usage

data(hotspots2006)

Format

A data frame with 10 observations on the following 6 variables.

```
age Ar-Ar age
```

CI95lim Measurement error; 95\% CI
geoErr Geological Uncertainty
totplus Total uncertainty (+)
totminus Total uncertainty (-)
distance Distance in kilometers

Details

Note that measurement error is small relative to geological uncertainty. Geological uncertainty arises because lavas are likely to have erupted, over a period of up to 2 million years, somewhat after passage over the hot spot's centre. Dredging or drilling will in general have accessed larvas from the younger half of this interval. Hence the asymmetry in the geological uncertainty.

Source

Warren D. Sharp and David A. Clague, 50-Ma initiation of Hawaiian-Emperor bend records major change in Pacific Plate motion. Science 313: 1281-1284 (2006).

Examples

data(hotspots2006)
houseprices Aranda House Prices

Description

The houseprices data frame consists of the floor area, price, and the number of bedrooms for a sample of houses sold in Aranda in 1999. Aranda is a suburb of Canberra, Australia.

Usage

houseprices

Format

This data frame contains the following columns:
area a numeric vector giving the floor area
bedrooms a numeric vector giving the number of bedrooms
sale.price a numeric vector giving the sale price in thousands of Australian dollars

Source

J.H. Maindonald

Examples

```
plot(sale.price~area, data=houseprices)
pause()
coplot(sale.price~area|bedrooms, data=houseprices)
pause()
print("Cross-Validation - Example 5.5.2")
houseprices.lm <- lm(sale.price ~ area, data=houseprices)
summary(houseprices.lm)$sigma^2
pause()
CVlm()
pause()
print("Bootstrapping - Example 5.5.3")
houseprices.fn <- function (houseprices, index){
house.resample <- houseprices[index,]
house.lm <- lm(sale.price ~ area, data=house.resample)
coef(house.lm)[2] # slope estimate for resampled data
}
require(boot) # ensure that the boot package is loaded
houseprices.boot <- boot(houseprices, R=999, statistic=houseprices.fn)
```

```
houseprices1.fn <- function (houseprices, index){
house.resample <- houseprices[index,]
house.lm <- lm(sale.price ~ area, data=house.resample)
predict(house.lm, newdata=data.frame(area=1200))
}
houseprices1.boot <- boot(houseprices, R=999, statistic=houseprices1.fn)
boot.ci(houseprices1.boot, type="perc") # "basic" is an alternative to "perc"
houseprices2.fn <- function (houseprices, index){
house.resample <- houseprices[index,]
house.lm <- lm(sale.price ~ area, data=house.resample)
houseprices$sale.price-predict(house.lm, houseprices) # resampled prediction errors
}
n <- length(houseprices$area)
R <- 200
houseprices2.boot <- boot(houseprices, R=R, statistic=houseprices2.fn)
house.fac <- factor(rep(1:n, rep(R, n)))
plot(house.fac, as.vector(houseprices2.boot$t), ylab="Prediction Errors",
xlab="House")
pause()
plot(apply(houseprices2.boot$t,2, sd)/predict.lm(houseprices.lm, se.fit=TRUE)$se.fit,
    ylab="Ratio of Bootstrap SE's to Model-Based SE's", xlab="House", pch=16)
abline(1,0)
```

humanpower Oxygen uptake versus mechanical power, for humans

Description

The data set from Daedalus project.

Usage

data(humanpower1)

Format

A data frame with 28 observations on the following 3 variables.
wattsPerKg a numeric vector: watts per kilogram of body weight
02 a numeric vector: $\mathrm{ml} / \mathrm{min} / \mathrm{kg}$
id a factor with levels 1-5 (humanpower1) or 1-4 (humanpower2), identifying the different athletes

Details

Data in humanpower1 are from investigations (Bussolari 1987) designed to assess the feasibility of a proposed 119 kilometer human powered flight from the island of Crete - in the initial phase of the Daedalus project. Data are for five athletes - a female hockey player, a male amateur tri-athlete, a female amateur triathlete, a male wrestler and a male cyclist - who were selected from volunteers who were recruited through the news media, Data in humanpower2) are for four out of the 25 applicants who were selected for further testing, in the lead-up to the eventual selection of a pilot for the Daedalus project (Nadel and Bussolari 1988).

Source

Bussolari, S.R.(1987). Human factors of long-distance human-powered aircraft flights. Human Power 5: 8-12.
Nadel and Bussolari, S.R.(1988). The Daedalus project: physiological problems and solutions. American Scientist 76: 351-360.

References

Nadel and Bussolari, S.R.(1989). The physiological limits of long-duration human-power production - lessons learned from the Daedalus project. Human Power 7: 7-10.

Examples

```
str(humanpower1)
plot(humanpower1)
lm(o2 ~ id + wattsPerKg:id, data=humanpower1)
lm(o2 ~ id + wattsPerKg:id, data=humanpower2)
```

hurricNamed Named US Atlantic Hurricanes

Description

Details are given of atmospheric pressure at landfall, estimated damage in millions of dollars, and deaths, for named hurricanes that made landfall in the US mainland from 1950 through to 2012.

Usage

data("hurricNamed")

Format

A data frame with 94 observations on the following 11 variables.
Name Hurricane name
Year Numeric

LF. WindsMPH Maximum sustained windspeed (>= 1 minute) to occur along the US coast. Prior to 1980, this is estimated from the maximum windspeed associated with the Saffir-Simpson index at landfall. If 2 or more landfalls, the maximum is taken

LF.PressureMB Atmospheric pressure at landfall in millibars. If 2 or more landfalls, the minimum is taken

LF.times Date of first landfall
BaseDam2014 Property damage (millions of 2014 US dollars)
BaseDamage Property damage (in millions of dollars for that year)
NDAM2014 Damage, had hurricane appeared in 2014
AffectedStates Affected states (2-digit abbreviations), pasted together
firstLF Date of first landfall
deaths Number of continental US direct and indirect deaths
$m f$ Gender of name; a factor with levels $f m$

Details

An earlier version of these data was the subject of a controversial paper that claimed to have found that hurricanes with female names, presumably because taken less seriously, did more human damage after adjusting for the severity of the storm than those with male names.

Source

http://www.icatdamageestimator.com/ Deaths except for Audrey and Katrina, are in the Excel file that is available from http://www.pnas.org/content/suppl/2014/05/30/1402786111. DCSupplemental NOAA Monthly Weather Reports (MWRs) supplied the numbers of deaths for all except Donna, Celia, Audrey and Katrina. The figure for Celia is from http://www. nhc.noaa. gov/pdf/NWS-TPC-5.pdf. For the other three hurricanes it is from the Atlantic hurricane list in Wikipedia (see the references.)

References

http://www.icatdamageestimator.com/https://www.aoml.noaa.gov/hrd/hurdat/mwr_pdf/ http://en.wikipedia.org/wiki/List_of_Atlantic_hurricaneshttp://www.pnas.org/cgi/ doi/10.1073/pnas. 1402786111

Examples

```
data(hurricNamed)
str(hurricNamed)
plot(log(deaths+0.5) ~ log(NDAM2014), data=hurricNamed)
with(hurricNamed, lines(lowess(log(deaths+0.5) ~ log(NDAM2014))))
plot(log(deaths+0.5) ~ I(NDAM2014^0.14), data=hurricNamed)
with(hurricNamed, lines(lowess(log(deaths+0.1) ~ I(NDAM2014^0.14))))
```

```
    intersalt Blood pressure versus Salt; inter-population data
```


Description

Median blood pressure, as a fuction of salt intake, for each of 52 human populations.

Usage

intersalt

Format

A data frame with 52 observations on the following 4 variables.
b a numeric vector
bp mean diastolic blood pressure $(\mathrm{mm} \mathrm{Hg})$
na mean sodium excretion ($\mathrm{mmol} / 24 \mathrm{~h}$)
country a character vector

Details

For each population took a sample of 25 males and 25 females from each decade in the age range 20-50, i.e. 200 individuals in all.

Source

Intersalt Cooperative Research Group. 1988. Intersalt: an international study of electrolyte excretion and blood pressure: results for 24 hour urinary sodium and potassium excretion. British Medical Journal 297: 319-328.

References

Maindonald, J.H. The Design of Research Studies ? A Statistical Perspective, viii + 109pp. Graduate School Occasional Paper 00/2, Australian National University 2000.

Examples

```
data(intersalt)
plot(bp ~ na, data=intersalt, xlab="Median sodium excretion (mmol/24h)",
    ylab="Median diatoluc blood pressure (mm Hg)")
```


Description

The ironslag data frame has 53 rows and 2 columns. Two methods for measuring the iron content in samples of slag were compared, a chemical and a magnetic method. The chemical method requires greater effort than the magnetic method.

Usage

ironslag

Format

This data frame contains the following columns:
chemical a numeric vector containing the measurements coming from the chemical method
magnetic a numeric vector containing the measurments coming from the magnetic method

Source

Hand, D.J., Daly, F., McConway, K., Lunn, D., and Ostrowski, E. eds (1993) A Handbook of Small Data Sets. London: Chapman \& Hall.

Examples

```
iron.lm <- lm(chemical ~ magnetic, data = ironslag)
oldpar <- par(mfrow = c(2,2))
plot(iron.lm)
par(oldpar)
```

jobs Canadian Labour Force Summary Data (1995-96)

Description

The number of workers in the Canadian labour force broken down by region (BC, Alberta, Prairies, Ontario, Quebec, Atlantic) for the 24-month period from January, 1995 to December, 1996 (a time when Canada was emerging from a deep economic recession).

Usage

jobs

Format

This data frame contains the following columns:
BC monthly labour force counts in British Columbia
Alberta monthly labour force counts in Alberta
Prairies monthly labour force counts in Saskatchewan and Manitoba
Ontario monthly labour force counts in Ontario
Quebec monthly labour force counts in Quebec
Atlantic monthly labour force counts in Newfoundland, Nova Scotia, Prince Edward Island and New Brunswick

Date year (in decimal form)

Details

These data have been seasonally adjusted.

Source

Statistics Canada

Examples

```
print("Multiple Variables and Times - Example 2.1.4")
sapply(jobs, range)
pause()
matplot(jobs[,7], jobs[,-7], type="l", xlim=c(95, 97.1))
    # Notice that we have been able to use a data frame as the second argument to matplot().
    # For more information on matplot(), type help(matplot)
text(rep(jobs[24,7], 6), jobs[24,1:6], names(jobs)[1:6], adj=0)
pause()
sapply(log(jobs[,-7]), range)
apply(sapply(log(jobs[,-7]), range), 2, diff)
pause()
oldpar <- par(mfrow=c(2,3))
range.log <- sapply(log(jobs[,-7], 2), range)
maxdiff <- max(apply(range.log, 2, diff))
range.log[2,] <- range.log[1,] + maxdiff
titles <- c("BC Jobs","Alberta Jobs","Prairie Jobs",
    "Ontario Jobs", "Quebec Jobs", "Atlantic Jobs")
for (i in 1:6){
plot(jobs$Date, log(jobs[,i], 2), type = "l", ylim = range.log[,i],
    xlab = "Time", ylab = "Number of jobs", main = titles[i])
}
par(oldpar)
```

kiwishade Kiwi Shading Data

Description

The kiwishade data frame has 48 rows and 4 columns. The data are from a designed experiment that compared different kiwifruit shading treatments. There are four vines in each plot, and four plots (one for each of four treatments: none, Aug2Dec, Dec2Feb, and Feb2May) in each of three blocks (locations: west, north, east). Each plot has the same number of vines, each block has the same number of plots, with each treatment occurring the same number of times.

Usage

kiwishade

Format

This data frame contains the following columns:
yield Total yield (in kg)
plot a factor with levels east.Aug2Dec, east.Dec2Feb, east.Feb2May, east. none, north. Aug2Dec, north.Dec2Feb, north.Feb2May, north. none, west.Aug2Dec, west. Dec2Feb, west.Feb2May, west.none
block a factor indicating the location of the plot with levels east, north, west
shade a factor representing the period for which the experimenter placed shading over the vines; with levels: none no shading, Aug2Dec August - December, Dec2Feb December - February, Feb2May February - May

Details

The northernmost plots were grouped together because they were similarly affected by shading from the sun in the north. For the remaining two blocks shelter effects, whether from the west or from the east, were thought more important.

Source

Snelgar, W.P., Manson. P.J., Martin, P.J. 1992. Influence of time of shading on flowering and yield of kiwifruit vines. Journal of Horticultural Science 67: 481-487.

References

Maindonald J H 1992. Statistical design, analysis and presentation issues. New Zealand Journal of Agricultural Research 35: 121-141.

Examples

```
print("Data Summary - Example 2.2.1")
attach(kiwishade)
kiwimeans <- aggregate(yield, by=list(block, shade), mean)
names(kiwimeans) <- c("block","shade","meanyield")
kiwimeans[1:4,]
pause()
print("Multilevel Design - Example 9.3")
kiwishade.aov <- aov(yield ~ shade+Error(block/shade),data=kiwishade)
summary(kiwishade.aov)
pause()
sapply(split(yield, shade), mean)
pause()
kiwi.table <- t(sapply(split(yield, plot), as.vector))
kiwi.means <- sapply(split(yield, plot), mean)
kiwi.means.table <- matrix(rep(kiwi.means,4), nrow=12, ncol=4)
kiwi.summary <- data.frame(kiwi.means, kiwi.table-kiwi.means.table)
names(kiwi.summary)<- c("Mean", "Vine 1", "Vine 2", "Vine 3", "Vine 4")
kiwi.summary
mean(kiwi.means) # the grand mean (only for balanced design)
if(require(lme4, quietly=TRUE)) {
kiwishade.lmer <- lmer(yield ~ shade + (1|block) + (1|block:plot),
                    data=kiwishade)
## block:shade is an alternative to block:plot
kiwishade.lmer
## Residuals and estimated effects
xyplot(residuals(kiwishade.lmer) ~ fitted(kiwishade.lmer)|block,
    data=kiwishade, groups=shade,
    layout=c(3,1), par.strip.text=list(cex=1.0),
    xlab="Fitted values (Treatment + block + plot effects)",
    ylab="Residuals", pch=1:4, grid=TRUE,
    scales=list(x=list(alternating=FALSE), tck=0.5),
    key=list(space="top", points=list(pch=1:4),
                            text=list(labels=levels(kiwishade$shade)),columns=4))
ploteff <- ranef(kiwishade.lmer, drop=TRUE)[[1]]
qqmath(ploteff, xlab="Normal quantiles", ylab="Plot effect estimates",
    scales=list(tck=0.5))
}
```


Description

Leaf length, width and petiole measurements taken at various sites in Australia.

Usage

leafshape

Format

This data frame contains the following columns:
bladelen leaf length (in mm)
petiole a numeric vector
bladewid leaf width (in mm)
latitude latitude
logwid natural logarithm of width
logpet logarithm of petiole
loglen logarithm of length
arch leaf architecture ($0=$ plagiotropic, $1=$ orthotropic
location a factor with levels Sabah, Panama, Costa Rica, N Queensland, S Queensland, Tasmania

Source

King, D.A. and Maindonald, J.H. 1999. Tree architecture in relation to leaf dimensions and tree stature in temperate and tropical rain forests. Journal of Ecology 87: 1012-1024.
leafshape17 Subset of Leaf Shape Data Set

Description

The leafshape 17 data frame has 61 rows and 8 columns. These are leaf length, width and petiole measurements taken at several sites in Australia. This is a subset of the leafshape data frame.

Usage

leafshape17

Format

This data frame contains the following columns:
bladelen leaf length (in mm)
petiole a numeric vector
bladewid leaf width (in mm)
latitude latitude
logwid natural logarithm of width
logpet logarithm of petiole measurement
loglen logarithm of length
arch leaf architecture $(0=$ orthotropic, $1=$ plagiotropic $)$

Source

King, D.A. and Maindonald, J.H. 1999. Tree architecture in relation to leaf dimensions and tree stature in temperate and tropical rain forests. Journal of Ecology 87: 1012-1024.

Examples

```
print("Discriminant Analysis - Example 11.2")
require(MASS)
leaf17.lda <- lda(arch ~ logwid+loglen, data=leafshape17)
leaf17.hat <- predict(leaf17.lda)
leaf17.lda
    table(leafshape17$arch, leaf17.hat$class)
pause()
tab <- table(leafshape17$arch, leaf17.hat$class)
    sum(tab[row(tab)==col(tab)])/sum(tab)
leaf17cv.lda <- lda(arch ~ logwid+loglen, data=leafshape17, CV=TRUE)
tab <- table(leafshape17$arch, leaf17cv.lda$class)
pause()
leaf17.glm <- glm(arch ~ logwid + loglen, family=binomial, data=leafshape17)
    options(digits=3)
summary(leaf17.glm)$coef
pause()
leaf17.one <- cv.binary(leaf17.glm)
table(leafshape17$arch, round(leaf17.one$internal)) # Resubstitution
pause()
table(leafshape17$arch, round(leaf17.one$cv)) # Cross-validation
```


Description

These data consist of measurements of vapour pressure and of the difference between leaf and air temperature.

Usage

leaftemp

Format

This data frame contains the following columns:
CO2level Carbon Dioxide level low, medium, high
vapPress Vapour pressure
tempDiff Difference between leaf and air temperature
BtempDiff a numeric vector

Source

Katharina Siebke and Susan von Cammerer, Australian National University.

Examples

```
print("Fitting Multiple Lines - Example 7.3")
leaf.lm1 <- lm(tempDiff ~ 1 , data = leaftemp)
leaf.lm2 <- lm(tempDiff ~ vapPress, data = leaftemp)
leaf.lm3 <- lm(tempDiff ~ CO2level + vapPress, data = leaftemp)
leaf.lm4 <- lm(tempDiff ~ CO2level + vapPress + vapPress:CO2level,
    data = leaftemp)
anova(leaf.lm1, leaf.lm2, leaf.lm3, leaf.lm4)
summary(leaf.lm2)
plot(leaf.lm2)
```

leaftemp.all Full Leaf and Air Temperature Data Set

Description

The leaftemp. all data frame has 62 rows and 9 columns.

Usage

leaftemp.all

Format

This data frame contains the following columns:
glasshouse a factor with levels A, B, C
CO2level a factor with Carbon Dioxide Levels: high, low, medium
day a factor
light a numeric vector
CO2 a numeric vector
tempDiff Difference between Leaf and Air Temperature
BtempDiff a numeric vector
airTemp Air Temperature
vapPress Vapour Pressure

Source

J.H. Maindonald
litters Mouse Litters

Description

Data on the body and brain weights of 20 mice, together with the size of the litter. Two mice were taken from each litter size.

Usage

litters

Format

This data frame contains the following columns:
Isize litter size
bodywt body weight
brainwt brain weight

Source

Wainright P, Pelkman C and Wahlsten D 1989. The quantitative relationship between nutritional effects on preweaning growth and behavioral development in mice. Developmental Psychobiology 22: 183-193.

Examples

```
print("Multiple Regression - Example 6.2")
pairs(litters, labels=c("lsize\n\n(litter size)", "bodywt\n\n(Body Weight)",
            "brainwt\n\n(Brain Weight)"))
    # pairs(litters) gives a scatterplot matrix with less adequate labeling
mice1.lm <- lm(brainwt ~ lsize, data = litters) # Regress on lsize
mice2.lm <- lm(brainwt ~ bodywt, data = litters) #Regress on bodywt
mice12.lm <- lm(brainwt ~ lsize + bodywt, data = litters) # Regress on lsize & bodywt
summary(mice1.lm)$coef # Similarly for other coefficients.
# results are consistent with the biological concept of brain sparing
pause()
hat(model.matrix(mice12.lm)) # hat diagonal
pause()
plot(lm.influence(mice12.lm)$hat, residuals(mice12.lm))
print("Diagnostics - Example 6.3")
mice12.lm <- lm(brainwt ~ bodywt+lsize, data=litters)
oldpar <-par(mfrow = c(1,2))
bx <- mice12.lm$coef[2]; bz <- mice12.lm$coef[3]
res <- residuals(mice12.lm)
plot(litters$bodywt, bx*litters$bodywt+res, xlab="Body weight",
    ylab="Component + Residual")
panel.smooth(litters$bodywt, bx*litters$bodywt+res) # Overlay
plot(litters$lsize, bz*litters$lsize+res, xlab="Litter size",
    ylab="Component + Residual")
panel.smooth(litters$lsize, bz*litters$lsize+res)
par(oldpar)
```


Description

This extracts the code that provides the major part of the statistical information used by plot.lm, leaving out the code used to provide the graphs

Usage

lmdiags(x, which $=c(1 L: 3 L, 5 L)$, cook.levels $=c(0.5,1)$, hii=NULL)

Arguments

x
This must be an object of class Im object, or that inherits from an object of class lm.
which a subset of the numbers '1:6', indicating the plots for which statistical information is required
cook. levels Levels for contours of cook. levels, by default c $(0.5,1)$
hii Diagonal elements for the hat matrix. If not supplied (hii=NULL), they will be calculated from the argument x .

Details

See plot. Im for additional information.

Value

yh	fitted values
rs	standardized residuals (for glm models standardized deviance residuals)
yhn0	As yh, but omitting observations with zero weight
cook	Cook's statistics
rsp	standardized residuals (for glm models standardized Pearson residuals)

Note

This function is designed, in the first place, for use in connection with plotSimDiags, used to give simulations of diagnostic plots for lm objects.

Author(s)

John Maindonald, using code that John Maindonald, Martin Maechler and others had contributed to plot.lm

References

See references for plot. 1 m

See Also

plotSimDiags, plot.lm

Examples

```
women.lm <- lm(weight ~ height, data=women)
veclist <- lmdiags(x=women.lm)
## Returns the statistics that are required for graphs 1, 2, 3, and 5
```

 logisticsim Simple Logistic Regression Data Simulator

Description

This function simulates simple regression data from a logistic model.

Usage

logisticsim(x = seq(0, 1, length=101), $a=2, b=-4$, seed=NULL)

Arguments

$x \quad$ a numeric vector representing the explanatory variable
a the regression function intercept
b the regression function slope
seed numeric constant

Value

a list consisting of

x	the explanatory variable vector
y	the Poisson response vector

Examples

logisticsim()

Lottario Ontario Lottery Data

Description

The data frame Lottario is a summary of 122 weekly draws of an Ontario lottery, beginning in November, 1978. Each draw consists of 7 numbered balls, drawn without replacement from an urn consisting of balls numbered from 1 through 39.

Usage

> Lottario

Format

This data frame contains the following columns:
Number the integers from 1 to 39, representing the numbered balls
Frequency the number of occurrences of each numbered ball

Source

The Ontario Lottery Corporation

References

Bellhouse, D.R. (1982). Fair is fair: new rules for Canadian lotteries. Canadian Public Policy Analyse de Politiques 8: 311-320.

Examples

order(Lottario\$Frequency)[33:39] \# the 7 most frequently chosen numbers
lung Cape Fur Seal Lung Measurements

Description

The lung vector consists of weight measurements of lungs taken from 30 Cape Fur Seals that died as an unintended consequence of commercial fishing.

Usage

lung
measles

Description

The Manitoba.lakes data frame has 9 rows and 2 columns. The areas and elevations of the nine largest lakes in Manitoba, Canada. The geography of Manitoba (a relatively flat province) can be divided crudely into three main areas: a very flat prairie in the south which is at a relatively high elevation, a middle region consisting of mainly of forest and Precambrian rock, and a northern region which drains more rapidly into Hudson Bay. All water in Manitoba, which does not evaporate, eventually drains into Hudson Bay.

Usage

Manitoba.lakes

Format

This data frame contains the following columns:
elevation a numeric vector consisting of the elevations of the lakes (in meters)
area a numeric vector consisting of the areas of the lakes (in square kilometers)

Source

The CANSIM data base at Statistics Canada.

Examples

```
plot(Manitoba.lakes)
plot(Manitoba.lakes[-1,])
```

```
measles Deaths in London from measles
```


Description

Deaths in London from measles: 1629 - 1939, with gaps.

Usage

data(measles)

Format

The format is: Time-Series [1:311] from 1629 to 1939: 42238021332712 NA NA ...

Source

Guy, W. A. 1882. Two hundred and fifty years of small pox in London. Journal of the Royal Statistical Society 399-443.
Stocks, P. 1942. Measles and whooping cough during the dispersal of 1939-1940. Journal of the Royal Statistical Society 105:259-291.

References

Lancaster, H. O. 1990. Expectations of Life. Springer.
medExpenses Family Medical Expenses

Description

The medExpenses data frame contains average weekly medical expenses including drugs for 33 families randomly sampled from a community of 600 families which contained 2700 individuals. These data were collected in the 1970's at an unknown location.

Usage

medExpenses

Format

familysize number of individuals in a family
expenses average weekly cost for medical expenses per family member

Examples

with(medExpenses, weighted.mean(expenses, familysize))
mi fem Mortality Outcomes for Females Suffering Myocardial Infarction

Description

The mifem data frame has 1295 rows and 10 columns. This is the female subset of the 'monica' data frame

Usage

mifem

Format

This data frame contains the following columns:
outcome mortality outcome, a factor with levels live, dead
age age at onset
yronset year of onset
premi previous myocardial infarction event, a factor with levels y, n, nk not known
smstat smoking status, a factor with levels c current, x ex-smoker, n non-smoker, nk not known
diabetes a factor with levels y, n, nk not known
highbp high blood pressure, a factor with levels y, n, nk not known
hichol high cholesterol, a factor with levels y, n nk not known
angina a factor with levels $y, n, n k$ not known
stroke a factor with levels y, n, nk not known

Source

Newcastle (Australia) centre of the Monica project; see the web site http://www.ktl.fi/monica

Examples

```
print("CART - Example 10.7")
summary(mifem)
pause()
require(rpart)
mifem.rpart <- rpart(outcome ~ ., data = mifem, cp = 0.0025)
plotcp(mifem.rpart)
printcp(mifem.rpart)
pause()
mifemb.rpart <- prune(mifem.rpart, cp=0.006)
print(mifemb.rpart)
```

 mignonette Darwin's Wild Mignonette Data

Description

Data which compare the heights of crossed plants with self-fertilized plants. Plants were paired within the pots in which they were grown, with one on one side and one on the other.

Usage

mignonette

Format

This data frame contains the following columns:
cross heights of the crossed plants
self heights of the self-fertilized plants

Source

Darwin, Charles. 1877. The Effects of Cross and Self Fertilisation in the Vegetable Kingdom. Appleton and Company, New York.

Examples

```
    print("Is Pairing Helpful? - Example 4.3.1")
    attach(mignonette)
    plot(cross ~ self, pch=rep(c(4,1), c(3,12))); abline(0,1)
    abline(mean(cross-self), 1, lty=2)
    detach(mignonette)
```

 milk Milk Sweetness Study

Description

The milk data frame has 17 rows and 2 columns. Each of 17 panelists compared two milk samples for sweetness.

Usage

milk

Format

This data frame contains the following columns:
four a numeric vector consisting of the assessments for four units of additive
one a numeric vector while the is the assessment for one unit of additive

Source

J.H. Maindonald

Examples

```
print("Rug Plot - Example 1.8.1")
xyrange <- range(milk)
plot(four ~ one, data = milk, xlim = xyrange, ylim = xyrange, pch = 16)
rug(milk$one)
rug(milk$four, side = 2)
abline(0, 1)
```

modelcars Model Car Data

Description

The modelcars data frame has 12 rows and 2 columns. The data are for an experiment in which a model car was released three times at each of four different distances up a 20 degree ramp. The experimenter recorded distances traveled from the bottom of the ramp across a concrete floor.

Usage

modelcars

Format

This data frame contains the following columns:
distance.traveled a numeric vector consisting of the lengths traveled (in cm)
starting.point a numeric vector consisting of the distance of the starting point from the top of the ramp (in cm)

Source

W.J. Braun

Examples

```
plot(modelcars)
modelcars.lm <- lm(distance.traveled ~ starting.point, data=modelcars)
aov(modelcars.lm)
pause()
print("Response Curves - Example 4.6")
attach(modelcars)
stripchart(distance.traveled ~ starting.point, vertical=TRUE, pch=15,
    xlab = "Distance up ramp", ylab="Distance traveled")
detach(modelcars)
```

```
monica WHO Monica Data
```


Description

The monica data frame has 6357 rows and 12 columns. Note that mifem is the female subset of this data frame.

Usage

monica

Format

This data frame contains the following columns:
outcome mortality outcome, a factor with levels live, dead
age age at onset
sex $m=$ male, $f=$ female
hosp $\mathrm{y}=$ hospitalized, $\mathrm{n}=$ not hospitalized
yronset year of onset
premi previous myocardial infarction event, a factor with levels y, n, nk not known
smstat smoking status, a factor with levels c current, x ex-smoker, n non-smoker, nk not known
diabetes a factor with levels $y, n, n k$ not known
highbp high blood pressure, a factor with levels y, n, nk not known
hichol high cholesterol, a factor with levels y , n nk not known
angina a factor with levels y, n, nk not known
stroke a factor with levels $\mathrm{y}, \mathrm{n}, \mathrm{nk}$ not known

Source

Newcastle (Australia) centre of the Monica project; see the web site http://www.ktl.fi/monica

Examples

```
print("CART - Example 10.7")
summary(monica)
pause()
require(rpart)
monica.rpart <- rpart(outcome ~ ., data = monica, cp = 0.0025)
plotcp(monica.rpart)
printcp(monica.rpart)
pause()
monicab.rpart <- prune(monica.rpart, cp=0.006)
print(monicab.rpart)
```

moths Moths Data

Description

The moths data frame has 41 rows and 4 columns. These data are from a study of the effect of habitat on the densities of two species of moth (A and P). Transects were set across the search area. Within transects, sections were identified according to habitat type.

Usage

moths

Format

This data frame contains the following columns:
meters length of transect
A number of type A moths found
\mathbf{P} number of type P moths found
habitat a factor with levels Bank, Disturbed, Lowerside, NEsoak, NWsoak, SEsoak, SWsoak, Upperside

Source

Sharyn Wragg, formerly of Australian National University

Examples

```
print("Quasi Poisson Regression - Example 8.3")
rbind(table(moths[,4]), sapply(split(moths[,-4], moths$habitat), apply,2,
sum))
A.glm <- glm(formula = A ~ log(meters) + factor(habitat), family =
quasipoisson, data = moths)
summary(A.glm)
    # Note the huge standard errors
moths$habitat <- relevel(moths$habitat, ref="Lowerside")
A.glm <- glm(A ~ habitat + log(meters), family=quasipoisson, data=moths)
summary(A.glm)$coef
## Consider as another possibility
A2.glm <- glm(formula = A ~ sqrt(meters) + factor(habitat), family =
    quasipoisson(link=sqrt), data = moths)
summary(A2.glm)
```

```
multilap Data Filtering Function
```


Description

A subset of data is selected for which the treatment to control ratio of non-binary covariates is never outside a specified range.

Usage

$$
\begin{gathered}
\text { multilap(df = DAAG::nsw74psid1, maxf = 20, colnames = c("educ", } \\
\text { "age", "re74", "re75", "re78")) }
\end{gathered}
$$

Arguments

df
df
a data frame
$\operatorname{maxf} \quad$ filtering parameter
colnames columns to be compared for filtering

Author(s)

J.H. Maindonald
nassCDS Airbag and other influences on accident fatalities

Description

US data, for 1997-2002, from police-reported car crashes in which there is a harmful event (people or property), and from which at least one vehicle was towed. Data are restricted to front-seat occupants, include only a subset of the variables recorded, and are restricted in other ways also.

Usage

nassCDS

Format

A data frame with 26217 observations on the following 15 variables.
dvcat ordered factor with levels (estimated impact speeds) $1-9 \mathrm{~km} / \mathrm{h}, 10-24,25-39,40-54,55+$
weight Observation weights, albeit of uncertain accuracy, designed to account for varying sampling probabilities.
dead factor with levels alive dead
airbag a factor with levels none airbag
seatbelt a factor with levels none belted
frontal a numeric vector; $0=$ non-frontal, $1=$ frontal impact
sex a factor with levels fm
ageOFocc age of occupant in years
yearacc year of accident
yearVeh Year of model of vehicle; a numeric vector
abcat Did one or more (driver or passenger) airbag(s) deploy? This factor has levels deploy nodeploy unavail
occRole a factor with levels driver pass
deploy a numeric vector: 0 if an airbag was unavailable or did not deploy; 1 if one or more bags deployed.
injSeverity a numeric vector; 0:none, 1:possible injury, 2:no incapacity, 3:incapacity, 4:killed; 5:unknown, 6:prior death
caseid character, created by pasting together the populations sampling unit, the case number, and the vehicle number. Within each year, use this to uniquely identify the vehicle.

Details

Data collection used a multi-stage probabilistic sampling scheme. The observation weight, called national inflation factor (national) in the data from NASS, is the inverse of an estimate of the selection probability. These data include a subset of the variables from the NASS dataset. Variables that are coded here as factors are coded as numeric values in that dataset.

Source

http://www.stat.colostate.edu/~meyer/airbags.htmlftp://ftp.nhtsa.dot.gov/nass/
See also\http://www.maths.anu.edu. au/~johnm/datasets/airbags

References

Meyer, M.C. and Finney, T. (2005): Who wants airbags?. Chance 18:3-16.
Farmer, C.H. 2006. Another look at Meyer and Finney's 'Who wants airbags?'. Chance 19:15-22.
Meyer, M.C. 2006. Commentary on "Another look at Meyer and Finney's 'Who wants airbags?'. Chance 19:23-24.

For analyses based on the alternative FARS (Fatal Accident Recording System) data, and associated commentary, see:
Cummings, P; McKnight, B, 2010. Accounting for vehicle, crash, and occupant characteristics in traffic crash studies. Injury Prevention 16: 363-366. [The relatively definitive analyses in this paper use a matched cohort design,

Olson, CM; Cummings, P, Rivara, FP, 2006. Association of first- and second-generation air bags with front occupant death in car crashes: a matched cohort study. Am J Epidemiol 164:161-169. [The relatively definitive analyses in this paper use a matched cohort design, using data taken from the FARS (Fatal Accident Recording System) database.]

Braver, ER; Shardell, M; Teoh, ER, 2010. How have changes in air bag designs affected frontal crash mortality? Ann Epidemiol 20:499-510.
The web page http://www-fars.nhtsa.dot.gov/Main/index.aspx has a menu-based interface into the FARS (Fatality Analysis Recording System) data. The FARS database aims to include every accident in which there was at least one fatality.

Examples

```
data(nassCDS)
xtabs(weight ~ dead + airbag, data=nassCDS)
xtabs(weight ~ dead + airbag + seatbelt + dvcat, data=nassCDS)
tab <- xtabs(weight ~ dead + abcat, data=nassCDS,
    subset=dvcat=="25-39"&frontal==0)[, c(3,1,2)]
round(tab[2, ]/apply(tab,2,sum)*100,2)
```

nasshead Documentation of names of columns in nass9702cor

Description

SASname and longname are from the SAS XPT file nass9702cor.XPT that is available from the webite noted below. The name shortname is the name used in the data frame nass9702cor, not included in this package, but available from my website that is noted below. It is also used in nassCDS, for columns that nassCDS includes.

Usage

data(nasshead)

Format

A data frame with 56 observations on the following 3 variables.
shortname a character vector
SASname a character vector
longname a character vector

Details

For full details of the coding of values in columns of nass9702cor, consult one of the SAS format files that can be obtained by following the instructions on Dr Meyer's web site that is noted below.

Source

[^0]
References

Meyer, M.C. and Finney, T. (2005): Who wants airbags?. Chance 18:3-16.
Farmer, C.H. 2006. Another look at Meyer and Finney's 'Who wants airbags?'. Chance 19:15-22.
Meyer, M.C. 2006. Commentary on "Another look at Meyer and Finney's 'Who wants airbags?'". Chance 19:23-24.

Examples

```
data(nasshead)
```

```
nihills
Record times for Northern Ireland mountain running events
```


Description

Data were from the 2007 calendar for the Northern Ireland Mountain Running Association.

Usage

data(nihills)

Format

A data frame with 23 observations on the following 4 variables.
dist distances in miles
climb amount of climb in feet
time record time in hours for males
timef record time in hours for females

Details

These data make an interesting comparison with the dataset hills2000 in the DAAG package.

Source

For more recent information, see http://www.nimra.org.uk/index.php/fixtures/

Examples

```
data(nihills)
lm(formula = log(time) ~ log(dist) + log(climb), data = nihills)
lm(formula = log(time) ~ log(dist) + log(climb/dist), data = nihills)
```

nsw74demo Labour Training Evaluation Data

Description

This data frame contains 445 rows and 10 columns. These data are from an investigation of the effect of training on changes, between 1974-1975 and 1978, in the earnings of individuals who had experienced employment difficulties Data are for the male experimental control and treatment groups.

Usage

nsw74demo

Format

This data frame contains the following columns:
trt a numeric vector identifying the study in which the subjects were enrolled ($0=\operatorname{PSID}, 1=$ NSW $)$.
age age (in years).
educ years of education.
black ($0=$ not black, $1=$ black).
hisp ($0=$ not hispanic, $1=$ hispanic).
marr $(0=$ not married, $1=$ married $)$.
nodeg $(0=$ completed high school, $1=$ dropout $)$.
re74 real earnings in 1974.
re75 real earnings in 1975.
re78 real earnings in 1978.

Source

http://www.columbia.edu/~rd247/nswdata.html

References

Dehejia, R.H. and Wahba, S. 1999. Causal effects in non-experimental studies: re-evaluating the evaluation of training programs. Journal of the American Statistical Association 94: 1053-1062.

Lalonde, R. 1986. Evaluating the economic evaluations of training programs. American Economic Review 76: 604-620.

Description

This data frame contains 2675 rows and 10 columns. These data are pertinent to an investigation of the way that earnings changed, between 1974-1975 and 1978, in the absence of training. Data for the experimental treatment group (NSW) were combined with control data results from the Panel Study of Income Dynamics (PSID) study.

Usage

nsw74psid1

Format

This data frame contains the following columns:
trt a numeric vector identifying the study in which the subjects were enrolled $(0=\mathrm{PSID}, 1=\mathrm{NSW})$.
age age (in years).
educ years of education.
black ($0=$ not black, $1=$ black).
hisp ($0=$ not hispanic, $1=$ hispanic).
marr $(0=$ not married, $1=$ married $)$.
nodeg $(0=$ completed high school, $1=$ dropout $)$.
re74 real earnings in 1974.
re75 real earnings in 1975.
re78 real earnings in 1978.

Source

http://www.columbia.edu/~rd247/nswdata.html

References

Dehejia, R.H. and Wahba, S. 1999. Causal effects in non-experimental studies: re-evaluating the evaluation of training programs. Journal of the American Statistical Association 94: 1053-1062.

Lalonde, R. 1986. Evaluating the economic evaluations of training programs. American Economic Review 76: 604-620.

Examples

```
print("Interpretation of Regression Coefficients - Example 6.6")
    nsw74psid1.lm <- lm(re78~ trt+ (age + educ + re74 + re75) +
    (black + hisp + marr + nodeg), data = nsw74psid1)
    summary(nsw74psid1.lm)$coef
options(digits=4)
sapply(nsw74psid1[, c(2,3,8,9,10)], quantile, prob=c(.25,.5,.75,.95,1))
attach(nsw74psid1)
sapply(nsw74psid1[trt==1, c(2,3,8,9,10)], quantile,
prob=c(.25,.5,.75,.95,1))
pause()
here <- age <= 40 & re74<=5000 & re75 <= 5000 & re78 < 30000
nsw74psidA <- nsw74psid1[here, ]
detach(nsw74psid1)
table(nsw74psidA$trt)
pause()
A1.lm <- lm(re78 ~ trt + (age + educ + re74 + re75) + (black +
        hisp + marr + nodeg), data = nsw74psidA)
summary(A1.lm)$coef
pause()
A2.lm <- lm(re78 ~ trt + (age + educ + re74 + re75) * (black +
    hisp + marr + nodeg), data = nsw74psidA)
anova(A1.lm, A2.lm)
```


Description

These data are pertinent to an investigation of the way that earnings changed, between 1974-1975 and 1978, in the absence of training. The data frame combines data for the experimental treatment group (NSW, 185 observations), using as control data results from the PSID (Panel Study of Income Dynamics) study (128 observations). The latter were chosen to mimic the characteristics of the NSW training and control groups. These are a subset of the nsw74psid1 data.

Usage

nsw74psid3

Format

This data frame contains the following columns:
trt a numeric vector identifying the study in which the subjects were enrolled $(0=\mathrm{PSID}, 1=\mathrm{NSW})$
age age (in years)
educ years of education
black ($0=$ not black, $1=$ black)
hisp ($0=$ not hispanic, $1=$ hispanic)
$\operatorname{marr}(0=$ not married, $1=$ married $)$
nodeg $(0=$ completed high school, $1=$ dropout)
re74 real earnings in 1974
re75 real earnings in 1975
re78 real earnings in 1978

Source

http://www.columbia.edu/~rd247/nswdata.html

References

Dehejia, R.H. and Wahba, S. 1999. Causal effects in non-experimental studies: re-evaluating the evaluation of training programs. Journal of the American Statistical Association 94: 1053-1062.

Lalonde, R. 1986. Evaluating the economic evaluations of training programs. American Economic Review 76: 604-620.

Examples

```
print("Contingency Tables - Example 4.4")
table(nsw74psid3$trt, nsw74psid3$nodeg)
chisq.test(table(nsw74psid3$trt,nsw74psid3$nodeg))
```

nsw74psidA A Subset of the nsw74psidl Data Set

Description

The nsw74psidA data frame has 252 rows and 10 columns. See nsw74psid1 for more information.

Usage

nsw74psidA

Format

This data frame contains the following columns:
trt a numeric vector
age a numeric vector
educ a numeric vector
black a numeric vector
hisp a numeric vector
marr a numeric vector
nodeg a numeric vector
re74 a numeric vector
re75 a numeric vector
re78 a numeric vector

Details

This data set was obtained using:

```
here <-age <= 40 & re74<=5000 & re75 <= 5000 & re78 < 30000
nsw74psidA <-nsw74psid1[here,]
```


Examples

```
table(nsw74psidA$trt)
A1.lm <- lm(re78 ~ trt + (age + educ + re74 + re75) + (black +
    hisp + marr + nodeg), data = nsw74psidA)
summary(A1.lm)$coef
discA.glm <- glm(formula = trt ~ age + educ + black + hisp +
    marr + nodeg + re74 + re75, family = binomial, data = nsw74psidA)
A.scores <- predict(discA.glm)
options(digits=4)
overlap <- A.scores > -3.5 & A.scores < 3.8
A.lm <- lm(re78 ~ trt + A.scores, data=nsw74psidA, subset = overlap)
summary(A.lm)$coef
```

nswdemo

Labour Training Evaluation Data

Description

The nswdemo data frame contains 722 rows and 10 columns. These data are pertinent to an investigation of the way that earnings changed, between 1974-1975 and 1978, for an experimental treatment who were given job training as compared with a control group who did not receive such training.
The psid1 data set is an alternative non-experimental "control" group. psid2 and psid3 are subsets of psid1, designed to be better matched to the experimental data than psid1. Note also the cps1, cps2 and cps3 datasets (DAAGxtras) that have been proposed as non-experimental controls.

Usage

data(nswdemo)

Format

This data frame contains the following columns:
trt a numeric vector identifying the study in which the subjects were enrolled $(0=$ Control, $1=$ treated).
age age (in years).
educ years of education.
black ($0=$ not black, $1=$ black).
hisp ($0=$ not hispanic, $1=$ hispanic).
$\operatorname{marr}(0=$ not married, $1=$ married $)$.
nodeg $(0=$ completed high school, $1=$ dropout).
re74 real earnings in 1974.
re75 real earnings in 1975.
re78 real earnings in 1978.

Source

http://www.nber.org/~rdehejia/nswdata.html

References

Dehejia, R.H. and Wahba, S. 1999. Causal effects in non-experimental studies: re-evaluating the evaluation of training programs. Journal of the American Statistical Association 94: 1053-1062.

Lalonde, R. 1986. Evaluating the economic evaluations of training programs. American Economic Review 76: 604-620.

Smith, J. A. and Todd, P.E. 2005,"Does Matching overcome. LaLonde?s critique of nonexperimental estimators", Journal of Econometrics 125: 305-353.

Dehejia, R.H. 2005. Practical propensity score matching: a reply to Smith and Todd. Journal of Econometrics 125: 355-364.

See Also

psid1, psid2, psid3

Description

This data frame contains 2787 rows and 10 columns. These data are pertinent to an investigation of the way that earnings changed, between 1974-1975 and 1978, in the absence of training. Data for the experimental treatment group in nswdemo are combined with the psid1 control data from the Panel Study of Income Dynamics (PSID) study.

Usage

psid1

Format

This data frame contains the following columns:
trt a numeric vector identifying the study in which the subjects were enrolled ($0=$ Control, $1=$ treated).
age age (in years).
educ years of education.
black ($0=$ not black, $1=$ black).
hisp ($0=$ not hispanic, $1=$ hispanic).
marr $(0=$ not married, $1=$ married $)$.
nodeg ($0=$ completed high school, $1=$ dropout).
re74 real earnings in 1974.
re75 real earnings in 1975.
re78 real earnings in 1978.

Details

The cps1 and psid1 data sets are two non-experimental "control" groups, alternative to that in nswdemo, used in investigating whether use of such a non-experimental control group can be satisfactory. cps2 and cps3 are subsets of cps1, designed to be better matched to the experimental data than cps1. Similary psid2 and psid3 are subsets of psid1, designed to be better matched to the experimental data than psid1. nswpsid1 combines data for the experimental treatment group in nswdemo with the psid1 control data from the Panel Study of Income Dynamics (PSID) study.

Source

http://www.nber.org/~rdehejia/nswdata.html

References

Dehejia, R.H. and Wahba, S. 1999. Causal effects in non-experimental studies: re-evaluating the evaluation of training programs. Journal of the American Statistical Association 94: 1053-1062.
Lalonde, R. 1986. Evaluating the economic evaluations of training programs. American Economic Review 76: 604-620.
Smith, J. A. and Todd, P.E. "Does Matching overcome. LaLonde?s critique of nonexperimental estimators", Journal of Econometrics 125: 305-353.
Dehejia, R.H. 2005. Practical propensity score matching: a reply to Smith and Todd. Journal of Econometrics 125: 355-364.

```
obounce
Bounce - obsolete
```


Description

A utility function for oneway.plot

Author(s)

J.H. Maindonald
oddbooks Measurements on 12 books

Description

Data giving thickness (mm), height (cm), width (cm) and weight (g), of 12 books. Books were selected so that thickness decreased as page area increased

Usage

data(oddbooks)

Format

A data frame with 12 observations on the following 4 variables.
thick a numeric vector
height a numeric vector
breadth a numeric vector
weight a numeric vector

Source

JM took books from his library.

Examples

data(oddbooks)
str(oddbooks)
plot(oddbooks)

```
onesamp Paired Sample t-test
```


Description

This function performs a t-test for the mean difference for paired data, and produces a scatterplot of one column against the other column, showing whether there was any benefit to using the paired design.

Usage

onesamp(dset, $x=$ "unsprayed", $y=" s p r a y e d ", ~ x l a b=N U L L, ~ y l a b=N U L L, ~$ dubious=NULL, conv=NULL, dig=2)

Arguments

dset a matrix or dataframe having two columns
$x \quad$ name of column to play the role of the 'predictor'
$y \quad$ name of column to play the role of the 'response'
xlab horizontal axis label
ylab vertical axis label
dubious vector of logical (FALSE/TRUE) values, specifying points that are to be omitted
conv scaling factor that should be applied to data
dig round SE to this number of digits for dispplay on graph

Value

A scatterplot of y against x together with estimates of standard errors and standard errors of the difference ($y-x$).
Also produced is a confidence interval and p-value for the test.

Author(s)

J.H. Maindonald

Examples

```
onesamp(dset = pair65, x = "ambient", y = "heated", xlab =
    "Amount of stretch (ambient)", ylab =
    "Amount of stretch (heated)")
```


Description

This function computes the p -value for the one sample t -test using a permutation test. The permutation density can also be plotted.

Usage

onet.permutation(x = DAAG::pair65\$heated - DAAG::pair65\$ambient, nsim = 2000, plotit = TRUE)

Arguments

$\begin{array}{ll}x & \begin{array}{l}\text { a numeric vector containing the sample values (centered at the null hypothesis } \\ \text { value) }\end{array} \\ \text { nsim } & \text { the number of permutations (randomly selected) } \\ \text { plotit } & \text { if TRUE, the permutation density is plotted }\end{array}$

Value

The p -value for the test of the hypothesis that the mean of x differs from 0

Author(s)

J.H. Maindonald

References

Good, P. 2000. Permutation Tests. Springer, New York.

Examples

onetPermutation
onetPermutation One Sample Permutation t-test

Description

This function computes the p-value for the one sample t-test using a permutation test. The permutation density can also be plotted.

```
Usage
    onetPermutation(x = DAAG::pair65$heated - DAAG::pair65$ambient, nsim = 2000,
    plotit = TRUE)
```


Arguments

x	a numeric vector containing the sample values (centered at the null hypothesis value)
nsim	the number of permutations (randomly selected)
plotit	if TRUE, the permutation density is plotted

Value

The p -value for the test of the hypothesis that the mean of x differs from 0

Author(s)

J.H. Maindonald

References

Good, P. 2000. Permutation Tests. Springer, New York.

Examples

onetPermutation()

Description

A line plot of means for unstructured comparison.

Usage

oneway.plot(obj, axisht $=6$, xlim $=$ NULL, $x l a b=$ NULL, lsdht $=1.5$, hsdht $=0.5$, textht $=$ axisht -2.5 , oma $=\operatorname{rep}(1$, 4), angle $=80$, alpha $=0.05$)

Arguments

obj	One way analysis of variance object (from aov)
axisht	Axis height
xlim	Range on horizontal axis
xlab	Horizontal axis label
lsdht	Height adjustment parameter for LSD comparison plot
hsdht	Height adjustment parameter for Tukey's HSD comparison plot
textht	Height of text
oma	Outer margin area
angle	Text angle (in degrees)
alpha	Test size

Value

A line plot

Author(s)

J.H. Maindonald

Examples

```
rice.aov <- aov(ShootDryMass ~ trt, data=rice)
oneway.plot(obj=rice.aov)
```

```
onewayPlot Display of One Way Analysis Results
```


Description

A line plot of estimates for unstructured comparison of factor levels

Usage

onewayPlot(obj, trtnam = "trt", axisht = 6, xlim = NULL, xlab $=$ NULL, lsdht $=1.5$, hsdht $=0.5$, textht $=$ axisht 2.5, oma $=$ rep $(1,4)$, angle $=80$, alpha $=0.05$)

Arguments

obj	One way analysis of variance object (from aov)
trtnam	name of factor for which line plot is required
axisht	Axis height
xlim	Range on horizontal axis
xlab	Horizontal axis label
lsdht	Height adjustment parameter for display of LSD
hsdht	Height adjustment parameter for display of Tukey's HSD
textht	Height of text
oma	Outer margin area
angle	Text angle (in degrees)
alpha	Test size

Value

Estimates, labeled with level names, are set out along a line

Author(s)

J.H. Maindonald

Examples

```
rice.aov <- aov(ShootDryMass ~ trt, data=rice)
onewayPlot(obj=rice.aov)
```

```
    orings Challenger O-rings Data
```


Description

Record of the number and type of O-ring failures prior to the tragic Challenger mission in January, 1986.

Usage

orings

Format

This data frame contains the following columns:

Temperature O-ring temperature for each test firing or actual launch of the shuttle rocket engine
Erosion Number of erosion incidents
Blowby Number of blowby incidents
Total Total number of incidents

Source

Presidential Commission on the Space Shuttle Challenger Accident, Vol. 1, 1986: 129-131.

References

Tufte, E. R. 1997. Visual Explanations. Graphics Press, Cheshire, Connecticut, U.S.A.

Examples

```
oldpar <- par(mfrow=c(1,2))
plot(Total~Temperature, data = orings[c(1,2,4,11,13,18),]) # the
    # observations included in the pre-launch charts
plot(Total~Temperature, data = orings)
par(oldpar)
```


overlapDensity Overlapping Density Plots

Description

Densities for two distinct samples are estimated and plotted.

Usage

```
overlapDensity(x0, x1, ratio = c(0.05, 20), ratio.number = FALSE,
    plotvalues = c("Density", "Numbers"), gpnames = c("Control", "Treatment"),
            cutoffs = c(lower = TRUE, upper = TRUE), bw = FALSE,
            xlab = "Score", ylab = NULL,
            col = 1:2, lty = 1:2, lwd = c(1, 1))
overlap.density(x0, x1, ratio = c(0.05, 20), ratio.number = FALSE,
    plotvalues = c("Density", "Numbers"), gpnames = c("Control", "Treatment"),
            cutoffs = c(lower = TRUE, upper = TRUE), bw = FALSE,
            xlab = "Score", ylab = NULL,
            col = 1:2, lty = 1:2, lwd = c(1, 1))
```


Arguments

x 0	control group measurements
x1	treatment group measurements
ratio	if not NULL, the range within which the relative number per unit interval (ratio. number=TRUE) or relative probability density (ratio. number=FALSE) of observations from the two groups are required to lie will be used to determine lower and upper bounds on the values of x 0 and x 1 . [The relative numbers at any point are estimated from (density $1 * \mathrm{n} 1) /($ density $0 * \mathrm{x} 0)$]
ratio. number	If TRUE (default), then ratio is taken as the ratio of number of points per unit interval
plotvalues	If set to Number then the y-axis scale is chosen so that total area undere the curve is equal to the sample size; otherwise (plotvalues="Density") total area under each cueve is 1 . Any other setting does not give a plot.
gpnames	Names of the two samples
cutoffs	logical vector, indicating whether density estimates should be truncated below (lower=TRUE) or above (upper=TRUE)
bw	logical, indicates whether to overwrite with a gray scale plot
xlab	Label for x -axis
ylab	Label for y -axis
col	standard color parameter
lty	standard line type preference
lwd	standard line width preference

Author(s)

J.H. Maindonald

See Also

t.test

Examples

attach(two65)
overlapDensity(ambient, heated)
t.test(ambient,heated)
ozone Ozone Data

Description

Monthly provisional mean total ozone (in Dobson units) at Halley Bay (approximately corrected to Bass-Paur).

Usage

ozone

Format

This data frame contains the following columns:
Year the year
Aug August mean total ozone
Sep September mean total ozone
Oct October mean total ozone
Nov November mean total ozone
Dec December mean total ozone
Jan January mean total ozone
Feb February mean total ozone
Mar March mean total ozone
Apr April mean total ozone
Annual Yearly mean total ozone

Source

Shanklin, J. (2001) Ozone at Halley, Rothera and Vernadsky/Faraday.
http://www.antarctica.ac.uk/met/jds/ozone/data/zoz5699.dat

References

Christie, M. (2000) The Ozone Layer: a Philosophy of Science Perspective. Cambridge University Press.

Examples

```
AnnualOzone <- ts(ozone$Annual, start=1956)
```

plot(AnnualOzone)
pair65 Heated Elastic Bands

Description

The pair65 data frame has 9 rows and 2 columns. Eighteen elastic bands were divided into nine pairs, with bands of similar stretchiness placed in the same pair. One member of each pair was placed in hot water (60-65 degrees C) for four minutes, while the other was left at ambient temperature. After a wait of about ten minutes, the amounts of stretch, under a 1.35 kg weight, were recorded.

Usage

pair65

Format

This data frame contains the following columns:
heated a numeric vector giving the stretch lengths for the heated bands
ambient a numeric vector giving the stretch lengths for the unheated bands

Source

J.H. Maindonald

Examples

```
mean(pair65$heated - pair65$ambient)
sd(pair65$heated - pair65$ambient)
```

panel.corr Scatterplot Panel

Description

This function produces a bivariate scatterplot with the Pearson correlation. This is for use with the function panelplot.

Usage

panel.corr(data, ...)

Arguments

$$
\begin{array}{ll}
\text { data } & \text { A data frame with columns } \mathrm{x} \text { and } \mathrm{y} \\
\ldots & \text { Additional arguments }
\end{array}
$$

Author(s)

J.H. Maindonald

Examples

\# correlation between body and brain weights for 20 mice:
weights <- litters[,-1]
names(weights) <- c("x","y")
weights <- list(weights)
weights[[1]]\$xlim <- range(litters[,2])
weights[[1]]\$ylim <- range(litters[,3])
panelplot(weights, panel.corr, totrows=1, totcols=1)
panelCorr Scatterplot Panel

Description

This function produces a bivariate scatterplot with the Pearson correlation. This is for use with the function panelplot.

Usage

panelCorr(data, ...)
panelplot

Arguments

$$
\begin{array}{ll}
\text { data } & \text { A data frame with columns } \mathrm{x} \text { and } \mathrm{y} \\
\ldots & \text { Additional arguments }
\end{array}
$$

Author(s)

J.H. Maindonald

Examples

\# correlation between body and brain weights for 20 mice:
weights <- litters[,-1]
names(weights) <- c("x","y")
weights <- list(weights)
weights[[1] $] \$ x$ lim <- range(litters[,2])
weights[[1]]\$ylim <- range(litters[,3])
panelplot(weights, panelCorr, totrows=1, totcols=1)

```
    panelplot Panel Plot
```


Description

Panel plots of various types.

Usage

panelplot(data, panel=points, totrows=3, totcols=2, oma=rep(2.5, 4), par.strip.text=NULL)

Arguments

$$
\begin{array}{ll}
\text { data } & \begin{array}{l}
\text { A list consisting of elements, each of which consists of } x, y, x l i m \\
\text { vectors and ylim }
\end{array} \\
\text { panel } & \text { The panel function to be plotted } \\
\text { totrows } & \text { The number of rows in the plot layout } \\
\text { totcols } & \text { The number of columns in the plot layout } \\
\text { oma } & \text { Outer margin area } \\
\text { par.strip.text } & \text { A data frame with column cex }
\end{array}
$$

Author(s)

J.H. Maindonald

Examples

```
x1 <- x2 <- x3 <- (11:30)/5
    y1 <- x1 + rnorm(20)/2
    y2 <- 2 - 0.05 * x1 + 0.1 * ((x1 - 1.75))^4 + 1. 25 * rnorm(20)
    r <- round(cor(x1, y2), 3)
    rho <- round(cor(rank(x1), rank(y2)), 3)
    y3 <- (x1 - 3.85)^2 + 0.015 + rnorm(20)/4
    theta <- ((2 * pi) * (1:20))/20
    x4 <- 10 + 4 * cos(theta)
    y4 <- 10 + 4 * sin(theta) + (0.5 * rnorm(20))
    r1 <- cor(x1, y1)
    xy <- data.frame(x = c(rep (x1, 3), x4), y = c(y1, y2, y3, y4),
        gp = rep(1:4, rep(20, 4)))
    xy <- split(xy,xy$gp)
    xlimdf <- lapply(list(x1,x2,x3,x4), range)
    ylimdf <- lapply(list(y1,y2,y3,y4), range)
    xy <- lapply(1:4, function(i,u,v,w){list(xlim=v[[i]],ylim=w[[i]],
                x=u[[i]]$x, y=u[[i]]$y)},
                            u=xy, v=xlimdf, w=ylimdf)
    panel.corr <- function (data, ...)
        {
        x <- data$x
        y <- data$y
        points(x, y, pch = 16)
        chh <- par()$cxy[2]
        x1 <- min(x)
        y1 <- max(y) - chh/4
        r1<- cor (x, y)
        text(x1, y1, paste(round(r1, 3)), cex = 0.8, adj = 0)
    }
```

 panelplot(xy, panel=panel.corr, totrows=2, totcols=2, oma=rep(1,4))
 pause Pause before continuing execution

Description

If a program produces several plots, isertion of pause() between two plots suspends execution until the <Enter> key is pressed, to allow inspection of the current plot.

Usage

pause()

Author(s)

From the 'sm' package of Bowman and Azzalini (1997)

Description

Plots are based on the output from simulateSampDist(). By default, both density plots and normal probability plots are given, for a sample from the specified population and for samples of the relevant size(s)

Usage

plotSampDist(sampvalues, graph = c("density", "qq"), cex = 0.925, titletext = "Empirical sampling distributions of the", popsample=TRUE, ...)

Arguments

sampvalues	Object output from simulateSampDist()
graph	Either or both of "density" and "qq"
cex	Character size parameter, relative to default
titletext	Title for graph
popsample	If TRUE show distribution of random sample from population
\ldots	Other graphics parameters

Value

Plots graph(s), as described above.

Author(s)

John Maindonald

References

Maindonald, J.H. and Braun, W.J. (3rd edn, 2010) "Data Analysis and Graphics Using R", Sections 3.3 and 3.4.

See Also

See Also help(simulateSampDist)

Examples

```
## By default, sample from normal population
simAvs <- simulateSampDist()
par(pty="s")
plotSampDist(simAvs)
## Sample from empirical distribution
simAvs <- simulateSampDist(rpop=rivers)
plotSampDist(simAvs)
## The function is currently defined as
function(sampvalues, graph=c("density", "qq"), cex=0.925,
                titletext="Empirical sampling distributions of the",
                popsample=TRUE, ...){
if(length(graph)==2)oldpar <- par(mfrow=c(1,2), mar=c(3.1,4.1,1.6,0.6),
                mgp=c(2.5, 0.75, 0), oma=c(0,0,1.5,0), cex=cex)
values <- sampvalues$values
numINsamp <- sampvalues$numINsamp
funtxt <- sampvalues$FUN
nDists <- length(numINsamp)+1
nfirst <- 2
legitems <- paste("Size", numINsamp)
if(popsample){nfirst <- 1
                                    legitems <- c("Size 1", legitems)
                                    }
    if(match("density", graph)){
        popdens <- density(values[,1], ...)
        avdens <- vector("list", length=nDists)
        maxht <- max(popdens$y)
        ## For each sample size specified in numINsamp, calculate mean
        ## (or other statistic specified by FUN) for numsamp samples
        for(j in nfirst:nDists){
        av <- values[, j]
        avdens[[j]] <- density(av, ...)
        maxht <- max(maxht, avdens[[j]]$y)
    }
}
if(length(graph)>0)
    for(graphtype in graph){
        if(graphtype=="density"){
            if(popsample)
            plot(popdens, ylim=c(0, 1.2*maxht), type="l", yaxs="i",
                        main="")
            else plot(avdens[[2]], type="n", ylim=c(0, 1.2*maxht),
                            yaxs="i", main="")
            for(j in 2:nDists)lines(avdens[[j]], col=j)
            legend("topleft",
                    legend=legitems,
                    col=nfirst:nDists, lty=rep(1,nDists-nfirst+1), cex=cex)
        }
        if(graphtype=="qq"){
            if(popsample) qqnorm(values[,1], main="")
            else qqnorm(values[,2], type="n")
```

```
            for(j in 2:nDists){
                qqav <- qqnorm(values[, j], plot.it=FALSE)
                        points(qqav, col=j, pch=j)
                }
                legend("topleft", legend=legitems,
                    col=nfirst:nDists, pch=nfirst:nDists, cex=cex)
        }
        }
    if(par()$oma[3]>0){
        outer <- TRUE
        line=0
    } else
    {
        outer <- FALSE
        line <- 1.25
    }
    if(!is.null(titletext))
        mtext(side=3, line=line,
            paste(titletext, funtxt),
            cex=1.1, outer=outer)
    if(length(graph)>1)par(oldpar)
    }
```

plotSimDiags Diagnostic plots for simulated data

Description

This provides diagnostic plots, closely equivalent to those provided by plot. 1 m , for simulated data. By default, simulated data are for the fitted model. Alternatively, simulated data can be supplied, making it possible to check the effct of fitting, e.g., an AR1 model.

Usage

plotSimDiags(obj, simvalues = NULL, seed = NULL, types $=$ NULL, which $=c(1: 3,5)$, layout $=c(4,1)$, qqline=TRUE, cook.levels = c(0.5, 1), caption = list("Residuals vs Fitted", "Normal Q-Q", "Scale-Location", "Cook's distance", "Residuals vs Leverage", expression("Cook's dist vs Leverage " *h[ii]/(1 - h[ii]))), ...)

Arguments

obj Fitted model object - lm or an object inheriting from lm
simvalues Optional matrix of simulated data.
seed \quad Random number seed - set this to make results repeatable.
types If set, this should be a list with six elements, ordinarily with each list element either " p " or $c(" p$ ", "smooth") or (which=2, which=6) NULL or (which=4) "h"

which	Set to be a subset of the numbers 1 to 6, as for plot. 1 m
layout	Controls the number of simulations and the layout of the plots. For example layout $=c(3,4)$ will give 12 plots in a 3 by 4 layout.
qqline	logical: add line to normal Q-Q plot
cook.levels	Levels of Cook's statistics for which contours are to be plotted.
caption	list: Captions for the six graphs
\ldots	Other parameters to be passed to plotting functions

Details

Diagnotic plots from repeated simulations from the fitted model provide a useful indication of the range of variation in the model diagnistics that are consistent with the fitted model.

Value

A list of lattice graphics objects is returned, one for each value of which. List elements for which a graphics object is not returned are set to NULL. Or if which is of length 1, a lattice graphics object.

residVSfitted	Residuals vs fitted
normalQQ	Normal quantile-quantile plot
scaleVSloc	Scale versus location
CookDist	Cook's distance vs observation number
residVSlev	Standardized residuals (for GLMs, standardized Pearson residuals) vs leverage
CookVSlev	Cook's distance vs leverage

For the default which $=\mathrm{c}(1: 3,5)$, list items $1,2,3$ and 5 above contain graphics objects, with list elements 4 and 6 set to NULL.

Note

The graphics objects contained in individual list elements can be extracted for printing, or updating and printing, as required. If the value is returned to the command line, list elements that are not NULL will be printed in turn.

Author(s)

John Maindonald, with some code chunks adapted from plot. 1m

References

See plot.lm

See Also

codeplot.lm, codelmdiags

Examples

```
    women.lm <- lm(height ~ weight, data=women)
    gphlist <- plotSimDiags(obj=women.lm, which=c(1:3,5))
```

 plotSimScat Simulate scatterplots, from lm object with a single explanatory vari-
 able.

Description

This plots simulated y-values, or residuals from such simulations, against x-values .

Usage

```
plotSimScat(obj, sigma = NULL, layout = c(4, 1), type = c("p", "r"),
show = c("points", "residuals"), ...)
```


Arguments

obj An lm object with a single explanatory variable.
sigma Standard deviation, if different from that for the supplied lm object.
layout Columns by Rows layout for plots from the simulations.
type \quad See type as in plot.lm.
show Specify points or residuals.
$\ldots \quad$ Other parameters to be passed to plotting functions

Value

A lattice graphics object is returned.

Author(s)

J H Maindonald

See Also

plotSimDiags

Examples

```
nihills.lm <- lm(timef~time, data=nihills)
plotSimDiags(nihills.lm)
## The function is currently defined as
function (obj, sigma = NULL, layout = c(4, 1), type = c("p",
    "r"), show = c("points", "residuals"))
{
    nsim <- prod(layout)
    if (is.null(sigma))
        sigma <- summary(obj)[["sigma"]]
    hat <- fitted(obj)
    xnam <- all.vars(formula(obj))[2]
    ynam <- all.vars(formula(obj))[1]
    df <- data.frame(sapply(1:nsim, function(x) rnorm(length(hat),
        sd = sigma)))
    if (show[1] == "points")
        df <- df + hat
    simnam <- names(df) <- paste("Simulation", 1:nsim, sep = "")
    df[, c(xnam, ynam)] <- model.frame(obj)[, c(xnam, ynam)]
    if (show[1] != "points") {
        df[, "Residuals"] <- df[, ynam] - hat
        ynam <- "Residuals"
        legadd <- "residuals"
    }
    else legadd <- "data"
    leg <- list(text = paste(c("Simulated", "Actual"), legadd),
        columns = 2)
    formula <- formula(paste(paste(simnam, collapse = "+"), "~",
        xnam))
    parset <- simpleTheme(pch = c(16, 16), lty = 2, col = c("black",
        "gray"))
    gph <- xyplot(formula, data = df, outer = TRUE, par.settings = parset,
        auto.key = leg, lty = 2, layout = layout, type = type)
    formxy <- formula(paste(ynam, "~", xnam))
    addgph <- xyplot(formxy, data = df, pch = 16, col = "gray")
    gph + as.layer(addgph, under = TRUE)
}
```

```
poissonsim Simple Poisson Regression Data Simulator
```


Description

This function simulates simple regression data from a Poisson model. It also has the option to create over-dispersed data of a particular type.

Usage

poissonsim(x = seq(0, 1, length=101), $a=2, b=-4$, intcp.sd=NULL, slope.sd=NULL, seed=NULL)

Arguments

x	a numeric vector representing the explanatory variable
a	the regression function intercept
b	the regression function slope
intcp.sd	standard deviation of the (random) intercept
slope.sd	standard deviation of the (random) slope
seed	numeric constant

Value

a list consisting of
$x \quad$ the explanatory variable vector
$y \quad$ the Poisson response vector

Examples

poissonsim()
possum Possum Measurements

Description

The possum data frame consists of nine morphometric measurements on each of 104 mountain brushtail possums, trapped at seven sites from Southern Victoria to central Queensland.

Usage

possum

Format

This data frame contains the following columns:
case observation number
site one of seven locations where possums were trapped
Pop a factor which classifies the sites as Vic Victoria, other New South Wales or Queensland
sex a factor with levels f female, m male
age age
hdIngth head length
skullw skull width
totlngth total length
taill tail length
footlgth foot length
earconch ear conch length
eye distance from medial canthus to lateral canthus of right eye
chest chest girth (in cm)
belly belly girth (in cm)

Source

Lindenmayer, D. B., Viggers, K. L., Cunningham, R. B., and Donnelly, C. F. 1995. Morphological variation among columns of the mountain brushtail possum, Trichosurus caninus Ogilby (Phalangeridae: Marsupiala). Australian Journal of Zoology 43: 449-458.

Examples

```
boxplot(earconch~sex, data=possum)
pause()
sex <- as.integer(possum$sex)
oldpar <- par(oma=c(2,4,5,4))
pairs(possum[, c(9:11)], pch=c(0,2:7), col=c("red","blue"),
    labels=c("tail\nlength","foot\nlength","ear conch\nlength"))
chh <- par()$cxy[2]; xleg <- 0.05; yleg <- 1.04
oldpar <- par(xpd=TRUE)
legend(xleg, yleg, c("Cambarville", "Bellbird", "Whian Whian ",
    "Byrangery", "Conondale ","Allyn River", "Bulburin"), pch=c(0,2:7),
    x.intersp=1, y.intersp=0.75, cex=0.8, xjust=0, bty="n", ncol=4)
text(x=0.2, y=yleg - 2.25*chh, "female", col="red", cex=0.8, bty="n")
text(x=0.75, y=yleg - 2.25*chh, "male", col="blue", cex=0.8, bty="n")
par(oldpar)
pause()
sapply(possum[,6:14], function(x)max(x,na.rm=TRUE)/min(x,na.rm=TRUE))
pause()
here <- na.omit(possum$footlgth)
possum.prc <- princomp(possum[here, 6:14])
pause()
plot(possum.prc$scores[,1] ~ possum.prc$scores[,2],
    col=c("red","blue")[as.numeric(possum$sex[here])],
    pch=c(0,2:7)[possum$site[here]], xlab = "PC1", ylab = "PC2")
    # NB: We have abbreviated the axis titles
chh <- par()$cxy[2]; xleg <- -15; yleg <- 20.5
oldpar <- par(xpd=TRUE)
legend(xleg, yleg, c("Cambarville", "Bellbird", "Whian Whian ",
    "Byrangery", "Conondale ","Allyn River", "Bulburin"), pch=c(0,2:7),
    x.intersp=1, y.intersp=0.75, cex=0.8, xjust=0, bty="n", ncol=4)
text(x=-9, y=yleg - 2.25*chh, "female", col="red", cex=0.8, bty="n")
summary(possum.prc, loadings=TRUE, digits=2)
par(oldpar)
pause()
```

```
require(MASS)
here <- !is.na(possum$footlgth)
possum.lda <- lda(site ~ hdlngth+skullw+totlngth+ taill+footlgth+
    earconch+eye+chest+belly, data=possum, subset=here)
options(digits=4)
possum.lda$svd # Examine the singular values
plot(possum.lda, dimen=3)
    # Scatterplot matrix - scores on 1st 3 canonical variates (Figure 11.4)
possum.lda
```

```
possumsites Possum Sites
```


Description

The possumsites data frame consists of Longitudes, Latitudes, and altitudes for the seven sites from Southern Victoria to central Queensland where the possum observations were made.

Usage

possumsites

Format

This data frame contains the following columns:
Longitude a numeric vector
Latitude a numeric vector
altitude in meters

Source

Lindenmayer, D. B., Viggers, K. L., Cunningham, R. B., and Donnelly, C. F. 1995. Morphological variation among columns of the mountain brushtail possum, Trichosurus caninus Ogilby (Phalangeridae: Marsupiala). Australian Journal of Zoology 43: 449-458.

Examples

```
require(oz)
oz(sections=c(3:5, 11:16))
attach(possumsites)
points(Longitude, Latitude, pch=16, col=2)
chw <- par()$cxy[1]
chh <- par()$cxy[2]
posval <- c(2,4,2,2,4,2,2)
text(Longitude+(3-posval)*chw/4, Latitude, row.names(possumsites), pos=posval)
```

powerplot Plot of Power Functions

Description

This function plots powers of a variable on the interval $[0,10]$.

Usage

powerplot (expr="x^2", xlab="x", ylab="y")

Arguments

expr	Functional form to be plotted
xlab	x-axis label
ylab	y-axis label

Details

Other expressions such as $" \sin (\mathrm{x})$ " and $" \cos (\mathrm{x})$ ", etc. could also be plotted with this function, but results are not guaranteed.

Value

A plot of the given expression on the interval [0,10].

Author(s)

J.H. Maindonald

Examples

```
    oldpar <- par(mfrow = c(2, 3), mar = par()$mar - c(
            1, 1, 1.0, 1), mgp = c(1.5, 0.5, 0), oma=c(0,1,0,1))
# on.exit(par(oldpar))
    powerplot(expr="sqrt(x)", xlab="")
    powerplot(expr="x^0.25", xlab="", ylab="")
    powerplot(expr="log(x)", xlab="", ylab="")
    powerplot(expr="x^2")
    powerplot(expr="x^4", ylab="")
    powerplot(expr="exp(x)", ylab="")
par(oldpar)
```

```
    poxetc
```


Description

Deaths from "flux" or smallpox, measles, all causes, and ratios of the the first two categories to total deaths.

Usage

```
    data(poxetc)
```


Format

This is a multiple time series consisting of 5 series: fpox, measles, all, fpox2all, measles2all.

Source

Guy, W. A. 1882. Two hundred and fifty years of small pox in London. Journal of the Royal Statistical Society 399-443.

References

Lancaster, H. O. 1990. Expectations of Life. Springer.

Examples

```
data(poxetc)
str(poxetc)
plot(poxetc)
```

press Predictive Error Sum of Squares

Description

Allen's PRESS statistic is computed for a fitted model.

Usage

press(obj)

Arguments

obj
A lm object

Value

A single numeric value.

Author(s)

W.J. Braun

See Also

$1 m$

Examples

```
litters.lm <- lm(brainwt ~ bodywt + lsize, data = litters)
press(litters.lm)
litters.lm0 <- lm(brainwt ~ bodywt + lsize -1, data=litters)
press(litters.lm0) # no intercept
litters.lm1 <- lm(brainwt ~ bodywt, data=litters)
press(litters.lm1) # bodywt only
litters.lm2 <- lm(brainwt ~ bodywt + lsize + lsize:bodywt, data=litters)
press(litters.lm2) # include an interaction term
```

primates Primate Body and Brain Weights

Description

A subset of Animals data frame from the MASS library. It contains the average body and brain measurements of five primates.

Usage

primates

Format

This data frame contains the following columns:
Bodywt a numeric vector consisting of the body weights (in kg) of five different primates
Brainwt a numeric vector consisting of the corresponding brain weights (in g)

Source

P. J. Rousseeuw and A. M. Leroy (1987) Robust Regression and Outlier Detection. Wiley, p. 57.

Examples

```
attach(primates)
plot(x=Bodywt, y=Brainwt, pch=16,
    xlab="Body weight (kg)", ylab="Brain weight (g)",
    xlim=c(5,300), ylim=c(0,1500))
chw <- par()$cxy[1]
chh <- par()$cxy[2]
text(x=Bodywt+chw, y=Brainwt+c(-.1,0,0,.1,0)*chh,
    labels=row.names(primates), adj=0)
detach(primates)
```

progression Progression of Record times for track races, 1912-2008

Description

Progression in world record times for track and road races.

Usage

data(progression)

Format

A data frame with 227 observations on the following 4 columns.
year Year that time was first recorded
Distance distance in kilometers
Time time in minutes
race character; descriptor for event (100 m , mile, ...)

Details

Record times for men's track events, from 1912 onwards. The series starts with times that were recognized as record times in 1912, where available.

Source

Links to sources for the data are at
http://en.wikipedia.org/wiki/Athletics_world_record

Examples

```
data(progression)
plot(log(Time) ~ log(Distance), data=progression)
xyplot(log(Time) ~ log(Distance), data=progression, type=c("p","r"))
xyplot(log(Time) ~ log(Distance), data=progression,
        type=c("p","smooth"))
res <- resid(lm(log(Time) ~ log(Distance), data=progression))
plot(res ~ log(Distance), data=progression,
        ylab="Residuals from regression line on log scales")
```

psid1 Labour Training Evaluation Data

Description

A non-experimental "control" group, used in various studies of the effect of a labor training program, alternative to the experimental control group in nswdemo.

Usage

psid1

Format

This data frame contains the following columns:
trt a numeric vector identifying the study in which the subjects were enrolled $(0=\operatorname{Control}, 1=$ treated).
age age (in years).
educ years of education.
black ($0=$ not black, $1=$ black).
hisp ($0=$ not hispanic, $1=$ hispanic).
marr $(0=$ not married, $1=$ married $)$.
nodeg ($0=$ completed high school, $1=$ dropout).
re74 real earnings in 1974.
re75 real earnings in 1975.
re78 real earnings in 1978.

Details

The cps1 and psid1 data sets are two non-experimental "control" groups, alternative to that in nswdemo, used in investigating whether use of such a non-experimental control group can be satisfactory. cps2 and cps3 are subsets of cps1, designed to be better matched to the experimental data than cps1. Similary psid2 and psid3 are subsets of psid1, designed to be better matched to the experimental data than psid1.

Source

http://www.nber.org/~rdehejia/nswdata.html

References

Dehejia, R.H. and Wahba, S. 1999. Causal effects in non-experimental studies: re-evaluating the evaluation of training programs. Journal of the American Statistical Association 94: 1053-1062.
Lalonde, R. 1986. Evaluating the economic evaluations of training programs. American Economic Review 76: 604-620.
Smith, J. A. and Todd, P.E. "Does Matching overcome. LaLonde?s critique of nonexperimental estimators", Journal of Econometrics 125: 305-353.
Dehejia, R.H. 2005. Practical propensity score matching: a reply to Smith and Todd. Journal of Econometrics 125: 355-364.

```
psid2 Labour Training Evaluation Data
```


Description

A non-experimental "control" group, used in various studies of the effect of a labor training program, alternative to the experimental control group in nswdemo.

Usage

psid2

Format

This data frame contains the following columns:
trt a numeric vector identifying the study in which the subjects were enrolled $(0=\operatorname{Control}, 1=$ treated).
age age (in years).
educ years of education.
black ($0=$ not black, $1=$ black).
hisp ($0=$ not hispanic, $1=$ hispanic).
marr $(0=$ not married, $1=$ married $)$.
nodeg ($0=$ completed high school, $1=$ dropout).
re74 real earnings in 1974.
re75 real earnings in 1975.
re78 real earnings in 1978.

Details

The cps1 and psid1 data sets are two non-experimental "control" groups, alternative to that in nswdemo, used in investigating whether use of such a non-experimental control group can be satisfactory. cps2 and cps3 are subsets of cps1, designed to be better matched to the experimental data than cps1. Similary psid2 and psid3 are subsets of psid1, designed to be better matched to the experimental data than psid1.

Source

http://www.nber.org/~rdehejia/nswdata.html

References

Dehejia, R.H. and Wahba, S. 1999. Causal effects in non-experimental studies: re-evaluating the evaluation of training programs. Journal of the American Statistical Association 94: 1053-1062.
Lalonde, R. 1986. Evaluating the economic evaluations of training programs. American Economic Review 76: 604-620.

Smith, J. A. and Todd, P.E. "Does Matching overcome. LaLonde?s critique of nonexperimental estimators", Journal of Econometrics 125: 305-353.
Dehejia, R.H. 2005. Practical propensity score matching: a reply to Smith and Todd. Journal of Econometrics 125: 355-364.

```
psid3 Labour Training Evaluation Data
```


Description

A non-experimental "control" group, used in various studies of the effect of a labor training program, alternative to the experimental control group in nswdemo.

Usage

psid3

Format

This data frame contains the following columns:
trt a numeric vector identifying the study in which the subjects were enrolled $(0=\operatorname{Control}, 1=$ treated).
age age (in years).
educ years of education.
black ($0=$ not black, $1=$ black).
hisp ($0=$ not hispanic, $1=$ hispanic).
marr $(0=$ not married, $1=$ married $)$.
nodeg ($0=$ completed high school, $1=$ dropout).
re74 real earnings in 1974.
re75 real earnings in 1975.
re78 real earnings in 1978.

Details

The cps1 and psid1 data sets are two non-experimental "control" groups, alternative to that in nswdemo, used in investigating whether use of such a non-experimental control group can be satisfactory. cps2 and cps3 are subsets of cps1, designed to be better matched to the experimental data than cps1. Similary psid2 and psid3 are subsets of psid1, designed to be better matched to the experimental data than psid1.

Source

http://www.nber.org/~rdehejia/nswdata.html

References

Dehejia, R.H. and Wahba, S. 1999. Causal effects in non-experimental studies: re-evaluating the evaluation of training programs. Journal of the American Statistical Association 94: 1053-1062.
Lalonde, R. 1986. Evaluating the economic evaluations of training programs. American Economic Review 76: 604-620.

Smith, J. A. and Todd, P.E. "Does Matching overcome. LaLonde?s critique of nonexperimental estimators", Journal of Econometrics 125: 305-353.

Dehejia, R.H. 2005. Practical propensity score matching: a reply to Smith and Todd. Journal of Econometrics 125: 355-364.
qreference Normal QQ Reference Plot

Description

This function computes the normal QQ plot for given data and allows for comparison with normal QQ plots of simulated data.

Usage

qreference(test $=$ NULL, $m=50$, nrep $=6$, distribution $=$ function(x) qnorm(x, mean = ifelse(is.null(test), 0, mean(test)), sd = ifelse(is.null(test), 1 , sd(test))), seed $=$ NULL, nrows $=$ NULL, cex.strip $=0.75$, $x l a b=N U L L, y l a b=N U L L)$

Arguments

test a vector containing a sample to be tested; if not supplied, all qq-plots are of the reference distribution
m the sample size for the reference samples; default is test sample size if test sample is supplied
nrep the total number of samples, including reference samples and test sample if any
distribution reference distribution; default is standard normal
seed the random number generator seed
nrows number of rows in the plot layout
cex.strip character expansion factor for labels
$x l a b \quad l a b e l$ for x -axis
$y l a b \quad$ label for y-axis

Value

QQ plots of the sample (if test is non-null) and all reference samples

Author(s)

J.H. Maindonald

Examples

\# qreference(rt(180,1))
\# qreference(rt(180,1), distribution=function(x) qt(x, df=1))
\# qreference $(\operatorname{rexp}(180)$, nrep $=4)$
\# toycars.lm <- lm(distance ~ angle + factor(car), data = toycars)
\# qreference(residuals(toycars.lm), nrep = 9)
races2000 Scottish Hill Races Data-2000

Description

The record times in 2000 for 77 Scottish long distance races. We believe the data are, for the most part, trustworthy. However, the dist variable for Caerketton (record 58) seems to have been variously recorded as 1.5 mi and 2.5 mi .

Usage

races2000

Format

This data frame contains the following columns:
dist distance, in miles (on the map)
climb total height gained during the route, in feet
time record time in hours
timef record time in hours for females
type a factor, with levels indicating type of race, i.e. hill, marathon, relay, uphill or other

Source

The Scottish Running Resource, http://www.hillrunning.co.uk

Examples

pairs(races2000[,-5])

```
rainforest Rainforest Data
```


Description

The rainforest data frame has 65 rows and 7 columns.

Usage

rainforest

Format

This data frame contains the following columns:
dbh a numeric vector
wood a numeric vector
bark a numeric vector
root a numeric vector
rootsk a numeric vector
branch a numeric vector
species a factor with levels Acacia mabellae, C. fraseri, Acmena smithii, B. myrtifolia

Source

J. Ash, Australian National University

References

Ash, J. and Helman, C. (1990) Floristics and vegetation biomass of a forest catchment, Kioloa, south coastal N.S.W. Cunninghamia, 2: 167-182.

Examples

```
table(rainforest$species)
```

```
rareplants Rare and Endangered Plant Species
```


Description

These data were taken from species lists for South Australia, Victoria and Tasmania. Species were classified as CC, CR, RC and RR, with C denoting common and R denoting rare. The first code relates to South Australia and Victoria, and the second to Tasmania. They were further classified by habitat according to the Victorian register, where $\mathrm{D}=$ dry only, $\mathrm{W}=$ wet only, and $\mathrm{WD}=$ wet or dry.

Usage

rareplants

Format

The format is: chr "rareplants"

Source

Jasmyn Lynch, Department of Botany and Zoology at Australian National University

Examples

chisq.test(rareplants)
rice
Genetically Modified and Wild Type Rice Data

Description

The rice data frame has 72 rows and 7 columns. The data are from an experiment that compared wild type (wt) and genetically modified rice plants (ANU843), each with three different chemical treatments (F10, NH4Cl, and NH4NO3).

Usage

rice
rice

Format

This data frame contains the following columns:
PlantNo a numeric vector
Block a numeric vector
RootDryMass a numeric vector
ShootDryMass a numeric vector
trt a factor with levels F10, NH4Cl, NH4NO3, F10 +ANU843, NH4Cl +ANU843, NH4NO3 +ANU843
fert a factor with levels F 10 NH 4 Cl NH4NO3
variety a factor with levels wt ANU843

Source

Perrine, F.M., Prayitno, J., Weinman, J.J., Dazzo, F.B. and Rolfe, B. 2001. Rhizobium plasmids are involved in the inhibition or stimulation of rice growth and development. Australian Journal of Plant Physiology 28: 923-927.

Examples

```
print("One and Two-Way Comparisons - Example 4.5")
attach(rice)
oldpar <- par(las = 2)
stripchart(ShootDryMass ~ trt, pch=1, cex=1, xlab="Level of factor 1")
detach(rice)
pause()
rice.aov <- aov(ShootDryMass ~ trt, data=rice); anova(rice.aov)
anova(rice.aov)
pause()
summary.lm(rice.aov)$coef
pause()
rice$trt <- relevel(rice$trt, ref="NH4Cl")
    # Set NH4Cl as the baseline
fac1 <- factor(sapply(strsplit(as.character(rice$trt)," \\+"), function(x)x[1]))
anu843 <- sapply(strsplit(as.character(rice$trt), "\\+"),
function(x)c("wt","ANU843")[length(x)])
anu843 <- factor(anu843, levels=c("wt", "ANU843"))
attach(rice)
interaction.plot(fac1, anu843, ShootDryMass)
detach(rice)
par(oldpar)
```

```
rockArt Pacific Rock Art features
```


Description

Data characterise rock art at 103 sites in the Pacific.

Usage

rockArt

Format

A data frame with 103 observations on the following 641 variables.
Site.No. a numeric vector
Site. Name a character vector
Site. Code a character vector
District a character vector
Island a character vector
Country a character vector
Technique a character vector
Engtech a character vector
red a numeric vector
black a numeric vector
yellow a numeric vector
white a numeric vector
green a numeric vector
red.blk a numeric vector
red.wh a numeric vector
red.yell a numeric vector
r.w.y a numeric vector
black. white a numeric vector
blue a numeric vector
Geology a character vector
Topography a character vector
Location a character vector
Proxhab.km. a character vector
Proxcoast.km. a numeric vector
Maxheight.m. a numeric vector
Language a character vector
No.motif a character vector
Ca1 a numeric vector
Ca2 a numeric vector
Ca3 a numeric vector
Ca4 a numeric vector
Cb5 a numeric vector
Cb6 a numeric vector
Cc7 a numeric vector
Cc8 a numeric vector
Cc9 a numeric vector
Cc10 a numeric vector
Cc11 a numeric vector
Cc12 a numeric vector
Cc13 a numeric vector
Cc14 a numeric vector
Cc15 a numeric vector
Cc16 a numeric vector
Cc17 a numeric vector
Cc18 a numeric vector
Cc19 a numeric vector
Cc20 a numeric vector
Cd21 a numeric vector
Cd22 a numeric vector
Cd23 a numeric vector
Cd24 a numeric vector
Cd25 a numeric vector
Cd26 a numeric vector
Cd27 a numeric vector
Ce28 a numeric vector
Ce29 a numeric vector
Cf30 a numeric vector
Cf31 a numeric vector
Cf32 a numeric vector
Cf33 a numeric vector
Cf34 a numeric vector
Cf35 a numeric vector

Cf36 a numeric vector
Cf37 a numeric vector
Cf38 a numeric vector
Cg39 a numeric vector
Cg40 a numeric vector
Ch41 a numeric vector
Ch42 a numeric vector
Ci43 a numeric vector
Ci44 a numeric vector
Cj45 a numeric vector
Ck46 a numeric vector
Ck47 a numeric vector
Cl48 a numeric vector
Cm49 a numeric vector
Cm50 a numeric vector
Cm51 a numeric vector
Cm52 a numeric vector
Cm53 a numeric vector
Cm54 a numeric vector
Cm55 a numeric vector
Cm56 a numeric vector
Cm57 a numeric vector
Cm58 a numeric vector
Cn59 a numeric vector
Cn60 a numeric vector
Cn61 a numeric vector
Cn62 a numeric vector
Cn63 a numeric vector
Cn64 a numeric vector
Cn65 a numeric vector
Cn66 a numeric vector
Cn67 a numeric vector
Cn68 a numeric vector
Cn69 a numeric vector
Cn70 a numeric vector
Cn71 a numeric vector
Co72 a numeric vector
rockArt
Co73 a numeric vector
Co74 a numeric vector
Co75 a numeric vector
Co76 a numeric vector
Co77 a numeric vector
Co78 a numeric vector
Co79 a numeric vector
Cp80 a numeric vector
Cq81 a numeric vector
Cq82 a numeric vector
Cq83 a numeric vector
Cq84 a numeric vector
Cq85 a numeric vector
Cq86 a numeric vector
Cq87 a numeric vector
Cq88 a numeric vector
Cq89 a numeric vector
Cq90 a numeric vector
Cq91 a numeric vector
Cq92 a numeric vector
Cq93 a numeric vector
Cq94 a numeric vector
Cq95 a numeric vector
Cq96 a numeric vector
Cq97 a numeric vector
Cr98 a numeric vector
Cr99 a numeric vector
Cr100 a numeric vector
Cr101 a numeric vector
Cs102 a numeric vector
Cs103 a numeric vector
Cs104 a numeric vector
Cs105 a numeric vector
Cs106 a numeric vector
Ct107 a numeric vector
C108 a numeric vector
C109 a numeric vector

C110 a numeric vector
C111 a numeric vector
SSa1 a numeric vector
SSd2 a numeric vector
SSd3 a numeric vector
SSd4 a numeric vector
SSd5 a numeric vector
SSd6 a numeric vector
SSd7 a numeric vector
SSd8 a numeric vector
SSf9 a numeric vector
SSg10 a numeric vector
SSj11 a numeric vector
SSj12 a numeric vector
SSj13 a numeric vector
SS114 a numeric vector
SSm15 a numeric vector
SSm16 a numeric vector
SSn17 a numeric vector
SSn18 a numeric vector
SSn19 a numeric vector
SSn20 a numeric vector
SSn21 a numeric vector
SSn22 a numeric vector
SSn23 a numeric vector
SSn24 a numeric vector
SSn25 a numeric vector
SSn26 a numeric vector
SSn27 a numeric vector
SSn28 a numeric vector
SSn29 a numeric vector
SSn30 a numeric vector
SSn31 a numeric vector
SSn 32 a numeric vector
SSn 33 a numeric vector
SSn34 a numeric vector
SSn 35 a numeric vector
SSo36 a numeric vector
SSo37 a numeric vector
SSp38 a numeric vector
SSq39 a numeric vector
SSq40 a numeric vector
SSt41 a numeric vector
SSu42 a numeric vector
Oa1 a numeric vector
0c2 a numeric vector
Od3 a numeric vector
Od4 a numeric vector
Oe5 a numeric vector
Of6 a numeric vector
Of7 a numeric vector
Of8 a numeric vector
Of9 a numeric vector
Og10 a numeric vector
0 g 11 a numeric vector
Og12 a numeric vector
0 g 13 a numeric vector
0 g 14 a numeric vector
0 g 15 a numeric vector
Oi16 a numeric vector
Om17 a numeric vector
Om18 a numeric vector
Om19 a numeric vector
Om20 a numeric vector
Om21 a numeric vector
On22 a numeric vector
On23 a numeric vector
On24 a numeric vector
Oq25 a numeric vector
Oq26 a numeric vector
$0 q 27$ a numeric vector
.u28 a numeric vector
Ov29 a numeric vector
0v30 a numeric vector

031 a numeric vector
032 a numeric vector
033 a numeric vector
Sa1 a numeric vector
Sb2 a numeric vector
Sb3 a numeric vector
Sd4 a numeric vector
Sd5 a numeric vector
Sd6 a numeric vector
Sd7 a numeric vector
Se8 a numeric vector
Si9 a numeric vector
Sm10 a numeric vector
Sm11 a numeric vector
S12 a numeric vector
S13 a numeric vector
Sx14 a numeric vector
Sx15 a numeric vector
Sx16 a numeric vector
Sx 17 a numeric vector
Sy18 a numeric vector
Sz19 a numeric vector
S20 a numeric vector
S21 a numeric vector
S22 a numeric vector
S23 a numeric vector
S24 a numeric vector
S25 a numeric vector
SCd1 a numeric vector
SCd2 a numeric vector
SCd3 a numeric vector
SCd4 a numeric vector
SCd5 a numeric vector
SCd6 a numeric vector
SCd7 a numeric vector
SCm8 a numeric vector
SCn9 a numeric vector
SCn10 a numeric vector SCw11 a numeric vector
SCx12 a numeric vector
SCx13 a numeric vector
SCx14 a numeric vector
SCx15 a numeric vector
SCx16 a numeric vector
SCy17 a numeric vector
SCy18 a numeric vector
SC19 a numeric vector
SC20 a numeric vector
SC21 a numeric vector
SC22 a numeric vector
SC23 a numeric vector
SC24 a numeric vector
SC25 a numeric vector
SC26 a numeric vector
SRd1 a numeric vector
SRd2 a numeric vector
SRd3 a numeric vector
SRd4 a numeric vector
SRf5 a numeric vector
SRf6 a numeric vector
SRf7 a numeric vector
SRj8 a numeric vector
SR9 a numeric vector
SR10 a numeric vector
Bd1 a numeric vector
Bn 2 a numeric vector
Bn3 a numeric vector
Bn4 a numeric vector
Bt5 a numeric vector
Bx6 a numeric vector
Ha1 a numeric vector
Hg 2 a numeric vector
Hn3 a numeric vector
Hq4 a numeric vector

Hq5 a numeric vector
TDd1 a numeric vector
TDf2 a numeric vector
TDj3 a numeric vector
TDn4 a numeric vector
TDq5 a numeric vector
TD6 a numeric vector
TD7 a numeric vector
TD8 a numeric vector
TD9 a numeric vector
Dc1 a numeric vector
Dg2 a numeric vector
Dh3 a numeric vector
Dk4 a numeric vector
Dm5 a numeric vector
Dm6 a numeric vector
D7 a numeric vector
D8 a numeric vector
D9 a numeric vector
D10 a numeric vector
D11 a numeric vector
D12 a numeric vector
D13 a numeric vector
Ta1 a numeric vector
Tc2 a numeric vector
Tc3 a numeric vector
Tc4 a numeric vector
Td5 a numeric vector
Tf6 a numeric vector
Tf7 a numeric vector
Tg8 a numeric vector
Th9 a numeric vector
To10 a numeric vector
T11 a numeric vector
T12 a numeric vector
T13 a numeric vector
T14 a numeric vector

T15 a numeric vector
T16 a numeric vector
CNg 1 a numeric vector
CN 2 a numeric vector
CN3 a numeric vector
CN4 a numeric vector
CN5 a numeric vector
CN6 a numeric vector
CN7 a numeric vector
CN8 a numeric vector
Ld1 a numeric vector
Lf2 a numeric vector
Lg3 a numeric vector
Lp4 a numeric vector
L5 a numeric vector
L6 a numeric vector
L7 a numeric vector
L8 a numeric vector
L9 a numeric vector
L10 a numeric vector
L11 a numeric vector
LS1 a numeric vector
LS2 a numeric vector
LL1 a numeric vector
LL2 a numeric vector
LL3 a numeric vector
LL4 a numeric vector
LL5 a numeric vector
EGd1 a numeric vector
EGf2 a numeric vector
CCd1 a numeric vector
CCn2 a numeric vector
CCn3 a numeric vector
EMc1 a numeric vector
EMd2 a numeric vector
EMd3 a numeric vector
EMf4 a numeric vector

EMf5 a numeric vector
EMn6 a numeric vector
EMx7 a numeric vector
EM8 a numeric vector
EM9 a numeric vector
EM10 a numeric vector
EM11 a numeric vector
EM12 a numeric vector
TE1 a numeric vector
TE2 a numeric vector
TE3 a numeric vector
TE4 a numeric vector
TE5 a numeric vector
BWe1 a numeric vector
BWn2 a numeric vector
BWn3 a numeric vector
TS1 a numeric vector
TS2 a numeric vector
TS3 a numeric vector
TS4 a numeric vector
TS5 a numeric vector
TS6 a numeric vector
TS7 a numeric vector
TS8 a numeric vector
TS9 a numeric vector
Pg1 a numeric vector
Pg 2 a numeric vector
Pg3 a numeric vector
DUaa1 a numeric vector
DUw2 a numeric vector
DU3 a numeric vector
CP1 a numeric vector
CP2 a numeric vector
CP3 a numeric vector
CP4 a numeric vector
CP5 a numeric vector
CP6 a numeric vector

CP7 a numeric vector
CP8 a numeric vector
CP9 a numeric vector
CP10 a numeric vector
CP11 a numeric vector
CP12 a numeric vector
STd1 a numeric vector
STd2 a numeric vector
STd3 a numeric vector
STg4 a numeric vector
STaa5 a numeric vector
STaa6 a numeric vector
STaa7 a numeric vector
STaa8 a numeric vector
ST9 a numeric vector
ST10 a numeric vector
ST11 a numeric vector
ST12 a numeric vector
Wd1 a numeric vector
Wd2 a numeric vector
Wd3 a numeric vector
Wd4 a numeric vector
Wn5 a numeric vector
Waa6 a numeric vector
Waa7 a numeric vector
W8 a numeric vector
W9 a numeric vector
W10 a numeric vector
W11 a numeric vector
W12 a numeric vector
W13 a numeric vector
Zd1 a numeric vector
Zd2 a numeric vector
Zn3 a numeric vector
Zw4 a numeric vector
Zw5 a numeric vector
Zaa6 a numeric vector

Z7 a numeric vector
Z8 a numeric vector
Z9 a numeric vector
Z10 a numeric vector
Z11 a numeric vector
Z12 a numeric vector
CLd1 a numeric vector
CLd2 a numeric vector
CLd3 a numeric vector
CLd4 a numeric vector
CLd5 a numeric vector
CLd6 a numeric vector
CLd7 a numeric vector
CLd8 a numeric vector
CLd9 a numeric vector
CLd10 a numeric vector
CLd11 a numeric vector
CLd12 a numeric vector
CLd13 a numeric vector
CLd14 a numeric vector
CLd15 a numeric vector
CLd16 a numeric vector
CLd17 a numeric vector
CLd18 a numeric vector
CLd19 a numeric vector
CLd20 a numeric vector
CLd21 a numeric vector
CLd22 a numeric vector
CLd23 a numeric vector
CLd24 a numeric vector
CLd25 a numeric vector
CLd26 a numeric vector
CLd27 a numeric vector
CLd28 a numeric vector
CLd29 a numeric vector
CLd30 a numeric vector
CLd31 a numeric vector
rockArt

CLd32 a numeric vector
CLd33 a numeric vector
CLd34 a numeric vector
CLd35 a numeric vector
CLd36 a numeric vector
CLd37 a numeric vector
CLd38 a numeric vector
CLn39 a numeric vector
CLn40 a numeric vector
CLn41 a numeric vector
CLn42 a numeric vector
CLn43 a numeric vector
CLn44 a numeric vector
CLn45 a numeric vector
CLn46 a numeric vector
CLn47 a numeric vector
CLn48 a numeric vector
CLw49 a numeric vector
CL50 a numeric vector
CL51 a numeric vector
CL52 a numeric vector
CL53 a numeric vector
CL54 a numeric vector
CL55 a numeric vector
CL56 a numeric vector
CL57 a numeric vector
CL58 a numeric vector
CL59 a numeric vector
Xd1 a numeric vector
Xd2 a numeric vector
Xd3 a numeric vector
Xd4 a numeric vector
Xd5 a numeric vector
Xd6 a numeric vector
Xd7 a numeric vector
Xd8 a numeric vector
Xd9 a numeric vector

Xd10 a numeric vector
Xd11 a numeric vector
Xd12 a numeric vector
Xd13 a numeric vector
Xf14 a numeric vector
Xk15 a numeric vector
Xn16 a numeric vector
Xn17 a numeric vector
Xn18 a numeric vector
Xn19 a numeric vector
Xn20 a numeric vector
Xn21 a numeric vector
Xn22 a numeric vector
Xn23 a numeric vector
Xn 24 a numeric vector
Xn25 a numeric vector
Xn26 a numeric vector
Xn27 a numeric vector
Xn28 a numeric vector
Xn29 a numeric vector
Xn30 a numeric vector
Xn31 a numeric vector
Xn32 a numeric vector
Xp33 a numeric vector
Xp34 a numeric vector
Xp35 a numeric vector
Xq36 a numeric vector
Xq37 a numeric vector
Xq38 a numeric vector
X39 a numeric vector
X40 a numeric vector
X41 a numeric vector
X42 a numeric vector
X43 a numeric vector
X44 a numeric vector
X45 a numeric vector
X46 a numeric vector

X47 a numeric vector
X48 a numeric vector
X49 a numeric vector
X50 a numeric vector
Qd1 a numeric vector
Qe2 a numeric vector
Qe3 a numeric vector
Qh4 a numeric vector
Qh5 a numeric vector
Qh6 a numeric vector
Qh7 a numeric vector
Qh8 a numeric vector
Qh9 a numeric vector
Qn10 a numeric vector
Qn11 a numeric vector
Qt12 a numeric vector
Q13 a numeric vector
Q14 a numeric vector
Q15 a numeric vector
Q16 a numeric vector
Q17 a numeric vector
Q18 a numeric vector
Q19 a numeric vector
Q20 a numeric vector
Q21 a numeric vector
Q22 a numeric vector
TZd1 a numeric vector
TZf2 a numeric vector
TZh3 a numeric vector
TZ4 a numeric vector
CRd1 a numeric vector
CR2 a numeric vector
CR3 a numeric vector
EUd1 a numeric vector
EUd2 a numeric vector
EUg3 a numeric vector
EUm4 a numeric vector

EUw5 a numeric vector
EU6 a numeric vector
Ud1 a numeric vector
Ud2 a numeric vector
Ud3 a numeric vector
Uaa4 a numeric vector
U5 a numeric vector
Vd1 a numeric vector
V2 a numeric vector
V3 a numeric vector
V4 a numeric vector
V5 a numeric vector
LWE1 a numeric vector
LWE2 a numeric vector
Ad1 a numeric vector
Al2 a numeric vector
Am3 a numeric vector
An4 a numeric vector
Aw5 a numeric vector
Aaa6 a numeric vector
A7 a numeric vector
A8 a numeric vector
A9 a numeric vector
EVd1 a numeric vector
EVg2 a numeric vector
TK1 a numeric vector
ECL1 a numeric vector
EFe1 a numeric vector
EFm2 a numeric vector
EFm3 a numeric vector
EF4 a numeric vector
LPo1 a numeric vector
LPq2 a numeric vector
LP3 a numeric vector
LP4 a numeric vector
LP5 a numeric vector
PT1 a numeric vector

CSC a numeric vector
CSR a numeric vector
CCRC a numeric vector
SA a numeric vector
Anthrop a numeric vector
Turtle a numeric vector
Boat a numeric vector
Canoe a numeric vector
Hand a numeric vector
Foot a numeric vector
Lizard a numeric vector
Crocodile a numeric vector
Jellyfish a numeric vector
Bird a numeric vector
Anthrobird a numeric vector
Axe a numeric vector
Marine a numeric vector
Face a numeric vector
Zoo1 a numeric vector
Zoo2 a numeric vector
Zoo3 a numeric vector
Zoo4 a numeric vector
Zoo5 a numeric vector
Zoo6 a numeric vector

Details

Note the vignette rockArt.

Source

Meredith Wilson: Picturing Pacific Pre-History (PhD thesis), 2002, Australian National University.

References

Meredith Wilson: Rethinking regional analyses of Western Pacific rock-art. Records of the Australian Museum, Supplement 29: 173-186.

Examples

```
    data(rockArt)
    rockart.dist <- dist(x = as.matrix(rockArt[, 28:641]), method = "binary")
    sum(rockart.dist==1)/length(rockart.dist)
    plot(density(rockart.dist, to = 1))
    rockart.cmd <- cmdscale(rockart.dist)
    tab <- table(rockArt$District)
    district <- as.character(rockArt$District)
    district[!(rockArt$District %in% names(tab)[tab>5])] <- "other"
    ## Not run:
    xyplot(rockart.cmd[,2] ~ rockart.cmd[,1], groups=district,
        auto.key=list(columns=5),
        par.settings=list(superpose.symbol=list(pch=16)))
    library(MASS)
    ## For sammon, need to avoid zero distances
    omit <- c(47, 54, 60, 63, 92)
    rockart.dist <- dist(x = as.matrix(rockArt[-omit, 28:641]), method = "binary")
    rockart.cmd <- cmdscale(rockart.dist)
    rockart.sam <- sammon(rockart.dist, rockart.cmd)
    xyplot(rockart.sam$points[,2] ~ rockart.sam$points[,1],
        groups=district[-omit], auto.key=list(columns=5),
        par.settings=list(superpose.symbol=list(pch=16)))
    ## Notice the very different appearance of the Sammon plot
    ## End(Not run)
```

 roller Lawn Roller Data

Description

The roller data frame has 10 rows and 2 columns. Different weights of roller were rolled over different parts of a lawn, and the depression was recorded.

Usage

roller

Format

This data frame contains the following columns:
weight a numeric vector consisting of the roller weights
depression the depth of the depression made in the grass under the roller

Source

Stewart, K.M., Van Toor, R.F., Crosbie, S.F. 1988. Control of grass grub (Coleoptera: Scarabaeidae) with rollers of different design. N.Z. Journal of Experimental Agriculture 16: 141-150.

Examples

```
plot(roller)
roller.lm <- lm(depression ~ weight, data = roller)
plot(roller.lm, which = 4)
```


Description

The function sampvals generates the data. A density plot of a normal probability plot is provided, for one or mare sample sizes. For a density plot, the density estimate for the population is superimposed in gray. For the normal probability plot, the population plot is a dashed gray line. Default arguments give the sampling distribution of the mean, for a distribution that is mildly positively skewed.

Usage

```
sampdist(sampsize = c(3, 9, 30), seed = NULL, nsamp = 1000, FUN = mean,
sampvals = function(n) exp(rnorm(n, mean = 0.5, sd = 0.3)),
tck = NULL, plot.type = c("density", "qq"), layout = c(3, 1))
```


Arguments

sampvals	Function that generates the data. For sampling from existing data values, this might be function that generates bootstrap samples.
sampsize	One or more sample sizes. A plot will be provided for each different sample size.
seed	Specify a seed if it is required to make the exact set(s) of sample values repro- ducible.
nsamp	Number of samples.
FUN	Function that calculates the sample statistic.
plot. type	Specify density, or qq. Or if no plot is required, specify "".
tck	Tick size on lattice plots, by default 1, but 0.5 may be suitable for plots that are, for example, 50% of the default dimensions in each direction.
layout	Layout on page, e.g. c $(3,1)$ for a 3 columns by one row layout.

Value

Data frame

Author(s)

John Maindonald.

Examples

```
sampdist(plot.type="density")
sampdist(plot.type="qq")
## The function is currently defined as
    function (sampsize = c(3, 9, 30), seed = NULL, nsamp = 1000, FUN = mean,
                sampvals = function(n) exp(rnorm(n, mean = 0.5, sd = 0.3)),
                tck = NULL, plot.type = c("density", "qq"), layout = c(3,
                                    1))
{
    if (!is.null(seed))
        set.seed(seed)
    ncases <- length(sampsize)
    y <- sampvals(nsamp)
    xlim = quantile(y, c(0.01, 0.99))
    xlim <- xlim + c(-1, 1) * diff(xlim) * 0.1
    samplingDist <- function(sampsize=3, nsamp=1000, FUN=mean)
        apply(matrix(sampvals(sampsize*nsamp), ncol=sampsize), 1, FUN)
    df <- data.frame(sapply(sampsize, function(x)samplingDist(x, nsamp=nsamp)))
    names(df) <- paste("y", sampsize, sep="")
    form <- formula(paste("~", paste(names(df), collapse="+")))
    lab <- lapply(sampsize, function(x) substitute(A, list(A = paste(x))))
    if (plot.type[1] == "density")
        gph <- densityplot(form, data=df, layout = layout, outer=TRUE,
                                    plot.points = FALSE, panel = function(x, ...) {
                                    panel.densityplot(x, ..., col = "black")
                                    panel.densityplot(y, col = "gray40", lty = 2,
                                    ...)
                                    }, xlim = xlim, xlab = "", scales = list(tck = tck),
                                    between = list(x = 0.5), strip = strip.custom(strip.names = TRUE,
                                    factor.levels = as.expression(lab), var.name = "Sample size",
                                    sep = expression(" = ")))
    else if (plot.type[1] == "qq")
        gph <- qqmath(form, data = df, layout = layout, plot.points = FALSE,
                    outer=TRUE,
                        panel = function(x, ...) {
                            panel.qqmath(x, ..., col = "black", alpha=0.5)
                            panel.qqmath(y, col = "gray40", lty = 2, type = "l",
                                    ...)
                                    }, xlab = "", xlim = c(-3, 3), ylab = "", scales = list(tck = tck),
                                    between = list(x = 0.5), strip = strip.custom(strip.names = TRUE,
                                    factor.levels = as.expression(lab), var.name = "Sample size",
                                    sep = expression(" = ")))
    if (plot.type[1] %in% c("density", "qq"))
        print(gph)
    invisible(df)
}
```


Description

The science data frame has 1385 rows and 7 columns.
The data are on attitudes to science, from a survey where there were results from 20 classes in private schools and 46 classes in public schools.

Usage

science

Format

This data frame contains the following columns:
State a factor with levels ACT Australian Capital Territory, NSW New South Wales
PrivPub a factor with levels private school, public school
school a factor, coded to identify the school
class a factor, coded to identify the class
sex a factor with levels f, m
like a summary score based on two of the questions, on a scale from 1 (dislike) to 12 (like)
Class a factor with levels corresponding to each class

Source

Francine Adams, Rosemary Martin and Murali Nayadu, Australian National University

Examples

```
classmeans <- with(science, aggregate(like, by=list(PrivPub, Class), mean))
names(classmeans) <- c("PrivPub","Class","like")
dim(classmeans)
attach(classmeans)
boxplot(split(like, PrivPub), ylab = "Class average of attitude to science score", boxwex = 0.4)
rug(like[PrivPub == "private"], side = 2)
rug(like[PrivPub == "public"], side = 4)
detach(classmeans)
if(require(lme4, quietly=TRUE)) {
science.lmer <- lmer(like ~ sex + PrivPub + (1 | school) +
                                    (1 | school:class), data = science,
                                    na.action=na.exclude)
summary(science.lmer)
science1.lmer <- lmer(like ~ sex + PrivPub + (1 | school:class),
                    data = science, na.action=na.exclude)
summary(science1.lmer)
ranf <- ranef(obj = science1.lmer, drop=TRUE)[["school:class"]]
flist <- science1.lmer@flist[["school:class"]]
privpub <- science[match(names(ranf), flist), "PrivPub"]
num <- unclass(table(flist)); numlabs <- pretty(num)
## Plot effect estimates vs numbers
```

```
    plot(sqrt(num), ranf, xaxt="n", pch=c(1,3)[as.numeric(privpub)],
        xlab="# in class (square root scale)",
        ylab="Estimate of class effect")
lines(lowess(sqrt(num[privpub=="private"]),
            ranf[privpub=="private"], f=1.1), lty=2)
lines(lowess(sqrt(num[privpub=="public"]),
            ranf[privpub=="public"], f=1.1), lty=3)
axis(1, at=sqrt(numlabs), labels=paste(numlabs))
}
```

```
seedrates Barley Seeding Rate Data
```


Description

The seedrates data frame has 5 rows and 2 columns on the effect of seeding rate of barley on yield.

Usage

seedrates

Format

This data frame contains the following columns:
rate the seeding rate
grain the number of grain per head of barley

Source

McLeod, C.C. 1982. Effect of rates of seeding on barley grown for grain. New Zealand Journal of Agriculture 10: 133-136.

References

Maindonald J H 1992. Statistical design, analysis and presentation issues. New Zealand Journal of Agricultural Research 35: 121-141.

Examples

```
plot(grain~rate,data=seedrates,xlim=c(50,180),ylim=c(15.5, 22),axes=FALSE)
new.df<-data.frame(rate=(2:8)*25)
seedrates.lm1<-lm(grain~rate,data=seedrates)
seedrates.lm2<-lm(grain~rate+I(rate^2),data=seedrates)
hat1<-predict(seedrates.lm1, newdata=new.df,interval="confidence")
hat2<-predict(seedrates.lm2,newdata=new.df,interval="confidence")
axis(1,at=new.df$rate); axis(2); box()
z1<-spline(new.df$rate, hat1[,"fit"]); z2<-spline(new.df$rate,
```

```
hat2[,"fit"])
rate<-new.df$rate; lines(z1$x,z1$y)
lines(spline(rate,hat1[,"lwr"]),lty=1,col=3)
lines(spline(rate, hat1[,"upr"]),lty=1,col=3)
lines(z2$x,z2$y,lty=4)
lines(spline(rate,hat2[,"lwr"]),lty=4,col=3)
lines(spline(rate,hat2[,"upr"]),lty=4,col=3)
```


Description

This function displays the built-in colors.

Usage

show.colors(type=c("singles", "shades", "gray"), order.cols=TRUE)

Arguments

type type of display - single, multiple or gray shades
order.cols Arrange colors in order

Value

A plot of colors for which there is a single shade (type = "single"), multiple shades (type = "multiple"), or gray shades (type = "gray")

Author(s)

J.H. Maindonald

Examples

require(MASS)
show.colors()
simulateLinear Simulation of Linear Models for ANOVA vs. Regression Comparison

Description

This function simulates a number of bivariate data sets in which there are replicates at each level of the predictor. The p-values for ANOVA and for the regression slope are compared.

Usage

simulateLinear(sd=2, npoints=5, nrep=4, nsets=200, type="xy", seed=21)

Arguments

sd The error standard deviation
npoints Number of distinct predictor levels
nrep Number of replications at each level
nsets Number of simulation runs
type Type of data
seed Random Number generator seed

Value

The proportion of regression p-values that are less than the ANOVA p-values is printed

Author(s)

J.H. Maindonald

Examples

simulateLinear()
simulateSampDist Simulated sampling distribution of mean or other statistic

Description

Simulates the sample distribution of the specified statistic, for samples of the size(s) specified in numINsamp. Additionally a with replacement) sample is drawn from the specified population.

Usage

```
simulateSampDist(rpop = rnorm, numsamp = 100, numINsamp = c(4, 16),
    FUN = mean, seed=NULL
    )
```


Arguments

rpop	Either a function that generates random samples from the specified distribution, or a vector of values that define the population (i.e., an empirical distribution)
numsamp	Number of samples that should be taken. For close approximation of the asymp- totic distribution (e.g., for the mean) this number should be large
numINsamp	Size(s) of each of the numsamp sample(s)
FUN	Function to calculate the statistic whose sampling distribution is to be simulated
seed	Optional seed for random number generation

Value

List, with elements values, numINsamp and FUN
values Matrix, with dimensions numsamp by numiNsamp + 1. The first column has a random with replacement sample from the population, while the remaining length (numINsamp) columns hold simulated values from sampling distributions with samples of the specified size(s)
numINsamp Input value of numINsamp
numsamp Input value of numsamp

Author(s)

John Maindonald

References

Maindonald, J.H. and Braun, W.J. (3rd edn, 2010) Data Analysis and Graphics Using R, 3rd edn, Sections 3.3 and 3.4

See Also

help(plotSampDist)

Examples

```
## By default, sample from normal population
simAvs <- simulateSampDist()
par(pty="s")
plotSampDist(simAvs)
## Sample from empirical distribution
simAvs <- simulateSampDist(rpop=rivers)
plotSampDist(simAvs)
## The function is currently defined as
function(rpop=rnorm, numsamp=100, numINsamp=c(4,16), FUN=mean,
seed=NULL){
    if(!is.null(seed))set.seed(seed)
    funtxt <- deparse(substitute(FUN))
```

```
    nDists <- length(numINsamp)+1
    values <- matrix(0, nrow=numsamp, ncol=nDists)
    if(!is.function(rpop)) {
        x <- rpop
        rpop <- function(n)sample(x, n, replace=TRUE)
    }
    values[,1] <- rpop(numsamp)
    for(j in 2:nDists){
        n <- numINsamp[j-1]
        for(i in 1:numsamp)values[i, j] <- FUN(rpop(n))
    }
    colnames(values) <- paste("Size", c(1, numINsamp))
    invisible(list(values=values, numINsamp=numINsamp, FUN=funtxt))
}
```

socsupport Social Support Data

Description

Data from a survey on social and other kinds of support.

Usage

socsupport

Format

This data frame contains the following columns:
gender a factor with levels female, male
age age, in years, with levels $18-20,21-24,25-30,31-40,40+$
country a factor with levels australia, other
marital a factor with levels married, other, single
livewith a factor with levels alone, friends, other, parents, partner, residences
employment a factor with levels employed fulltime, employed part-time, govt assistance, other, parental support
firstyr a factor with levels first year, other
enrolment a factor with levels full-time, part-time, <NA>
emotional summary of 5 questions on emotional support availability
emotionalsat summary of 5 questions on emotional support satisfaction
tangible summary of 4 questions on availability of tangible support
tangiblesat summary of 4 questions on satisfaction with tangible support
affect summary of 3 questions on availability of affectionate support sources
affectsat summary of 3 questions on satisfaction with affectionate support sources
psi summary of 3 questions on availability of positive social interaction
psisat summary of 3 questions on satisfaction with positive social interaction
esupport summary of 4 questions on extent of emotional support sources
psupport summary of 4 questions on extent of practical support sources
supsources summary of 4 questions on extent of social support sources (formerly, socsupport)
BDI Score on the Beck depression index (summary of 21 questions)

Source

Melissa Manning, Psychology, Australian National University

Examples

```
attach(socsupport)
not.na <- apply(socsupport[,9:19], 1, function(x)!any(is.na(x)))
ss.pr1 <- princomp(as.matrix(socsupport[not.na, 9:19]), cor=TRUE)
pairs(ss.pr1$scores[,1:3])
sort(-ss.pr1$scores[,1]) # Minus the largest value appears first
pause()
not.na[36] <- FALSE
ss.pr <- princomp(as.matrix(socsupport[not.na, 9:19]), cor=TRUE)
summary(ss.pr) # Examine the contribution of the components
pause()
# We now regress BDI on the first six principal components:
ss.lm <- lm(BDI[not.na] ~ ss.pr$scores[, 1:6], data=socsupport)
summary(ss.lm)$coef
pause()
ss.pr$loadings[,1]
plot(BDI[not.na] ~ ss.pr$scores[ ,1], col=as.numeric(gender),
pch=as.numeric(gender), xlab ="1st principal component", ylab="BDI")
topleft <- par()$usr[c(1,4)]
legend(topleft[1], topleft[2], col=1:2, pch=1:2, legend=levels(gender))
```

```
softbacks
```

Measurements on a Selection of Paperback Books

Description

This is a subset of the allbacks data frame which gives measurements on the volume and weight of 8 paperback books.

Usage

softbacks

Format

This data frame contains the following columns:
volume a numeric vector giving the book volumes in cubic centimeters
weight a numeric vector giving the weights in grams

Source

The bookshelf of J. H. Maindonald.

Examples

```
print("Outliers in Simple Regression - Example 5.2")
paperback.lm <- lm(weight ~ volume, data=softbacks)
summary(paperback.lm)
plot(paperback.lm)
```

sorption sorption data set

Description

Concentration-time measurements on different varieties of apples under methyl bromide injection.

Usage

data(sorption)

Format

A data frame with 192 observations on the following 14 variables.
m5 a numeric vector
$\mathbf{m 1 0}$ a numeric vector
m30 a numeric vector
m60 a numeric vector
$\mathrm{m90}$ a numeric vector
$\mathbf{m 1 2 0}$ a numeric vector
ct concentration-time
Cultivar a factor with levels Pacific Rose BRAEBURN Fuji GRANNY Gala ROYAL Red Delicious Splendour
Dose injected dose of methyl bromide
rep replicate number, within Cultivar and year
year a factor with levels 1988198919981999
year.rep a factor with levels 1988:1 1988:2 1988:3 1989:1 1989:2 1998:1 1998:2 1998:3 1999:1 1999:2
gp a factor with levels BRAEBURN1 BRAEBURN2 Fuji1 Fuji10 Fuji2 Fuji6 Fuji7 Fuji8 Fuji9 GRANNY1 GRANNY2 Gala4 Gala5 Pacific Rose10 Pacific Rose6 Pacific Rose7 Pacific Rose8 Pacific Rose9 ROYAL1 ROYAL2 Red Del10 Red Del9 Red Delicious1 Red Delicious2 Red Delicious3 Red Delicious4 Red Delicious5 Red Delicious6 Red Delicious7 Red Delicious8 Splendour4 Splendour5
inyear a factor with levels 123456
SP500close Closing Numbers for S and P 500 Index

Description

Closing numbers for S and P 500 Index, Jan. 1, 1990 through early 2000.

Usage

SP500close

Source

Derived from SP500 in the MASS library.

Examples

ts.plot(SP500close)
SP500W90 Closing Numbers for S and P 500 Index - First 100 Days of 1990

Description

Closing numbers for S and P 500 Index, Jan. 1, 1990 through early 2000.

Usage

SP500W90

Source

Derived from SP500 in the MASS library.

Examples

ts.plot(SP500W90)
spam7 Spam E-mail Data

Description

The data consist of 4601 email items, of which 1813 items were identified as spam.

Usage

spam7

Format

This data frame contains the following columns:
crl.tot total length of words in capitals
dollar number of occurrences of the $\backslash \$$ symbol
bang number of occurrences of the! symbol
money number of occurrences of the word 'money'
n000 number of occurrences of the string ' 000 '
make number of occurrences of the word 'make'
yesno outcome variable, a factor with levels n not spam, y spam

Source

George Forman, Hewlett-Packard Laboratories
These data are available from the University of California at Irvine Repository of Machine Learning Databases and Domain Theories. The address is: http://www.ics.uci.edu/~Here

Examples

```
require(rpart)
spam.rpart <- rpart(formula = yesno ~ crl.tot + dollar + bang +
    money + n000 + make, data=spam7)
plot(spam.rpart)
text(spam.rpart)
```


Description

These data frames have yield averages by blocks (parcels).

Usage

stVincent

Format

A data frame with 324 observations on 8 variables.
code a numeric vector
island a numeric vector
id a numeric vector
site a factor with 8 levels.
block a factor with levels I II III IV
plot a numeric vector
trt a factor consisting of 12 levels
harvwt a numeric vector; the average yield

Source

Andrews DF; Herzberg AM, 1985. Data. A Collection of Problems from Many Fields for the Student and Research Worker. Springer-Verlag. (pp. 339-353)
sugar Sugar Data

Description

The sugar data frame has 12 rows and 2 columns. They are from an experiment that compared an unmodified wild type plant with three different genetically modified forms. The measurements are weights of sugar that were obtained by breaking down the cellulose.

Usage

sugar

Format

This data frame contains the following columns:
weight weight, in mg
trt a factor with levels Control i.e. unmodified Wild form, A Modified 1, B Modified 2, C Modified 3

Source

Anonymous

Examples

sugar.aov <- aov(weight ~ trt, data=sugar)
fitted.values(sugar.aov)
summary.lm(sugar.aov)
sugar.aov <- aov(formula $=$ weight \sim trt, data $=$ sugar)
summary.lm(sugar.aov)

tinting Car Window Tinting Experiment Data

Description

These data are from an experiment that aimed to model the effects of the tinting of car windows on visual performance. The authors were mainly interested in effects on side window vision, and hence in visual recognition tasks that would be performed when looking through side windows.

Usage

tinting

Format

This data frame contains the following columns:
case observation number
id subject identifier code (1-26)
age age (in years)
sex a factor with levels f female, m male
tint an ordered factor with levels representing degree of tinting: no $<$ lo $<$ hi
target a factor with levels locon: low contrast, hicon: high contrast
it the inspection time, the time required to perform a simple discrimination task (in milliseconds)
csoa critical stimulus onset asynchrony, the time to recognize an alphanumeric target (in milliseconds)
agegp a factor with levels younger, 21-27, older, 70-78

Details

Visual light transmittance (VLT) levels were 100% (tint=none), 81.3% (tint=lo), and 35.1% (tint=hi). Based on these and other data, Burns et al. argue that road safety may be compromised if the front side windows of cars are tinted to 35

Source

Burns, N.R., Nettlebeck, T., White, M. and Willson, J., 1999. Effects of car window tinting on visual performance: a comparison of younger and older drivers. Ergonomics 42: 428-443.

Examples

```
levels(tinting$agegp) <- capstring(levels(tinting$agegp))
xyplot(csoa ~ it | sex * agegp, data=tinting) # Simple use of xyplot()
pause()
xyplot(csoa ~ it|sex*agegp, data=tinting, panel=panel.superpose, groups=target)
pause()
xyplot(csoa ~ it|sex*agegp, data=tinting, panel=panel.superpose, col=1:2,
    groups=target, key=list(x=0.14, y=0.84, points=list(pch=rep(1,2),
    col=1:2), text=list(levels(tinting$target), col=1:2), border=TRUE))
pause()
xyplot(csoa ~ it|sex*agegp, data=tinting, panel=panel.superpose,
    groups=tint, type=c("p","smooth"), span=0.8, col=1:3,
    key=list(x=0.14, y=0.84, points=list(pch=rep(1,2), col=1:3),
    text=list(levels(tinting$tint), col=1:3), border=TRUE))
```

tomato Root weights of tomato plants exposed to 4 different treatments

Description

The tomato data frame has 24 rows and 2 columns. They are from an experiment that exposed tomato plants to four different 'nutrients'.

Usage

data(tomato)

Format

This data frame contains the following columns:
weight weight, in g
trt a factor with levels water only, conc nutrient, $2-4-D+$ conc nutrient, $3 x$ conc nutrient

Source

Dr Ron Balham, Victoria University of Wellington NZ, sometime in 1971-1976.

Examples

```
tomato.aov <- aov(log(weight) ~ trt, data=tomato)
fitted.values(tomato.aov)
summary.lm(tomato.aov)
tomato.aov <- aov(formula = weight ~ trt, data = tomato)
summary.lm(tomato.aov)
```

 toycars Toy Cars Data

Description

The toycars data frame has 27 rows and 3 columns. Observations are on the distance traveled by one of three different toy cars on a smooth surface, starting from rest at the top of a 16 inch long ramp tilted at varying angles.

Usage

toycars

Format

This data frame contains the following columns:
angle tilt of ramp, in degrees
distance distance traveled, in meters
car a numeric code ($1=$ first car, $2=$ second car, $3=$ third car $)$

Examples

```
toycars.lm <- lm(distance ~ angle + factor(car), data=toycars)
summary(toycars.lm)
```


two65 Unpaired Heated Elastic Bands

Description

Twenty-one elastic bands were divided into two groups.
One of the sets was placed in hot water (60-65 degrees C) for four minutes, while the other was left at ambient temperature. After a wait of about ten minutes, the amounts of stretch, under a 1.35 kg weight, were recorded.

Usage

pair65

Format

This list contains the following elements:
heated a numeric vector giving the stretch lengths for the heated bands
ambient a numeric vector giving the stretch lengths for the unheated bands

Source

J.H. Maindonald

Examples

twot. permutation(two65\$ambient,two65\$heated) \# two sample permutation test
twot.permutation Two Sample Permutation Test - Obsolete

Description

This function computes the p-value for the two sample t-test using a permutation test. The permutation density can also be plotted.

Usage

twot.permutation(x1 = DAAG::two65\$ambient, x2 = DAAG::two65\$heated, nsim = 2000, plotit = TRUE)

Arguments

x1	Sample 1
x2	Sample 2
nsim	Number of simulations
plotit	If TRUE, the permutation density will be plotted

Details

Suppose we have n 1 values in one group and n 2 in a second, with $\mathrm{n}=\mathrm{n} 1+\mathrm{n} 2$. The permutation distribution results from taking all possible samples of $n 2$ values from the total of n values.

Value

The p -value for the test of the hypothesis that the mean of x 1 differs from x 2

Author(s)

J.H. Maindonald

References

Good, P. 2000. Permutation Tests. Springer, New York.

Examples

twot.permutation()
twotPermutation Two Sample Permutation Test

Description

This function computes the p-value for the two sample t-test using a permutation test. The permutation density can also be plotted.

Usage

twotPermutation(x1 = DAAG::two65\$ambient, x2 = DAAG::two65\$heated, nsim = 2000, plotit = TRUE)

Arguments

x1	Sample 1
x2	Sample 2
nsim	Number of simulations
plotit	If TRUE, the permutation density will be plotted

Details

Suppose we have n 1 values in one group and n 2 in a second, with $\mathrm{n}=\mathrm{n} 1+\mathrm{n} 2$. The permutation distribution results from taking all possible samples of n 2 values from the total of n values.

Value

The p -value for the test of the hypothesis that the mean of x 1 differs from $\times 2$

Author(s)

J.H. Maindonald

References

Good, P. 2000. Permutation Tests. Springer, New York.

Examples

twotPermutation()
vif Variance Inflation Factors

Description

Variance inflation factors are computed for the standard errors of linear model coefficient estimates.

Usage

vif(obj, digits=5)

Arguments

obj	A lm object
digits	Number of digits

Value

A vector of variance inflation factors corresponding to the coefficient estimates given in the 1 m object.

Author(s)

J.H. Maindonald

See Also

Examples

```
litters.lm <- lm(brainwt ~ bodywt + lsize, data = litters)
vif(litters.lm)
carprice1.lm <- lm(gpm100 ~ Type+Min.Price+Price+Max.Price+Range.Price,
    data=carprice)
vif(carprice1.lm)
carprice.lm <- lm(gpm100 ~ Type + Price, data = carprice)
vif(carprice1.lm)
```

 vince111b Averages by block of corn yields, for treatment 111 only

Description

These data frames have averages by blocks (parcels) for the treatment 111.

Usage

vince111b

Format

A data frame with 36 observations on 8 variables.
site a factor with levels AGSV CASV CPSV LPSV MPSV OOSV OTSV SSSV UISV
parcel a factor with levels I II III IV
code a numeric vector
island a numeric vector
id a numeric vector
plot a numeric vector
trt a numeric vector
harvwt a numeric vector

Source

Andrews DF; Herzberg AM, 1985. Data. A Collection of Problems from Many Fields for the Student and Research Worker. Springer-Verlag. (pp. 339-353)

Description

Data on objects appearing in three windows on a video lottery terminal, together with the prize payout (usually 0). Observations were taken on two successive days in late 1994 at a hotel lounge north of Winnipeg, Manitoba. Each observation cost 25 cents (Canadian). The game played was 'Double Diamond'.

Usage

> vlt

Format

This data frame contains the following columns:
window1 object appearing in the first window.
window2 object appearing in the second window.
window3 object appearing in the third window.
prize cash prize awarded (in Canadian dollars).
night 1 , if observation was taken on day $1 ; 2$, if observation was taken on day 2 .

Details

At each play, each of three windows shows one of 7 possible objects. Apparently, the three windows are independent of each other, and the objects should appear with equal probability across the three windows. The objects are coded as follows: blank (0), single bar (1), double bar (2), triple bar (3), double diamond (5), cherries (6), and the numeral "7" (7).
Prizes (in quarters) are awarded according to the following scheme: 800 (5-5-5), 80 (7-7-7), 40 (3-3-3), 25 (2-2-2), $10(1-1-1), 10(6-6-6), 5(2 " 6 "$'s), 2 (1 " 6 ") and 5 (any combination of " 1 ", "2" and " 3 "). In addition, a " 5 " doubles any winning combination, e.g. (5-3-3) pays 80 and (5-3-5) pays 160.

Source

Braun, W. J. (1995) An illustration of bootstrapping using video lottery terminal data. Journal of Statistics Education http://www.amstat.org/publications/jse/v3n2/datasets.braun.html

Examples

```
vlt.stk <- stack(vlt[,1:3])
table(vlt.stk)
```


Description

The wages 1833 data frame gives the wages of Lancashire cotton factory workers in 1833.

Usage

wages1833

Format

This data frame contains the following columns:
age age in years
mnum number of male workers
mwage average wage of male workers
fnum number of female workers
fwage average wage of female workers

Source

Boot, H.M. 1995. How Skilled Were the Lancashire Cotton Factory Workers in 1833? Economic History Review 48: 283-303.

Examples

```
attach(wages1833)
plot(mwage~age,ylim=range(c(mwage,fwage[fwage>0])))
points(fwage[fwage>0]~age[fwage>0],pch=15,col="red")
lines(lowess(age,mwage))
lines(lowess(age[fwage>0],fwage[fwage>0]),col="red")
```

 whoops Deaths from whooping cough, in London

Description

Deaths from whooping cough, in London from 1740 to 1881.

Usage

data(whoops)

Format

This is a multiple time series consisting of 3 series: wcough, ratio, and alldeaths.

Source

Guy, W. A. 1882. Two hundred and fifty years of small pox in London. Journal of the Royal Statistical Society 399-443.

References

Lancaster, H. O. 1990. Expectations of Life. Springer.

Examples

```
data(whoops)
str(whoops)
plot(whoops)
```

worldRecords Record times for track and road races, at August 9th 2006

Description

Record times for track and road races, at August 9th 2006

Usage

data(worldRecords)

Format

A data frame with 40 observations on the following 9 variables.
Distance distance in kilometers
roadORtrack a factor with levels road track
Place place; a character vector
Time time in minutes
Date a Date

Details

For further details, and some additional details, see the web site that is the source of the data.

Source

http://www.gbrathletics.com/wrec.htm

Examples

```
data(worldRecords)
xyplot(log(Time) ~ log(Distance), groups=roadORtrack, data=worldRecords)
xyplot(log(Time) ~ log(Distance), groups=roadORtrack, data=worldRecords,
        type=c("p","r"))
    xyplot(log(Time) ~ log(Distance), groups=roadORtrack, data=worldRecords,
        type=c("p","smooth"))
```

 zzDAAGxdb List, each of whose elements hold rows of a file, in character format

Description

This is the default alternative database for use with the function datafile, which uses elements of this list to place files in the working directory. The names of the list elements are bestTimes and bostonc.

Usage

data(zzDAAGxdb)

Format

Successive elements in this list hold character vectors from which the corresponding files can be readily generated.

Details

The web site given as the source of the data has additional information on the bestTimes data. Records are as at August 72006.

Source

http://www.gbrathletics.com/wrec.htm (bestTimes)
http://lib.stat.cmu.edu/datasets/ (bostonc)

References

Harrison, D. and Rubinfeld, D.L. 'Hedonic prices and the demand for clean air', J. Environ. Economics \& Management, vol.5, 81-102, 1978. corrected by Kelley Pace (kpace@unix1.sncc.lsu.edu)

Examples

```
data(zzDAAGxdb)
names(zzDAAGxdb)
```


Index

*Topic IO
hardcopy, 72
*Topic algebra
align2D, 7
*Topic datagen
errorsINseveral, 58
errorsinx, 61
simulateSampDist, 172
*Topic datasets
ACF1, 5
ais, 6
allbacks, 9
anesthetic, 10
ant111b, 11
antigua, 12
appletaste, 13
audists, 13
aulatlong, 14
austpop, 15
biomass, 19
bomregions, 20
bomsoi, 22
bomsoi2001, 25
bostonc, 28
carprice, 30
Cars93.summary, 32
cerealsugar, 33
cfseal, 33
cities, 34
codling, 35
cottonworkers, 39
cps1, 41
cricketer, 42
cuckoohosts, 43
cuckoos, 44
DAAGxdb, 48
dengue, 50
dewpoint, 51
droughts, 52
edcCO2, 53
edcT, 54
elastic1, 55
elastic2, 56
elasticband, 57
fossilfuel, 64
fossum, 64
frogs, 65
frostedflakes, 67
fruitohms, 67
gaba, 68
geophones, 70
greatLakes, 70
grog, 71
head. injury, 73
headInjury, 74
hills, 75
hills2000, 76
hotspots, 77
hotspots2006, 78
houseprices, 79
humanpower, 80
hurricNamed, 81
intersalt, 83
ironslag, 84
jobs, 84
kiwishade, 86
leafshape, 87
leafshape17, 88
leaftemp, 90
leaftemp.all, 91
litters, 91
Lottario, 95
lung, 95
Manitoba.lakes, 96
measles, 96
medExpenses, 97
mifem, 97
mignonette, 98
milk, 99
modelcars, 100
monica, 101
moths, 102
nassCDS, 103
nasshead, 105
nihills, 106
nsw74demo, 107
nsw74psid1, 108
nsw74psid3, 109
nsw74psidA, 110
nswdemo, 111
nswpsid1, 113
oddbooks, 114
orings, 120
ozone, 122
pair65, 123
possum, 133
possumsites, 135
poxetc, 137
primates, 138
progression, 139
psid1, 140
psid2, 141
psid3, 142
races2000, 144
rainforest, 145
rareplants, 146
rice, 146
rockArt, 148
roller, 166
science, 168
seedrates, 170
socsupport, 174
softbacks, 175
sorption, 176
SP500close, 177
SP500W90, 177
spam7, 178
stVincent, 179
sugar, 179
tinting, 180
tomato, 181
toycars, 182
two65, 183
vince111b, 186
vlt, 187
wages1833, 188
whoops, 188
worldRecords, 189
zzDAAGxdb, 190
*Topic distribution
plotSampDist, 127
simulateSampDist, 172
*Topic dplot
align2D, 7
*Topic graphics
plotSimDiags, 129
plotSimScat, 131
*Topic hplot
plotSampDist, 127
*Topic misc
obounce, 114
pause, 126
*Topic models
bestsetNoise, 16
capstring, 29
compareTreecalcs, 36
component. residual, 37
CVbinary, 46
CV1m, 47
datafile, 49
logisticsim, 94
multilap, 103
onesamp, 115
onet.permutation, 116
onetPermutation, 117
oneway.plot, 118
onewayPlot, 119
overlapDensity, 121
panel.corr, 124
panelCorr, 124
panelplot, 125
poissonsim, 132
powerplot, 136
press, 137
qreference, 143
sampdist, 167
show. colors, 171
simulateLinear, 172
twot.permutation, 183
twotPermutation, 184
vif, 185
*Topic multivariate
confusion, 38
excessRisk, 62

*Topic package

DAAG-package, 5
$*$ Topic regression
lmdiags, 93
plotSimDiags, 129
plotSimScat, 131
*Topic statistics
confusion, 38
$*$ Topic survey
excessRisk, 62
*Topic utilities
bounce, 28
ACF1, 5
ais, 6
align2D, 7
allbacks, 9
anesthetic, 10
ant111b, 11
antigua, 12
appletaste, 13
audists, 13
aulatlong, 14
austpop, 15
bestset.noise (bestsetNoise), 16
bestsetNoise, 16
biomass, 19
bomregions, 20
bomregions 2011 (bomregions), 20
bomregions2012 (bomregions), 20
bomsoi, 22
bomsoi2001, 25
bostonc, 28
bounce, 28
bsnCV (bestsetNoise), 16
bsnOpt (bestsetNoise), 16
bsnVaryNvar (bestsetNoise), 16
capstring, 29
carprice, 30
Cars93. summary, 32
cerealsugar, 33
cfseal, 33
cities, 34
codling, 35
compareTreecalcs, 36
component. residual, 37
confusion, 38
cottonworkers, 39
cps1, 41
cps2 (cps1), 41
cps3 (cps1), 41
cricketer, 42
cuckoohosts, 43
cuckoos, 44
cv.binary (CVbinary), 46
cv.lm (CV1m), 47

CVbinary, 46, 48
CV1m, 47
DAAG (DAAG-package), 5
DAAG-package, 5
DAAGxdb, 48
datafile, 49
dengue, 50
dewpoint, 51
droughts, 52
edcCO2, 53
edcT, 54
elastic1,55
elastic2, 56
elasticband, 57
errorsINseveral, 58
errorsinx, 59, 61
excessRisk, 62
fossilfuel, 64
fossum, 64
frogs, 65
frostedflakes, 67
fruitohms, 67
gaba, 68
geophones, 70
glm, 46
greatLakes, 70
grog, 71
hardcopy, 72
head.injury, 73
headInjury, 74
hills, 75
hills2000, 76
hotspots, 77
hotspots2006, 78
houseprices, 79
humanpower, 80
humanpower 1 (humanpower), 80
humanpower 2 (humanpower), 80
hurricNamed, 81
intersalt, 83
ironslag, 84
jobs, 84
kiwishade, 86
leafshape, 87
leafshape17, 88
leaftemp, 90
leaftemp.all, 91
litters, 91
lm, 18, 37, 48
lmdiags, 93, 130
logisticsim, 94
Lottario, 95
lung, 95
Manitoba.lakes, 96
measles, 96
medExpenses, 97
mifem, 97
mignonette, 98
milk, 99
modelcars, 100
monica, 101
moths, 102
multilap, 103
nassCDS, 103
nasshead, 105
nihills, 106
nsw74demo, 107
nsw74psid1, 108
nsw74psid3, 109
nsw74psidA, 110
nswdemo, 111
nswpsid1, 113
obounce, 114
oddbooks, 114
onesamp, 115
onet.permutation, 116
onetPermutation, 117
oneway.plot, 118
onewayPlot, 29, 119
orings, 120
overlap.density (overlapDensity), 121
overlapDensity, 121
ozone, 122
pair65, 123
panel.corr, 124
panelCorr, 124
panelplot, 125
pause, 126
plot.1m, 93, 94, 129-131
plotSampDist, 127
plotSimDiags, 93, 94, 129, 131
plotSimScat, 131
poissonsim, 132
possum, 133
possumsites, 135
postscript, 73
powerplot, 136
poxetc, 137
press, 137
primates, 138
progression, 139
psid1, 112, 140
psid2, 112, 141
psid3, 112, 142
qreference, 143
races2000, 144
rainforest, 145
rareplants, 146
rice, 146
rockArt, 148
roller, 166
sampdist, 167
science, 168
seedrates, 170
show. colors, 171
simulateLinear, 172
simulateSampDist, 172
socsupport, 174
softbacks, 175
sorption, 176
SP500close, 177
SP500W90, 177
spam7, 178
stVincent, 179
sugar, 179
tinting, 180
tomato, 181
toycars, 182
two65, 183
twot. permutation, 183
twotPermutation, 184
vif, 185
vince111b, 186
vlt, 187
wages1833, 188
whoops, 188
worldRecords, 189
zzDAAGxdb, 190

[^0]: http://www.stat.colostate.edu/~meyer/airbags.htmlftp://ftp.nhtsa.dot.gov/nass/\Click, e.g., on 1997 and then on SASformats. See also http: //www.maths.anu.edu.au/~johnm/datasets/ airbags

