Package 'CrossScreening'

April 21, 2017

Type Package

Title Cross-Screening in Observational Studies that Test Many Hypotheses

Version 0.1.1

Date 2017-04-20

Description Cross-screening is a new method that uses both random halves of the sample to screen and test many hypotheses. It generally improves statistical power in observational studies when many hypotheses are tested simultaneously. References: 1. Qingyuan Zhao, Dylan S Small, and Paul R Rosenbaum. Cross-screening in observational studies that test many hypotheses. arXiv:1703.02078>. 2. Qingyuan Zhao. On sensitivity value of pair-matched observational studies. arXiv:1702.03442>.

Imports stats, parallel, plyr, tables

Suggests knitr, ggplot2

License GPL-2

RoxygenNote 5.0.1

LazyData true

VignetteBuilder knitr

NeedsCompilation no

Author Paul Rosenbaum [aut], Qingyuan Zhao [aut, cre]

Maintainer Qingyuan Zhao <qyzhao@wharton.upenn.edu>

Repository CRAN

Date/Publication 2017-04-21 05:56:52 UTC

R topics documented:

CrossScreening-pa	ıck	ag	e		•					•	 •				•				•	2
bonferroni.fg										•										2
cross.screen																				3
fallback.test											 •									6
kappa2gamma					•		•			•	 •							•	•	7

bonferroni.fg

ead	7
nethotrexate	8
ultrnks	9
hanes.fish	9
hanes.fish.match	0
hanes.log2diff	0
ower.sen	1
ecycle.test	2
en	3
en.ci	4
en.value	5
	_
1'	7

Index

CrossScreening-package

Cross-screening for observational studies

Description

Cross-screening is a new method that uses both random halves of the sample to screen and test many hypotheses. It generally improves statistical power in observational studies when many hypotheses are tested simultaneously.

bonferroni.fg Bonferroni's correction with fixed Γ

Description

Bonferroni's correction with fixed Γ

Usage

```
bonferroni.fg(d, gamma = 1, mm = c(2, 2, 2), two.sided = TRUE)
```

Arguments

d	a matrix of treatment-minus-control differences.
gamma	sensitivity parameter (maximum odds different from a randomized experiment).
mm	test statistic, either a vector of length 3 or a matrix of three rows where each column corresponds to a U-statistic. Default is the (approximate) Wilcoxon's signed rank test.
two.sided	whether a two-sided test should be used. If FALSE, test the one-sided alternative that the center of d is positive.

cross.screen

Details

If mm is a matrix, this function computes a one-sided or two-sided p-value with each statistic (i.e. there is a p-value for every column of d and every column of \$mm\$), then does a Bonferroni correction over all the p-values.

Value

a vector of sensitivity values for each column of d

Author(s)

Qingyuan Zhao

cross.screen Cross-screening

Description

Main functions that implements the cross-screening method in observational studies. cross.screen sorts the hypotheses by their sensitivity values and cross.screen.fg sorts by p-values at a fixed sensitivity Γ .

Usage

```
cross.screen(d1, d2, gamma = 1, mm = c(2, 2, 2), screen.value = c("sen",
  "p"), screen.method = c("threshold", "least.sensitive"),
  alpha.screen = 0.05, gamma.screen = gamma, least.sensitive = 2,
  two.sided = TRUE)
```

```
cross.screen.fg(d1, d2, gamma = 1, mm = c(2, 2, 2),
screen.method = c("threshold", "least.sensitive"), alpha.screen = 0.05,
gamma.screen = gamma, least.sensitive = 2, two.sided = TRUE)
```

Arguments

d1	screen/test sample (treatment-minus-control differences), can be a matrix (rows are observations, columns are hypotheses)
d2	test/screen sample, can be a matrix
gamma	sensitivity parameter (maximum odds different from a randomized experiment)
mm	a vector of matrix. If matrix, adaptively choose statistic. NULL means Wilcoxon's signed rank statistic.
<pre>screen.value</pre>	either "sen" (using sensitivity value) or "p" (using p-value).
screen.method	either keep all hypotheses significant at gamma.screen (option "threshold") or keep the least sensitive hypotheses (option "least.sensitive").
alpha.screen	significance level used in screening.

ne number of least sensitive hypotheses to keep
TRUE, automatically select the sign to test; if FALSE, test the one-sided al- ernative that the center of d is positive.

Value

cross.screen returns a list

s1.kappa kappa values used to screen the hypotheses calculated using the first sample

s1.stat test statistics chosen using the first sample, if mm has more than 1 column

s1.side signs of alternative hypotheses chosen using the first sample

sl.order order of the hypotheses by sl.kappa if sl.kappa is above the threshold gamma.screen

p1 p-values computed using the first sample at sensitivity gamma

s2.kappa kappa values used to screen the hypotheses calculated using the second sample

s2.stat test statistics chosen using the second sample, if mm has more than 1 column

s2.side signs of alternative hypotheses chosen using the second sample

s2.order order of the hypotheses by s1.kappa if s1.kappa is above the threshold gamma.screen

p2 p-values computed using the second sample at sensitivity gamma

p Bonferroni adjusted p-values at sensitivity gamma computed using p1 and p2 (they can be directly used to control FWER)

cross.screen.fg returns a list

s1.p p-values used to screen the hypotheses calculated using the first sample

s1.stat test statistics chosen using the first sample, if mm has more than 1 column

s1.side signs of alternative hypotheses chosen using the first sample

s1.order order of the hypotheses by s1.p if s1.p is below the threshold alpha.screen

p1 p-values computed using the first sample at sensitivity gamma

s2.p p-values used to screen the hypotheses calculated using the second sample

s2.stat test statistics chosen using the second sample, if mm has more than 1 column

s2.side signs of alternative hypotheses chosen using the second sample

s2.order order of the hypotheses by s2.p if s2.p is above the threshold alpha.screen

- p2 p-values computed using the second sample at sensitivity gamma
- **p** Bonferroni adjusted p-values at sensitivity gamma computed using p1 and p2 (they can be directly used to control FWER)

Functions

• cross.screen.fg: Cross-screening with fixed Γ

cross.screen

Author(s)

Qingyuan Zhao

References

Qingyuan Zhao, Dylan S. Small, Paul R. Rosenbaum. Cross-screening in observational studies that test many hypotheses. arXiv preprint arXiv:1703.02078

Examples

```
n <- 100
p <- 20
d <- matrix(rnorm(n * p), n, p)</pre>
d[, 1] <- d[, 1] + 2
d1 <- d[1:(n/2), ]
d2 <- d[(n/2+1):n, ]
cross.screen(d1, d2,
              gamma = 9,
              gamma.screen = 1.25)$p
## One can run the hidden function CrossScreening:::table5(no.sims = 1)
## to generate Table 5 in the paper.
## The following code generates Table 1 in the paper.
require(CrossScreening)
data(nhanes.fish)
data(nhanes.fish.match)
data <- nhanes.fish</pre>
match <- nhanes.fish.match</pre>
outcomes <- grep("^o\\.", names(data))</pre>
log2diff <- function(y1, y2) {</pre>
    if (min(c(y1, y2)) == 0) {
        y1 <- y1 + 1
        y2 <- y2 + 1
    }
    log2(y1) - log2(y2)
}
d <- sapply(outcomes, function(j) log2diff(data[match$treated, j], data[match$control, j]))</pre>
set.seed(11)
split <- sample(1:nrow(d), nrow(d) / 2, replace = FALSE)</pre>
d1 <- d[split, ]
d2 <- d[-split, ]
mm <- matrix(c(2, 2, 2, 8, 5, 8), ncol = 2)</pre>
data.frame(outcome = names(data)[outcomes],
           p.value =
               cross.screen(d1, d2,
```

fallback.test

```
gamma = 9,
screen.value = "p",
screen.method = "least.sensitive",
mm = mm)$p)
```

fallback.test

Fallback procedure for multiple testing

Description

Fallback procedure for multiple testing

Usage

fallback.test(p, alpha = 0.05, spread = 1)

Arguments

р	a vector of p-values
alpha	significance level
spread	the way to spread alpha, either a vector of the same length as p or a single number to indicate equal spread in the first spread hypotheses.

Value

the rejected hypotheses (TRUE means reject, FALSE means accept)

Author(s)

Qingyuan Zhao

References

Brian L. Wiens. A fixed sequence Bonferroni procedure for testing multiple endpoints. Pharmaceutical Statistics, 2(3), 211–215, 2003.

kappa2gamma

Description

Transform sensitivity parameter in different scales

Usage

```
kappa2gamma(kappa)
```

gamma2kappa(gamma)

Arguments

kappa	$\kappa = \gamma/(1+\gamma)$
gamma	the odds of treatment of two matched units can differ at most by a factor of
	gamma

Functions

- gamma2kappa: Transform a sensitivity parameter from γ scale to κ scale

lead Lead in children

Description

Morton et al. (1982) compared the levels of lead in the blo od of 33 children whose fathers worked in afactory where lead was used in the manufacture of batteries to 33 lead levels in matched control child ren of the same agefrom the same neighborhood. The variables are as follows:

Usage

data(lead)

Format

A data.frame.

Details

control lead levels (ug/dl)

level father's potential exposure

hyg hygine of father employed in the lead industry

References

Morton, D. E., Saah, A. J., Silberg, S. L., Owens, W. L., ROBERTS, M. A., & Saah, M. D. (1982). Lead absorption in children of employees in a lead-related industry. American Journal of Epidemiology, 115(4), 549-555.

methotrexate

Methotrexate workers

Description

Methotrexate is a drug used totreat cancer, but there is concern that it may itself be carcinogenic in healthy individuals who are exposed while either manufacturing or administering the drug. Deng et al. (2005) compared 21 workers engaged in the production of methotrexate to 21 unexp osed controls matched for age, gender, and smoking. The variables are (prefix "w" means exposed and "c" means control)

Mftcr mutant frequency of TCR gene

Mfhrpt mutant frequency of hprt gene

mtl mean tail length

mtm mean tail moment

id identifier

sex sex

age age

smoke smoking

years exposure years

protection protection measures, G for gloves, M for mask, N for none

mask if the protection includes mask

Usage

data(methotrexate)

Format

A data.frame.

References

Deng, H., Zhang, M., He, J., Wu, W., Jin, L., Zheng, W., ... & Wang, B. (2005). Investigating genetic damage in workers occupationally exposed to methotrexate using three genetic end-points. Mutagenesis, 20(5), 351-357.

multrnks

Description

This function modifies the multrnks function in the sensitivitymw package by also providing the exact scores. The scores are also normalized so that the maximum is 1.

Usage

multrnks(rk, mm, score.method = c("approximate", "exact"))

Arguments

rk	a vector of ranks
mm	a vector (m, munder, mover) or a matrix, each column a vector (m, munder, mover) that indicates the U-statistic.s NULL means Wilcoxon's signed rank test.
<pre>score.method</pre>	either approximate score or exact score

Details

Exact and approximate rank scores yield similar bounds on P-values when sample size is large. The exact rank scores involve very large combinatorial coefficiences when the same size is very large, whereas the nearly equivalent approximate scores do not.

Author(s)

Paul Rosenbaum, Qingyuan Zhao

nhanes.fish Health effects of fish

Description

Data from NHANES (2013-2014) with 1107 observations and 87 variables. Variables whose name start with "o." are lab measurements (such as blood mercury) that can be used as outcomes. The demographics and background variables include gender, age, income, indicator for missing income, race, education, indicator for smoked ever, number of cigararttes smoked in the last month. Fish intakes in the last month (in servings) are summed up in the "fish" variable, which is used to create the binary indicator "fish.level".

Usage

data(nhanes.fish)

Format

A data.frame.

nhanes.fish.match Pair matching result

Description

Each row is a matched pair, the first/second entry is the id of low/high fish intake in the nhanes.fish data frame.

Usage

data(nhanes.fish.match)

Format

A data.frame.

nhanes.log2diff	Obtains	treatment-minus-control	differences	in	the	nhanes.fish
	dataset					

Description

Obtains treatment-minus-control differences in the nhanes.fish dataset

Usage

nhanes.log2diff()

Value

a 234 * 46 matrix of the log2 differences

power.sen

Description

Power of sensitivity analysis

Usage

```
power.sen(mu.F = 1/2, sigma.F = sqrt(1/3), d = NULL, mm = c(2, 2, 2),
gamma = 1, alpha = 0.05, I = 100, approx.method = c("changing.alpha",
    "fixed.alpha"), score.method = c("approximate", "exact"))
```

Arguments

mu.F	mean of the signed rank statistic
sigma.F	standard deviation of the signed rank statistic
d	empirical data used to estimate mu.F and sigma.F by jackknife
mm	test statistic, either a vector of length 3 or a matrix of three rows where each column corresponds to a U-statistic. Default is the (approximate) Wilcoxon's signed rank test.
gamma	target sensitivity level
alpha	target significance level
I	sample size
approx.method	which approximation method to use?
score.method	either approximate score or exact score

Details

If approx.method is "fixed.alpha", then the significance level alpha is considered fixed and the corresponding quantile negligible. Otherwise we also use the alpha-quantile in the approximation formula. For more detail, see the reference.

Value

power of the sensitivity analysis, possibly a vector if mm has multiple columns.

References

Qingyuan Zhao. On sensitivity value of pair-matched observational studies. arXiv 1702.03442, https://arxiv.org/abs/1702.03442.

Examples

```
power.sen(d = rnorm(100) + 0.5, I = 200, gamma = 2)
## The following code reproduces an example of power analysis in Zhao (2017)
power.sen(0.76, sqrt(0.26), gamma = 2.5, I = 200)
power.sen(0.76, sqrt(0.26), gamma = 2.5, I = 200, approx.method = "fixed.alpha")
```

recycle.test

Recycling procedure for multiple testing

Description

Recycling procedure for multiple testing

Usage

recycle.test(p, alpha = 0.05)

Arguments

р	a vector of p-values
alpha	significance level

Details

WARNING: only supports recycle the first two tests.

Value

rejected hypotheses

Author(s)

Qingyuan Zhao

Description

This function implements Rosenbaum's sensitivity analysis for pair-matched observational study with general signed score test. It is faster and more flexible than the psens function in the package rbounds.

Usage

```
sen(d, mm = NULL, gamma = 1, alternative = c("greater", "less"),
approx.method = c("normal", "permutation"),
score.method = c("approximate", "exact"), tau = 0, num.perms = 10000)
```

Arguments

d	a vector of treatment-minus-control differences
mm	a vector (m, munder, mover) or a matrix, each column a vector (m, munder, mover) that indicates the U-statistic.s NULL means Wilcoxon's signed rank test.
gamma	a vector of sensitivity parameters (must be $>= 1$).
alternative	report p-value corresponds to the maximum ("upper") or minimum ("lower") bound
approx.method	how to compute the \$p\$-value upper bound? either "normal" approximation or random "permutations".
score.method	either approximate score or exact score
tau	a scalar, null hypothesis is the additive effect is tau (default 0)
num.perms	number of Monte-Carlo simulations used to compute the sensivitiy value, if approx.method is "permutations".

Value

A list

p.value p-values corresponding to each entry of gamma

p.value2 two sided p-values

gamma.hat estimate of design sensitivity

T test statistic

E Means of the test statistic under sensivity gamma

V Variances of the test statistic under sensitivity gamma

eff.size Effect size of T compared to E and V

E.gamma1 Expectation of T under null at Gamma = 1

sen

Author(s)

Paul Rosenbaum, Qingyuan Zhao

References

- Rosenbaum, Paul R. Observational Studies. Springer New York, 2002.
- Rosenbaum, P. R. (2011). A New u-Statistic with Superior Design Sensitivity in Matched Observational Studies. *Biometrics*, 67(3), 1017-1027.

Examples

```
require(CrossScreening)
data(lead)
d.lead <- lead$exposed[-21] - lead$control[-21]
sen(d.lead, gamma = c(1, 2, 3, 4, 5, 6))</pre>
```

```
sen.ci
```

Point estimate and confidence interval for sensitivity analysis

Description

Point estimate and confidence interval for sensitivity analysis

Usage

```
sen.ci(d, mm = c(2, 2, 2), gamma = 1, alpha = 0.05, alpha.up = alpha/2,
alpha.low = alpha/2, score.method = c("approximate", "exact"))
```

Arguments

d	a vector of treatment-minus-control differences
mm	a vector (m, munder, mover) that indicates the U-statistic. Does not support matrix mm in this function.
gamma	a vector of sensitivity parameters (must be $>= 1$).
alpha	significance level for the outer confidence interval
alpha.up	upper-tail probability of the confidence interval
alpha.low	lower-tail probability of the confidence interval
score.method	either approximate score or exact score

Details

See the senmwCI function in the sensitivitymw package.

sen.value

Value

a list

point.estimate An interval of point estimates allowing for a bias of gamma in treatment assignment.

ci An confidence interval allowing for a bias of gamma in treatment assignment.

Author(s)

Qingyuan Zhao

Examples

```
data(lead)
d.lead <- lead$exposed[-21] - lead$control[-21]
sen.ci(d.lead, gamma = c(1, 2), alpha.up = 0, alpha.low = 0.05)</pre>
```

sen.value

Compute sensitivity value

Description

Compute sensitivity value

Usage

```
sen.value(d, alpha = 0.05, mm = c(2, 2, 2), alternative = c("greater",
    "less", "two.sided"), score.method = c("approximate", "exact"))
```

Arguments

d	a vector or matrix of treatment-minus-control differences (each column correponds to a hypothesis)
alpha	significance level
mm	test statistic, either a vector of length 3 or a matrix of three rows where each column corresponds to a U-statistic. Default is the (approximate) Wilcoxon's signed rank test.
alternative	report p-value corresponds to the maximum ("upper") or minimum ("lower") bound
score.method	either approximate score or exact score

Details

The alternative direction is the the center of d is greater than 0.

Value

sensitivity value, i.e. the kappa value such that the p-value becomes just insignificant. If mm is a matrix, then return a vector of sensitivity values corresponding to each column of mm.

Author(s)

Qingyuan Zhao

References

Qingyuan Zhao. On sensitivity value of pair-matched observational studies. arXiv 1702.03442, https://arxiv.org/abs/1702.03442.

Examples

```
d <- rnorm(100) + 1
gamma.star <- kappa2gamma(sen.value(d, alpha = 0.05, mm = matrix(c(2, 2, 2, 8, 5, 8), ncol = 2)))
gamma.star
sen(d, mm = c(2, 2, 2), gamma = gamma.star[1])$p.value # should equal the significance level 0.05</pre>
```

Index

*Topic datasets lead, 7 methotrexate, 8nhanes.fish,9 nhanes.fish.match, 10 bonferroni.fg, 2 cross.screen, 3 CrossScreening-package, 2 fallback.test, 6 gamma2kappa (kappa2gamma), 7 kappa2gamma, 7 lead, 7 methotrexate, 8 multrnks,9 nhanes.fish,9 nhanes.fish.match, 10 $\verb+nhanes.log2diff, 10$ power.sen, 11recycle.test, 12sen, 13 sen.ci, 14 sen.value, 15