
Package ‘CoxBoost’
February 19, 2015

Version 1.4

Title Cox models by likelihood based boosting for a single survival
endpoint or competing risks

Author Harald Binder <binderh@uni-mainz.de>

Maintainer Harald Binder <binderh@uni-mainz.de>

Depends R (>= 2.14.0), survival, Matrix, prodlim

Suggests parallel, snowfall

Description This package provides routines for fitting Cox models by
likelihood based boosting for a single endpoint or in presence
of competing risks

License GPL (>= 2)

NeedsCompilation yes

Repository CRAN

Date/Publication 2013-05-10 10:18:16

R topics documented:
coef.CoxBoost . 2
CoxBoost . 2
cv.CoxBoost . 6
cvcb.control . 9
estimPVal . 10
iCoxBoost . 12
optimCoxBoostPenalty . 15
optimStepSizeFactor . 17
plot.CoxBoost . 19
predict.CoxBoost . 20
predict.iCoxBoost . 22

Index 24

1

2 CoxBoost

coef.CoxBoost Coeffients from CoxBoost fit

Description

Extracts the coefficients from the specified boosting steps of a CoxBoost object fitted by CoxBoost.

Usage

S3 method for class 'CoxBoost'
coef(object,at.step=NULL,scaled=TRUE,...)

Arguments

object fitted CoxBoost object from a CoxBoost call.
at.step scalar or vector of boosting step(s) at which prediction is wanted. If no step is

given, the final boosting step is used.
scaled logical value indicating whether coefficients should be returned scaled to be at

the level of the original covariate values, or unscaled as used internally when
standardize=TRUE is used in the CoxBoost call.

... miscellaneous arguments, none of which is used at the moment.

Value

For a vector of length p (number of covariates) (at.step being a scalar) or a length(at.step) * p
matrix (at.step being a vector).

Author(s)

Harald Binder <binderh@uni-mainz.de>

CoxBoost Fit a Cox model by likelihood based boosting

Description

CoxBoost is used to fit a Cox proportional hazards model by componentwise likelihood based boost-
ing. It is especially suited for models with a large number of predictors and allows for mandatory
covariates with unpenalized parameter estimates.

Usage

CoxBoost(time,status,x,unpen.index=NULL,standardize=TRUE,subset=1:length(time),
weights=NULL,stepno=100,penalty=9*sum(status[subset]==1),
criterion = c("pscore", "score","hpscore","hscore"),
stepsize.factor=1,sf.scheme=c("sigmoid","linear"),pendistmat=NULL,
connected.index=NULL,x.is.01=FALSE,return.score=TRUE,trace=FALSE)

CoxBoost 3

Arguments

time vector of length n specifying the observed times.

status censoring indicator, i.e., vector of length n with entries 0 for censored obser-
vations and 1 for uncensored observations. If this vector contains elements not
equal to 0 or 1, these are taken to indicate events from a competing risk and a
model for the subdistribution hazard with respect to event 1 is fitted (see e.g.
Fine and Gray, 1999; Binder et al. 2009a).

x n * p matrix of covariates.

unpen.index vector of length p.unpen with indices of mandatory covariates, where parameter
estimation should be performed unpenalized.

standardize logical value indicating whether covariates should be standardized for estima-
tion. This does not apply for mandatory covariates, i.e., these are not standard-
ized.

subset a vector specifying a subset of observations to be used in the fitting process.

weights optional vector of length n, for specifying weights for the individual observa-
tions.

penalty penalty value for the update of an individual element of the parameter vector in
each boosting step.

criterion indicates the criterion to be used for selection in each boosting step. "pscore"
corresponds to the penalized score statistics, "score" to the un-penalized score
statistics. Different results will only be seen for un-standardized covariates
("pscore" will result in preferential selection of covariates with larger covari-
ance), or if different penalties are used for different covariates. "hpscore" and
"hscore" correspond to "pscore" and "score". However, a heuristic is used
for evaluating only a subset of covariates in each boosting step, as described in
Binder et al. (2011). This can considerably speed up computation, but may lead
to different results.

stepsize.factor

determines the step-size modification factor by which the natural step size of
boosting steps should be changed after a covariate has been selected in a boost-
ing step. The default (value 1) implies constant penalties, for a value < 1 the
penalty for a covariate is increased after it has been selected in a boosting step,
and for a value > 1 the penalty it is decreased. If pendistmat is given, penalty
updates are only performed for covariates that have at least one connection to
another covariate.

sf.scheme scheme for changing step sizes (via stepsize.factor). "linear" corresponds
to the scheme described in Binder and Schumacher (2009b), "sigmoid" em-
ploys a sigmoid shape.

pendistmat connection matrix with entries ranging between 0 and 1, with entry (i,j) indi-
cating the certainty of the connection between covariates i and j. According to
this information penalty changes due to stepsize.factor < 1 are propagated,
i.e., if entry (i,j) is non-zero, the penalty for covariate j is decreased after it
has been increased for covariate i, after it has been selected in a boosting step.
This matrix either has to have dimension (p - p.unpen) * (p - p.unpen)
or the indicices of the p.connected connected covariates have to be given in

4 CoxBoost

connected.index, in which case the matrix has to have dimension p.connected * p.connected.
Generally, sparse matices from package Matrix can be used to save memory.

connected.index

indices of the p.connected connected covariates, for which pendistmat pro-
vides the connection information for distributing changes in penalties. No over-
lap with unpen.index is allowed. If NULL, and a connection matrix is given, all
covariates are assumed to be connected.

stepno number of boosting steps (m).

x.is.01 logical value indicating whether (the non-mandatory part of) x contains just val-
ues 0 and 1, i.e., binary covariates. If this is the case and indicated by this
argument, computations are much faster.

return.score logical value indicating whether the value of the score statistic (or penalized
score statistic, depending on criterion), as evaluated in each boosting step for
every covariate, should be returned. The corresponding element scoremat can
become very large (and needs much memory) when the number of covariates
and boosting steps is large.

trace logical value indicating whether progress in estimation should be indicated by
printing the name of the covariate updated.

Details

In contrast to gradient boosting (implemented e.g. in the glmboost routine in the R package mboost,
using the CoxPH loss function), CoxBoost is not based on gradients of loss functions, but adapts
the offset-based boosting approach from Tutz and Binder (2007) for estimating Cox proportional
hazards models. In each boosting step the previous boosting steps are incorporated as an offset
in penalized partial likelihood estimation, which is employed for obtain an update for one single
parameter, i.e., one covariate, in every boosting step. This results in sparse fits similar to Lasso-like
approaches, with many estimated coefficients being zero. The main model complexity parameter,
which has to be selected (e.g. by cross-validation using cv.CoxBoost), is the number of boosting
steps stepno. The penalty parameter penalty can be chosen rather coarsely, either by hand or
using optimCoxBoostPenalty.

The advantage of the offset-based approach compared to gradient boosting is that the penalty struc-
ture is very flexible. In the present implementation this is used for allowing for unpenalized manda-
tory covariates, which receive a very fast coefficient build-up in the course of the boosting steps,
while the other (optional) covariates are subjected to penalization. For example in a microarray set-
ting, the (many) microarray features would be taken to be optional covariates, and the (few) potential
clinical covariates would be taken to be mandatory, by including their indices in unpen.index.

If a group of correlated covariates has influence on the response, e.g. genes from the same pathway,
componentwise boosting will often result in a non-zero estimate for only one member of this group.
To avoid this, information on the connection between covariates can be provided in pendistmat.
If then, in addition, a penalty updating scheme with stepsize.factor < 1 is chosen, connected
covariates are more likely to be chosen in future boosting steps, if a directly connected covariate
has been chosen in an earlier boosting step (see Binder and Schumacher, 2009b).

Value

CoxBoost returns an object of class CoxBoost.

CoxBoost 5

n, p number of observations and number of covariates.

stepno number of boosting steps.

xnames vector of length p containing the names of the covariates. This information is
extracted from x or names following the scheme V1, V2, ...

are used.

coefficients (stepno+1) * p matrix containing the coefficient estimates for the (standard-
ized) optional covariates for boosting steps 0 to stepno. This will typically be a
sparse matrix, built using package Matrix

.

scoremat stepno * p matrix containing the value of the score statistic for each of the
optional covariates before each boosting step.

meanx, sdx vector of mean values and standard deviations used for standardizing the covari-
ates.

unpen.index indices of the mandatory covariates in the original covariate matrix x.

penalty If stepsize.factor != 1, stepno * (p - p.unpen) matrix containing
the penalties used for every boosting step and every penalized covariate, other-
wise a vector containing the unchanged values of the penalty employed in each
boosting step.

time observed times given in the CoxBoost call.

status censoring indicator given in the CoxBoost call.

event.times vector with event times from the data given in the CoxBoost call.
linear.predictors

(stepno+1) * n matrix giving the linear predictor for boosting steps 0 to
stepno and every observation.

Lambda matrix with the Breslow estimate for the cumulative baseline hazard for boosting
steps 0 to stepno for every event time.

logplik partial log-likelihood of the fitted model in the final boosting step.

Author(s)

Written by Harald Binder <binderh@uni-mainz.de>.

References

Binder, H., Benner, A., Bullinger, L., and Schumacher, M. (2013). Tailoring sparse multivari-
able regression techniques for prognostic single-nucleotide polymorphism signatures. Statistics in
Medicine, doi: 10.1002/sim.5490.

Binder, H., Allignol, A., Schumacher, M., and Beyersmann, J. (2009). Boosting for high-dimensional
time-to-event data with competing risks. Bioinformatics, 25:890-896.

Binder, H. and Schumacher, M. (2009). Incorporating pathway information into boosting estimation
of high-dimensional risk prediction models. BMC Bioinformatics. 10:18.

6 cv.CoxBoost

Binder, H. and Schumacher, M. (2008). Allowing for mandatory covariates in boosting estimation
of sparse high-dimensional survival models. BMC Bioinformatics. 9:14.

Tutz, G. and Binder, H. (2007) Boosting ridge regression. Computational Statistics \& Data Analy-
sis, 51(12):6044-6059.

Fine, J. P. and Gray, R. J. (1999). A proportional hazards model for the subdistribution of a com-
peting risk. Journal of the American Statistical Association. 94:496-509.

See Also

predict.CoxBoost, cv.CoxBoost.

Examples

Generate some survival data with 10 informative covariates
n <- 200; p <- 100
beta <- c(rep(1,10),rep(0,p-10))
x <- matrix(rnorm(n*p),n,p)
real.time <- -(log(runif(n)))/(10*exp(drop(x %*% beta)))
cens.time <- rexp(n,rate=1/10)
status <- ifelse(real.time <= cens.time,1,0)
obs.time <- ifelse(real.time <= cens.time,real.time,cens.time)

Fit a Cox proportional hazards model by CoxBoost

cbfit <- CoxBoost(time=obs.time,status=status,x=x,stepno=100,penalty=100)
summary(cbfit)

... with covariates 1 and 2 being mandatory

cbfit.mand <- CoxBoost(time=obs.time,status=status,x=x,unpen.index=c(1,2),
stepno=100,penalty=100)

summary(cbfit.mand)

cv.CoxBoost Determines the optimal number of boosting steps by cross-validation

Description

Performs a K-fold cross-validation for CoxBoost in search for the optimal number of boosting steps.

Usage

cv.CoxBoost(time,status,x,subset=1:length(time),maxstepno=100,K=10,
type=c("verweij","naive"),

parallel=FALSE,upload.x=TRUE,multicore=FALSE,
folds=NULL,trace=FALSE,...)

cv.CoxBoost 7

Arguments

time vector of length n specifying the observed times.

status censoring indicator, i.e., vector of length n with entries 0 for censored obser-
vations and 1 for uncensored observations. If this vector contains elements not
equal to 0 or 1, these are taken to indicate events from a competing risk and a
model for the subdistribution hazard with respect to event 1 is fitted (see e.g.
Fine and Gray, 1999).

x n * p matrix of covariates.

subset a vector specifying a subset of observations to be used in the fitting process.

maxstepno maximum number of boosting steps to evaluate, i.e, the returned “optimal” num-
ber of boosting steps will be in the range [0,maxstepno].

K number of folds to be used for cross-validation. If K is larger or equal to the
number of non-zero elements in status, leave-one-out cross-validation is per-
formed.

type way of calculating the partial likelihood contribution of the observation in the
hold-out folds: "verweij" uses the more appropriate method described in Ver-
weij and van Houwelingen (1996), "naive" uses the approach where the ob-
servations that are not in the hold-out folds are ignored (often found in other R
packages).

parallel logical value indicating whether computations in the cross-validation folds should
be performed in parallel on a compute cluster, using package snowfall. Paral-
lelization is performed via the package snowfall and the initialization function
of of this package, sfInit, should be called before calling cv.CoxBoost.

multicore indicates whether computations in the cross-validation folds should be performed
in parallel, using package parallel. If TRUE, package parallel is employed
using the default number of cores. A value larger than 1 is taken to be the num-
ber of cores that should be employed.

upload.x logical value indicating whether x should/has to be uploaded to the compute
cluster for parallel computation. Uploading this only once (using sfExport(x)
from library snowfall) can save much time for large data sets.

folds if not NULL, this has to be a list of length K, each element being a vector of indices
of fold elements. Useful for employing the same folds for repeated runs.

trace logical value indicating whether progress in estimation should be indicated by
printing the number of the cross-validation fold and the index of the covariate
updated.

... miscellaneous parameters for the calls to CoxBoost

Value

List with the following components:

mean.logplik vector of length maxstepno+1 with the mean partial log-likelihood for boosting
steps 0 to maxstepno

se.logplik vector with standard error estimates for the mean partial log-likelihood criterion
for each boosting step.

8 cv.CoxBoost

optimal.step optimal boosting step number, i.e., with minimum mean partial log-likelihood.

folds list of length K, where the elements are vectors of the indices of observations in
the respective folds.

Author(s)

Harald Binder <binderh@uni-mainz.de>

References

Verweij, P. J. M. and van Houwelingen, H. C. (1993). Cross-validation in survival analysis. Statis-
tics in Medicine, 12(24):2305-2314.

See Also

CoxBoost, optimCoxBoostPenalty

Examples

Not run:
Generate some survival data with 10 informative covariates
n <- 200; p <- 100
beta <- c(rep(1,10),rep(0,p-10))
x <- matrix(rnorm(n*p),n,p)
real.time <- -(log(runif(n)))/(10*exp(drop(x %*% beta)))
cens.time <- rexp(n,rate=1/10)
status <- ifelse(real.time <= cens.time,1,0)
obs.time <- ifelse(real.time <= cens.time,real.time,cens.time)

10-fold cross-validation

cv.res <- cv.CoxBoost(time=obs.time,status=status,x=x,maxstepno=500,
K=10,type="verweij",penalty=100)

examine mean partial log-likelihood in the course of the boosting steps
plot(cv.res$mean.logplik)

Fit with optimal number of boosting steps

cbfit <- CoxBoost(time=obs.time,status=status,x=x,stepno=cv.res$optimal.step,
penalty=100)

summary(cbfit)

End(Not run)

cvcb.control 9

cvcb.control Control paramters for cross-validation in iCoxBoost

Description

This function allows to set the control parameters for cross-validation to be passed into a call to
iCoxBoost.

Usage

cvcb.control(K=10,type=c("verweij","naive"),parallel=FALSE,
upload.x=TRUE,multicore=FALSE,folds=NULL)

Arguments

K number of folds to be used for cross-validation. If K is larger or equal to the
number of events in the data to be analyzed, leave-one-out cross-validation is
performed.

type way of calculating the partial likelihood contribution of the observation in the
hold-out folds: "verweij" uses the more appropriate method described in Ver-
weij and van Houwelingen (1996), "naive" uses the approach where the ob-
servations that are not in the hold-out folds are ignored (often found in other R
packages).

parallel logical value indicating whether computations in the cross-validation folds should
be performed in parallel on a compute cluster, using package snowfall. Paral-
lelization is performed via the package snowfall and the initialization function
of of this package, sfInit, should be called before calling iCoxBoost.

multicore indicates whether computations in the cross-validation folds should be performed
in parallel, using package parallel. If TRUE, package parallel is employed
using the default number of cores. A value larger than 1 is taken to be the num-
ber of cores that should be employed.

upload.x logical value indicating whether x should/has to be uploaded to the compute
cluster for parallel computation. Uploading this only once (using sfExport(x)
from library snowfall) can save much time for large data sets.

folds if not NULL, this has to be a list of length K, each element being a vector of indices
of fold elements. Useful for employing the same folds for repeated runs.

Value

List with elements corresponding to the call arguments.

Author(s)

Written by Harald Binder <binderh@uni-mainz.de>.

10 estimPVal

References

Verweij, P. J. M. and van Houwelingen, H. C. (1993). Cross-validation in survival analysis. Statis-
tics in Medicine, 12(24):2305-2314.

See Also

iCoxBoost, cv.CoxBoost

estimPVal Estimate p-values for a model fitted by CoxBoost

Description

Performs permutation-based p-value estimation for the optional covariates in a fit from CoxBoost.

Usage

estimPVal(object,x,permute.n=10,per.covariate=FALSE,parallel=FALSE,
multicore=FALSE,trace=FALSE,...)

Arguments

object fit object obtained from CoxBoost.

x n * p matrix of covariates. This has to be the same that was used in the call to
CoxBoost.

permute.n number of permutations employed for obtaining a null distribution.

per.covariate logical value indicating whether a separate null distribution should be considered
for each covariate. A larger number of permutations will be needed if this is
wanted.

parallel logical value indicating whether computations for obtaining a null distribution
via permutation should be performed in parallel on a compute cluster. Paral-
lelization is performed via the package snowfall and the initialization function
of of this package, sfInit, should be called before calling estimPVal.

multicore indicates whether computations in the permuted data sets should be performed
in parallel, using package parallel. If TRUE, package parallel is employed
using the default number of cores. A value larger than 1 is taken to be the
number of cores that should be employed.

trace logical value indicating whether progress in estimation should be indicated by
printing the number of the permutation that is currently being evaluated.

... miscellaneous parameters for the calls to CoxBoost

estimPVal 11

Details

As p-value estimates are based on permutations, random numbers are drawn for determining per-
mutation indices. Therfore, the results depend on the state of the random number generator. This
can be used to explore the variability due to random variation and help to determine an adequate
value for permute.n. A value of 100 should be sufficient, but this can be quite slow. If there is a
considerable number of covariates, e.g., larger than 100, a much smaller number of permutations,
e.g., 10, might already work well. The estimates might also be negatively affected, if only a small
number of boosting steps (say <50) was employed for the original fit.

Value

Vector with p-value estimates, one value for each optional covariate specificed in the original call
to CoxBoost.

Author(s)

Harald Binder <binderh@uni-mainz.de>

References

Binder, H., Porzelius, C. and Schumacher, M. (2009). Rank-based p-values for sparse high-dimensional
risk prediction models fitted by componentwise boosting. FDM-Preprint Nr. 101, University of
Freiburg, Germany.

See Also

CoxBoost

Examples

Not run:
Generate some survival data with 10 informative covariates
n <- 200; p <- 100
beta <- c(rep(1,10),rep(0,p-10))
x <- matrix(rnorm(n*p),n,p)
real.time <- -(log(runif(n)))/(10*exp(drop(x %*% beta)))
cens.time <- rexp(n,rate=1/10)
status <- ifelse(real.time <= cens.time,1,0)
obs.time <- ifelse(real.time <= cens.time,real.time,cens.time)

Fit a Cox proportional hazards model by CoxBoost

cbfit <- CoxBoost(time=obs.time,status=status,x=x,stepno=100,
penalty=100)

estimate p-values

p1 <- estimPVal(cbfit,x,permute.n=10)

get a second vector of estimates for checking how large
random variation is

12 iCoxBoost

p2 <- estimPVal(cbfit,x,permute.n=10)

plot(p1,p2,xlim=c(0,1),ylim=c(0,1),xlab="permute 1",ylab="permute 2")

End(Not run)

iCoxBoost Interface for cross-validation and model fitting using a formula de-
scription

Description

Formula interface for fitting a Cox proportional hazards model by componentwise likelihood based
boosting (via a call to CoxBoost), where cross-validation can be performed automatically for deter-
mining the number of boosting steps (via a call to cv.CoxBoost).

Usage

iCoxBoost(formula,data=NULL,weights=NULL,subset=NULL,mandatory=NULL,
cause=1,standardize=TRUE,stepno=200,
criterion=c("pscore","score","hpscore","hscore"),
nu=0.1,stepsize.factor=1,varlink=NULL,
cv=cvcb.control(),trace=FALSE,...)

Arguments

formula A formula describing the model to be fitted, similar to a call to coxph. The
response must be a survival object, either as returned by Surv or Hist (in a
competing risks application).

data data frame containing the variables described in the formula.

weights optional vector, for specifying weights for the individual observations.

subset a vector specifying a subset of observations to be used in the fitting process.

mandatory vector containing the names of the covariates whose effect is to be estimated
un-regularized.

cause cause of interest in a competing risks setting, when the response is specified by
Hist (see e.g. Fine and Gray, 1999; Binder et al. 2009a).

standardize logical value indicating whether covariates should be standardized for estima-
tion. This does not apply for mandatory covariates, i.e., these are not standard-
ized.

stepno maximum number of boosting steps to be evaluated when determining the num-
ber of boosting steps by cross-validation, otherwise the number of boosting seps
itself.

iCoxBoost 13

criterion indicates the criterion to be used for selection in each boosting step. "pscore"
corresponds to the penalized score statistics, "score" to the un-penalized score
statistics. Different results will only be seen for un-standardized covariates
("pscore" will result in preferential selection of covariates with larger covari-
ance), or if different penalties are used for different covariates. "hpscore" and
"hscore" correspond to "pscore" and "score". However, a heuristic is used
for evaluating only a subset of covariates in each boosting step, as described in
Binder et al. (2011). This can considerably speed up computation, but may lead
to different results.

nu (roughly) the fraction of the partial maximum likelihood estimate used for the
update in each boosting step. This is converted into a penalty for the call to
CoxBoost. Use smaller values, e.g., 0.01 when there is little information in the
data, and larger values, such as 0.1, with much information or when the number
of events is larger than the number of covariates. Note that the default for direct
calls to CoxBoost corresponds to nu=0.1.

stepsize.factor

determines the step-size modification factor by which the natural step size of
boosting steps should be changed after a covariate has been selected in a boost-
ing step. The default (value 1) implies constant nu, for a value < 1 the value
nu for a covariate is decreased after it has been selected in a boosting step, and
for a value > 1 the value nu is increased. If pendistmat is given, updates of nu
are only performed for covariates that have at least one connection to another
covariate.

varlink list for specifying links between covariates, used to re-distribute step sizes when
stepsize.factor != 1. The list needs to contain at least two vectors, the first
containing the name of the source covariates, the second containing the names
of the corresponding target covariates, and a third (optional) vector containing
weights between 0 and 1 (defaulting to 1). If nu is increased/descreased for one
of the source covariates according to stepsize.factor, the nu for the corre-
sponding target covariate is descreased/increased accordingly (multiplied by the
weight). If formula contains interaction terms, als rules for these can be set up,
using variable names such as V1:V2 for the interaction term between covariates
V1 and V2.

cv TRUE, for performing cross-validation, with default parameters, FALSE for not
performing cross-validation, or list containing the parameters for cross-validation,
as obtained from a call to cvcb.control.

trace logical value indicating whether progress in estimation should be indicated by
printing the name of the covariate updated.

... miscellaneous arguments, passed to the call to cv.CoxBoost.

Details

In contrast to gradient boosting (implemented e.g. in the glmboost routine in the R package mboost,
using the CoxPH loss function), CoxBoost is not based on gradients of loss functions, but adapts the
offset-based boosting approach from Tutz and Binder (2007) for estimating Cox proportional haz-
ards models. In each boosting step the previous boosting steps are incorporated as an offset in penal-
ized partial likelihood estimation, which is employed for obtain an update for one single parameter,

14 iCoxBoost

i.e., one covariate, in every boosting step. This results in sparse fits similar to Lasso-like approaches,
with many estimated coefficients being zero. The main model complexity parameter, the number
of boosting steps, is automatically selected by cross-validation using a call to cv.CoxBoost). Note
that this will introduce random variation when repeatedly calling iCoxBoost, i.e. it is advised to
set/save the random number generator state for reproducible results.

The advantage of the offset-based approach compared to gradient boosting is that the penalty struc-
ture is very flexible. In the present implementation this is used for allowing for unpenalized manda-
tory covariates, which receive a very fast coefficient build-up in the course of the boosting steps,
while the other (optional) covariates are subjected to penalization. For example in a microarray
setting, the (many) microarray features would be taken to be optional covariates, and the (few) po-
tential clinical covariates would be taken to be mandatory, by including their names in mandatory.

If a group of correlated covariates has influence on the response, e.g. genes from the same pathway,
componentwise boosting will often result in a non-zero estimate for only one member of this group.
To avoid this, information on the connection between covariates can be provided in varlink. If
then, in addition, a penalty updating scheme with stepsize.factor < 1 is chosen, connected
covariates are more likely to be chosen in future boosting steps, if a directly connected covariate
has been chosen in an earlier boosting step (see Binder and Schumacher, 2009b).

Value

iCoxBoost returns an object of class iCoxBoost, which also has class CoxBoost. In addition to the
elements from CoxBoost it has the following elements:

call, formula, terms

call, formula and terms from the formula interface.

cause cause of interest.

cv.res result from cv.CoxBoost, if cross-validation has been performed.

Author(s)

Written by Harald Binder <binderh@uni-mainz.de>.

References

Binder, H., Benner, A., Bullinger, L., and Schumacher, M. (2013). Tailoring sparse multivari-
able regression techniques for prognostic single-nucleotide polymorphism signatures. Statistics in
Medicine, doi: 10.1002/sim.5490.

Binder, H., Allignol, A., Schumacher, M., and Beyersmann, J. (2009). Boosting for high-dimensional
time-to-event data with competing risks. Bioinformatics, 25:890-896.

Binder, H. and Schumacher, M. (2009). Incorporating pathway information into boosting estimation
of high-dimensional risk prediction models. BMC Bioinformatics. 10:18.

Binder, H. and Schumacher, M. (2008). Allowing for mandatory covariates in boosting estimation
of sparse high-dimensional survival models. BMC Bioinformatics. 9:14.

Tutz, G. and Binder, H. (2007) Boosting ridge regression. Computational Statistics \& Data Analy-
sis, 51(12):6044-6059.

Fine, J. P. and Gray, R. J. (1999). A proportional hazards model for the subdistribution of a com-
peting risk. Journal of the American Statistical Association. 94:496-509.

optimCoxBoostPenalty 15

See Also

predict.iCoxBoost, CoxBoost, cv.CoxBoost.

Examples

Generate some survival data with 10 informative covariates
n <- 200; p <- 100
beta <- c(rep(1,2),rep(0,p-2))
x <- matrix(rnorm(n*p),n,p)
actual.data <- as.data.frame(x)
real.time <- -(log(runif(n)))/(10*exp(drop(x %*% beta)))
cens.time <- rexp(n,rate=1/10)
actual.data$status <- ifelse(real.time <= cens.time,1,0)
actual.data$time <- ifelse(real.time <= cens.time,real.time,cens.time)

Fit a Cox proportional hazards model by iCoxBoost

cbfit <- iCoxBoost(Surv(time,status) ~ .,data=actual.data)
summary(cbfit)
plot(cbfit)

... with covariates 1 and 2 being mandatory

cbfit.mand <- iCoxBoost(Surv(time,status) ~ .,data=actual.data,mandatory=c("V1"))
summary(cbfit.mand)
plot(cbfit.mand)

optimCoxBoostPenalty Coarse line search for adequate penalty parameter

Description

This routine helps in finding a penalty value that leads to an “optimal” number of boosting steps for
CoxBoost, determined by cross-validation, that is not too small/in a specified range.

Usage

optimCoxBoostPenalty(time,status,x,minstepno=50,maxstepno=200,
start.penalty=9*sum(status==1),iter.max=10,
upper.margin=0.05,parallel=FALSE,
trace=FALSE,...)

Arguments

time vector of length n specifying the observed times.

16 optimCoxBoostPenalty

status censoring indicator, i.e., vector of length n with entries 0 for censored obser-
vations and 1 for uncensored observations. If this vector contains elements not
equal to 0 or 1, these are taken to indicate events from a competing risk and a
model for the subdistribution hazard with respect to event 1 is fitted (see e.g.
Fine and Gray, 1999).

x n * p matrix of covariates.
minstepno, maxstepno

range of boosting steps in which the “optimal” number of boosting steps is
wanted to be.

start.penalty start value for the search for the appropriate penalty.

iter.max maximum number of search iterations.

upper.margin specifies the fraction of maxstepno which is used as an upper margin in which
a cross-validation minimum is not taken to be one. This is necessary because of
random fluctuations of cross-validated partial log-likelihood.

parallel logical value indicating whether computations in the cross-validation folds should
be performed in parallel on a compute cluster. Parallelization is performed via
the package snowfall and the initialization function of of this package, sfInit,
should be called before calling cv.CoxBoost.

trace logical value indicating whether information on progress should be printed.

... miscellaneous parameters for cv.CoxBoost.

Details

The penalty parameter for CoxBoost has to be chosen only very coarsely. In Tutz and Binder (2006)
it is suggested for likelihood based boosting just to make sure, that the optimal number of boosting
steps, according to some criterion such as cross-validation, is larger or equal to 50. With a smaller
number of steps, boosting may become too “greedy” and show sub-optimal performance. This
procedure uses a very coarse line search and so one should specify a rather large range of boosting
steps.

Value

List with element penalty containing the “optimal” penalty and cv.res containing the correspond-
ing result of cv.CoxBoost.

Author(s)

Written by Harald Binder <binderh@uni-mainz.de>.

References

Tutz, G. and Binder, H. (2006) Generalized additive modelling with implicit variable selection by
likelihood based boosting. Biometrics, 62:961-971.

See Also

CoxBoost, cv.CoxBoost

optimStepSizeFactor 17

Examples

Not run:
Generate some survival data with 10 informative covariates
n <- 200; p <- 100
beta <- c(rep(1,10),rep(0,p-10))
x <- matrix(rnorm(n*p),n,p)
real.time <- -(log(runif(n)))/(10*exp(drop(x %*% beta)))
cens.time <- rexp(n,rate=1/10)
status <- ifelse(real.time <= cens.time,1,0)
obs.time <- ifelse(real.time <= cens.time,real.time,cens.time)

determine penalty parameter

optim.res <- optimCoxBoostPenalty(time=obs.time,status=status,x=x,
trace=TRUE,start.penalty=500)

Fit with obtained penalty parameter and optimal number of boosting
steps obtained by cross-validation

cbfit <- CoxBoost(time=obs.time,status=status,x=x,
stepno=optim.res$cv.res$optimal.step,
penalty=optim.res$penalty)

summary(cbfit)

End(Not run)

optimStepSizeFactor Coarse line search for optimum step-size modification factor

Description

This routine helps in finding an optimum step-size modification factor for CoxBoost, i.e., that results
in an optimum in terms of cross-validated partial log-likelihood.

Usage

optimStepSizeFactor(time,status,x,
direction=c("down","up","both"),start.stepsize=0.1,
iter.max=10,constant.cv.res=NULL,
parallel=FALSE,trace=FALSE,...)

Arguments

time vector of length n specifying the observed times.

18 optimStepSizeFactor

status censoring indicator, i.e., vector of length n with entries 0 for censored obser-
vations and 1 for uncensored observations. If this vector contains elements not
equal to 0 or 1, these are taken to indicate events from a competing risk and a
model for the subdistribution hazard with respect to event 1 is fitted (see e.g.
Fine and Gray, 1999).

x n * p matrix of covariates.

direction direction of line search for an optimal step-size modification factor (starting
from value 1).

start.stepsize step size used for the line search. A final step is performed using half this size.

iter.max maximum number of search iterations.
constant.cv.res

result of cv.CoxBoost for stepsize.factor=1, that can be provided for saving
computing time, if it already is available.

parallel logical value indicating whether computations in the cross-validation folds should
be performed in parallel on a compute cluster. Parallelization is performed via
the package snowfall and the initialization function of of this package, sfInit,
should be called before calling cv.CoxBoost.

trace logical value indicating whether information on progress should be printed.

... miscellaneous parameters for cv.CoxBoost.

Details

A coarse line search is performed for finding the best parameter stepsize.factor for CoxBoost.
If an pendistmat argument is provided (which is passed on to CoxBoost), a search for factors
smaller than 1 is sensible (corresponding to direction="down"). If no connection information is
provided, it is reasonable to employ direction="both", for avoiding restrictions without subject
matter knowledge.

Value

List with the following components:

factor.list array with the evaluated step-size modification factors.

critmat matrix with the mean partial log-likelihood for each step-size modification factor
in the course of the boosting steps.

optimal.factor.index

index of the optimal step-size modification factor.

optimal.factor optimal step-size modification factor.

optimal.step optimal boosting step number, i.e., with minimum mean partial log-likelihood,
for step-size modification factor optimal.factor.

Author(s)

Written by Harald Binder <binderh@uni-mainz.de>.

plot.CoxBoost 19

References

Binder, H. and Schumacher, M. (2009). Incorporating pathway information into boosting estimation
of high-dimensional risk prediction models. BMC Bioinformatics. 10:18.

See Also

CoxBoost, cv.CoxBoost

Examples

Not run:
Generate some survival data with 10 informative covariates
n <- 200; p <- 100
beta <- c(rep(1,10),rep(0,p-10))
x <- matrix(rnorm(n*p),n,p)
real.time <- -(log(runif(n)))/(10*exp(drop(x %*% beta)))
cens.time <- rexp(n,rate=1/10)
status <- ifelse(real.time <= cens.time,1,0)
obs.time <- ifelse(real.time <= cens.time,real.time,cens.time)

Determine step-size modification factor. As there is no connection matrix,
perform search into both directions

optim.res <- optimStepSizeFactor(direction="both",
time=obs.time,status=status,x=x,
trace=TRUE)

Fit with obtained step-size modification parameter and optimal number of boosting
steps obtained by cross-validation

cbfit <- CoxBoost(time=obs.time,status=status,x=x,
stepno=optim.res$optimal.step,
stepsize.factor=optim.res$optimal.factor)

summary(cbfit)

End(Not run)

plot.CoxBoost Plot coefficient paths from CoxBoost fit

Description

Plots coefficient paths, i.e. the parameter estimates plotted against the boosting steps as obtained
from a CoxBoost object fitted by CoxBoost.

20 predict.CoxBoost

Usage

S3 method for class 'CoxBoost'
plot(x,line.col="dark grey",label.cex=0.6,xlab=NULL,ylab=NULL,xlim=NULL,ylim=NULL,...)

Arguments

x fitted CoxBoost object from a CoxBoost call.

line.col color of the lines of the coefficient path

label.cex scaling factor for the variable labels.

xlab label for the x axis, default label when NULL.

ylab label for the y axis, default label when NULL.

xlim,ylim plotting ranges, default label when NULL.

... miscellaneous arguments, passed to the plot routine.

Value

No value is returned, but a plot is generated.

Author(s)

Harald Binder <binderh@uni-mainz.de>

predict.CoxBoost Predict method for CoxBoost fits

Description

Obtains predictions at specified boosting steps from a CoxBoost object fitted by CoxBoost.

Usage

S3 method for class 'CoxBoost'
predict(object,newdata=NULL,newtime=NULL,newstatus=NULL,

subset=NULL,at.step=NULL,times=NULL,
type=c("lp","logplik","risk","CIF"),...)

Arguments

object fitted CoxBoost object from a CoxBoost call.

newdata n.new * p matrix with new covariate values. If just prediction for the training
data is wanted, it can be omitted.

predict.CoxBoost 21

newtime, newstatus

vectors with observed time and censoring indicator (0 for censoring, 1 for no
censoring, and any other values for competing events in a competing risks set-
ting) for new observations, where prediction is wanted. Only required if pre-
dicted partial log-likelihood is wanted, i.e., if type="logplik". This can also be
omitted when prediction is only wanted for the training data, i.e., newdata=NULL.

subset an optional vector specifying a subset of observations to be used for evaluation.

at.step scalar or vector of boosting step(s) at which prediction is wanted. If type="risk"
is used, only one step is admissible. If no step is given, the final boosting step is
used.

times vector with T time points where prediction is wanted. Only needed for type="risk"

type type of prediction to be returned: "lp" gives the linear predictor, "logplik" the
partial log-likelihood, "risk" the predicted probability of not yet having had
the event at the time points given in times, and "CIF" the predicted cumulative
incidence function, i.e., the predicted probability of having had the event of
interest.

... miscellaneous arguments, none of which is used at the moment.

Value

For type="lp" and type="logplik" a vector of length n.new (at.step being a scalar) or a
n.new * length(at.step) matrix (at.step being a vector) with predictions is returned. For
type="risk" or type="CIF" a n.new * T matrix with predicted probabilities at the specific time
points is returned.

Author(s)

Harald Binder <binderh@uni-mainz.de>

Examples

Generate some survival data with 10 informative covariates
n <- 200; p <- 100
beta <- c(rep(1,10),rep(0,p-10))
x <- matrix(rnorm(n*p),n,p)
real.time <- -(log(runif(n)))/(10*exp(drop(x %*% beta)))
cens.time <- rexp(n,rate=1/10)
status <- ifelse(real.time <= cens.time,1,0)
obs.time <- ifelse(real.time <= cens.time,real.time,cens.time)

define training and test set

train.index <- 1:100
test.index <- 101:200

Fit CoxBoost to the training data

cbfit <- CoxBoost(time=obs.time[train.index],status=status[train.index],
x=x[train.index,],stepno=300,penalty=100)

22 predict.iCoxBoost

mean partial log-likelihood for test set in every boosting step

step.logplik <- predict(cbfit,newdata=x[test.index,],
newtime=obs.time[test.index],
newstatus=status[test.index],
at.step=0:300,type="logplik")

plot(step.logplik)

names of covariates with non-zero coefficients at boosting step
with maximal test set partial log-likelihood

print(cbfit$xnames[cbfit$coefficients[which.max(step.logplik),] != 0])

predict.iCoxBoost Predict method for iCoxBoost fits

Description

Obtains predictions at specified boosting steps from a iCoxBoost object fitted by iCoxBoost.

Usage

S3 method for class 'iCoxBoost'
predict(object,newdata=NULL,

subset=NULL,at.step=NULL,times=NULL,
type=c("lp","logplik","risk","CIF"),...)

Arguments

object fitted CoxBoost object from a CoxBoost call.
newdata data frame with new covariate values (for n.new observations). If just prediction

for the training data is wanted, it can be omitted. If the predictive partial log-
likelihood is wanted (type=logplik), this frame also has to contain the response
information.

subset an optional vector specifying a subset of observations to be used for evaluation.
at.step scalar or vector of boosting step(s) at which prediction is wanted. If type="risk"

is used, only one step is admissible. If no step is given, the final boosting step is
used.

times vector with T time points where prediction is wanted. Only needed for type="risk"
type type of prediction to be returned: "lp" gives the linear predictor, "logplik" the

partial log-likelihood, "risk" the predicted probability of not yet having had
the event at the time points given in times, and "CIF" the predicted cumulative
incidence function, i.e., the predicted probability of having had the event of
interest.

... miscellaneous arguments, none of which is used at the moment.

predict.iCoxBoost 23

Value

For type="lp" and type="logplik" a vector of length n.new (at.step being a scalar) or a
n.new * length(at.step) matrix (at.step being a vector) with predictions is returned. For
type="risk" or type="CIF" a n.new * T matrix with predicted probabilities at the specific time
points is returned.

Author(s)

Harald Binder <binderh@uni-mainz.de>

Examples

n <- 200; p <- 100
beta <- c(rep(1,2),rep(0,p-2))
x <- matrix(rnorm(n*p),n,p)
actual.data <- as.data.frame(x)
real.time <- -(log(runif(n)))/(10*exp(drop(x %*% beta)))
cens.time <- rexp(n,rate=1/10)
actual.data$status <- ifelse(real.time <= cens.time,1,0)
actual.data$time <- ifelse(real.time <= cens.time,real.time,cens.time)

define training and test set

train.index <- 1:100
test.index <- 101:200

Fit a Cox proportional hazards model by iCoxBoost

cbfit <- iCoxBoost(Surv(time,status) ~ .,data=actual.data[train.index,],
stepno=300,cv=FALSE)

mean partial log-likelihood for test set in every boosting step

step.logplik <- predict(cbfit,newdata=actual.data[test.index,],
at.step=0:300,type="logplik")

plot(step.logplik)

names of covariates with non-zero coefficients at boosting step
with maximal test set partial log-likelihood

print(coef(cbfit,at.step=which.max(step.logplik)-1))

Index

∗Topic models
CoxBoost, 2
cv.CoxBoost, 6
cvcb.control, 9
estimPVal, 10
iCoxBoost, 12
optimCoxBoostPenalty, 15
optimStepSizeFactor, 17
predict.CoxBoost, 20
predict.iCoxBoost, 22

∗Topic regression
CoxBoost, 2
cv.CoxBoost, 6
cvcb.control, 9
estimPVal, 10
iCoxBoost, 12
optimCoxBoostPenalty, 15
optimStepSizeFactor, 17
predict.CoxBoost, 20
predict.iCoxBoost, 22

∗Topic smooth
cvcb.control, 9
optimCoxBoostPenalty, 15
optimStepSizeFactor, 17

∗Topic survial
CoxBoost, 2
cv.CoxBoost, 6
estimPVal, 10
iCoxBoost, 12
predict.CoxBoost, 20
predict.iCoxBoost, 22

coef.CoxBoost, 2
CoxBoost, 2, 2, 6–8, 10–12, 14–20, 22
cv.CoxBoost, 4, 6, 6, 10, 12–16, 18, 19
cvcb.control, 9, 13

estimPVal, 10

iCoxBoost, 9, 10, 12, 22

Matrix, 5

optimCoxBoostPenalty, 4, 8, 15
optimStepSizeFactor, 17

plot.CoxBoost, 19
predict.CoxBoost, 6, 20
predict.iCoxBoost, 15, 22

24

	coef.CoxBoost
	CoxBoost
	cv.CoxBoost
	cvcb.control
	estimPVal
	iCoxBoost
	optimCoxBoostPenalty
	optimStepSizeFactor
	plot.CoxBoost
	predict.CoxBoost
	predict.iCoxBoost
	Index

