Package 'Compositional'

July 5, 2020

Type Package

Title Compositional Data Analysis
Version 3.9
URL
Date 2020-07-04
Author Michail Tsagris [aut, cre], Giorgos Athineou [aut], Abdulaziz Alenazi [ctb]
Maintainer Michail Tsagris mtsagris@uoc.gr
Depends R (>= 3.6.0)
Imports doParallel, emplik, FlexDir, foreach, MASS, mda, mixture, parallel, RANN, Rfast, Rfast2, sn, stats
Description Regression, classification, contour plots, hypothesis testing and fitting of distributions for compositional data are some of the functions included. The standard textbook for such data is John Aitchison's (1986) "The statistical analysis of compositional data". Relevant papers include a) Tsagris M.T., Preston S. and Wood A.T.A. (2011) A databased power transformation for compositional data. Fourth International International Workshop on Compositional Data Analysis. b) Tsagris M. (2014). The k-NN algorithm for compositional data: a revised approach with and without zero values present. Journal of Data Science, 12(3):519--534. c) Tsagris M. (2015). A novel, divergence based, regression for compositional data. Proceedings of the 28th Panhellenic Statistics Conference, 15-
18 April 2015, Athens, Greece, 430--444. d) Tsagris M. (2015). Regression analysis with compositional data containing zero values. Chilean Journal of Statistics, 6(2):47--57. e) Tsagris M., Preston S. and Wood A.T.A. (2016). Improved supervised classification for compositional data using the alpha-transformation. Journal of Classification, 33(2):243--261. <doi:10.1007/s00357-
016-9207-5>. f) Tsagris M., Preston S. and Wood A.T.A. (2017). Nonparametric hypothesis testing for equality of means on the simplex. Journal of Statistical Computation and Simulation, 87(2): 406--422. doi:10.1080/00949655.2016.1216554 g) Tsagris M. and Stewart C. (2018). A Dirichlet regression model for compositional data with zeros. Lobachevskii Journal of Mathematics, 39(3): 398-412. doi:10.1134/S1995080218030198. h) Ale-
nazi A. (2019). Regression for compositional data with compositional data as predictor variables with or without zero values. Journal of Data Science, 17(1): 219--
238. doi:10.6339/JDS.201901_17(1).0010. i) Tsagris M. and Stew-
art C. (2020). A folded model for compositional data analysis. Australian and New Zealand Journal of Statistics (to appear). arXiv:1802.07330. j) Tsagris M., Alenazi A. and Stewart C. (2020). The alpha-k-NN regression for compositional data. arXiv:2002.05137. We further include functions for percentages (or proportions).

License GPL (>=2)
 NeedsCompilation no

Repository CRAN

Date/Publication 2020-07-05 18:40:39 UTC

R topics documented:

Compositional-package 4
Aithison's simple zero replacement strategy 5
All pairwise additive log-ratio transformations 6
Beta regression 7
Contour plot of a Dirichlet distribution in $\mathrm{S}^{\wedge} 2$ 8
Contour plot of a Gaussian mixture model in $\mathrm{S}^{\wedge} 2$ 9
Contour plot of the kernel density estimate in $\mathrm{S}^{\wedge} 2$ 10
Contour plot of the normal distribution in $S^{\wedge} 2$ 12
Contour plot of the skew skew-normal distribution in $\mathrm{S}^{\wedge} 2$ 13
Contour plot of the t distribution in $S^{\wedge} 2$ 14
Cross validation for some compositional regression models 15
Cross validation for the alpha-k-NN regression for compositional response data 16
Cross validation for the alpha-k-NN regression with compositional predictor variables 18
Cross validation for the regularised and flexible discriminant analysis with composi- tional data using the alpha-transformation 19
Cross validation for the ridge regression 21
Cross validation for the ridge regression with compositional data as predictor using the alpha-transformation 23
Density of the Dirichlet distribution 24
Density of the Flexible Dirichlet distribution 25
Density values of a Dirichlet distribution 26
Dirichlet random values simulation 28
Dirichlet regression 29
Divergence based regression for compositional data 30
Divergence based regression for compositional data with compositional data in the co- variates side using the alpha-transformation 32
Divergence matrix of compositional data 34
Empirical likelihood for a one sample mean vector hypothesis testing 35
Empirical likelihood hypothesis testing for two mean vectors 36
Estimating location and scatter parameters for compositional data 38
Estimation of the value of alpha in the folded model 39
Estimation of the value of alpha via the profile log-likelihood 40
Exponential empirical likelihood for a one sample mean vector hypothesis testing 42
Exponential empirical likelihood hypothesis testing for two mean vectors 43
Fast estimation of the value of alpha 45
Fitting a Dirichlet distribution 46
Fitting a Dirichlet distribution via Newton-Rapshon 47
Fitting a Flexible Dirichlet distribution 49
Gaussian mixture models for compositional data 50
Generate random folds for cross-validation 52
Helper Frechet mean for compositional data 53
Helper functions for the Kullback-Leibler regression 54
Hotelling's multivariate version of the 1 sample t-test for Euclidean data 56
Hotelling's multivariate version of the 2 sample t-test for Euclidean data 57
Hypothesis testing for two or more compositional mean vectors 58
Inverse of the alpha-transformation 60
James multivariate version of the t-test 61
Kullback-Leibler divergence and Bhattacharyya distance between two Dirichlet distri- butions 63
Log-likelihood ratio test for a Dirichlet mean vector 64
Log-likelihood ratio test for a symmetric Dirichlet distribution 65
Mixture model selection via BIC 66
MLE for the multivarite t distribution 68
MLE of distributions defined in the $(0,1)$ interval 69
MLE of the folded model for a given value of alpha 70
Multivariate analysis of variance 71
Multivariate analysis of variance (James test) 72
Multivariate kernel density estimation 74
Multivariate linear regression 75
Multivariate normal random values simulation on the simplex 76
Multivariate or univariate regression with compositional data in the covariates side using the alpha-transformation 77
Multivariate regression with compositional data 79
Multivariate skew normal random values simulation on the simplex 80
Multivariate t random values simulation on the simplex 81
Non linear least squares regression for compositional data 83
Perturbation operation 84
Power operation 85
Principal component generalised linear models 86
Projection pursuit regression for compositional data 88
Quasi binomial regression for proportions 89
Regression with compositional data using the alpha-transformation 91
Regularised and flexible discriminant analysis for compositional data using the alpha- transformation 92
Regularised discriminant analysis for Euclidean data 94
Ridge regression 96
Ridge regression plot 97
Ridge regression with compositional data in the covariates side using the alpha-transformation 98 98
Ridge regression with the alpha-transformation plot 99
Simulation of compositional data from Gaussian mixture models 101
Simulation of compositional data from the Flexible Dirichlet distribution 102
Simulation of compositional data from the folded normal distribution 103
Spatial median regression 104
Ternary diagram 106
The additive log-ratio transformation and its inverse 107
The alpha-distance 108
The alpha-k-NN regression for compositional response data 109
The alpha-k-NN regression with compositional predictor variables 110
The alpha-transformation 112
The Frechet mean for compositional data 113
The Helmert sub-matrix 114
The k-nearest neighbours using the alpha-distance 115
The k-NN algorithm for compositional data 117
Total variability 119
Tuning of the bandwidth h of the kernel using the maximum likelihood cross validation 120
Tuning of the divergence based regression for compositional data with compositional data in the covariates side using the alpha-transformation 121
Tuning of the k-NN algorithm for compositional data 123
Tuning of the projection pursuit regression for compositional data 125
Tuning the number of PCs in the PCR with compositional data using the alpha-transformation 126
Tuning the parameters of the regularised discriminant analysis 128
Tuning the principal components with GLMs 130
Tuning the value of alpha in the alpha-regression 131
Zero adjusted Dirichlet regression 133
Index 135
Compositional-package Compositional Data Analysis

Description

A collection of functions for compositional data analysis.

Details

Package: Compositional
Type: Package
Version: 3.9
Date: 2020-07-04
License: GPL-2

Maintainers

Michail Tsagris mtsagris@uoc.gr

Note

Acknowledgments:
Michail Tsagris would like to express his acknowledgments to Professor Andy Wood and Dr Simon Preston from the university of Nottingham for being his supervisors during his PhD in compositional data analysis. We would also like to express our acknowledgments to Profesor Kurt Hornik (and also the rest of the R core team) for his help with this package. Manos Papadakis, undergraduate student in the department of computer science, university of Crete, is also acknowledged for his programming tips. Ermanno Affuso from the university of South Alabama suggested that I have a default value in the "mkde"" function. Van Thang Hoang from Hasselt university spotted a bug in the "js.compreg"" function and is greatly acknowledged for that. Claudia Wehrhahn Cortes spotted a bug in the "diri.reg"" function and she is greatly acknowledged for that. Philipp Kynast from Bruker Daltonik GmbH found a mistake in the function "mkde" which is now fixed.

Author(s)

Michail Tsagris mtsagris@uoc.gr, Giorgos Athineou gioathineou@gmail.com and Abdulaziz Alenazi a.alenazi@nbu.edu.sa.

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

```
Aithison's simple zero replacement strategy
    Aithison's simple zero replacement strategy
```


Description

Aithison's simple zero replacement strategy.

Usage

zeroreplace(x, a = 2/3)

Arguments

$x \quad$ A matrix with the compositional data.
a
The replacement value will be "a" times the minimum value observed in the compositional data.

Details

This is the simple zero replacement strategy suggested in Aitchison (1986, pg. 269).

Value

A matrix with the zero replaced compositional data.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

```
perturbation,alfa
```


Examples

```
x <- as.matrix(iris[1:20, 1:4])
x <- x/ rowSums(x)
x[ sample(1:20, 4), sample(1:4, 1) ] <- 0
zeroreplace(x)
```

All pairwise additive log-ratio transformations
All pairwise additive log-ratio transformations

Description

All pairwise additive log-ratio transformations.

Usage

alr.all(x)

Arguments

x
A numerical matrix with the compositional data.

Details

The additive log-ratio transformation with the first component being the commn divisor is applied. Then all the other pairwise log-ratios are computed and added next to each column. For example, divide by the first component, then divide by the second component and so on.

Value

A matrix with all pairwise alr transformed data.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman
\& Hall.

See Also

```
alr,\ link{alfa}
```


Examples

$x<-$ as.matrix(iris[, 2:4])
$x<-x / \operatorname{rowSums}(x)$
$y<-$ alr.all(x)

Beta regression Beta regression

Description

Beta regression.

Usage

beta.reg(y, x, xnew = NULL)

Arguments

y The response variable. It must be a numerical vector with proportions excluding 0 and 1.
x
The indendent variable(s). It can be a vector, a matrix or a dataframe with continuous only variables, a data frame with mixed or only categorical variables.
xnew If you have new values for the predictor variables (dataset) whose response values you want to predict insert them here.

Details

Beta regression is fitted.

Value

A list including:

phi	The estimated precision parameter.
info	A matrix with the estimated regression parameters, their standard errors, Wald statistics and associated p-values.
loglik	The log-likelihood of the regression model. est
The estimated values if xnew is not NULL.	

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr

References

Ferrari S.L.P. and Cribari-Neto F. (2004). Beta Regression for Modelling Rates and Proportions. Journal of Applied Statistics, 31(7): 799-815.

See Also

```
beta.est,prop.reg,diri.reg
```


Examples

```
y <- rbeta(300, 3, 5)
x <- matrix( rnorm(300 * 2), ncol = 2)
beta.reg(y, x)
```

Contour plot of a Dirichlet distribution in $\mathrm{S}^{\wedge} 2$
Contour plot of a Dirichlet distribution in $S^{\wedge} 2$

Description

Contour plot of a Dirichlet distribution in S^{2}.

Usage

diri.contour (a, $\mathrm{n}=100, \mathrm{x}=\mathrm{NULL}$)

Arguments

a
n
x

A vector with three elements corresponding to the 3 (estimated) parameters.
The number of grid points to consider over which the density is calculated.
This is either NULL (no data) or contains a 3 column matrix with compositional data.

Details

The user can plot only the contour lines of a Dirichlet with a given vector of parameters, or can also add the relevant data should he/she wish to.

Value

A ternary diagram with the points and the Dirichlet contour lines.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com

References

Ng Kai Wang, Guo-Liang Tian and Man-Lai Tang (2011). Dirichlet and related distributions: Theory, methods and applications. John Wiley $\backslash \&$ Sons.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman
\& Hall.

See Also

norm. contour, bivt. contour, comp.kerncontour, mixnorm. contour

Examples

x <- as.matrix(iris[, 1:3])
$\mathrm{x}<-\mathrm{x} / \operatorname{rowSums}(\mathrm{x})$
diri.contour $(a=c(3,4,2))$

```
Contour plot of a Gaussian mixture model in S^2
                Contour plot of a Gaussian mixture model in S^2
```


Description

Contour plot of a Gaussian mixture model in S^{2}.

Usage

mixnorm. contour (x, mod)

Arguments

$x \quad$ A matrix with the compositional data.
mod An object containing the output of a mix. compnorm model.

Details

The contour plot of a Gaussian mixture model is plotted. For this you need the data and the fitted model.

Value

A ternary plot with the data and the contour lines of the fitted Gaussian mixture model.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com

References

Ryan P. Browne, Aisha ElSherbiny and Paul D. McNicholas (2015). R package mixture: Mixture Models for Clustering and Classification
Aitchison J. (1986). The statistical analysis of compositional data. Chapman
\& Hall.

See Also

```
mix.compnorm,bic.mixcompnorm,diri.contour
```


Examples

```
## Not run:
x <- as.matrix(iris[, 1:3])
x <- x / rowSums(x)
mod <- mix.compnorm(x, 3, model = "EII")
mixnorm.contour(x, mod)
## End(Not run)
```

Contour plot of the kernel density estimate in $\mathrm{S}^{\wedge} 2$
Contour plot of the kernel density estimate in $S^{\wedge} 2$

Description

Contour plot of the kernel density estimate in S^{2}.

Usage

comp.kerncontour (x, type = "alr", n = 100)

Arguments

X
type
n

A matrix with the compositional data. It has to be a 3 column matrix.
This is either "alr" or "ilr", corresponding to the additive and the isometric logratio transformation respectively.

The number of grid points to consider, over which the density is calculated.

Details

The alr or the ilr transformation are applied to the compositional data. Then, the optimal bandwidth using maximum likelihood cross-validation is chosen. The multivariate normal kernel density is calculated for a grid of points. Those points are the points on the 2-dimensional simplex. Finally the contours are plotted.

Value

A ternary diagram with the points and the kernel contour lines.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com

References

M.P. Wand and M.C. Jones (1995). Kernel smoothing, CrC Press.

Aitchison J. (1986). The statistical analysis of compositional data. Chapman
\& Hall.

See Also

diri.contour, mixnorm. contour, bivt. contour, norm. contour

Examples

```
x <- as.matrix(iris[, 1:3])
x <- x / rowSums(x)
comp.kerncontour(x, type = "alr", n = 20)
comp.kerncontour(x, type = "ilr", n = 20)
```

Contour plot of the normal distribution in $\mathrm{S}^{\wedge} 2$
Contour plot of the normal distribution in $S^{\wedge} 2$

Description

Contour plot of the normal distribution in S^{2}.

Usage

norm. contour(x, type = "alr", n = 100, appear = TRUE)

Arguments

$x \quad$ A matrix with the compositional data. It has to be a 3 column matrix.
type \quad This is either "alr" or "ilr", corresponding to the additive and the isometric logratio transformation respectively.
$\mathrm{n} \quad$ The number of grid points to consider over which the density is calculated.
appear \quad Should the available data appear on the ternary plot (TRUE) or not (FALSE)?

Details

The alr or the ilr transformation is applied to the compositional data at first. Then for a grid of points within the 2-dimensional simplex the bivariate normal density is calculated and the contours are plotted along with the points.

Value

A ternary diagram with the points (if appear = TRUE) and the bivariate normal contour lines.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman
\& Hall.

See Also

```
diri.contour,mixnorm.contour,bivt.contour,skewnorm.contour
```


Examples

$x<-$ as.matrix(iris[, 1:3])
$x<-x / \operatorname{rowSums}(x)$
norm. contour (x)
norm. contour (x, type = "ilr")

Contour plot of the skew skew-normal distribution in $\mathrm{S}^{\wedge} 2$
Contour plot of the skew skew-normal distribution in $S^{\wedge} 2$

Description

Contour plot of the skew skew-normal distribution in S^{2}.

Usage

skewnorm. contour (x, type = "alr", $\mathrm{n}=100$, appear $=$ TRUE)

Arguments

x
type
appear
$\mathrm{n} \quad$ The number of grid points to consider over which the density is calculated.
A matrix with the compositional data. It has to be a 3 column matrix. This is either "alr" or "ilr", corresponding to the additive and the isometric logratio transformation respectively.

Should the available data appear on the ternary plot (TRUE) or not (FALSE)?

Details

The alr or the ilr transformation is applied to the compositional data at first. Then for a grid of points within the 2-dimensional simplex the bivariate skew skew-normal density is calculated and the contours are plotted along with the points.

Value

A ternary diagram with the points (if appear $=T R U E)$ and the bivariate skew skew-normal contour lines.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com

References

Azzalini A. and Valle A. D. (1996). The multivariate skew-skewnormal distribution. Biometrika 83(4):715-726.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman $\backslash \&$ Hall.

See Also

diri.contour, mixnorm. contour, bivt. contour, norm. contour

Examples

```
x <- as.matrix(iris[51:100, 1:3])
x <- x / rowSums(x)
skewnorm.contour(x)
```

Contour plot of the t distribution in $S^{\wedge} 2$
Contour plot of the t distribution in $S^{\wedge} 2$

Description

Contour plot of the t distribution in S^{2}.

Usage

bivt.contour (x, type = "alr", $\mathrm{n}=100$, appear = TRUE)

Arguments

$x \quad$ A matrix with compositional data. It has to be a 3 column matrix.
type This is either "alr" or "ilr", corresponding to the additive and the isometric logratio transformation respectively.
$\mathrm{n} \quad$ The number of grid points to consider over which the density is calculated.
appear \quad Should the available data appear on the ternary plot (TRUE) or not (FALSE)?

Details

The alr or the ilr transformation is applied to the compositional data at first and the location, scatter and degrees of freedom of the bivariate t distribution are computed. Then for a grid of points within the 2-dimensional simplex the bivariate t density is calculated and the contours are plotted along with the points.

Value

A ternary diagram with the points (if appear $=$ TRUE) and the bivariate t contour lines.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman
\& Hall.

See Also

diri.contour, mixnorm. contour, norm. contour, skewnorm. contour

Examples

```
x <- as.matrix( iris[, 1:3] )
x <- x / rowSums(x)
bivt.contour(x)
bivt.contour(x, type = "ilr")
```

Cross validation for some compositional regression models
Cross validation for some compositional regression models

Description

Cross validation for some compositional regression models.

Usage

cv.comp.reg(y, x, type = "comp.reg", nfolds = 10, folds = NULL, seed = FALSE)

Arguments

y A matrix with compsitional data. Zero values are allowed for some regression models.
$x \quad$ The predictor variable(s).
type This can be one of the following: "comp.reg", "robust", "kl.compreg", "js.compreg", "diri.reg" or "zadr".
nfolds The number of folds to be used. This is taken into consideration only if the folds argument is not supplied.
folds If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
seed If seed is TRUE the results will always be the same.

Details

A k-fold cross validation for a compositional regression model is performed.

Value

A list including:
runtime The runtime of the cross-validation procedure.
kl The Kullback-Leibler divergences for all runs.
js The Jensen-Shannon divergences for all runs.
perf The average Kullback-Leibler divergence and average Jensen-Shannon divergence.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

See Also

comp.reg, kl. compreg, compppr.tune, aknnreg. tune

Examples

```
y <- as.matrix( iris[, 1:3] )
y <- y / rowSums(y)
x <- iris[, 4]
mod <- cv.comp.reg(y, x)
```

```
Cross validation for the alpha-k-NN regression for compositional response data
    Cross validation for the \alpha-k-NN regression for compositional response
    data
```


Description

Cross validation for the $\alpha-\mathrm{k}-\mathrm{NN}$ regression for compositional response data.

Usage

aknnreg.tune $y, x, a=\operatorname{seq}(0.1,1, b y=0.1), k=2: 10$, apostasi = "euclidean", nfolds $=10$, folds $=$ NULL, seed $=$ FALSE, $B=1$, rann $=$ FALSE)

Arguments

y
x
a

The response variable, a numerical vector.
A matrix with the available compositional data. Zeros are allowed.
A vector with a grid of values of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If $\alpha=0$ the isometric log-ratio transformation is applied.
k The number of nearest neighbours to consider. It can be a single number or a vector.
apostasi The type of distance to use, either "euclidean" or "manhattan".
nfolds The number of folds. Set to 10 by default.
folds If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
seed If seed is TRUE the results will always be the same.
B If you want to correct for the optimistic bias set this to more than 1, otherwise no bootstrap bias correction takes place. If you have large sample sizes, say 1000 or more, bootstrap bias correction may not be really necessary.
rann If you have large scale datasets and want a faster k-NN search, you can use kdtrees implemented in the R package "RANN". In this case you must set this argument equal to TRUE. Note however, that in this case, the only available distance is by default "euclidean".

Details

A k-fold cross validation for the $\alpha-\mathrm{k}-\mathrm{NN}$ regression for compositional response data is performed.

Value

A list including:
kl The Kullback-Leibler divergence for all combinations of α and k .
js The Jensen-Shannon divergence for all combinations of α and k .
klmin The minimum Kullback-Leibler divergence.
jsmin The minimum Jensen-Shannon divergence.
bc.kl The bootstrap bias corrected minimum Kullback-Leibler divergence.
bs.js The bootstrap bias corrected minimum Jensen-Shannon divergence.
kl.alpha \quad The optimim α that leads to the minimum Kullback-Leibler divergence.
kl.k The optimim k that leads to the minimum Kullback-Leibler divergence.
js.alpha The optimim α that leads to the minimum Jensen-Shannon divergence.
js.k The optimim k that leads to the minimum Jensen-Shannon divergence.
runtime The runtime of the cross-validation procedure.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Michail Tsagris, Abdulaziz Alenazi and Connie Stewart (2020). The alpha-k-NN regression for compositional data. https://arxiv.org/pdf/2002.05137.pdf

See Also

alfa.rda, alfa.fda,rda.tune

Examples

```
y <- as.matrix( iris[, 1:3] )
y <- y / rowSums(y)
x <- iris[, 4]
mod <- aknnreg.tune(y, x, a = c(0.4, 0.6), k = 2:4, nfolds = 5)
```

Cross validation for the alpha-k-NN regression with compositional predictor variables
Cross validation for the $\alpha-k$-NN regression with compositional predic-
tor variables

Description

Cross validation for the $\alpha-\mathrm{k}-\mathrm{NN}$ regression with compositional predictor variables.

Usage

alfaknnreg.tune $(y, x, a=\operatorname{seq}(-1,1, b y=0.1), k=2: 10, n f o l d s=10$, apostasi $=$ "euclidean", method $=$ "average", folds = NULL, seed $=$ FALSE, graph $=$ FALSE $)$

Arguments

$y \quad$ The response variable, a numerical vector.
$x \quad$ A matrix with the available compositional data. Zeros are allowed.
a
k
nfolds The number of folds. Set to 10 by default.
apostasi The type of distance to use, either "euclidean" or "manhattan".
method If you want to take the average of the reponses of the k closest observations, type "average". For the median, type "median" and for the harmonic mean, type "harmonic".
folds If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
seed If seed is TRUE the results will always be the same.
graph If graph is TRUE (default value) a filled contour plot will appear.

Cross validation for the regularised and flexible discriminant analysis with compositional data using the alpha-transformation19

Details

A k-fold cross validation for the $\alpha-\mathrm{k}-\mathrm{NN}$ regression for compositional response data is performed.

Value

A list including:
mspe The mean square error of prediction.
performance The minimum mean square error of prediction.
opt_a The optimal value of α.
opt_k The optimal value of k.
runtime The runtime of the cross-validation procedure.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Michail Tsagris, Abdulaziz Alenazi and Connie Stewart (2020). The alpha-k-NN- regression for compositional data. https://arxiv.org/pdf/2002.05137.pdf

See Also

alfa.rda, alfa.fda, rda.tune

Examples

library(MASS)
x <- as.matrix(fgl[, 2:9])
$\mathrm{x}<-\mathrm{x} / \operatorname{rowSums}(\mathrm{x})$
$y<-\operatorname{fgl[}, 1]$
$\bmod <-$ alfaknnreg.tune $(y, x, a=\operatorname{seq}(0.2,0.4$, by $=0.1), k=2: 4$, nfolds = 5)

Cross validation for the regularised and flexible discriminant analysis with compositional data using Cross validation for the regularised and flexible discriminant analysis with compositional data using the α-transformation

Description

Cross validation for the regularised and flexible discriminant analysis with compositional data using the α-transformation.

20Cross validation for the regularised and flexible discriminant analysis with compositional data using the alpha-transformation

Usage

```
alfarda.tune(x, ina, a = seq(-1, 1, by = 0.1), nfolds = 10,
gam = seq(0, 1, by = 0.1), del = seq(0, 1, by = 0.1),
ncores = 1, folds = NULL, stratified = TRUE, seed = FALSE)
alfafda.tune(x, ina, a = seq(-1, 1, by = 0.1), nfolds = 10,
folds = NULL, stratified = TRUE, seed = FALSE, graph = FALSE)
```


Arguments

x	
ina	A matrix with the available compositional data. Zeros are allowed.
a	A group indicator variable for the avaiable data. A vector with a grid of values of the power transformation, it has to be between -1 and 1. If zero values are present it has to be greater than 0. If $\alpha=0$ the isometric log-ratio transformation is applied. The number of folds. Set to 10 by default.
nfolds	A vector of values between 0 and 1. It is the weight of the pooled covariance and the diagonal matrix.
gam	A vector of values between 0 and 1. It is the weight of the LDA and QDA. The number of cores to use. If it is more than 1 parallel computing is performed. It is advisable to use it if you have many observations and or many variables, otherwise it will slow down th process.
ncores	If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
folds	Do you want the folds to be created in a stratified way? TRUE or FALSE.
stratified	If seed is TRUE the results will always be the same.
seed	If graph is TRUE (default value) a filled contour plot will appear.
graph	

Details

A k-fold cross validation is performed.

Value

For the alfa.rda a list including:

res	The estimated optimal rate and the best values of $\alpha, g a m m a$ and delta.
percent	For the best value of α the averaged over all folds best prates of correct clas- sification. It is a matrix, where rows correspond to the γ values and columns correspond to δ values.
se	The estimated standard errors of the "percent" matrix.
runtime	The runtime of the cross-validation procedure.

For the alfa.fda a list including:
The performance of the fda in each fold for each value of α.
performance \quad The average performance for each value of α.
opt_a The optimal value of α.
runtime The runtime of the cross-validation procedure.

Author(s)

Michail Tsagris
R implementation and documentation: Giorgos Athineou < gioathineou@gmail.com> and Michail Tsagris mtsagris@uoc.gr

References

Friedman Jerome, Trevor Hastie and Robert Tibshirani (2009). The elements of statistical learning, 2nd edition. Springer, Berlin
Tsagris M.T., Preston S. and Wood A.T.A. (2016). Improved classification for compositional data using the α-transformation. Jounal of Classification, 33(2):243-261.
Hastie, Tibshirani and Buja (1994). Flexible Disriminant Analysis by Optimal Scoring. Journal of the American Statistical Association, 89(428):1255-1270.

See Also

```
alfa.rda,alfa.fda,rda.tune
```


Examples

```
library(MASS)
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
ina <- fgl[, 10]
moda <- alfarda.tune(x, ina, a = seq(0.7, 1, by = 0.1), nfolds = 10,
gam = seq(0.1, 0.3, by = 0.1), del = seq(0.1, 0.3, by = 0.1) )
```

Cross validation for the ridge regression
Cross validation for the ridge regression

Description

Cross validation for the ridge regression is performed. There is an option for the GCV criterion which is automatic.

Usage

ridge.tune(y, x, nfolds = 10, lambda $=\operatorname{seq}(0,2$, by $=0.1)$, folds $=$ NULL, ncores = 1, seed $=$ FALSE, graph $=$ FALSE)

Arguments

y
A numeric vector containing the values of the target variable. If the values are proportions or percentages, i.e. strictly within 0 and 1 they are mapped into R using the logit transformation.
x
A numeric matrix containing the variables.
nfolds The number of folds in the cross validation.
lambda A vector with the a grid of values of λ to be used.
folds If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
ncores The number of cores to use. If it is more than 1 parallel computing is performed.
seed If seed is TRUE the results will always be the same.
graph If graph is set to TRUE the performances for each fold as a function of the λ values will appear.

Details

A k-fold cross validation is performed. This function is used by alfaridge.tune.

Value

A list including:
$\mathrm{msp} \quad$ The performance of the ridge regression for every fold.
mspe \quad The values of the mean prediction error for each value of λ.
lambda The value of λ which corresponds to the minimum MSPE.
performance The minimum MSPE.
runtime The time required by the cross-validation procedure.

Author(s)

Michail Tsagris
R implementation and documentation: Giorgos Athineou gioathineou@gmail.com and Michail Tsagris mtsagris@uoc.gr

References

Hoerl A.E. and R.W. Kennard (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1):55-67.

Brown P. J. (1994). Measurement, Regression and Calibration. Oxford Science Publications.

See Also

ridge.reg, alfaridge.tune

Examples

```
y <- as.vector(iris[, 1])
x <- as.matrix(iris[, 2:4])
ridge.tune( y, x, nfolds = 10, lambda = seq(0, 2, by = 0.1), graph = TRUE )
```

```
Cross validation for the ridge regression with compositional data as predictor using the alpha-transf
    Cross validation for the ridge regression with compositional data as
    predictor using the \alpha-transformation
```


Description

Cross validation for the ridge regression is performed. There is an option for the GCV criterion which is automatic. The predictor variables are compositional data and the α-transformation is applied first.

Usage

alfaridge.tune $(y, x, n f o l d s=10, a=\operatorname{seq}(-1,1$, by $=0.1)$, lambda $=\operatorname{seq}(0,2$, by $=0.1)$, folds $=$ NULL, ncores $=1$, graph = TRUE, col.nu = 15, seed = FALSE)

Arguments

$y \quad$ A numeric vector containing the values of the target variable. If the values are proportions or percentages, i.e. strictly within 0 and 1 they are mapped into R using the logit transformation.
$x \quad$ A numeric matrix containing the compositional data, i.e. the predictor variables. Zero values are allowed.
nfolds The number of folds in the cross validation.
a A vector with the a grid of values of α to be used.
lambda A vector with the a grid of values of λ to be used.
folds If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
ncores The number of cores to use. If it is more than 1 parallel computing is performed. It is advisable to use it if you have many observations and or many variables, otherwise it will slow down th process.
graph If graph is TRUE (default value) a filled contour plot will appear.
col.nu A number parameter for the filled contour plot, taken into account only if graph is TRUE.
seed If seed is TRUE the results will always be the same.

Details

A k-fold cross validation is performed.

Value
If graph is TRUE a fileld contour a filled contour will appear. A list including:
mspe The MSPE where rows correspond to the α values and the columns to the number of principal components.
best.par \quad The best pair of α and λ.
performance The minimum mean squared error of prediction.
runtime The run time of the cross-validation procedure.

Author(s)

Michail Tsagris
R implementation and documentation: Giorgos Athineou gioathineou@gmail.com and Michail Tsagris mtsagris@uoc.gr

References

Hoerl A.E. and R.W. Kennard (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1):55-67.
Brown P. J. (1994). Measurement, Regression and Calibration. Oxford Science Publications.
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. http://arxiv.org/pdf/1106.1451.pdf

See Also

```
    alfa.ridge,ridge.tune
```


Examples

library (MASS)
y <- as.vector(fgl[, 1])
$x<-$ as.matrix(fgl[, 2:9])
$x<-x / \operatorname{rowSums}(x)$
alfaridge.tune ($y, x, n f o l d s=10, a=\operatorname{seq}(0.1,1$, by $=0.1$),
lambda $=\operatorname{seq}(0,1$, by $=0.1$))

```
Density of the Dirichlet distribution
    Density of the Dirichlet distribution
```


Description

Density of the Dirichlet distribution.

Usage

diri.density(x, a, logged = FALSE)

Arguments

$x \quad$ A vector or a matrix with compositional data.
a A vector of the non-negative alpha parameterss.
logged Do you want the logarithm of the density values? TRUE or FALSE.

Value

The density value(s).

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

See Also

fd.density,rdiri,diri.nr

Examples

```
a <- runif(3, 1, 5)
\(x<-\operatorname{rdiri}(100, a)\)
a <- diri.nr(x)\$param
\(x\) <- diri.density(x, a)
```

```
Density of the Flexible Dirichlet distribution
    Density of the Flexible Dirichlet distribution
```


Description

Density of the Flexible Dirichlet distribution

Usage

fd.density(x, alpha, prob, tau)

Arguments

$x \quad$ A vector or a matrix with compositional data.
alpha A vector of the non-negative alpha parameters.
prob A vector of the clusters' probabilities. It must sum to one.
tau The non-negative scalar tau parameter.

Details

For more information see the references.

Value

The density value(s).

Author(s)

Michail Tsagris ported from the R package FlexDir. mtsagris@uoc.gr.

References

Ongaro, A. and Migliorati, S. (2013) A generalization of the Dirichlet distribution. Journal of Multivariate Analysis, 114, 412-426.

Migliorati, S., Ongaro, A. and Monti, G. S. (2016) A structured Dirichlet mixture model for compositional data: inferential and applicative issues. Statistics and Computing, 1-21.

See Also

fd.est,rfd

Examples

```
alpha <- c(12, 11, 10)
prob <- c(0.25, 0.25, 0.5)
tau <- 8
x <- rfd(20, alpha, prob, tau)
fd.density(x, alpha, prob, tau)
```


Description

Density values of a Dirichlet distribution.

Usage

ddiri(x, a, logged = TRUE)

Arguments

x
A matrix containing compositional data. This can be a vector or a matrix with the data.
a
A vector of parameters. Its length must be equal to the number of components, or columns of the matrix with the compositional data and all values must be greater than zero.
logged A boolean variable specifying whether the logarithm of the density values to be returned. It is set to TRUE by default.

Details

The density of the Dirichlet distribution for a vector or a matrix of compositional data is returned.

Value

A vector with the density values.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com

References

Ng Kai Wang, Guo-Liang Tian and Man-Lai Tang (2011). Dirichlet and related distributions: Theory, methods and applications. John Wiley
\& Sons.

See Also

```
diri.nr,diri.est,diri.contour,rdiri
```


Examples

```
x <- rdiri( 100, c(5, 7, 4, 8, 10, 6, 4) )
a <- diri.est(x)
f <- ddiri(x, a$param)
sum(f)
a
```

Dirichlet random values simulation
Dirichlet random values simulation

Description

Dirichlet random values simulation.

Usage

rdiri(n, a)

Arguments

n
a

The sample size, a numerical value.
A numerical vector with the parameter values.

Details

The algorithm is straightforward, for each vector, independent gamma values are generated and then divided by their total sum.

Value

A matrix with the simulated data.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com

References

Ng Kai Wang, Guo-Liang Tian and Man-Lai Tang (2011). Dirichlet and related distributions: Theory, methods and applications. John Wiley
\& Sons.

Aitchison J. (1986). The statistical analysis of compositional data. Chapman
\& Hall.

See Also

diri.est, diri.nr,diri.contour

Examples

```
x <- rdiri( 100, c(5, 7, 1, 3, 10, 2, 4) )
diri.est(x)
```

Dirichlet regression Dirichlet regression

Description

Dirichlet regression.

Usage

diri.reg(y, x, plot $=$ TRUE, x new $=$ NULL)
diri.reg2(y, x, xnew $=$ NULL)

Arguments

y A matrix with the compositional data (dependent variable). Zero values are not allowed.
x
The predictor variable(s), they can be either continuous or categorical or both.
plot A boolean variable specifying whether to plot the leverage values of the observations or not. This is taken into account only when xnew = NULL.
xnew If you have new data use it, otherwise leave it NULL.

Details

A Dirichlet distribution is assumed for the regression. This involves numerical optimization. The function "diri.reg2" allows for the covariates to be linked with the precision parameter ϕ via the exponential link function $\phi=e^{x * b}$.

Value

A list including:
runtime The time required by the regression.
loglik The value of the log-likelihood.
phi The precision parameter. If covariates are linked with it (function "diri.reg2"), this will be a vector.
phipar The coefficients of the phi parameter if it is linked to the covariates.
std.phi The standard errors of the coefficients of the phi parameter is it linked to the covariates.
log.phi The logarithm of the precision parameter.
std.logphi The standard error of the logarithm of the precision parameter.
be
The beta coefficients.
seb
The standard error of the beta coefficients.

```
sigma Th covariance matrix of the regression parameters (for the mean vector and the phi parameter) in the function "diri.reg2".
lev The leverage values.
est For the "diri.reg" this contains the fitted or the predicted values (if xnew is not NULL). For the "diri.reg2" if xnew is NULL, this is also NULL.
```


Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com

References

Maier, Marco J. (2014) DirichletReg: Dirichlet Regression for Compositional Data in R. Research Report Series/Department of Statistics and Mathematics, 125. WU Vienna University of Economics and Business, Vienna. http://epub.wu.ac.at/4077/1/Report125.pdf

Gueorguieva, Ralitza, Robert Rosenheck, and Daniel Zelterman (2008). Dirichlet component regression and its applications to psychiatric data. Computational statistics
\& data analysis 52(12): 5344-5355.

See Also

js.compreg,kl.compreg,ols.compreg, comp.reg, alfa.reg

Examples

```
x <- as.vector(iris[, 4])
y <- as.matrix(iris[, 1:3])
y <- y / rowSums(y)
mod1 <- diri.reg(y, x)
mod2 <-diri.reg2(y, x)
mod3 <- comp.reg(y, x)
```

Divergence based regression for compositional data
Divergence based regression for compositional data

Description

Regression for compositional data based on the Kullback-Leibler the Jensen-Shannon divergence and the symmetric Kullback-Leibler divergence.

Usage

kl.compreg(y, $x, B=1$, ncores $=1$, x new $=$ NULL, tol $=1 e-07$, maxiters $=50$)
js.compreg(y, x, B = 1, ncores = 1, xnew = NULL)
symkl.compreg(y, x, B = 1, ncores = 1, xnew = NULL)

Arguments

y
x
B
ncores If ncores is 2 or more parallel computing is performed. This is to be used for the case of bootstrap. If $\mathrm{B}=1$, this is not taken into consideration.
xnew If you have new data use it, otherwise leave it NULL.
tol The tolerance value to terminate the Newton-Raphson procedure.
maxiters The maximum number of Newton-Raphson iterations.

Details

In the kl.compreg the Kullback-Leibler divergence is adopted as the objective function. The js.compreg uses the Jensen-Shannon divergence and the symkl.compreg uses the symmetric Kullback-Leibler divergence. There is no actual log-likelihood for neither regression.

Value

A list including:
runtime The time required by the regression.
iters The number of iterations required by the Newton-Raphson in the kl.compreg function.
loglik The log-likelihood. This is actually a quasi multinomial regression. This is bascially minus the half deviance, or $-\operatorname{sum}_{i=1}^{n} y_{i} \log y_{i} / \hat{y}_{i}$.
be The beta coefficients.
seb The standard error of the beta coefficients, if bootstrap is chosen, i.e. if B>1.
est The fitted values of xnew if xnew is not NULL.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com

References

Murteira, Jose MR, and Joaquim JS Ramalho 2016. Regression analysis of multivariate fractional data. Econometric Reviews 35(4): 515-552.
Tsagris, Michail (2015). A novel, divergence based, regression for compositional data. Proceedings of the 28th Panhellenic Statistics Conference, 15-18/4/2015, Athens, Greece. https://arxiv.org/pdf/1511.07600.pdf
Endres, D. M. and Schindelin, J. E. (2003). A new metric for probability distributions. Information Theory, IEEE Transactions on 49, 1858-1860.
Osterreicher, F. and Vajda, I. (2003). A new class of metric divergences on probability spaces and its applicability in statistics. Annals of the Institute of Statistical Mathematics 55, 639-653.

See Also

diri.reg, js.compreg,ols.compreg, comp.reg

Examples

```
library(MASS)
x <- as.vector(fgl[, 1])
y <- as.matrix(fgl[, 2:9])
y <- y / rowSums(y)
mod1<- kl.compreg(y, x, B = 1, ncores = 1)
mod2 <- js.compreg(y, x, B = 1, ncores = 1)
```

Divergence based regression for compositional data with compositional data in the covariates side usi Divergence based regression for compositional data with compositional data in the covariates side using the α-transformation

Description

Divergence based regression for compositional data with compositional data in the covariates side using the α-transformation.

Usage

kl.alfapcr (y, x, covar = NULL, a, k, xnew = NULL, B = 1, ncores = 1, tol = 1e-07, maxiters $=50$)

Arguments

y A numerical matrixc with compositional data with or without zeros.
$x \quad$ A matrix with the predictor variables, the compositional data. Zero values are allowed.
covar If you have other covariates as well put themn here.
a
The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If $\alpha=0$ the isometric log-ratio transformation is applied.
k
A number at least equal to 1 . How many principal components to use.
A matrix containing the new compositional data whose response is to be predicted. If you have no new data, leave this NULL as is by default.
B If B is greater than 1 bootstrap estimates of the standard error are returned. If $B=1$, no standard errors are returned.
ncores If ncores is 2 or more parallel computing is performed. This is to be used for the case of bootstrap. If $\mathrm{B}=1$, this is not taken into consideration.
tol The tolerance value to terminate the Newton-Raphson procedure.
maxiters The maximum number of Newton-Raphson iterations.

Divergence based regression for compositional data with compositional data in the covariates side using the alpha-transformation3

Details

The α-transformation is applied to the compositional data first, the first k principal component scores are calcualted and used as predictor variables for the Kullback-Leibler divergence based regression model.

Value
A list including:
runtime The time required by the regression.
iters The number of iterations required by the Newton-Raphson in the kl.compreg function.
loglik The log-likelihood. This is actually a quasi multinomial regression. This is bascially minus the half deviance, or $-\operatorname{sum}_{i=1}^{n} y_{i} \log y_{i} / \hat{y}_{i}$.
be The beta coefficients.
seb The standard error of the beta coefficients, if bootstrap is chosen, i.e. if B >1.
est The fitted values of xnew if xnew is not NULL.

Author(s)

Initial code by Abdulaziz Alenazi. Modifications by Michail Tsagris.
R implementation and documentation: Abdulaziz Alenazi a.alenazi@nbu.edu.sa Michail Tsagris mtsagris@uoc.gr

References

Alenazi A. (2019). Regression for compositional data with compositioanl data as predictor variables with or without zero values. Journal of Data Science, 17(1): 219-238. http://www.jdsonline.com/file_download/688/01+No.10+315+REGRESSION+FOR+COMPOSITIONAL+DATA+WITH+COMPOSITIO

Tsagris M. (2015). Regression analysis with compositional data containing zero values. Chilean Journal of Statistics, 6(2): 47-57. http://arxiv.org/pdf/1508.01913v1.pdf
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. http://arxiv.org/pdf/1106.1451.pdf

See Also

klalfapcr.tune, pcr,glm. pcr, alfapcr.tune

Examples

```
library(MASS)
y <- rdiri(214, runif(4, 1, 3))
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
mod <- alfa.pcr(y = y, x = x, 0.7, 1)
mod
```

```
Divergence matrix of compositional data
                                    Divergence matrix of compositional data
```


Description

Divergence matrix of compositional data.

Usage

divergence(x, type = "kullback_leibler", vector = FALSE)

Arguments

$x \quad$ A matrix with the compositional data.
type This is either "kullback_leibler" (Kullback-Leibler, which computes the symmetric Kullback-Leibler divergence) or "jensen_shannon" (Jensen-Shannon) divergence.
vector For return a vector instead a matrix.

Details

The function produces the distance matrix either using the Kullback-Leibler (distance) or the JensenShannon (metric) divergence. The Kullback-Leibler refers to the symmetric Kullback-Leibler divergence.

Value

if the vector argument is FALSE a symmetric matrix with the divergences, otherwise a vector with the divergences.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr

References

Endres, D. M. and Schindelin, J. E. (2003). A new metric for probability distributions. Information Theory, IEEE Transactions on 49, 1858-1860.
Osterreicher, F. and Vajda, I. (2003). A new class of metric divergences on probability spaces and its applicability in statistics. Annals of the Institute of Statistical Mathematics 55, 639-653.

See Also

```
comp.knn,js.compreg
```


Examples

```
x <- as.matrix(iris[1:20, 1:4])
x <- x / rowSums(x)
divergence(x)
```

Empirical likelihood for a one sample mean vector hypothesis testing
Empirical likelihood for a one sample mean vector hypothesis testing

Description

Empirical likelihood for a one sample mean vector hypothesis testing.

Usage

el.test1 (x, mu, R = 1, ncores = 1, graph = FALSE)

Arguments

$x \quad$ A matrix containing Euclidean data.
$\mathrm{mu} \quad$ The hypothesized mean vector.
$\mathrm{R} \quad$ If R is 1 no bootstrap calibration is performed and the classical p -value via the χ^{2} distribution is returned. If R is greater than 1 , the bootstrap p -value is returned.
ncores The number of cores to use, set to 1 by default.
graph A boolean variable which is taken into consideration only when bootstrap calibration is performed. IF TRUE the histogram of the bootstrap test statistic values is plotted.

Details

Multivariate hypothesis test for a one sample mean vector. This is a non parametric test and it works for univariate and multivariate data.

Value

A list with the outcome of the function el.test which includes the $-2 \log$-likelihood ratio, the observed P -value by chi-square approximation, the final value of Lagrange multiplier λ, the gradient at the maximum, the Hessian matrix, the weights on the observations (probabilities multiplied by the sample size) and the number of iteration performed. In addition the runtime of the procedure is reported. In the case of bootstrap, the bootstrap p-value is also returned.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com

References

Owen, A. (1990). Empirical likelihood ratio confidence regions. Annals of Statistics, 18, 90-120.
Owen A. B. (2001). Empirical likelihood. Chapman and Hall/CRC Press.

See Also

eel.test1, hotel1T2, james, hotel2T2, maov, el.test2, comp.test

Examples

$x<-$ Rfast::rmvnorm(100, numeric(10), $\operatorname{diag}(\operatorname{rexp}(10,0.5))$)
el.test1 (x, mu $=$ numeric(10))
eel.test1(x, mu $=$ numeric(10))

Empirical likelihood hypothesis testing for two mean vectors
Empirical likelihood hypothesis testing for two mean vectors

Description

Empirical likelihood hypothesis testing for two mean vectors.

Usage

el.test2(y1, y2, R = 0, ncores $=1$, graph $=$ FALSE)

Arguments

y1 A matrix containing the Euclidean data of the first group.
y2 A matrix containing the Euclidean data of the second group.
$\mathrm{R} \quad$ If R is 0 , the classical chi-square distribution is used, if $\mathrm{R}=1$, the corrected chisquare distribution (James, 1954) is used and if $R=2$, the modified F distribution (Krishnamoorthy and Yanping, 2006) is used. If R is greater than 3 bootstrap calibration is performed.
ncores How many to cores to use.
graph A boolean variable which is taken into consideration only when bootstrap calibration is performed. IF TRUE the histogram of the bootstrap test statistic values is plotted.

Details

Empirical likelihood is a non parametric hypothesis testing procedure for one sample. The generalization to two (or more samples) is via searching for the mean vector that minimizes the sum of the two test statistics.

Value

A list including:
test The empirical likelihood test statistic value.
modif.test The modified test statistic, either via the chi-square or the F distribution.
dof Thre degrees of freedom of the chi-square or the F distribution.
pvalue The asymptotic or the bootstrap p-value.
mu The estimated common mean vector.
runtime The runtime of the bootstrap calibration.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com

References

G.S. James (1954). Tests of Linear Hypotheses in Univariate and Multivariate Analysis when the Ratios of the Population Variances are Unknown. Biometrika, 41(1/2): 19-43

Krishnamoorthy K. and Yanping Xia (2006). On Selecting Tests for Equality of Two Normal Mean Vectors. Multivariate Behavioral Research 41(4): 533-548.

Owen A. B. (2001). Empirical likelihood. Chapman and Hall/CRC Press.
Owen A.B. (1988). Empirical likelihood ratio confidence intervals for a single functional. Biometrika 75(2): 237-249.

Amaral G.J.A., Dryden I.L. and Wood A.T.A. (2007). Pivotal bootstrap methods for k-sample problems in directional statistics and shape analysis. Journal of the American Statistical Association 102(478): 695-707.

Preston S.P. and Wood A.T.A. (2010). Two-Sample Bootstrap Hypothesis Tests for Three-Dimensional Labelled Landmark Data. Scandinavian Journal of Statistics 37(4): 568-587.

See Also

eel.test2, maovjames, maov, hotel2T2, james, comp.test

Examples

```
el.test2( y1 = as.matrix(iris[1:25, 1:4]), y2 = as.matrix(iris[26:50, 1:4]), R = 0 )
el.test2( y1 = as.matrix(iris[1:25, 1:4]), y2 = as.matrix(iris[26:50, 1:4]), R = 1 )
el.test2( y1 =as.matrix(iris[1:25, 1:4]), y2 = as.matrix(iris[26:50, 1:4]), R = 2 )
```

Estimating location and scatter parameters for compositional data
Estimating location and scatter parameters for compositional data

Description

Estimating location and scatter parameters for compositional data in a robust and non robust way.

Usage

comp.den(x, type = "alr", dist = "normal", tol = 1e-09)

Arguments

$x \quad$ A matrix containing compositional data. No zero values are allowed.
type A boolean variable indicating the transformation to be used. Either "alr" or "ilr" corresponding to the additive or the isometric log-ratio transformation respectively.
dist Takes values "normal", "t", "skewnorm", "rob" and "spatial". They first three options correspond to the parameters of the normal, t and skew normal distribution respectively. If it set to "rob" the MCD estimates are computed and if set to "spatial" the spatial median and spatial sign covariance matrix are computed.
tol A tolerance level to terminate the process of finding the spatial median when dist $=$ "spatial". This is set to $1 \mathrm{e}-09$ by default.

Details

This function calculates robust and non robust estimates of location and scatter.

Value

A list including: The mean vector and covariance matrix mainly. Other parameters are also returned depending on the value of the argument "dist".

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com

References

P. J. Rousseeuw and K. van Driessen (1999) A fast algorithm for the minimum covariance determinant estimator. Technometrics 41, 212-223.

Mardia K.V., Kent J.T., and Bibby J.M. (1979). Multivariate analysis. Academic press.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman
\& Hall.
T. Karkkaminen and S. Ayramo (2005). On computation of spatial median for robust data mining. Evolutionary and Deterministic Methods for Design, Optimization and Control with Applications to Industrial and Societal Problems EUROGEN 2005.

A Durre, D Vogel, DE Tyler (2014). The spatial sign covariance matrix with unknown location. Journal of Multivariate Analysis, 130: 107-117.
J. T. Kent, D. E. Tyler and Y. Vardi (1994) A curious likelihood identity for the multivariate tdistribution. Communications in Statistics-Simulation and Computation 23, 441-453.

Azzalini A. and Dalla Valle A. (1996). The multivariate skew-normal distribution. Biometrika 83(4): 715-726.

See Also

```
spatmed.reg,multivt
```


Examples

```
library(MASS)
x <- as.matrix(iris[, 1:4])
x <- x / rowSums(x)
comp.den(x)
comp.den(x, type = "alr", dist = "t")
comp.den(x, type = "alr", dist = "spatial")
```

Estimation of the value of alpha in the folded model
Estimation of the value of α in the folded model

Description

Estimation of the value of α in the folded model.

Usage

a.est(x)

Arguments

$x \quad$ A matrix with the compositional data. No zero vaues are allowed.

Details

This is a function for choosing or estimating the value of α in the folded model (Tsagris and Stewart, 2019).

Value

A list including:
runtime The runtime of the algorithm.
best The estimated optimal α of the folded model.
loglik The maximimised log-likelihood of the folded model.
p
mu The estimated mean vector of the folded model.
su The estimated covariance matrix of the folded model.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr

References

Tsagris Michail and Stewart Connie, (2020). A folded model for compositional data analysis. Australian and New Zealand Journal of Statistics (to appear). https://arxiv.org/pdf/1802.07330.pdf

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. http://arxiv.org/pdf/1106.1451.pdf

See Also

alfa.profile,alfa, alfainv, alpha.mle

Examples

```
x <- as.matrix(iris[, 1:4])
x <- x / rowSums(x)
alfa.tune(x)
a.est(x)
```

```
Estimation of the value of alpha via the profile log-likelihood
    Estimation of the value of \alpha via the alfa profile log-likelihood
```


Description

Estimation of the value of α via the alfa profile log-likelihood.

Usage

alfa.profile(x, a = seq($-1,1$, by $=0.01)$)

Arguments

x
A matrix with the compositional data. Zero values are not allowed.
a
A grid of values of α.

Details

For every value of α the normal likelihood (see the refernece) is computed. At the end, the plot of the values is constructed.

Value

A list including:
res The chosen value of α, the corresponding log-likelihood value and the loglikelihood when $\alpha=0$.
ci An asympotic 95% confidence interval computed from the log-likelihood ratio test.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com

References

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain.

See Also

```
alfa.tune,alfa,alfainv
```


Examples

```
x <- as.matrix(iris[, 1:4])
x <- x / rowSums(x)
alfa.tune(x)
alfa.profile(x)
```

```
Exponential empirical likelihood for a one sample mean vector hypothesis testing
    Exponential empirical likelihood for a one sample mean vector hy-
    pothesis testing
```


Description

Exponential empirical likelihood for a one sample mean vector hypothesis testing.

Usage

eel.test1(x, mu, tol $=1 \mathrm{e}-06, \mathrm{R}=1$)

Arguments

x	A matrix containing Euclidean data.
$m u$	The hypothesized mean vector.
tol	The tolerance value used to stop the Newton-Raphson algorithm.
R	The number of bootstrap samples used to calculate the p-value. If $R=1$ (default value), no bootstrap calibration is performed

Details

Multivariate hypothesis test for a one sample mean vector. This is a non parametric test and it works for univariate and multivariate data.

Value

A list including:
$p \quad$ The estimated probabilities.
lambda The value of the Lagrangian parameter λ.
iter The number of iterations required by the newton-Raphson algorithm.
info The value of the log-likelihood ratio test statistic along with its corresponding p-value.
runtime The runtime of the process.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com

References

Jing Bing-Yi and Andrew TA Wood (1996). Exponential empirical likelihood is not Bartlett correctable. Annals of Statistics 24(1): 365-369.
Owen A. B. (2001). Empirical likelihood. Chapman and Hall/CRC Press.

See Also

```
el.test1, hotel1T2, james, hotel2T2,maov, el.test2, comp.test
```


Examples

```
x <- Rfast::rmvnorm(100, numeric(10), diag( rexp(10, 0.5) ) )
```

eel.test1 (x, numeric(10))
el.test1(x, numeric(10))

```
Exponential empirical likelihood hypothesis testing for two mean vectors
    Exponential empirical likelihood hypothesis testing for two mean vec-
    tors
```


Description

Exponential empirical likelihood hypothesis testing for two mean vectors.

Usage

eel.test2 (y1, y2, tol $=1 \mathrm{e}-07, \mathrm{R}=0$, graph $=$ FALSE)

Arguments

y1 A matrix containing the Euclidean data of the first group.
y2 A matrix containing the Euclidean data of the second group.
tol The tolerance level used to terminate the Newton-Raphson algorithm.
$R \quad$ If R is 0 , the classical chi-square distribution is used, if $R=1$, the corrected chisquare distribution (James, 1954) is used and if $\mathrm{R}=2$, the modified F distribution (Krishnamoorthy and Yanping, 2006) is used. If R is greater than 3 bootstrap calibration is performed.
graph A boolean variable which is taken into consideration only when bootstrap calibration is performed. IF TRUE the histogram of the bootstrap test statistic values is plotted.

Details

Exponential empirical likelihood is a non parametric hypothesis testing procedure for one sample. The generalization to two (or more samples) is via searching for the mean vector that minimises the sum of the two test statistics.

Value

A list including:
test The empirical likelihood test statistic value.
modif.test The modified test statistic, either via the chi-square or the F distribution.
dof The degrees of freedom of the chi-square or the F distribution.
pvalue The asymptotic or the bootstrap p-value.
mu The estimated common mean vector.
runtime The runtime of the bootstrap calibration.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com

References

Jing Bing-Yi and Andrew TA Wood (1996). Exponential empirical likelihood is not Bartlett correctable. Annals of Statistics 24(1): 365-369.
G.S. James (1954). Tests of Linear Hypothese in Univariate and Multivariate Analysis when the Ratios of the Population Variances are Unknown. Biometrika, 41(1/2): 19-43
Krishnamoorthy K. and Yanping Xia (2006). On Selecting Tests for Equality of Two Normal Mean Vectors. Multivariate Behavioral Research 41(4): 533-548.

Owen A. B. (2001). Empirical likelihood. Chapman and Hall/CRC Press.
Amaral G.J.A., Dryden I.L. and Wood A.T.A. (2007). Pivotal bootstrap methods for k-sample problems in directional statistics and shape analysis. Journal of the American Statistical Association 102(478): 695-707.

Preston S.P. and Wood A.T.A. (2010). Two-Sample Bootstrap Hypothesis Tests for Three-Dimensional Labelled Landmark Data. Scandinavian Journal of Statistics 37(4): 568-587.
Tsagris M., Preston S. and Wood A.T.A. (2017). Nonparametric hypothesis testing for equality of means on the simplex. Journal of Statistical Computation and Simulation, 87(2): 406-422.

See Also

```
el.test2,maovjames,maov,hotel2T2,james,comp.test
```


Examples

```
y1 = as.matrix(iris[1:25, 1:4])
y2 = as.matrix(iris[26:50, 1:4])
eel.test2(y1, y2)
eel.test2(y1, y2 )
eel.test2( y1, y2 )
```

```
Fast estimation of the value of alpha
    Fast estimation of the value of \alpha
```


Description

Fast estimation of the value of α.

Usage

alfa.tune (x, B = 1, ncores = 1)

Arguments

$x \quad$ A matrix with the compositional data. No zero vaues are allowed.
B If no (bootstrap based) confidence intervals should be returned this should be 1 and more than 1 otherwise.
ncores If ncores is greater than 1 parallel computing is performed. It is advisable to use it if you have many observations and or many variables, otherwise it will slow down th process.

Details

This is a faster function than alfa.profile for choosing the value of α.

Value

A vector with the best alpha, the maximised log-likelihood and the \log-likelihood at $\alpha=0$, when $B=1$ (no bootstrap). If $B>1$ a list including:
param The best alpha and the value of the log-likelihod, along with the 95% bootstrap based confidence intervals.
message A message with some information about the histogram.
runtime \quad The time (in seconds) of the process.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com

References

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. http://arxiv.org/pdf/1106.1451.pdf

See Also

alfa.profile,alfa, alfainv

Examples

library(MASS)
$x<-$ as.matrix(iris[, 1:4])
x <- x / rowSums(x)
alfa.tune (x)
alfa.profile(x)

Fitting a Dirichlet distribution Fitting a Dirichlet distribution

Description

Estimation of the parameters of a fitted Dirichlet distribution.

Usage

diri.est(x, type = "mle")

Arguments

$x \quad$ A matrix containing compositional data.
type If you want to estimate the parameters use type="mle". If you want to estimate the mean vector along with the precision parameter, the second parametrisation of the Dirichlet, use type="prec".

Details

Maximum likelihood estimation of the parameters of a Dirichlet distribution is performed.

Value

A list including:
loglik The value of the log-likelihood.
param The estimated parameters.
phi The estimated precision parameter, if type = "prec".
a The estimated mean vector, if type = "prec".
runtime The run time of the maximisation procedure.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com

References

Ng Kai Wang, Guo-Liang Tian and Man-Lai Tang (2011). Dirichlet and related distributions: Theory, methods and applications. John Wiley
\& Sons.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman
\& Hall.

See Also

```
diri.nr,diri.contour,rdiri,ddiri
```


Examples

```
x <- rdiri( 100, c(5, 7, 1, 3, 10, 2, 4) )
diri.est(x)
diri.est(x, type = "prec")
```

Fitting a Dirichlet distribution via Newton-Rapshon
Fitting a Dirichlet distribution via Newton-Rapshon

Description

Fitting a Dirichlet distribution via Newton-Rapshon.

Usage

diri. $n r(x$, type $=1$, tol $=1 \mathrm{e}-07)$

Arguments

x
type
tol

A matrix containing compositional data. Zeros are not allowed.
Type can either be 1 , so that the Newton-Rapshon is used for the maximisation of the log-likelihood, as Minka (2012) suggested or it can be 1. In the latter case the Newton-Raphson algorithm is implemented involving matrix inversions. In addition an even faster implementation has been implemented (in $\mathrm{C}++$) in the package Rfast and is used here.
The tolerance level indicating no further increase in the log-likelihood.

Details

Maximum likelihood estimation of the parameters of a Dirichlet distribution is performed via Newton-Raphson. Initial values suggested by Minka (2003) are used. The estimation is super faster than "diri.est" and the difference becomes really apparent when the sample size and or the dimensions increase. In fact this will work with millions of observations. So in general, I trust this one more than "diri.est".

The only problem I have seen with this method is that if the data are concentrated around a point, say the center of the simplex, it will be hard for this and the previous methods to give estimates of the parameters. In this extremely difficult scenario I would suggest the use of the previous function with the precision parametrization "diri.est(x , type = "prec")". It will be extremely fast and accurate.

Value

A list including:
iter The number of iterations required. If the argument "type" is set to 2 this is not returned.
loglik The value of the log-likelihood.
param The estimated parameters.
runtime \quad The run time of the procedure.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com

References

Thomas P. Minka (2003). Estimating a Dirichlet distribution. http://research.microsoft.com/en-us/um/people/minka/papers/dirichlet/minka-dirichlet.pdf

See Also

```
diri.est,diri.contour rdiri,ddiri
```


Examples

```
x <- rdiri( 100, c(5, 7, 5, 8, 10, 6, 4) )
diri.nr(x)
diri.nr(x, type = 2)
diri.est(x)
```

Fitting a Flexible Dirichlet distribution
Fitting a Flexible Dirichlet distribution

Description

Fitting a Flexible Dirichlet distribution.

Usage

fd.est(x, ini.iter = 50, final.iter = 100)

Arguments

$x \quad$ A matrix or a dataframe containing the compositional data.
ini.iter \quad Number of iterations for the initial SEM step. Default value is 50.
final.iter \quad Number of iterations for the final EM step. Default value is 100 .

Details

For more information see the references.

Value

A list including:
alpha Estimated values of the parameter vector Alpha.
prob Estimated values of the parameter vector P.
tau Estimated value of the parameter Tau.
loglik The Log-likelihood value.

Author(s)

Michail Tsagris ported from the R package FlexDir. mtsagris@uoc.gr.

References

Ongaro, A. and Migliorati, S. (2013) A generalization of the Dirichlet distribution. Journal of Multivariate Analysis, 114, 412-426.

Migliorati, S., Ongaro, A. and Monti, G. S. (2016) A structured Dirichlet mixture model for compositional data: inferential and applicative issues. Statistics and Computing.

See Also

rfd,fd.density

Examples

```
## Not run:
x <- rfd(n = 50, a = c(12, 11, 10), p = c(0.25, 0.25, 0.5), tau = 4 )
ela <- fd.est(x,ini.iter = 10, final.iter = 20)
ela
## End(Not run)
```

Gaussian mixture models for compositional data
Gaussian mixture models for compositional data

Description

Gaussian mixture models for compositional data.

Usage

mix.compnorm(x, g, model, type = "alr")

Arguments

$x \quad$ A matrix with the compositional data.
$g \quad$ How many clusters to create.
model The type of model to be used.

1. "EII": All groups have the same diagonal covariance matrix, with the same variance for all variables.
2. "VII": Different diagonal covariance matrices, with the same variance for all variables within each group.
3. "EEI": All groups have the same diagonal covariance matrix.
4. "VEI": Different diagonal covariance matrices. If we make all covariance matrices have determinant 1 , (divide the matrix with the $\$ \mathrm{p} \$$-th root of its determinant) then all covariance matrices will be the same.
5. "EVI": Different diagonal covariance matrices with the same determinant.
6. "VVI": Different diagonal covariance matrices, with nothing in common.
7. "EEE": All covariance matrices are the same.
8. "EEV": Different covariance matrices, but with the same determinant and in addition, if we make them have determinant 1 , they will have the same trace.
9. "VEV": Different covariance matrices but if we make the matrices have determinant 1, then they will have the same trace.
10. "VVV": Different covariance matrices with nothing in common.
11. "EVE": Different covariance matrices, but with the same determinant. In addition, calculate the eigenvectors for each covariance matrix and you will see the extra similarities.
12. "VVE": Different covariance matrices, but they have something in common with their directions. Calculate the eigenvectors of each covariance matrix and you will see the similarities.
13. "VEE": Different covariance matrices, but if we make the matrices have determinant 1, then they will have the same trace. In addition, calculate the eigenvectors for each covariance matrix and you will see the extra similarities.
14. "EVV": Different covariance matrices, but with the same determinant.
type Either the additive ("alr") or the isometric ("ilr") log-ratio transformation is to be used..

Details

A log-ratio transformation is applied and then a Gaussian mixtued model is constructed.

Value

A list including:

mu	A matrix where each row corresponds to the mean vector of eahc cluster.
su	An array containing the covariance matrix of each cluster.
prob	The estimated mixing probabilities.
est	The estimated cluster membership values.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com

References

Ryan P. Browne, Aisha ElSherbiny and Paul D. McNicholas (2015). R package mixture: Mixture Models for Clustering and Classification.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman $\backslash \&$ Hall.

See Also

bic.mixcompnorm, rmixcomp,mixnorm. contour

Examples

```
## Not run:
x <- as.matrix(iris[, 1:4])
x <- x/ rowSums(x)
mod1 <- mix.compnorm(x, 3, model = "EII" )
mod2 <- mix.compnorm(x, 4, model = "VII")
## End(Not run)
```

```
Generate random folds for cross-validation
                        Generate random folds for cross-validation
```


Description

Random folds for use in a cross validation are generated. There is the option for stratified splitting as well.

Usage

makefolds(ina, nfolds $=10$, stratified $=$ TRUE, seed $=$ FALSE)

Arguments

ina A variable indicating the groupings.
$\mathrm{nfolds} \quad$ The number of folds to produce.
stratified A boolean variable specifying whether stratified random (TRUE) or simple random (FALSE) sampling is to be used when producing the folds.
seed A boolean variable. If set to TRUE, the folds will always be the same.

Details

I was inspired by the command in the package TunePareto in order to do the stratified version.

Value

A list with nfolds elements where each elements is a fold containing the indices of the data.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr

See Also

rda.tune

Examples

```
a <- makefolds(iris[, 5], nfolds = 5, stratified = TRUE)
table(iris[a[[1]], 5]) ## 10 values from each group
```

```
Helper Frechet mean for compositional data

\section*{Description}

Helper Frechet mean for compositional data.

\section*{Usage}
frechet2(x, di, a, k1)

\section*{Arguments}
\(x \quad\) A matrix with the compositional data.
di A matrix with indices as produced by the function "dista" of the package "Rfast"" or the function "nn2" of the package "RANN". Better see the details section.
a
The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If \(\alpha=0\) the isometric log-ratio transformation is applied and the closed geometric mean is calculated.
k1 The number of columns of "di" to exlude from the computation of the Frechet means.

\section*{Details}

The power transformation is applied to the compositional data and the mean vector is calculated. Then the inverse of it is calculated and the inverse of the power transformation applied to the last vector is the Frechet mean.
What this helper function do is to speed up the Frechet mean when used in the \(\alpha-\mathrm{k}-\mathrm{NN}\) regression. The \(\alpha\)-k-NN regression computes the Frechet mean of the k nearest neighbours for a value of \(\alpha\) and this function does exactly that. Suppose you want to predict the compositional value of some new predictors. For each predictor value you must use the Frechet mean computed at various nearest neighbours. This function performs these computations in a fast way. It is not the fastest way, yet it is a pretty fast way. This function is being called inside the function aknn.reg.

\section*{Value}

A list where eqch element contains a matrix. Each matrix contains the Frechet means computed at various nearest neighbours.

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>

\section*{References}

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

\section*{See Also}
alfa, alfainv, profile

\section*{Examples}
```


Not run:

library(MASS)
library(Rfast)
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
xnew <- x[1:10,]
x <- x[-c(1:10),]
k <- 2:5
di <- Rfast::dista(xnew, x, k = max(k), index = TRUE, square = TRUE)
est <- frechet2(x, di, 0.2)

End(Not run)

```
```

Helper functions for the Kullback-Leibler regression

```
    Helper functions for the Kullback-Leibler regression

\section*{Description}

Helper functions for the Kullback-Leibler regression.

\section*{Usage}
kl.compreg2 (y, x, xnew = NULL, tol = 1e-07, maxiters = 50)
klcompreg.boot(y, x, der, der2, id, b1, \(n, ~ p, d, t o l=1 e-07\), maxiters \(=50\) )

\section*{Arguments}
y A matrix with the compositional data (dependent variable). Zero values are allowed. For the klcompreg.boot the first column is removed.
\(x \quad\) The predictor variable(s), they can be either continuous or categorical or both. In the klcompreg.boot this is the design matrix, with the ones in the first column.
xnew If you have new data use it, otherwise leave it NULL.
tol The tolerance value to terminate the Newton-Raphson procedure.
maxiters The maximum number of Newton-Raphson iterations.
\begin{tabular}{ll} 
der & An vector to put the first derivative there. \\
der2 & An empty matrix to put the second derivatives there, the Hessian matrix will be \\
put here. \\
id & A help vector with indices. \\
b1 & The matrix with the initial estimated coefficients. \\
n & The sample size \\
p & The number of columns of the design matrix. \\
d & \begin{tabular}{l} 
The dimensionality of the simplex, that is the number of columns of the compo- \\
sitional data minus 1.
\end{tabular}
\end{tabular}

\section*{Details}

These are help functions for the kl. compreg function. They are not to be called directly by the user.

\section*{Value}

For kl.compreg2 a list including:
runtime The time required by the regression.
be The beta coefficients.
seb The standard error of the beta coefficients, if bootstrap is chosen, i.e. if B>1.
est The fitted or the predicted values (if xnew is not NULL).
For the klcompreg.boot a matrix with the estimated coefficients.

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

\section*{References}

Murteira, Jose MR, and Joaquim JS Ramalho 2016. Regression analysis of multivariate fractional data. Econometric Reviews 35(4): 515-552.

\section*{See Also}
diri.reg, js.compreg,ols.compreg, comp.reg

\section*{Examples}
library(MASS)
x <- as.vector(fgl[, 1])
y <- as.matrix(fgl[, 2:9])
y <- y / rowSums(y)
\(\bmod 1<-\mathrm{kl} . \operatorname{compreg}(\mathrm{y}, \mathrm{x}, \mathrm{B}=1\), ncores \(=1\) )
\(\bmod 2<-\operatorname{js.compreg}(y, x, B=1\), ncores = 1)

Hotelling's multivariate version of the 1 sample t-test for Euclidean data Hotelling's multivariate version of the 1 sample \(t\)-test for Euclidean data

\section*{Description}

Hotelling's test for testing one Euclidean population mean vector.

\section*{Usage}
hotel1T2(x, M, a = 0.05, R = 999, graph = FALSE)

\section*{Arguments}
\(x \quad\) A matrix containing Euclidean data.
a The significance level, set to 0.05 by default.
M The hypothesized mean vector.
\(R \quad\) If \(R\) is 1 no bootstrap calibration is performed and the classical \(p\)-value via the \(F\) distribution is returned. If \(R\) is greater than 1 , the bootstrap \(p\)-value is returned.
graph A boolean variable which is taken into consideration only when bootstrap calibration is performed. IF TRUE the histogram of the bootstrap test statistic values is plotted.

\section*{Details}

Multivariate hypothesis test for a one sample mean vector. This is the multivariate analogue of the one sample t-test. The p-value can be calculated either asymptotically or via bootstrap.

\section*{Value}

A list including:
m
info
pvalue The bootstrap p-value is bootstrap is employed.
runtime The runtime of the bootstrap calibration.

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>

\section*{References}
K.V. Mardia, J.T. Kent and J.M. Bibby (1979). Multivariate analysis.

\section*{See Also}
```

eel.test1, el.test1,james, hotel2T2,maov, el.test2, comp.test

```

\section*{Examples}
```

x <- Rfast::rmvnorm(100, numeric(10), diag(rexp(10,0.5)))
hotel1T2(x, numeric(10), R = 1)
hotel1T2(x, numeric(10), R = 999, graph = TRUE)

```
Hotelling's multivariate version of the 2 sample t-test for Euclidean data
                                    Hotelling's multivariate version of the 2 sample \(t\)-test for Euclidean
    data

\section*{Description}

Hotelling's test for testing the equality of two Euclidean population mean vectors.

\section*{Usage}
hotel2T2(x1, x2, a = 0.05, R = 999, graph = FALSE)

\section*{Arguments}
\(x 1\) A matrix containing the Euclidean data of the first group.
\(x 2\) A matrix containing the Euclidean data of the second group.
a The significance level, set to 0.05 by default.
\(R \quad\) If \(R\) is 1 no bootstrap calibration is performed and the classical \(p\)-value via the \(F\) distribution is returned. If R is greater than 1 , the bootstrap p -value is returned.
graph A boolean variable which is taken into consideration only when bootstrap calibration is performed. IF TRUE the histogram of the bootstrap test statistic values is plotted.

\section*{Details}

Multivariate analysis of variance assuming equality of the covariance matrices. The p-value can be calculated either asymptotically or via bootstrap.

\section*{Value}

A list including:
mesoi The two mean vectors.
info The test statistic, the p -value, the critical value and the degrees of freedom of the F distribution (numerator and denominator). This is given if no bootstrap calibration is employed.
pvalue \(\quad\) The bootstrap p-value is bootstrap is employed.
note A message informing the user that bootstrap calibration has been employed.
runtime The runtime of the bootstrap calibration.

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>

\section*{References}

Everitt B. (2005). An R and S-Plus Companion to Multivariate Analysis p. 139-140. Springer.

\section*{See Also}
james, maov, el.test2, comp.test

\section*{Examples}
```

hotel2T2(as.matrix(iris[1:25, 1:4]), as.matrix(iris[26:50, 1:4]))
hotel2T2(as.matrix(iris[1:25, 1:4]), as.matrix(iris[26:50, 1:4]), R = 1)
james(as.matrix(iris[1:25, 1:4]), as.matrix(iris[26:50, 1:4]))
james(as.matrix(iris[1:25, 1:4]), as.matrix(iris[26:50, 1:4]), R = 1)

```
Hypothesis testing for two or more compositional mean vectors
Hypothesis testing for two or more compositional mean vectors

\section*{Description}

Hypothesis testing for two or more compositional mean vectors.

\section*{Usage}
comp.test(x, ina, test \(=\) "james", \(\mathrm{R}=0\), ncores \(=1\), graph = FALSE)

\section*{Arguments}
\begin{tabular}{ll}
x \\
ina \\
test & \begin{tabular}{l} 
A matrix containing compositional data. \\
A numerical or factor variable indicating the groups of the data. \\
This can take the values of "james" for James' test, "hotel" for Hotelling's test, \\
"maov" for multivariate analysis of variance assuming equality of the covariance \\
matrices, "maovjames" for multivariate analysis of variance without assuming \\
equality of the covariance matrices. "el" for empirical likelihood or "eel" for \\
exponential empirical likelihood. \\
R This depends upon the value of the argument "test". If the test is "maov" or
\end{tabular} \\
"maovjames", R is not taken into consideration. If test is "hotel", then R denotes \\
the number of bootstrap resamples. If test is "james", then R can be 1 (chi-square \\
distribution), 2 ( F distribution), or more for bootstrap calibration. If test is "el", \\
then R can be 0 (chi-square), 1 (corrected chi-sqaure), 2 (F distribution) or more \\
for bootstrap calibration. See the help page of each test for more information.
\end{tabular}

\section*{Details}

The idea is to apply the \(\alpha\)-transformation, with \(\alpha=1\), to the compositional data and then use a test to compare their mean vectors. See the help page of each test for more information. The function is visible so you can see exactly what is going on.

\section*{Value}

A list including:
result The outcome of each test.

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>

\section*{References}

Tsagris M., Preston S. and Wood A.T.A. (2017). Nonparametric hypothesis testing for equality of means on the simplex. Journal of Statistical Computation and Simulation, 87(2): 406-422.
G.S. James (1954). Tests of Linear Hypothese in Univariate and Multivariate Analysis when the Ratios of the Population Variances are Unknown. Biometrika, 41(1/2): 19-43
Krishnamoorthy K. and Yanping Xia (2006). On Selecting Tests for Equality of Two Normal Mean Vectors. Multivariate Behavioral Research 41(4): 533-548.

Owen A. B. (2001). Empirical likelihood. Chapman and Hall/CRC Press.
Owen A.B. (1988). Empirical likelihood ratio confidence intervals for a single functional. Biometrika 75(2): 237-249.

Amaral G.J.A., Dryden I.L. and Wood A.T.A. (2007). Pivotal bootstrap methods for k-sample problems in directional statistics and shape analysis. Journal of the American Statistical Association 102(478): 695-707.

Preston S.P. and Wood A.T.A. (2010). Two-Sample Bootstrap Hypothesis Tests for Three-Dimensional Labelled Landmark Data. Scandinavian Journal of Statistics 37(4): 568-587.
Jing Bing-Yi and Andrew TA Wood (1996). Exponential empirical likelihood is not Bartlett correctable. Annals of Statistics 24(1): 365-369.

\section*{See Also}
maovjames, maov, hotel2T2, el.test2

\section*{Examples}
```

ina <- rep(1:2, each = 50)
comp.test(as.matrix(iris[1:100, 1:4]), ina, test = "james", R = 0)
comp.test(as.matrix(iris[1:100, 1:4]), ina, test = "hotel", R = 0)
comp.test(as.matrix(iris[1:100, 1:4]), ina, test = "el", R = 0)
comp.test(as.matrix(iris[1:100, 1:4]), ina, test = "eel", R = 0)

```

Inverse of the alpha-transformation
Inverse of the \(\alpha\)-transformation

\section*{Description}

The inverse of the \(\alpha\)-transformation.

\section*{Usage}
alfainv(x, a, h = TRUE)

\section*{Arguments}
x
a
h

A matrix with Euclidean data. However, they must lie within the feasible, acceptable space. See references for more information.
The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If \(\alpha=0\), the inverse of the isometric log-ratio transformation is applied.

If \(\mathrm{h}=\) TRUE this means that the multiplication with the Helmer sub-matrix will take place. It is set to TRUe by default.

\section*{Details}

The inverse of the \(\alpha\)-transformation is applied to the data. If the data lie outside the \(\alpha\)-space, NAs will be returned for some values.

\section*{Value}

A matrix with the pairwise distances.

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>

\section*{References}

Tsagris M.T., Preston S. and Wood A.T.A. (2016). Improved classification for compositional data using the \(\alpha\)-transformation. Journal of Classification (to appear). http://arxiv.org/pdf/1506.04976v2.pdf
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. http://arxiv.org/pdf/1106.1451.pdf

\section*{See Also}
alfa, alfadist

\section*{Examples}
```

library(MASS)
x <- as.matrix(fgl[1:10, 2:9])
x <- x / rowSums(x)
y <- alfa(x, 0.5)\$aff
alfainv(y, 0.5)

```

James multivariate version of the t-test James multivariate version of the \(t\)-test

\section*{Description}

James test for testing the equality of two population mean vectors without assuming equality of the covariance matrices.

\section*{Usage}
james \((\mathrm{y} 1, \mathrm{y} 2, \mathrm{a}=0.05, \mathrm{R}=999\), graph \(=\) FALSE)

\section*{Arguments}
y1 A matrix containing the Euclidean data of the first group.
y2 A matrix containing the Euclidean data of the second group.
a The significance level, set to 0.05 by default.
\(R \quad\) If \(R\) is 1 no bootstrap calibration is performed and the classical \(p\)-value via the \(F\) distribution is returned. If R is greater than 1 , the bootstrap p -value is returned.
graph A boolean variable which is taken into consideration only when bootstrap calibration is performed. IF TRUE the histogram of the bootstrap test statistic values is plotted.

\section*{Details}

Multivariate analysis of variance without assuming equality of the covariance matrices. The p-value can be calculated either asymptotically or via bootstrap. The James test (1954) or a modification proposed by Krishnamoorthy and Yanping (2006) is implemented. The James test uses a corrected chi-square distribution, whereas the modified version uses an F distribution.

\section*{Value}

A list including:
note A message informing the user about the test used.
mesoi The two mean vectors.
info The test statistic, the p-value, the correction factor and the corrected critical value of the chi-square distribution if the James test has been used or, the test statistic, the p-value, the critical value and the degrees of freedom (numerator and denominator) of the F distribution if the modified James test has been used.
pvalue The bootstrap p-value if bootstrap is employed.
runtime The runtime of the bootstrap calibration.

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>

\section*{References}
G.S. James (1954). Tests of Linear Hypothese in Univariate and Multivariate Analysis when the Ratios of the Population Variances are Unknown. Biometrika, 41(1/2): 19-43
Krishnamoorthy K. and Yanping Xia. On Selecting Tests for Equality of Two Normal Mean Vectors (2006). Multivariate Behavioral Research 41(4): 533-548

\section*{See Also}
```

hotel2T2,maovjames,el,comp.test

```

\section*{Examples}
```

james(as.matrix(iris[1:25, 1:4]), as.matrix(iris[26:50, 1:4]), R = 1)
james(as.matrix(iris[1:25, 1:4]), as.matrix(iris[26:50, 1:4]), R = 2)
james(as.matrix(iris[1:25, 1:4]), as.matrix(iris[26:50, 1:4]))
hotel2T2(as.matrix(iris[1:25, 1:4]), as.matrix(iris[26:50, 1:4]))

```

Kullback-Leibler divergence and Bhattacharyya distance between two Dirichlet distributions Kullback-Leibler divergence and Bhattacharyya distance between two Dirichlet distributions

\section*{Description}

Kullback-Leibler divergence and Bhattacharyya distance between two Dirichlet distributions.

\section*{Usage}
kl.diri(a, b, type = "KL")

\section*{Arguments}
a A vector with the parameters of the first Dirichlet distribution.
b A vector with the parameters of the second Dirichlet distribution.
type A variable indicating whether the Kullback-Leibler divergence ("KL") or the Bhattacharyya distance ("bhatt") is to be computed.

\section*{Details}

Note that the order is important in the Kullback-Leibler divergence, since this is asymmetric, but not in the Bhattacharyya distance, since it is a metric.

\section*{Value}

The value of the Kullback-Leibler divergence or the Bhattacharyya distance.

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>

\section*{References}

Ng Kai Wang, Guo-Liang Tian and Man-Lai Tang (2011). Dirichlet and related distributions: Theory, methods and applications. John Wiley \(\backslash \&\) Sons.

\section*{See Also}
```

diri.est,diri.nr

```

\section*{Examples}
```

library(MASS)
a <- runif(10, 0, 20)
b <- runif(10, 1, 10)
kl.diri(a, b)
kl.diri(b, a)
kl.diri(a, b, type = "bhatt")
kl.diri(b, a, type = "bhatt")

```
```

Log-likelihood ratio test for a Dirichlet mean vector
Log-likelihood ratio test for a Dirichlet mean vector

```

\section*{Description}

Log-likelihood ratio test for a Dirichlet mean vector.

\section*{Usage}
dirimean.test(x, a)

\section*{Arguments}
\(x \quad\) A matrix with the compositional data. No zero values are allowed.
a A compositional mean vector. The concentration parameter is estimated at first. If the elements do not sum to 1 , it is assumed that the Dirichlet parameters are supplied.

\section*{Details}

Log-likelihood ratio test is performed for the hypothesis the given vector of parameters "a" describes the compositional data well.

\section*{Value}

If there are no zeros in the data, a list including:
param A matrix with the estimated parameters under the null and the alternative hypothesis.
loglik The log-likelihood under the alternative and the null hypothesis.
info \(\quad\) The value of the test statistic and its relevant p -value.

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>

\section*{References}

Ng Kai Wang, Guo-Liang Tian and Man-Lai Tang (2011). Dirichlet and related distributions: Theory, methods and applications. John Wiley \(\backslash \&\) Sons.

\section*{See Also}
sym.test, diri.nr,diri.est,rdiri,ddiri

\section*{Examples}
```

x <- rdiri(100, c(1, 2, 3))
dirimean.test(x, c(1, 2, 3))
dirimean.test(x, c(1, 2, 3)/6)

```
```

Log-likelihood ratio test for a symmetric Dirichlet distribution
Log-likelihood ratio test for a symmetric Dirichlet distribution

```

\section*{Description}

Log-likelihood ratio test for a symmetric Dirichlet distribution.

\section*{Usage}
sym.test(x)

\section*{Arguments}
\(x \quad\) A matrix with the compositional data. No zero values are allowed.

\section*{Details}

Log-likelihood ratio test is performed for the hypothesis that all Dirichelt parameters are equal.

Value
A list including:
est.par The estimated parameters under the alternative hypothesis.
one.par The value of the estimated parameter under the null hypothesis.
res The loglikelihood under the alternative and the null hypothesis, the value of the test statistic, its relevant p-value and the associated degrees of freedom, which are actually the dimensionality of the simplex, \(D-1\), where \(D\) is the number of components.

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>

\section*{References}

Ng Kai Wang, Guo-Liang Tian and Man-Lai Tang (2011). Dirichlet and related distributions: Theory, methods and applications. John Wiley \\& Sons.

\section*{See Also}
diri.nr,diri.est,rdiri,dirimean.test

\section*{Examples}
```

x <- rdiri(100, c(5, 7, 1, 3, 10, 2, 4))
sym.test(x)
x <- rdiri(100, c(5, 5, 5, 5, 5))
sym.test(x)

```
```

Mixture model selection via BIC

```
    Mixture model selection via BIC

\section*{Description}

Mixture model selection via BIC.

\section*{Usage}
```

 bic.mixcompnorm(x, G, type = "alr", graph = TRUE)
    ```

\section*{Arguments}
\(x \quad\) A matrix with compositional data.
G A numeric vector with the number of components, clusters, to be considered.
type
graph A boolean variable, TRUE or FALSE specifying whether a graph should be drawn or not.

\section*{Details}

The alr or the ilr-transformation is applied to the compositional data first and then mixtures of multivariate Gaussian distributions are fitted. BIC is used to decide on the optimal model and number of components.

\section*{Value}
a plot with the BIC of the best model for each number of components versus the number of components. A list including:
mod A message informing the user about the best model.
BIC The BIC values for every possible model and number of components.

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Ryan P. Browne, Aisha ElSherbiny and Paul D. McNicholas (2018). mixture: Mixture Models for Clustering and Classification. R package version 1.5.

Ryan P. Browne and Paul D. McNicholas (2014). Estimating Common Principal Components in High Dimensions. Advances in Data Analysis and Classification, 8(2), 217-226.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman \\& Hall.

\section*{See Also}
mix. compnorm,mixnorm. contour, rmixcomp

\section*{Examples}
```


Not run:

x <- as.matrix(iris[, 1:4])
x <- x/ rowSums(x)
bic.mixcompnorm(x, 1:3, type = "alr", graph = FALSE)
bic.mixcompnorm(x, 1:3, type = "ilr", graph = FALSE)

End(Not run)

```
```

MLE for the multivarite t distribution
MLE for the multivarite t distribution

```

\section*{Description}

MLE of the parameters of a multivarite \(t\) distribution.

\section*{Usage}
multivt(y, plot = FALSE)

\section*{Arguments}
\(\begin{array}{ll}\text { y } & \text { A matrix with continuous data. } \\ \text { plot } & \begin{array}{l}\text { If plot is TRUE the value of the maximum log-likelihood as a function of the } \\ \text { degres of freedom is presented. }\end{array}\end{array}\)

\section*{Details}

The parameters of a multivariate \(t\) distribution are estimated. This is used by the functions comp. den and bivt.contour.

\section*{Value}

A list including:
center The location estimate.
scatter The scatter matrix estimate.
df
The estimated degrees of freedom.
loglik The log-likelihood value.
mesos The classical mean vector.
covariance The classical covariance matrix.

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>

\section*{References}

Nadarajah, S. and Kotz, S. (2008). Estimation methods for the multivariate t distribution. Acta Applicandae Mathematicae, 102(1):99-118.

\section*{See Also}
bivt.contour, comp.den,rmvt

\section*{Examples}
```

x <- as.matrix(iris[, 1:4])
multivt(x)

```
```

MLE of distributions defined in the (0, 1) interval
MLE of distributions defined in the (0,1) interval

```

\section*{Description}

MLE of distributions defined in the \((0,1)\) interval.

\section*{Usage}
beta.est ( x , tol \(=1 \mathrm{e}-07\) )
ibeta.est (x, tol = 1e-07)
logitnorm.est(x)
hsecant01.est(x, tol = 1e-07)
simplex.est(x, tol = 1e-07)
kumar.est(x, tol = 1e-07)

\section*{Arguments}
x
A numerical vector with proportions, i.e. numbers in \((0,1)\) (zeros and ones are not allowed).
tol The tolerance level up to which the maximisation stops.

\section*{Details}

Maximum likelihood estimation of the parameters of the beta distribution is performed via NewtonRaphson. The distributions and hence the functions does not accept zeros. "logitnorm.mle" fits the logistic normal, hence no nwewton-Raphson is required and the "hypersecant01.mle" and "simplex.est" use the golden ratio search as is it faster than the Newton-Raphson (less computations).

\section*{Value}

A list including:
iters The number of iterations required by the Newton-Raphson.
loglik The value of the log-likelihood.
param The estimated parameters. In the case of "hypersecant01.est" this is called "theta" as there is only one parameter.

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>

\section*{See Also}
diri.nr2,

\section*{Examples}
```

x <- rbeta(1000, 1, 4)
beta.est(x)
ibeta.est(x)
x <- runif(1000)
hsecant01.est(x)
logitnorm.est(x)
ibeta.est(x)
x <- rbeta(1000, 2, 5)
x[sample(1:1000, 50)] <- 0
ibeta.est(x)

```
MLE of the folded model for a given value of alpha

MLE of the folded model for a given value of \(\alpha\)

\section*{Description}

MLE of the folded model for a given value of \(\alpha\).

\section*{Usage}
alpha.mle(x, a)
a.mle(a, x)

\section*{Arguments}
\(x \quad\) A matrix with the compositional data. No zero vaues are allowed.
a
A value of \(\alpha\).

\section*{Details}

This is a function for choosing or estimating the value of \(\alpha\) in the folded model (Tsagris and Stewart, 2019). It is called by a.est.

\section*{Value}

If "alpha.mle" is called, a list including:
iters The nubmer of iterations the EM algorithm required.
loglik The maximimized log-likelihood of the folded model.
\(\mathrm{p} \quad\) The estimated probability inside the simplex of the folded model.
mu The estimated mean vector of the folded model.
su The estimated covariance matrix of the folded model.
If "a.mle" is called, the log-likelihood is returned only.

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

\section*{References}

Tsagris Michail and Stewart Connie, (2020). A folded model for compositional data analysis. Australian and New Zealand Journal of Statistics (to appear). https://arxiv.org/pdf/1802.07330.pdf Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. http://arxiv.org/pdf/1106.1451.pdf

\section*{See Also}
alfa.profile,alfa, alfainv, a.est

\section*{Examples}
x <- as.matrix(iris[, 1:4])
\(\mathrm{x}<-\mathrm{x} / \operatorname{rowSums}(\mathrm{x})\)
\(\bmod <-\) alfa.tune \((x)\)
mod
alpha.mle(x, mod[1])
```

Multivariate analysis of variance
Multivariate analysis of variance

```

\section*{Description}

Multivariate analysis of variance with assuming equality of the covariance matrices.

\section*{Usage}
\(\operatorname{maov}(x, i n a)\)

\section*{Arguments}
\begin{tabular}{ll}
\(x\) & A matrix containing Euclidean data. \\
ina & A numerical or factor variable indicating the groups of the data.
\end{tabular}

\section*{Details}

Multivariate analysis of variance assuming equality of the covariance matrices.

\section*{Value}

A list including:
note A message stating whether the F or the chi-square approximation has been used.
result \(\quad\) The test statistic and the p-value.

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>

\section*{References}

Johnson and Wichern (2007, 6th Edition). Applied Multivariate Statistical Analysis p. 302-303.
Todorov V. and Filzmoser P. (2010). Robust Statistic for the One-way MANOVA. Computational Statistics \\& Data Analysis 54(1):37-48.

\section*{See Also}
maovjames, hotel2T2, james, comp. test

\section*{Examples}
maov( as.matrix(iris[,1:4]), iris[,5] )
maovjames( as.matrix(iris[,1:4]), iris[,5] )
```

Multivariate analysis of variance (James test)
Multivariate analysis of variance (James test)

```

\section*{Description}

Multivariate analysis of variance without assuming equality of the covariance matrices.

\section*{Usage}
maovjames(x, ina, a = 0.05)

\section*{Arguments}
x
ina
a

A matrix containing Euclidean data.
A numerical or factor variable indicating the groups of the data.
The significance level, set to 0.005 by default.

\section*{Details}

Multivariate analysis of variance without assuming equality of the covariance matrices.

\section*{Value}

A vector with the next 4 elements:
test The test statistic.
correction The value of the correction factor.
corr.critical The corrected critical value of the chi-square distribution.
\(p\)-value \(\quad\) The \(p\)-value of the corrected test statistic.

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>

\section*{References}
G.S.James (1954). Tests of Linear Hypotheses in Univariate and Multivariate Analysis when the Ratios of the Population Variances are Unknown. Biometrika, 41(1/2): 19-43.

\section*{See Also}
maov, hotel2T2, james, comp.test

\section*{Examples}
```

maov(as.matrix(iris[,1:4]), iris[,5])
maovjames(as.matrix(iris[,1:4]), iris[,5])

```
```

Multivariate kernel density estimation
Multivariate kernel density estimation

```

\section*{Description}

Multivariate kernel density estimation.

\section*{Usage}
mkde(x, h, thumb = "silverman")

\section*{Arguments}
\(x \quad\) A matrix with Euclidean (continuous) data.
h The bandwidh value. It can be a single value, which is turned into a vector and then into a diagonal matrix, or a vector which is turned into a diagonal matrix.
thumb Do you want to use a rule of thumb for the bandwidth parameter? If no, leave it "none", or else put "estim" for maximum likelihood cross-validation, "scott" or "silverman" for Scott's and Silverman's rules of thumb respectively.

\section*{Details}

The multivariate kernel density estimate is calculated with a (not necssarily given) bandwidth value. It is used a wrapper for the function comp. kerncontour.

\section*{Value}

A vector with the density estimates calculated for every vector.

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>

\section*{References}

Arsalane Chouaib Guidoum (2015). Kernel Estimator and Bandwidth Selection for Density and its Derivatives. The kedd R package.
M.P. Wand and M.C. Jones (1995). Kernel smoothing, pages 91-92.
B.W. Silverman (1986). Density estimation for statistics and data analysis, pages 76-78.

\section*{See Also}
mkde. tune, comp.kerncontour

\section*{Examples}
mkde( as.matrix(iris[, 1:4]), thumb = "scott")
mkde( as.matrix(iris[, 1:4]), thumb = "silverman" )

Multivariate linear regression
Multivariate linear regression

\section*{Description}

Multivariate linear regression.

\section*{Usage}
multivreg(y, \(x\), plot \(=\) TRUE, \(x n e w=\) NULL)

\section*{Arguments}
\(y \quad\) A matrix with the Eucldidean (continuous) data.
\(x \quad\) A matrix with the predictor variable(s), they have to be continuous.
plot Should a plot appear or not?
xnew If you have new data use it, otherwise leave it NULL.

\section*{Details}

The classical multivariate linear regression model is obtained.

Value
A list including:
suma A summary as produced by lm, which includes the coefficients, their standard error, t -values, p -values.
\(r\).squared \(\quad\) The value of the \(R^{2}\) for each univariate regression.
resid.out A vector with number indicating which vectors are potential residual outliers.
\(x\).leverage A vector with number indicating which vectors are potential outliers in the predictor variables space.
out A vector with number indicating which vectors are potential outliers in the residuals and in the predictor variables space.
est The predicted values if xnew is not NULL.

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>

\section*{References}
K.V. Mardia, J.T. Kent and J.M. Bibby (1979). Multivariate Analysis. Academic Press.

\section*{See Also}
```

diri.reg,js.compreg,kl.compreg,ols.compreg, comp.reg

```

\section*{Examples}
```

library(MASS)
x <- as.matrix(iris[, 1:2])
y <- as.matrix(iris[, 3:4])
multivreg(y, x, plot = TRUE)

```
Multivariate normal random values simulation on the simplex
            Multivariate normal random values simulation on the simplex

\section*{Description}

Multivariate normal random values simulation on the simplex.

\section*{Usage}
```

rcompnorm(n, m, s, type = "alr")

```

\section*{Arguments}
n
m The mean vector in \(R^{d}\).
s
type
The covariance matrix in \(R^{d}\).

The alr (type = "alr") or the ilr (type = "ilr") is to be used for closing the Euclidean data onto the simplex.

\section*{Details}

The algorithm is straightforward, generate random values from a multivariate normal distribution in \(R^{d}\) and brings the values to the simplex \(S^{d}\) using the inverse of a log-ratio transformation.

\section*{Value}

A matrix with the simulated data.

\section*{Author(s)}

\footnotetext{
Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>
}

\section*{References}

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \\& Hall.

\section*{See Also}
comp. den, rdiri, rcompt,rcompsn

\section*{Examples}
```

x <- as.matrix(iris[, 1:2])
m <- colMeans(x)
s <- var(x)
y <- rcompnorm(100, m, s)
comp.den(y)
ternary(y)

```
Multivariate or univariate regression with compositional data in the covariates side using the alpha- Multivariate or univariate regression with compositional data in the covariates side using the \(\alpha\)-transformation

\section*{Description}

Multivariate or univariate regression with compositional data in the covariates side using the \(\alpha\) transformation.

\section*{Usage}
alfa.pcr(y, x, a, k, model = "gaussian", xnew = NULL)

\section*{Arguments}
y

X
a
k
model
xnew


A numerical vector containing the response variable values. They can be continuous, binary, discrete (counts). This can also be a vector with discrete values or a factor for the multinomial regression (model = "multinomial").
A matrix with the predictor variables, the compositional data.
The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If \(\alpha=0\) the isometric log-ratio transformation is applied.
A number at least equal to 1 . How many principal components to use.
The type of regression model to fit. The possible values are "gaussian", "multinomial", "binomial" and "poisson".
A matrix containing the new compositional data whose response is to be predicted. If you have no new data, leave this NULL as is by default.

78Multivariate or univariate regression with compositional data in the covariates side using the alpha-transformation

\section*{Details}

The \(\alpha\)-transformation is applied to the compositional data first ,the first k principal component scores are calcualted and used as predictor variables for a regression model. The family of distributions can be either, "normal" for continuous response and hence normal distribution, "binomial" corresponding to binary response and hence logistic regression or "poisson" for count response and poisson regression.

\section*{Value}

A list tincluding:
be If linear regression was fitted, the regression coefficients of the k principal component scores on the response variable \(y\).
mod If another regression model was fitted its outcome as produced in the package Rfast.
per The percentage of variance explained by the first k principal components.
vec The first k principal components, loadings or eigenvectors. These are useful for future prediction in the sense that one needs not fit the whole model again.
est If the argument "xnew" was given these are the predicted or estimated values, otherwise it is NULL.

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>

\section*{References}

Tsagris M. (2015). Regression analysis with compositional data containing zero values. Chilean Journal of Statistics, 6(2): 47-57. http://arxiv.org/pdf/1508.01913v1.pdf
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. http://arxiv.org/pdf/1106.1451.pdf

\section*{See Also}
```

pcr,glm.pcr,alfapcr.tune

```

\section*{Examples}
```

library(MASS)
y <- as.vector(fgl[, 1])
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
mod <- alfa.pcr(y = y, x = x, 0.7, 1)
mod

```

Multivariate regression with compositional data
Multivariate regression with compositional data

\section*{Description}

Multivariate regression with compositional data.

\section*{Usage}
comp.reg(y, x, type = "classical", xnew = NULL, yb = NULL)

\section*{Arguments}
y A matrix with compsitional data. Zero values are not allowed.
\(x \quad\) The predictor variable(s), they have to be continuous.
type The type of regression to be used, "classical" for standard multivariate regression, or "spatial" for the robust spatial median regression. Alternatively you can type "lmfit" for the fast classical multivariate regression that does not return standard errors whatsoever.
xnew This is by default set to NULL. If you have new data whose compositional data values you want to predict, put them here.
yb If you have already transformed the data using the additive log-ratio transformation, plut it here. Othewrise leave it NULL. This is intended to be used in the function alfareg. tune in order to speed up the process.

\section*{Details}

The additive log-ratio transformation is applied and then the chosen multivariate regression is implemented. The alr is easier to explain than the ilr and that is why the latter is avoided here.

\section*{Value}

A list including:
runtime The time required by the regression.
be The beta coefficients.
seb The standard error of the beta coefficients.
est The fitted values of xnew if xnew is not NULL.

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>

\section*{References}

Mardia K.V., Kent J.T., and Bibby J.M. (1979). Multivariate analysis. Academic press.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman \\& Hall.

\section*{See Also}
multivreg, spatmed.reg,js.compreg, diri.reg

\section*{Examples}
```

library(MASS)

```
y <- as.matrix(iris[, 1:3])
y <- y / rowSums(y)
\(x<-\) as.vector(iris[, 4])
\(\bmod 1<-\operatorname{comp} . \operatorname{reg}(y, x)\)
\(\bmod 2<-\operatorname{comp} . \operatorname{reg}(y, x\), type = "spatial")

Multivariate skew normal random values simulation on the simplex
Multivariate skew normal random values simulation on the simplex

\section*{Description}

Multivariate skew normal random values simulation on the simplex.

\section*{Usage}
rcompsn(n, xi, Omega, alpha, dp = NULL, type = "alr")

\section*{Arguments}
n
xi A numeric vector of length \(d\) representing the location parameter of the distribution.
Omega A \(d \times d\) symmetric positive-definite matrix of dimension.
alpha A numeric vector which regulates the slant of the density.
dp A list with three elements, corresponding to xi, Omega and alpha described above. The default value is FALSE. If dp is assigned, individual parameters must not be specified.
type \(\quad\) The alr (type \(=\) "alr") or the ilr (type \(=\) "ilr") is to be used for closing the Euclidean data onto the simplex.

\section*{Details}

The algorithm is straightforward, generate random values from a multivariate t distribution in \(R^{d}\) and brings the values to the simplex \(S^{d}\) using the inverse of a log-ratio transformation.

\section*{Value}

A matrix with the simulated data.

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>

\section*{References}

Azzalini, A. and Dalla Valle, A. (1996). The multivariate skew-normal distribution. Biometrika, 83(4): 715-726.

Azzalini, A. and Capitanio, A. (1999). Statistical applications of the multivariate skew normal distribution. Journal of the Royal Statistical Society Series B, 61(3):579-602. Full-length version available from http://arXiv.org/abs/0911.2093

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \\& Hall.

\section*{See Also}
comp. den, rdiri, rcompnorm, rmvt

\section*{Examples}
```

x <- as.matrix(iris[, 1:2])
par <- sn::msn.mle(y = x)\$dp
y <- rcompsn(100, dp = par)
comp.den(y, dist = "skewnorm")
ternary(y)

```
Multivariate t random values simulation on the simplex
    Multivariate trandom values simulation on the simplex

\section*{Description}

Multivariate \(t\) random values simulation on the simplex.

\section*{Usage}
\(\operatorname{rcompt}(n, m, s, d o f\), type \(=" a l r ")\)

\section*{Arguments}
n
m
S
dof
type The alr (type \(=\) "alr") or the ilr (type \(=\) "ilr") is to be used for closing the Euclidean data onto the simplex.

\section*{Details}

The algorithm is straightforward, generate random values from a multivariate t distribution in \(R^{d}\) and brings the values to the simplex \(S^{d}\) using the inverse of a log-ratio transformation.

\section*{Value}

A matrix with the simulated data.

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>

\section*{References}

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \\& Hall.
```

See Also
comp.den,rdiri, rcompnorm,rmvt

```

\section*{Examples}
```

x <- as.matrix(iris[, 1:2])
m <- Rfast::colmeans(x)
s <- var(x)
y <- rcompt(100, m, s, 10)
comp.den(y, dist = "t")
ternary(y)

```
```

Non linear least squares regression for compositional data
Non linear least squares regression for compositional data

```

\section*{Description}

Non linear least squares regression for compositional data.

\section*{Usage}
ols.compreg(y, \(x, B=1\), ncores \(=1\), xnew \(=\) NULL)

\section*{Arguments}
y A matrix with the compositional data (dependent variable). Zero values are allowed.
x The predictor variable(s), they have to be continuous.
B If B is greater than 1 bootstrap estimates of the standard error are returned. If \(B=1\), no standard errors are returned.
ncores If ncores is 2 or more parallel computing is performed. This is to be used for the case of bootstrap. If \(\mathrm{B}=1\), this is not taken into consideration.
xnew If you have new data use it, otherwise leave it NULL.

\section*{Details}

The ordinary least squares between the observed and the fitted compositional data is adopted as the objective function. This involves numerical optimization since the relationship is non linear. There is no log-likelihood.

\section*{Value}

A list including:
runtime \(\quad\) The time required by the regression.
beta The beta coefficients.
seb The standard error of the beta coefficients, if bootstrap is chosen, i.e. if B \(>1\).
est The fitted of xnew if xnew is not NULL.

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>

\section*{References}

Murteira, Jose MR, and Joaquim JS Ramalho 2016. Regression analysis of multivariate fractional data. Econometric Reviews 35(4): 515-552.

\section*{See Also}
diri.reg, js.compreg,kl.compreg, comp.reg, comp.reg, alfa.reg

\section*{Examples}
```

library(MASS)
x <- as.vector(fgl[, 1])
y <- as.matrix(fgl[, 2:9])
y <- y / rowSums(y)
mod1 <- ols.compreg(y, x, B = 1, ncores = 1)
mod2 <- js.compreg(y, x, B = 1, ncores = 1)

```

\section*{Perturbation operation}

\section*{Perturbation operation}

\section*{Description}

Perturbation operation.

\section*{Usage}
perturbation (x, y, oper = "+")

\section*{Arguments}
\(x \quad\) A matrix with the compositional data.
y Either a matrix with compositional data or a vector with compositional data. In either case, the data may not be compositional data, as long as they non negative.
oper \(\quad\) For the summation this must be "*" and for the negation it must be "/". According to Aitchison (1986), multiplication is equal to summation in the log-space, and division is equal to negation.

\section*{Details}

This is the perturbation operation defined by Aitchison (1986).

\section*{Value}

A matrix with the perturbed compositional data.

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

\section*{References}

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

\section*{See Also}
power

\section*{Examples}
```

x <- as.matrix(iris[1:15, 1:4])
y <- as.matrix(iris[21:35, 1:4])
perturbation(x, y)
perturbation(x, y[1,])

```

Power operation Power operation

\section*{Description}

Power operation.

\section*{Usage}
pow (x, a)

\section*{Arguments}
x
a

A matrix with the compositional data.
Either a vector with numbers of a single number.

\section*{Details}

This is the power operation defined by Aitchison (1986). It is also the starting point of the \(\alpha\) transformation.

\section*{Value}

A matrix with the power transformed compositional data.

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

\section*{References}

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. http://arxiv.org/pdf/1106.1451.pdf

\section*{See Also}
perturbation, alfa

\section*{Examples}
```

x <- as.matrix(iris[1:15, 1:4])
a <- runif(1)
pow(x, a)

```
```

Principal component generalised linear models
Principal component generalised linear models

```

\section*{Description}

Principal component generalised linear models.

\section*{Usage}
\(\operatorname{pcr}(\mathrm{y}, \mathrm{x}, \mathrm{k}=1\), \(\mathrm{xnew}=\mathrm{NULL})\)
glm. \(\operatorname{pcr}(\mathrm{y}, \mathrm{x}, \mathrm{k}=1\), \(\mathrm{xnew}=\mathrm{NULL})\)

\section*{Arguments}
y A numerical vector, a real values vector or a numeric vector with 0 and 1 (binary) or a vector with discrete (count) data.
\(x \quad\) A matrixc with the predictor variable(s), they have to be continuous.
\(\mathrm{k} \quad\) A number greater than or equal to 1 . How many principal components to use. In the case of "pcr" this can be a single number or a vector. In the second case you get results for the sequence of principal components.
xnew If you have new data use it, otherwise leave it NULL.

\section*{Details}

Principal component regression is performed with linear, binary logistic or Poisson regression, depending on the nature of the response variable. The principal components of the cross product of the independent variables are obtained and classical regression is performed. This is used in the function alfa.per.

\section*{Value}

A list including:
be The beta coefficients of the predictor variables computed via the principcal components if "pcr" is used.
model The summary of the logistic or Poisson regression model.
per The percentage of variance of the predictor variables retained by the k principal components.
vec The principal components, the loadings.
est The fitted or the predicted values (if xnew is not NULL).

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Aguilera A.M., Escabias M. and Valderrama M.J. (2006). Using principal components for estimating logistic regression with high-dimensional multicollinear data. Computational Statistics \\& Data Analysis 50(8): 1905-1924.

Jolliffe I.T. (2002). Principal Component Analysis.

\section*{See Also}
```

alfa.pcr,alfapcr.tune

```

\section*{Examples}
```

library(MASS)
x <- as.matrix(fgl[, 2:9])
y <- as.vector(fgl[, 1])
mod1 <- pcr(y, x, 1)
mod2 <- pcr(y, x, 2)
mod <- pcr(y, x, k = 1:4) \#\# many results at once
x <- as.matrix(iris[, 1:4])
y<- rbinom(150, 1, 0.6)
mod<- glm.pcr(y, x, k = 1)

```

Projection pursuit regression for compositional data
Projection pursuit regression for compositional data

\section*{Description}

Projection pursuit regression for compositional data.

\section*{Usage}
comp.ppr (y, x, nterms = 3, type = "alr", xnew = NULL, yb = NULL )

\section*{Arguments}
\(y \quad\) A matrix with the compositional data.
\(x \quad\) A matrix with the continuous predictor variables or a data frame including categorical predictor variables.
nterms The number of terms to include in the final model.
type Either "alr" or "ilr" corresponding to the additive or the isometric log-ratio transformation respectively.
xnew If you have new data use it, otherwise leave it NULL.
\(\mathrm{yb} \quad\) If you have already transformed the data using a log-ratio transformation put it here. Othewrise leave it NULL.

\section*{Details}

This is the standard projection pursuit. See the built-in funciton "ppr" for more details.

\section*{Value}

A list includign:
runtime The runtime of the regression.
mod The produced model as returned by the function "ppr".
est The fitted values of xnew if xnew is not NULL.

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Friedman, J. H. and Stuetzle, W. (1981). Projection pursuit regression. Journal of the American Statistical Association, 76, 817-823. doi: 10.2307/2287576.

\section*{See Also}
compknn.tune, rda, alfa

\section*{Examples}
```

x <- as.matrix(iris[, 1:4])
x <- x/ rowSums(x)
ina <- iris[, 5]
mod <- comp.knn(x, x, ina, a = 1, k = 5)
table(ina, mod)
mod2 <- alfa.knn(x, x, ina, a = 1, k = 5)
table(ina, mod2)

```

Quasi binomial regression for proportions Quasi binomial regression for proportions

\section*{Description}

Quasi binomial regression for proportions.

\section*{Usage}
propreg(y, \(x\), varb \(=\) "quasi", tol \(=1 \mathrm{e}-07\), maxiters \(=100\) )
propregs \((y, x\), varb \(=\) "quasi", tol \(=1 \mathrm{e}-07\), logged \(=\) FALSE, maxiters = 100)

\section*{Arguments}
\(\begin{array}{ll}\mathrm{y} & \text { A numerical vector proportions. 0s and 1s are allowed. } \\ \mathrm{x} & \begin{array}{l}\text { For the "propreg" a matrix with data, the predictor variables. This can be a } \\ \text { matrix or a data frame. For the "propregs" this must be a numerical matrix, } \\ \text { where each columns denotes a variable. }\end{array} \\ \text { tol } & \begin{array}{l}\text { The tolerance value to terminate the Newton-Raphson algorithm. This is set to } \\ 10^{-9} \text { by default. } \\ \text { varb }\end{array} \quad \begin{array}{l}\text { The type of estimate to be used in order to estimate the covariance matrix of the } \\ \text { regression coefficients. There are two options, either "quasi" (default value) or } \\ \text { "glm". See the references for more information. }\end{array} \\ \text { logged } & \begin{array}{l}\text { Should the p-values be returned (FALSE) or their logarithm (TRUE)? } \\ \text { maxiters }\end{array} \quad \begin{array}{l}\text { The maximum number of iterations before the Newton-Raphson is terminated } \\ \text { automatically. }\end{array}\end{array}\)

\section*{Details}

We are using the Newton-Raphson, but unlike R's built-in function "glm" we do no checks and no extra calculations, or whatever. Simply the model. The "propregs" is to be used for very many univariate regressions. The " \(x\) " is a matrix in this case and the significance of each variable (column of the matrix) is tested. The function accepts binary responses as well ( 0 or 1 ).

\section*{Value}

For the "propreg" function a list including:
iters The number of iterations required by the Newton-Raphson.
varb The covariance matrix of the regression coefficients.
phi The phi parameter is returned if the input argument "varb" was set to "glm", othwerise this is NULL.
info A table similar to the one produced by "glm" with the estimated regression coefficients, their standard error, Wald test statistic and p-values.

For the "propregs" a two-column matrix with the test statistics (Wald statistic) and the associated p-values (or their loggarithm).

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

\section*{References}

Papke L. E. \& Wooldridge J. (1996). Econometric methods for fractional response variables with an application to \(401(\mathrm{~K})\) plan participation rates. Journal of Applied Econometrics, 11(6): 619-632.

McCullagh, Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition, 1989.

\section*{See Also}
```

anova_propreg univglms,score.glms,logistic_only

```

\section*{Examples}
```

y <- rbeta(100, 1, 4)
x <- matrix(rnorm(100 * 3), ncol = 3)
a <- propreg(y, x)
y <- rbeta(100, 1, 4)
x <- matrix(rnorm(400 * 100), ncol = 400)
b <- propregs(y, x)
mean(b[, 2] < 0.05)

```

Regression with compositional data using the alpha-transformation

\section*{Description}

Regression with compositional data using the \(\alpha\)-transformation.

\section*{Usage}
alfa.reg(y, x, a, xnew = NULL, yb = NULL, seb = FALSE)

\section*{Arguments}
\(y \quad\) A matrix with the compositional data.
\(x \quad\) A matrix with the continuous predictor variables or a data frame including categorical predictor variables.
a The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If \(\alpha=0\) the isometric log-ratio transformation is applied and the solution exists in a closed form, since it the classical mutivariate regression.
xnew If you have new data use it, otherwise leave it NULL.
\(\mathrm{yb} \quad\) If you have already transformed the data using the \(\alpha\)-transformation with the same \(\alpha\) as given in the argument "a", put it here. Othewrise leave it NULL.
This is intended to be used in the function alfareg. tune in order to speed up the process. The time difference in that function is small for small samples. But, if you have a few thousands and or a few more components, there will be bigger differences.
seb Do you want the standard error of the coefficients to be returned? In the alfareg. tune function this extra computation that is avoided can save some time.

\section*{Details}

The \(\alpha\)-transformation is applied to the compositional data first and then multivariate regression is applied. This involves numerical optimisation.

\section*{Value}

A list including:
runtime The time required by the regression.
be The beta coefficients.
seb The standard error of the beta coefficients.
est The fitted values for xnew if xnew is not NULL.

92 Regularised and flexible discriminant analysis for compositional data using the alpha-transformation

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>

\section*{References}

Tsagris M. (2015). Regression analysis with compositional data containing zero values. Chilean Journal of Statistics, 6(2): 47-57. http://arxiv.org/pdf/1508.01913v1.pdf
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. http://arxiv.org/pdf/1106.1451.pdf
Mardia K.V., Kent J.T., and Bibby J.M. (1979). Multivariate analysis. Academic press.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman \\& Hall.

\section*{See Also}
```

alfareg.tune,diri.reg,js.compreg,kl.compreg,ols.compreg, comp.reg

```

\section*{Examples}
```

library(MASS)
x <- as.vector(fgl[1:40, 1])
y <- as.matrix(fgl[1:40, 2:9])
y <- y / rowSums(y)
mod <- alfa.reg(y, x, 0.2)

``` using the \(\alpha\)-transformation

\section*{Description}

Regularised and flexible discriminant analysis for compositional data using the \(\alpha\)-transformation.

\section*{Usage}
alfa.rda(xnew, \(x\), ina, \(a\), gam \(=1\), del = 0)
alfa.fda(xnew, x, ina, a)

\section*{Arguments}
xnew A matrix with the new compositional data whose group is to be predicted. Zeros are allowed, but you must be carefull to choose strictly positive vcalues of \(\alpha\).
x
A matrix with the available compositional data. Zeros are allowed, but you must be carefull to choose strictly positive vcalues of \(\alpha\).
ina A group indicator variable for the avaiable data.
a
The value of \(\alpha\) for the \(\alpha\)-transformation.
gam This is a number between 0 and 1. It is the weight of the pooled covariance and the diagonal matrix.
del This is a number between 0 and 1. It is the weight of the LDA and QDA.

\section*{Details}

For the alfa.rda, the covariance matrix of each group is calcualted and then the pooled covariance matrix. The spherical covariance matrix consists of the average of the pooled variances in its diagonal and zeros in the off-diagonal elements. gam is the weight of the pooled covariance matrix and 1 -gam is the weight of the spherical covariance matrix, \(\mathrm{Sa}=\mathrm{gam} * \mathrm{Sp}+(1-\mathrm{gam}) * \mathrm{sp}\). Then it is a compromise between LDA and QDA. del is the weight of Sa and 1-del the weight of each group covariance group. This function is a wrapper for alfa.rda.

For the alfa.fda a flexible discriminant analysis is performed. See the R package fda for more details.

\section*{Value}

For the alfa.rda a list including:
prob The estimated probabilities of the new data of belonging to each group.
scores The estimated socres of the new data of each group.
est The estimated group membership of the new data.
For the alfa.fda a list including:
mod A fda object as returned by the command fda of the R package mda.
est The estimated group membership of the new data.

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>

\section*{References}

Friedman Jerome, Trevor Hastie and Robert Tibshirani (2009). The elements of statistical learning, 2nd edition. Springer, Berlin.
Tsagris Michail, Simon Preston and Andrew T.A. Wood (2016). Improved classification for compositional data using the \(\alpha\)-transformation. Journal of classification, 33(2): 243-261. http: //arxiv . org/pdf/1106.1451.pdf
Hastie, Tibshirani and Buja (1994). Flexible Disriminant Analysis by Optimal Scoring. Journal of the American Statistical Association, 89(428):1255-1270.

\section*{See Also}
rda, alfa

\section*{Examples}
```

x <- as.matrix(iris[, 1:4])
x <- x / rowSums(x)
ina <- iris[, 5]
mod <- alfa.rda(x, x, ina, 0)
table(ina, mod$est)
mod2 <- alfa.fda(x, x, ina, 0)
table(ina, mod2$est)

```
Regularised discriminant analysis for Euclidean data
    Regularised discriminant analysis for Euclidean data

\section*{Description}

Regularised discriminant analysis for Euclidean data.

\section*{Usage}
rda(xnew, x, ina, gam \(=1\), del \(=0\) )

\section*{Arguments}
xnew A matrix with the new data whose group is to be predicted. They have to be continuous.
x
ina A group indicator variable for the avaiable data.
gam This is a number between 0 and 1. It is the weight of the pooled covariance and the diagonal matrix.
del This is a number between 0 and 1. It is the weight of the LDA and QDA.

\section*{Details}

The covariance matrix of each group is calculated and then the pooled covariance matrix. The spherical covariance matrix consists of the average of the pooled variances in its diagonal and zeros in the off-diagonal elements. gam is the weight of the pooled covariance matrix and 1-gam is the weight of the spherical covariance matrix, \(\mathrm{Sa}=\mathrm{gam} * \mathrm{Sp}+(1-\mathrm{gam}) * \mathrm{sp}\). Then it is a compromise between LDA and QDA. del is the weight of Sa and 1-del the weight of each group covariance group. This function is a wrapper for alfa.rda.

\section*{Value}

A list including:
prob The estimated probabilities of the new data of belonging to each group.
scores The estimated socres of the new data of each group.
est The estimated group membership of the new data.

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>

\section*{References}

Friedman Jerome, Trevor Hastie and Robert Tibshirani (2009). The elements of statistical learning, 2nd edition. Springer, Berlin

Tsagris Michail, Simon Preston and Andrew TA Wood (2016). Improved classification for compositional data using the \(\alpha\)-transformation. Journal of classification, 33(2): 243-261. http://arxiv.org/pdf/1106.1451.pdf

\section*{See Also}
rda.tune, alfa

\section*{Examples}
```

x <- as.matrix(iris[, 1:4])
ina <- iris[, 5]
mod <- rda(x, x, ina)
table(ina, mod\$est)

```

\section*{Description}

Ridge regression.

\section*{Usage}
ridge. \(\mathrm{reg}(\mathrm{y}, \mathrm{x}, \mathrm{lambda}, \mathrm{B}=1\), xnew \(=\mathrm{NULL})\)

\section*{Arguments}
y A real valued vector. If it contains percentages, the logit transformation is applied.
\(x \quad\) A matrix with the predictor variable(s), they have to be continuous.
lambda The value of the regularisation parameter \(\lambda\).
B If \(B=1\) (default value) no bootstrpa is performed. Otherwise bootstrap standard errors are returned.
xnew If you have new data whose response value you want to predict put it here, otherwise leave it as is.

\section*{Details}

This is used in the function alfa. ridge. There is also a built-in function available from the MASS library, called lm. ridge.

\section*{Value}

A list including:
beta The beta coefficients.
seb The standard eror of the coefficiens. If B > 1 the bootstrap standard errors will be returned.
est The fitted or the predicted values (if xnew is not NULL).

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>

\section*{References}

Hoerl A.E. and R.W. Kennard (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1): 55-67.
Brown P. J. (1994). Measurement, Regression and Calibration. Oxford Science Publications.

\section*{See Also}
ridge.tune, alfa.ridge, ridge.plot

\section*{Examples}
```

y <- as.vector(iris[, 1])
x <- as.matrix(iris[, 2:4])
mod1 <- ridge.reg(y, x, lambda = 0.1)
mod2 <- ridge.reg(y, x, lambda = 0)

```

Ridge regression plot Ridge regression plot

\section*{Description}

A plot of the regularised regression coefficients is shown.

\section*{Usage}
ridge.plot(y, x, lambda \(=\operatorname{seq}(0,5\), by \(=0.1)\) )

\section*{Arguments}
y
A numeric vector containing the values of the target variable. If the values are proportions or percentages, i.e. strictly within 0 and 1 they are mapped into \(R\) using the logit transformation. In any case, they must be continuous only.
x A numeric matrix containing the continuous variables. Rows are samples and columns are features.
lambda A grid of values of the regularisation parameter \(\lambda\).

\section*{Details}

For every value of \(\lambda\) the coefficients are obtained. They are plotted versus the \(\lambda\) values.

\section*{Value}

A plot with the values of the coefficients as a function of \(\lambda\).

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Giorgos Athineou <gioathineou@gmail.com> and Michail
Tsagris <mtsagris@uoc.gr>

\section*{References}

Hoerl A.E. and R.W. Kennard (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1): 55-67.
Brown P. J. (1994). Measurement, Regression and Calibration. Oxford Science Publications.

\section*{See Also}
ridge. reg, ridge.tune, alfa.ridge, alfaridge. plot

\section*{Examples}
```

y <- as.vector(iris[, 1])
x <- as.matrix(iris[, 2:4])
ridge.plot(y, x, lambda = seq(0, 2, by = 0.1))

```
```

Ridge regression with compositional data in the covariates side using the alpha-transformation
Ridge regression with compositional data in the covariates side using
the \alpha-transformation

```

\section*{Description}

Ridge regression with compositional data in the covariates side using the \(\alpha\)-transformation.

\section*{Usage}
alfa.ridge(y, x, a, lambda, \(B=1\), xnew \(=\) NULL)

\section*{Arguments}
y A numerical vector containing the response variable values. If they are percentages, they are mapped onto \(R\) using the logit transformation.
\(x \quad\) A matrix with the predictor variables, the compositional data. Zero values are allowed, but you must be carefull to choose strictly positive vcalues of \(\alpha\).
a The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If \(\alpha=0\) the isometric log-ratio transformation is applied.
lambda The value of the regularisation parameter, \(\lambda\).
B If \(\mathrm{B}>1\) bootstrap estimation of the standard errors is implemented.
xnew A matrix containing the new compositional data whose response is to be predicted. If you have no new data, leave this NULL as is by default.

\section*{Details}

The \(\alpha\)-transformation is applied to the compositional data first and then ridge components regression is performed.

\section*{Value}

The output of the ridge.reg.

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>

\section*{References}

Tsagris M. (2015). Regression analysis with compositional data containing zero values. Chilean Journal of Statistics, 6(2): 47-57. http://arxiv.org/pdf/1508.01913v1.pdf

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. http://arxiv.org/pdf/1106.1451.pdf

\section*{See Also}
ridge.reg, alfaridge.tune, alfaridge.plot

\section*{Examples}
```

library(MASS)
y <- as.vector(fgl[, 1])
x <- as.matrix(fgl[, 2:9])
x <- x/ rowSums(x)
mod1 <- alfa.ridge(y, x, a = 0.5, lambda = 0.1, B = 1, xnew = NULL)
mod2 <- alfa.ridge(y, x, a = 0.5, lambda = 1, B = 1, xnew = NULL)

```
```

Ridge regression with the alpha-transformation plot

```
    Ridge regression plot

\section*{Description}

A plot of the regularised regression coefficients is shown.

\section*{Usage}
alfaridge.plot(y, x, a, lambda \(=\) seq(0, 5, by \(=0.1\) ) )

\section*{Arguments}
y
A numeric vector containing the values of the target variable. If the values are proportions or percentages, i.e. strictly within 0 and 1 they are mapped into \(R\) using the logit transformation. In any case, they must be continuous only.

X
A numeric matrix containing the continuous variables.
a
The value of the \(\alpha\)-transformation. It has to be between -1 and 1 . If there are zero values in the data, you must use a strictly positive value.
lambda A grid of values of the regularisation parameter \(\lambda\).

\section*{Details}

For every value of \(\lambda\) the coefficients are obtained. They are plotted versus the \(\lambda\) values.

\section*{Value}

A plot with the values of the coefficients as a function of \(\lambda\).

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Giorgos Athineou <gioathineou@gmail.com> and Michail
Tsagris <mtsagris@uoc.gr>

\section*{References}

Hoerl A.E. and R.W. Kennard (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1): 55-67.
Brown P. J. (1994). Measurement, Regression and Calibration. Oxford Science Publications.
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. http://arxiv.org/pdf/1106.1451.pdf

\section*{See Also}
```

ridge.plot,alfa.ridge

```

\section*{Examples}
```

library(MASS)
y <- as.vector(fgl[, 1])
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
alfaridge.plot(y, x, a = 0.5, lambda = seq(0, 5, by = 0.1))

```

Simulation of compositional data from Gaussian mixture models
Simulation of compositional data from Gaussian mixture models

\section*{Description}

Simulation of compositional data from Gaussian mixture models.

\section*{Usage}
rmixcomp(n, prob, mu, sigma, type = "alr")

\section*{Arguments}
\(\mathrm{n} \quad\) The sample size
prob A vector with mixing probabilities. Its length is equal to the number of clusters.
mu A matrix where each row corresponds to the mean vector of each cluster.
sigma An array consisting of the covariance matrix of each cluster.
type \(\quad\) Should the additive ("type=alr") or the isometric (type="ilr") log-ration be used? The default value is for the additive log-ratio transformation.

\section*{Details}

A sample from a multivariate Gaussian mixture model is generated.

\section*{Value}

A list including:
id A numeric variable indicating the cluster of simulated vector.
\(x \quad\) A matrix containing the simulated compositional data. The number of dimensions will be +1 .

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>

\section*{References}

Ryan P. Browne, Aisha ElSherbiny and Paul D. McNicholas (2015). R package mixture: Mixture Models for Clustering and Classification.

\section*{See Also}
```

mix.compnorm,bic.mixcompnorm

```

\section*{Examples}
```

 p <- c(1/3, 1/3, 1/3)
 mu <- matrix(nrow = 3, ncol = 4)
 s <- array(dim = c(4, 4, 3))
 x <- as.matrix(iris[, 1:4])
 ina <- as.numeric(iris[, 5])
 mu <- rowsum(x, ina) / 50
 s[, , 1] <- cov(x[ina == 1,])
 s[, , 2] <- cov(x[ina == 2,])
 s[, , 3] <- cov(x[ina == 3,])
 y <- rmixcomp(100, p, mu, s, type = "alr")
    ```

\section*{Simulation of compositional data from the Flexible Dirichlet distribution Simulation of compositional data from the Flexible Dirichlet distribution}

\section*{Description}

Simulation of compositional data from the Flexible Dirichlet distribution.

\section*{Usage}
rfd(n, alpha, prob, tau)

\section*{Arguments}
\(\mathrm{n} \quad\) The sample size.
alpha A vector of the non-negative alpha parameters.
prob A vector of the clusters' probabilities that must sum to one.
tau The non-negative scalar tau parameter.

\section*{Details}

For more information see the references.

\section*{Value}

A matrix with compositional data.

\section*{Author(s)}

Michail Tsagris ported from the R package FlexDir. <mtsagris@uoc.gr>.

\section*{References}

Ongaro, A. and Migliorati, S. (2013) A generalization of the Dirichlet distribution. Journal of Multivariate Analysis, 114, 412-426.

Migliorati, S., Ongaro, A. and Monti, G. S. (2016) A structured Dirichlet mixture model for compositional data: inferential and applicative issues. Statistics and Computing, 1-21.

\section*{See Also}
```

fd.est,fd.density

```

\section*{Examples}
```

alpha <- c(12, 11, 10)
prob <- c(0.25, 0.25, 0.5)
x <- rfd(100, alpha, prob, 7)

```
```

Simulation of compositional data from the folded normal distribution
Simulation of compositional data from the folded model normal distri-
bution

```

\section*{Description}

Simulation of compositional data from the folded model normal distribution.

\section*{Usage}
rfolded(n, mu, su, a)

\section*{Arguments}
\begin{tabular}{ll}
n & The sample size. \\
mu & The mean vector. \\
su & The covariance matrix. \\
a & The value of \(\alpha\).
\end{tabular}

\section*{Details}

A sample from the folded model is generated.

\section*{Value}

A matrix with compositional data.

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

\section*{References}

Tsagris Michail and Stewart Connie, (2020). A folded model for compositional data analysis. Australian and New Zealand Journal of Statistics (to appear). https://arxiv.org/pdf/1802.07330.pdf

\section*{See Also}
```

alfa,alpha.mle,a.est

```

\section*{Examples}
```

s <- c(0.1490676523, -0.4580818209, 0.0020395316, -0.0047446076, -0.4580818209,
1.5227259250, 0.0002596411, 0.0074836251, 0.0020395316, 0.0002596411,
$0.0365384838,-0.0471448849,-0.0047446076,0.0074836251,-0.0471448849$,
0.0611442781)
s <- matrix(s, ncol = 4)
$\mathrm{m}=\mathrm{c}(1.715,0.914,0.115,0.167)$
$x=r f o l d e d(100, m, s, 0.5)$
a.est(x)

```
Spatial median regression
Spatial median regression

\section*{Description}

Spatial median regression with Euclidean data.

\section*{Usage}
spatmed.reg(y, \(x\), xnew \(=\) NULL, tol \(=1 \mathrm{e}-07\), ses \(=\) FALSE)

\section*{Arguments}
y A matrix with the compositional data. Zero values are not allowed.
x
The predictor variable(s), they have to be continuous.
xnew If you have new data use it, otherwise leave it NULL.
tol The threshold upon which to stop the iterations of the Newton-Rapshon algorithm.
ses
If you want to extract the standard errors of the parameters, set this to TRUE. Be careful though as this can slow down the algorithm dramatically. In a run example with 10,000 observations and 10 variables for \(y\) and 30 for \(x\), when ses \(=\) FALSE the algorithm can take 0.20 seconds, but when ses \(=\) TRUE it can go up to 140 seconds.

\section*{Details}

The objective function is the minimization of the sum of the absolute residuals. It is the multivariate generalization of the median regression. This function is used by comp. reg.

\section*{Value}

A list including:
iter The number of iterations that were required.
runtime The time required by the regression.
be The beta coefficients.
seb The standard error of the beta coefficients is returned if ses=TRUE and NULL otherwise.
est The fitted of xnew if xnew is not NULL.

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>

\section*{References}

Biman Chakraborty (2003) On multivariate quantile regression. Journal of Statistical Planning and Inference http://www.stat.nus.edu.sg/export/sites/dsap/research/documents/tr01_2000.pdf

\section*{See Also}
multivreg, comp.reg, alfa.reg, js.compreg, diri.reg

\section*{Examples}
library(MASS)
x <- as.matrix(iris[, 3:4])
y <- as.matrix(iris[, 1:2])
mod1 <- spatmed.reg(y, x)
\(\bmod 2<-\operatorname{multivreg}(y, x\), plot \(=\) FALSE \()\)

Ternary diagram Ternary diagram

\section*{Description}

Ternary diagram.

\section*{Usage}
ternary (x, means \(=\) TRUE, \(\mathrm{pca}=\) FALSE)

\section*{Arguments}
\begin{tabular}{ll}
\(x\) & A matrix with the compositional data. \\
means & \begin{tabular}{l} 
A boolean variable. Should the closed geometric mean and the arithmetic mean \\
appear (TRUE) or not (FALSE)?.
\end{tabular} \\
pca & \begin{tabular}{l} 
Should the first PCA calculated Aitchison (1983) described appear? If yes, then \\
this should be TRUE, or FALSE otherwise.
\end{tabular}
\end{tabular}

\section*{Details}

The first PCA is calcualte using the centred log-ratio transformation as Aitchison (1983, 1986) suggested. If the data contain zero values, the first PCA will not be plotted. There are two ways to create a ternary graph. The one I used here, where eqch edge is equal to 1 and the one Aitchison (1986) uses. For every given point, the sum of the distances from the edges is equal to 1 . Zeros in the data appear with green circles in the triangle and you will also see NaN in the closed geometric mean.

\section*{Value}

The ternary plot and a matrix with the closed geometric and the simple arithmetic mean vector.

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>

\section*{References}

Aitchison, J. (1983). Principal component analysis of compositional data. Biometrika 70(1):57-65.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman \\& Hall.

\section*{See Also}
comp.den, alfa, diri. contour, comp.kerncontour

\section*{Examples}
library (MASS)
\(x\) <- as.matrix(fgl[, 2:4])
ternary ( \(x\), means \(=\) FALSE)
\(x<-\) as.matrix(iris[, 1:3])
ternary (x, pca = TRUE)

The additive log-ratio transformation and its inverse
The additive log-ratio transformation and its inverse

\section*{Description}

The additive log-ratio transformation and its inverse.

\section*{Usage}
\(\operatorname{alr}(x)\)
alrinv(y)

\section*{Arguments}
\(x \quad\) A numerical matrix with the compositional data.
\(y \quad\) A numerical matrix with data to be closed into the simplex.

\section*{Details}

The additive log-ratio transformation with the first component being the commn divisor is applied. The inverse of this trnasformation is also available.

\section*{Value}

A matrix with the alr transformed data (if alr is used) or with the compositional data (if the alrinv is used).

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

\section*{References}

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \(\backslash \&\) Hall.

\section*{See Also}
```

alfa,\ link{alfainv} alfa.profile,alfa.tune

```

\section*{Examples}
library (MASS)
\(x\) <- as.matrix(fgl[, 2:9])
\(x<-x / \operatorname{rowSums}(x)\)
\(y<-\operatorname{alr}(x)\)
\(x 1<-\operatorname{alrinv}(y)\)

The alpha-distance The \(\alpha\)-distance

\section*{Description}

This is the Euclidean (or Manhattan) distance after the \(\alpha\)-transformation has been applied.

\section*{Usage}
alfadist(x, a, type = "euclidean", square = FALSE)
alfadista(xnew, x, a, type = "euclidean", square = FALSE)

\section*{Arguments}
xnew A matrix or a vector with new compositional data.
\(x \quad\) A matrix with the compositional data.
a The value of the power transformation, it has to be between -1 and 1. If zero values are present it has to be greater than 0 . If \(\alpha=0\), the isometric log-ratio transformation is applied.
type \(\quad\) Which type distance do you want to calculate after the \(\alpha\)-transformation, "euclidean", or "manhattan".
square In the case of the Euclidean distance, you can choose to return the squared distance by setting this TRUE.

\section*{Details}

The \(\alpha\)-transformation is applied to the compositional data first and then the Euclidean or the Manhattan distance is calculated.

\section*{Value}

A matrix including the pairwise distances of all observations or the distances between \(x n e w\) and \(x\).

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Tsagris M.T., Preston S. and Wood A.T.A. (2016). Improved classification for compositional data using the \(\alpha\)-transformation. Journal of Classification. 33(2):243-261. http://arxiv.org/pdf/1506.04976v2.pdf
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. http://arxiv.org/pdf/1106.1451.pdf

\section*{See Also}
alfa,alfainv,alfa.reg

\section*{Examples}
```

library(MASS)
x <- as.matrix(fgl[1:20, 2:9])
x <- x / rowSums(x)
alfadist(x, 0.1)
alfadist(x, 1)

```
The alpha-k-NN regression for compositional response data
    The \(\alpha-k-N N\) regression for compositional response data

\section*{Description}

The \(\alpha-\mathrm{k}-\mathrm{NN}\) regression for compositional response data.

\section*{Usage}
aknn.reg(xnew, y, x, a \(=\operatorname{seq}(0.1,1\), by \(=0.1), k=2: 10\), apostasi \(=\) "euclidean", rann = FALSE)

\section*{Arguments}
xnew A matrix with the new predictor variables whose compositions are to be predicted.
y A matrix with the compositional response data. Zeros are allowed.
\(x \quad\) A matrix with the available predictor variables.
a The value of \(\alpha\). As zero values in the compositional data are allowed, you must be careful to choose strictly positive vcalues of \(\alpha\). If negative values are passed, the positive ones are used only.
\(\mathrm{k} \quad\) The number of nearest neighbours to consider. It can be a single number or a vector.
apostasi The type of distance to use, either "euclidean" or "manhattan".
rann If you have large scale datasets and want a faster k-NN search, you can use kdtrees implemented in the R package "RANN". In this case you must set this argument equal to TRUE. Note however, that in this case, the only available distance is by default "euclidean".

\section*{Details}

The \(\alpha-\mathrm{k}-\mathrm{NN}\) regression for compositional response variables is applied.

\section*{Value}

A list with the estimated compositional response data for each value of \(\alpha\) and k .

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Michail Tsagris, Abdulaziz Alenazi and Connie Stewart (2020). The alpha-k-NN- regression for compositional data. https://arxiv.org/pdf/2002.05137.pdf

\section*{See Also}
alfa.reg, comp.ppr, comp.reg,kl.compreg

\section*{Examples}
```

y <- as.matrix(iris[, 1:3])
y <- y / rowSums(y)
x <- iris[, 4]
mod <- aknn.reg(x, y, x, a = c(0.4, 0.5), k = 2:3, apostasi = "euclidean")

```

The alpha-k-NN regression with compositional predictor variables
The \(\alpha-k-N N\) regression with compositional predictor variables

\section*{Description}

The \(\alpha\)-k-NN regression with compositional predictor variables.

\section*{Usage}
alfa.knn.reg(xnew, y, x, a = 1, k=2:10, apostasi = "euclidean", method = "average")

\section*{Arguments}
xnew A matrix with the new compositional predictor variables whose response is to be predicted. Zeros are allowed.
y
The response variable, a numerical vector.
\(x \quad\) A matrix with the available compositional predictor variables. Zeros are allowed.
a
A single value of \(\alpha\). As zero values in the compositional data are allowed, you must be careful to choose strictly positive vcalues of \(\alpha\). If negative values are passed, the positive ones are used only. If the data are already alphatransformed, you can make this NULL.
\(\mathrm{k} \quad\) The number of nearest neighbours to consider. It can be a single number or a vector.
apostasi The type of distance to use, either "euclidean" or "manhattan".
method If you want to take the average of the reponses of the k closest observations, type "average". For the median, type "median" and for the harmonic mean, type "harmonic".

\section*{Details}

The \(\alpha\)-k-NN regression with compositional predictor variables is applied.

\section*{Value}

A matrix with the estimated response data for each value of k .

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Michail Tsagris, Abdulaziz Alenazi and Connie Stewart (2020). The alpha-k-NN- regression for compositional data. https://arxiv.org/pdf/2002.05137.pdf

\section*{See Also}
aknn.reg,alfa.knn,alfa.pcr,alfa.ridge

\section*{Examples}
```

library(MASS)
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
y <- fgl[, 1]
mod <- alfa.knn.reg(x, y, x, a = 0.5, k = 2:4)

```

The alpha-transformation
The \(\alpha\)-transformation

\section*{Description}

The \(\alpha\)-transformation.

\section*{Usage}
alfa(x, a, h = TRUE)
alef(x, a)

\section*{Arguments}
\(x \quad\) A matrix with the compositional data.
a The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If \(\alpha=0\) the isometric log-ratio transformation is applied.
\(h \quad\) A boolean variable. If is TRUE (default value) the multiplication with the Helmert sub-matrix will take place. When \(\alpha=0\) and \(\mathrm{h}=\) FALSE, the result is the centred log-ratio transformation (Aitchison, 1986). In general, when \(\mathrm{h}=\) FALSE the resulting transformation maps the data onto a singualr space. The sum of the vectors is equal to 0 . Hence, from the simplex constraint the data go to another constraint.

\section*{Details}

The \(\alpha\)-transformation is applied to the compositional data. The command "alef" is the same as "alfa(x, a, \(\mathrm{h}=\mathrm{FALSE})\) ", but reurns a different element as well and is necessary for the functions a.est, a.mle and alpha.mle.

\section*{Value}

A list including:
sa The logarithm of the Jacobian determinant of the \(\alpha\)-transformation. This is used in the "profile" function to speed up the computations.
sk If the "alef" was called, this will return the sum of the \(\alpha\)-power transformed data, prior to being normalised to sum to 1 . If \(\alpha=0\), this will not be returned.
aff The \(\alpha\)-transformed data.

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>

\section*{References}

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. http://arxiv.org/pdf/1106.1451.pdf

Tsagris Michail and Stewart Connie, (2020). A folded model for compositional data analysis. Australian and New Zealnd Journal of Statistics (to appear). https://arxiv.org/pdf/1802.07330.pdf
Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

\section*{See Also}
alfainv, alfa.profile, alfa.tune a.est, alpha.mle

\section*{Examples}
```

library(MASS)
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
y1 <- alfa(x, 0.2)$aff
y2 <- alfa(x, 1)$aff
rbind(colMeans(y1), colMeans(y2))
y3 <- alfa(x, 0.2)\$aff
dim(y1) ; dim(y3)
rowSums(y1)
rowSums(y3)

```

The Frechet mean for compositional data
The Frechet mean for compositional data

\section*{Description}

Mean vector or matrix with mean vectors of compositional data using the \(\alpha\)-transformation.

\section*{Usage}
frechet (x, a)

\section*{Arguments}
x
a

A matrix with the compositional data.
The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If \(\alpha=0\) the isometric log-ratio transformation is applied and the closed geometric mean is calculated. You can also provide a sequence of values of alpha and in this case a matrix of Frechet means will be returned.

\section*{Details}

The power transformation is applied to the compositional data and the mean vector is calculated. Then the inverse of it is calculated and the inverse of the power transformation applied to the last vector is the Frechet mean.

\section*{Value}

If \(\alpha\) is a single value, the function will return a vector with the Frechet mean for the given value of \(\alpha\). Otherwise the function will return a matrix with the Frechet means for each value of \(\alpha\).

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>

\section*{References}

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

\section*{See Also}
alfa, alfainv, profile

\section*{Examples}
```

library(MASS)
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
frechet(x, 0.2)
frechet(x, 1)

```
    The Helmert sub-matrix
    The Helmert sub-matrix

\section*{Description}

The Helmert sub-matrix.

\section*{Usage}
helm(n)

\section*{Arguments}
n A number grater than or equal to 2 .

\section*{Details}

The Helmert sub-matrix is returned. It is an orthogonal matrix without the first row.

\section*{Value}

A \((n-1) \times n\) matrix.

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>.

\section*{References}

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. http://arxiv.org/pdf/1106.1451.pdf
John Aitchison (2003). The Statistical Analysis of Compositional Data p. 99 Blackburn Press.
Lancaster H. O. (1965). The Helmert matrices. The American Mathematical Monthly 72(1): 4-12.

\section*{See Also}
alfa,alfainv

\section*{Examples}
helm(3)
helm(5)

The k-nearest neighbours using the alpha-distance
The \(k\)-nearest neighbours using the alpha-distance

\section*{Description}

The k-nearest neighbours using the alpha-distance.

\section*{Usage}
alfann(xnew, x, a, k=10, rann = FALSE)

\section*{Arguments}
xnew A matrix or a vector with new compositional data.
\(x \quad\) A matrix with the compositional data.
a
The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If \(\alpha=0\), the isometric log-ratio transformation is applied.
k
The number of nearest neighbours to search for.
rann If you have large scale datasets and want a faster k-NN search, you can use kdtrees implemented in the R package "RANN". In this case you must set this argument equal to TRUE. Note however, that in this case, the only available distance is by default "euclidean".

\section*{Details}

The \(\alpha\)-transformation is applied to the compositional data first and the indices of the k-nearest neighbours using the Euclidean distance are returned.

\section*{Value}

A matrix including the indices of the nearest neighbours of each xnew from x .

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Michail Tsagris, Abdulaziz Alenazi and Connie Stewart (2020). The alpha-k-NN- regression for compositional data. https://arxiv.org/pdf/2002.05137.pdf

\section*{See Also}
```

alfa.knn,aknn.reg,alfa,alfainv

```

\section*{Examples}
```

library(MASS)
xnew <- as.matrix(fgl[1:20, 2:9])
xnew <- xnew / rowSums(xnew)
x <- as.matrix(fgl[-c(1:20), 2:9])
x <- x / rowSums(x)
b <- alfann(xnew, x, a = 0.1, k = 10)

```

The \(\mathrm{k}-\mathrm{NN}\) algorithm for compositional data
The \(k\)-NN algorithm for compositional data

\section*{Description}

The k-NN algorithm for compositional data with and without using the power transformation.

\section*{Usage}
comp.knn(xnew, x, ina, \(a=1, k=5\), type = "S", apostasi = "ESOV", mesos = TRUE)
alfa.knn(xnew, x, ina, a = 1, k = 5, type = "S", mesos = TRUE, apostasi = "euclidean", rann = FALSE)

\section*{Arguments}
xnew A matrix with the new compositional data whose group is to be predicted. Zeros are allowed, but you must be carefull to choose strictly positive values of \(\alpha\) or not to set apostasi= "Ait".
\(x \quad\) A matrix with the available compositional data. Zeros are allowed, but you must be carefull to choose strictly positive vcalues of \(\alpha\) or not to set apostasi= "Ait".
ina A group indicator variable for the available data.
a The value of \(\alpha\). As zero values in the compositional data are allowed, you must be careful to choose strictly positive vcalues of \(\alpha\). You have the option to put \(\mathrm{a}=\) NULL. In this case, the xnew and x are assumed to be the already \(\alpha\)-transformed data.
k
The number of nearest neighbours to consider. It can be a single number or a vector.
type \(\quad\) This can be either "S" for the standard k-NN or "NS" for the non standard (see details).
apostasi The type of distance to use. For the compk.knn this can be one of the following: "ESOV", "taxicab", "Ait", "Hellinger", "angular" or "CS". See the references for them. For the alfa.knn this can be either "euclidean" or "manhattan".
mesos This is used in the non standard algorithm. If TRUE, the arithmetic mean of the distances is calulated, otherwise the harmonic mean is used (see details).
rann If you have large scale datasets and want a faster k-NN search, you can use kdtrees implemented in the R package "RANN". In this case you must set this argument equal to TRUE. Note however, that in this case, the only available distance is by default "euclidean".

\section*{Details}

The k-NN algorithm is applied for the compositional data. There are many metrics and possibilities to choose from. The standard algorithm finds the k nearest observations to a new observation and allocates it to the class which appears most times in the neighbours. The non standard algorithm is slower but perhaps more accurate. For every group is finds the \(k\) nearest neighbours to the new observation. It then computes the arithmetic or the harmonic mean of the distances. The new point is allocated to the class with the minimum distance.

\section*{Value}

A vector with the estimated groups.

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>

\section*{References}

Tsagris, Michail (2014). The k-NN algorithm for compositional data: a revised approach with and without zero values present. Journal of Data Science, 12(3): 519-534.
Friedman Jerome, Trevor Hastie and Robert Tibshirani (2009). The elements of statistical learning, 2nd edition. Springer, Berlin
Tsagris Michail, Simon Preston and Andrew T.A. Wood (2016). Improved classification for compositional data using the \(\alpha\)-transformation. Journal of classification 33(2): 243-261.
Connie Stewart (2017). An approach to measure distance between compositional diet estimates containing essential zeros. Journal of Applied Statistics 44(7): 1137-1152.
Endres, D. M. and Schindelin, J. E. (2003). A new metric for probability distributions. Information Theory, IEEE Transactions on 49, 1858-1860.

Osterreicher, F. and Vajda, I. (2003). A new class of metric divergences on probability spaces and its applicability in statistics. Annals of the Institute of Statistical Mathematics 55, 639-653.

\section*{See Also}
compknn.tune, rda, alfa

\section*{Examples}
```

x <- as.matrix(iris[, 1:4])
x <- x/ rowSums(x)
ina <- iris[, 5]
mod <- comp.knn(x, x, ina, a = 1, k = 5)
table(ina, mod)
mod2 <- alfa.knn(x, x, ina, a = 1, k = 5)
table(ina, mod2)

```

\section*{Description}

Total variability.

\section*{Usage}
\(\operatorname{totvar}(\mathrm{x}, \mathrm{a}=0)\)

\section*{Arguments}
\(x \quad\) A numerical matrix with the compositional data.
a The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If \(\alpha=0\) the centred log-ratio transformation is used.

\section*{Details}

The \(\alpha\)-transformation is applied and the sum of the variances of the transformed variables is calculated. This is the total variability. Aitchison (1986) used the centred log-ratio transformation, but we have extended it to cover more geometries, via the \(\alpha\)-transformation.

\section*{Value}

The total variability of the data in a given geometry as dictated by the value of \(\alpha\).

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

\section*{References}

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \(\backslash \&\) Hall.

\section*{See Also}
alfa, \link\{alfainv,\} alfa.profile, alfa.tune

\section*{Examples}
```

x <- as.matrix(iris[, 1:4])
x <- x / rowSums(x)
totvar(x)

```

Tuning of the bandwidth h of the kernel using the maximum likelihood cross validation Tuning of the bandwidth h of the kernel using the maximum likelihood cross validation

\section*{Description}

Tuning of the bandwidth \(h\) of the kernel using the maximum likelihood cross validation.

\section*{Usage}
mkde.tune( \(x\), low \(=0.1\), up \(=3, \mathrm{~s}=\operatorname{cov}(x)\) )

\section*{Arguments}
\begin{tabular}{ll}
\(x\) & A matrix with Euclidean (continuous) data. \\
low & The minimum value to search for the optimal bandwidth value. \\
up & The maximum value to search for the optimal bandwidth value. \\
s & \begin{tabular}{l} 
A covariance matrix. By default it is equal to the covariance matrix of the data, \\
but can change to a robust covariance matrix, MCD for example.
\end{tabular}
\end{tabular}

\section*{Details}

Maximum likelihood cross validation is applied in order to choose the optimal value of the bandwidth parameter. No plot is produced.

\section*{Value}

A list including:
hopt The optimal bandwidth value.
maximum The value of the pseudo-log-likelihood at that given bandwidth value.

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>

\section*{References}

Arsalane Chouaib Guidoum (2015). Kernel Estimator and Bandwidth Selection for Density and its Derivatives. The kedd R package. http://cran.r-project.org/web/packages/kedd/vignettes/kedd.pdf M.P. Wand and M.C. Jones (1995). Kernel smoothing, pages 91-92.

\title{
Tuning of the divergence based regression for compositional data with compositional data in the covariates side using the alpha-tra
}

\author{
See Also \\ mkde, comp.kerncontour
}

\section*{Examples}
library(MASS)
mkde.tune(as.matrix(iris[, 1:4]), c(0.1, 3) )

Tuning of the divergence based regression for compositional data with compositional data in the covar
Tuning of the divergence based regression for compositional data with compositional data in the covariates side using the alphatransformation

\section*{Description}

Tuning of the divergence based regression for compositional data with compositional data in the covariates side using the \(\alpha\)-transformation.

\section*{Usage}
klalfapcr.tune (y, x, covar \(=\) NULL, nfolds \(=10\), maxk \(=50\), a \(=\operatorname{seq}(-1,1\), by \(=0.1)\), folds = NULL, graph = FALSE, tol = 1e-07, maxiters \(=50\), seed = FALSE)

\section*{Arguments}
y
x
covar
nfolds
maxk
a
maxiters
seed
folds If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
graph If graph is TRUE (default value) a filled contour plot will appear.
tol The tolerance value to terminate the Newton-Raphson procedure.
A numerical matrixc with compositional data with or without zeros.
A matrix with the predictor variables, the compositional data. Zero values are allowed.

If you have other continuous covariates put themn here.
The number of folds for the K-fold cross validation, set to 10 by default.
The maximum number of principal components to check.
The value of the power transformation, it has to be between -1 and 1. If zero values are present it has to be greater than 0 . If \(\alpha=0\) the isometric log-ratio transformation is applied.

The maximum number of Newton-Raphson iterations.
If seed is TRUE the results will always be the same.

\section*{Details}

The M -fold cross validation is performed in order to select the optimal values for \(\alpha\) and k , the number of principal components. The \(\alpha\)-transformation is applied to the compositional data first, the first k principal component scores are calcualted and used as predictor variables for the KullbackLeibler divergence based regression model. This procedure is performed M times during the M -fold cross validation.

\section*{Value}

A list including:
mspe \(\quad\) A list with the KL divergence for each value of \(\alpha\) and k in every fold.
performance A matrix with the KL divergence for each value of \(\alpha\) averaged over all folds. If graph is set to TRUE this matrix is plotted.
best.perf The minimum KL divergence.
params \(\quad\) The values of \(\alpha\) and k corresponding to the minimum KL divergence.

\section*{Author(s)}

Initial code by Abdulaziz Alenazi. Modifications by Michail Tsagris.
R implementation and documentation: Abdulaziz Alenazi <a.alenazi@nbu.edu.sa> Michail Tsagris <mtsagris@uoc.gr>

\section*{References}

Alenazi A. (2019). Regression for compositional data with compositioanl data as predictor variables with or without zero values. Journal of Data Science, 17(1): 219-238. http://www.jdsonline.com/file_download/688/01+No.10+315+REGRESSION+FOR+COMPOSITIONAL+DATA+WITH+COMPOSITIO

Tsagris M. (2015). Regression analysis with compositional data containing zero values. Chilean Journal of Statistics, 6(2): 47-57. http://arxiv.org/pdf/1508.01913v1.pdf
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. http://arxiv.org/pdf/1106.1451.pdf

\section*{See Also}
kl.alfapcr,pcr,glm.pcr,alfapcr.tune

\section*{Examples}
```

library(MASS)
y <- rdiri(214, runif(4, 1, 3))
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
mod <- klalfapcr.tune(y = y, x = x, a = c(0.7, 0.8))
mod

```

Tuning of the \(\mathrm{k}-\mathrm{NN}\) algorithm for compositional data
Tuning of the \(k-N N\) algorithm for compositional data

\section*{Description}

Tuning of the k-NN algorithm for compositional data with and without using the power or the \(\alpha\)-transformation. In addition, estimation of the rate of correct classification via M -fold crossvalidation.

\section*{Usage}
compknn.tune(x, ina, nfolds = 10, k = 2:5, type= "S", mesos = TRUE, a \(=\operatorname{seq}(-1,1\), by \(=0.1)\), apostasi = "ESOV", folds = NULL, stratified \(=\) FALSE, seed \(=\) FALSE, graph \(=\) FALSE)
alfaknn.tune(x, ina, nfolds \(=10, \mathrm{k}=2: 5\), type \(=" \mathrm{~S}\) ", mesos \(=\) TRUE, a \(=\operatorname{seq}(-1,1\), by \(=0.1)\), apostasi = "euclidean", rann = FALSE, folds = NULL, stratified \(=\) FALSE, seed \(=\) FALSE, graph \(=\) FALSE)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline x & A matrix with the available compositional data. Zeros are allowed, but you must be careful to choose strictly positive values of \(\alpha\) or not to set apostasi= "Ait". \\
\hline ina & A group indicator variable for the available data. \\
\hline nfolds & The number of folds to be used. This is taken into consideration only if the folds argument is not supplied. \\
\hline k & A vector with the nearest neighbours to consider. \\
\hline type & This can be either "S" for the standard k-NN or "NS" for the non standard (see details). \\
\hline mesos & This is used in the non standard algorithm. If TRUE, the arithmetic mean of the distances is calculated, otherwise the harmonic mean is used (see details). \\
\hline a & A grid of values of \(\alpha\) to be used only if the distance chosen allows for it. \\
\hline apostasi & The type of distance to use. For the compk.knn this can be one of the following: "ESOV", "taxicab", "Ait", "Hellinger", "angular" or "CS". See the references for them. For the alfa.knn this can be either "euclidean" or "manhattan". \\
\hline rann & If you have large scale datasets and want a faster \(k-N N\) search, you can use kdtrees implemented in the R package "RANN". In this case you must set this argument equal to TRUE. Note however, that in this case, the only available distance is by default "euclidean". \\
\hline folds & If you have the list with the folds supply it here. You can also leave it NULL and it will create folds. \\
\hline stratified & Do you want the folds to be created in a stratified way? TRUE or FALSE. \\
\hline seed & If seed is TRUE the results will always be the same. \\
\hline graph & If set to TRUE a graph with the results will appear. \\
\hline
\end{tabular}

\section*{Details}

The k-NN algorithm is applied for the compositional data. There are many metrics and possibilities to choose from. The standard algorithm finds the k nearest observations to a new observation and allocates it to the class which appears most times in the neighbours. The non standard algorithm is slower but perhaps more accurate. For every group is finds the k nearest neighbours to the new observation. It then computes the arithmetic or the harmonic mean of the distances. The new point is allocated to the class with the minimum distance.

\section*{Value}

A list including:
\begin{tabular}{ll} 
ela & \begin{tabular}{l} 
A matrix or a vector (depending on the distance chosen) with the averaged over \\
all folds rates of correct classification for all hyper-parameters \((\alpha\) and k\()\).
\end{tabular} \\
performance & The estimated rate of correct classification. \\
best_a & The best value of \(\alpha\). This is returned for "ESOV" and "taxicab" only. \\
best_k & The best number of nearest neighbours. \\
runtime & The run time of the cross-validation procedure.
\end{tabular}

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>

\section*{References}

Tsagris, Michail (2014). The k-NN algorithm for compositional data: a revised approach with and without zero values present. Journal of Data Science, 12(3): 519-534. https://arxiv.org/pdf/1506.05216.pdf

Friedman Jerome, Trevor Hastie and Robert Tibshirani (2009). The elements of statistical learning, 2nd edition. Springer, Berlin

Tsagris Michail, Simon Preston and Andrew T.A. Wood (2016). Improved classification for compositional data using the \(\alpha\)-transformation. Journal of classification 33(2): 243-261. http://arxiv.org/pdf/1506.04976v2.pdf
Connie Stewart (2017). An approach to measure distance between compositional diet estimates containing essential zeros. Journal of Applied Statistics 44(7): 1137-1152.

Endres, D. M. and Schindelin, J. E. (2003). A new metric for probability distributions. Information Theory, IEEE Transactions on 49, 1858-1860.
Osterreicher, F. and Vajda, I. (2003). A new class of metric divergences on probability spaces and its applicability in statistics. Annals of the Institute of Statistical Mathematics 55, 639-653.

\section*{See Also}
comp.knn, rda, alfa

\section*{Examples}
```

x <- as.matrix(iris[, 1:4])
x <- x/ rowSums(x)
ina <- iris[, 5]
mod1 <- compknn.tune(x, ina, a = seq(1, 1, by = 0.1))
mod2 <- alfaknn.tune(x, ina, a = seq(-1, 1, by = 0.1))

```

Tuning of the projection pursuit regression for compositional data
Tuning of the projection pursuit regression for compositional data

\section*{Description}

Tuning of the projection pursuit regression for compositional data In addition, estimation of the rate of correct classification via K-fold cross-validation.

\section*{Usage}
compppr.tune(y, x, nfolds = 10, folds = NULL, seed = FALSE, nterms = 1:10, type = "alr", yb = NULL, B = 1000 )

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline y & A matrix with the available compositional data, but zeros are not allowed. \\
\hline x & A matrix with the continuous predictor variables. \\
\hline nfolds & The number of folds to use. \\
\hline folds & If you have the list with the folds supply it here. \\
\hline seed & If seed is TRUE the results will always be the same. \\
\hline nterms & The number of terms to try in the projection pursuit regression. \\
\hline type & Either "alr" or "ilr" corresponding to the additive or the isometric log-ratio transformation respectively. \\
\hline yb & If you have already transformed the data using a log-ratio transformation put it here. Othewrise leave it NULL. \\
\hline B & The number of bootstrap re-samples to use for the unbiased estimation of the performance of the projection pursuit regression. If \(B=1\), no bootstrap is applied. \\
\hline
\end{tabular}

\section*{Details}

The function performs tuning of the projection pursuit regression algorithm.

\section*{Value}

A list including:
kl The average Kullback-Leibler divergence.
bc.perf The bootstrap bias corrected average Kullback-Leibler divergence. If no bootstrap was performed this is equal to the average Kullback-Leibler divergence.
runtime The run time of the cross-validation procedure.

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>

\section*{References}

Friedman, J. H. and Stuetzle, W. (1981). Projection pursuit regression. Journal of the American Statistical Association, 76, 817-823. doi: 10.2307/2287576.

Tsamardinos I., Greasidou E. and Borboudakis G. (2018). Bootstrapping the out-of-sample predictions for efficient and accurate cross-validation. Machine Learning 107(12): 1895-1922. https://link.springer.com/article/10.1 018-5714-4

\section*{See Also}
```

comp.ppr,comp.reg,alfa

```

\section*{Examples}
```

x <- as.matrix(iris[, 1:4])
x <- x/ rowSums(x)
ina <- iris[, 5]
mod1 <- compknn.tune(x, ina, a = seq(1, 1, by = 0.1))
mod2 <- alfaknn.tune(x, ina, a = seq(-1, 1, by = 0.1))

```

Tuning the number of PCs in the PCR with compositional data using the alpha-transformation Tuning the number of PCs in the PCR with compositional data using the \(\alpha\)-transformation

\section*{Description}

This is a cross-validation procedure to decide on the number of principal components when using regression with compositional data (as predictor variables) using the \(\alpha\)-transformation.

\section*{Usage}
alfapcr.tune (y, x, model = "gaussian", nfolds = 10, maxk \(=50, a=\operatorname{seq}(-1,1\), by \(=0.1\) ), folds \(=\) NULL, ncores \(=1\), graph = TRUE, col.nu = 15, seed = FALSE)

\section*{Arguments}
\(y \quad\) A vector with either continuous, binary or count data.
\(x \quad\) A matrix with the predictor variables, the compositional data. Zero values are allowed.
model The type of regression model to fit. The possible values are "gaussian", "binomial" and "poisson".
nfolds The number of folds for the K-fold cross validation, set to 10 by default.
maxk The maximum number of principal components to check.
a
The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If \(\alpha=0\) the isometric log-ratio transformation is applied and the solution exists in a closed form, since it the classical mutivariate regression. The estimated bias correction via the (Tibshirani and Tibshirani (2009) criterion is applied.
folds If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
ncores How many cores to use. If you have heavy computations or do not want to wait for long time more than 1 core (if available) is suggested. It is advisable to use it if you have many observations and or many variables, otherwise it will slow down th process.
graph If graph is TRUE (default value) a filled contour plot will appear.
col.nu A number parameter for the filled contour plot, taken into account only if graph is TRUE.
seed If seed is TRUE the results will always be the same.

\section*{Details}

The \(\alpha\)-transformation is applied to the compositional data first and the function "pcr.tune" or "glmpcr.tune" is called.

\section*{Value}

If graph is TRUE a fileld contour a filled contour will appear. A list including:
mspe \(\quad\) The MSPE where rows correspond to the \(\alpha\) values and the columns to the number of principal components.
best.par The best pair of \(\alpha\) and number of principal components.
performance The minimum mean squared error of prediction.
runtime The time required by the cross-validation procedure.

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>

\section*{References}

Tsagris M. (2015). Regression analysis with compositional data containing zero values. Chilean Journal of Statistics, 6(2): 47-57. http://arxiv.org/pdf/1508.01913v1.pdf
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. http://arxiv.org/pdf/1106.1451.pdf
Jolliffe I.T. (2002). Principal Component Analysis.

\section*{See Also}
```

alfa,profile,alfa.pcr,pcr.tune,glmpcr.tune,glm

```

\section*{Examples}
```

library(MASS)
y <- as.vector(fgl[, 1])
x <- as.matrix(fgl[, 2:9])
x <- x/ rowSums(x)
mod <- alfapcr.tune(y, x, nfolds = 10, maxk = 50, a = seq(-1, 1, by = 0.1))

```

Tuning the parameters of the regularised discriminant analysis
Tuning the parameters of the regularised discriminant analysis

\section*{Description}

Tuning the parameters of the regularised discriminant analysis for Eucldiean data.

\section*{Usage}
rda.tune (x, ina, nfolds \(=10\), gam \(=\operatorname{seq}(0,1\), by \(=0.1)\), del \(=\operatorname{seq}(0,1\), by \(=0.1)\), ncores \(=1\), folds \(=\) NULL, stratified \(=\) TRUE, seed \(=\) FALSE)

\section*{Arguments}

X
ina
nfolds
gam
del
ncores
folds If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
stratified Do you want the folds to be created in a stratified way? TRUE or FALSE.
seed If seed is TRUE the results will always be the same.

\section*{Details}

Cross validation is performed to select the optimal parameters for the regularisded discriminant analysis and also estimate the rate of accuracy.
The covariance matrix of each group is calcualted and then the pooled covariance matrix. The spherical covariance matrix consists of the average of the pooled variances in its diagonal and zeros in the off-diagonal elements. gam is the weight of the pooled covariance matrix and 1-gam is the weight of the spherical covariance matrix, \(\mathrm{Sa}=\) gam \(* \mathrm{Sp}+(1-\mathrm{gam}) * \mathrm{sp}\). Then it is a compromise between LDA and QDA. del is the weight of Sa and 1-del the weight of each group covariance group. This function is a wrapper for alfa.rda.

\section*{Value}

A list including: If graph is TRUE a plot of the performance versus the number of principal components will appear.
\begin{tabular}{ll} 
per & \begin{tabular}{l} 
An array with the estimate rate of correct classification for every fold. For each \\
of the \(M\) matrices, the row values correspond to gam and the columns to the del \\
parameter.
\end{tabular} \\
percent & \begin{tabular}{l} 
A matrix with the mean estimated rates of correct classification. The row values \\
correspond to gam and the columns to the del parameter.
\end{tabular} \\
se & \begin{tabular}{l} 
A matrix with the standard error of the mean estimated rates of correct classifi- \\
cation. The row values correspond to gam and the columns to the del parameter.
\end{tabular} \\
result & \begin{tabular}{l} 
The estimated rate of correct classification along with the best gam and del pa- \\
rameters.
\end{tabular} \\
runtime & \begin{tabular}{l} 
The time required by the cross-validation procedure.
\end{tabular}
\end{tabular}

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>

\section*{References}

Friedman Jerome, Trevor Hastie and Robert Tibshirani (2009). The elements of statistical learning, 2nd edition. Springer, Berlin
Tsagris Michail, Simon Preston and Andrew TA Wood (2016). Improved classification for compositional data using the \(\alpha\)-transformation. Journal of classification, 33(2):243-261. http://arxiv.org/pdf/1106.1451.pdf

\section*{See Also}
rda, alfa

\section*{Examples}
```

mod <- rda.tune(as.matrix(iris[, 1:4]), iris[, 5], gam = seq(0, 1, by = 0.2),
del = seq(0, 1, by = 0.2))
mod

```

Tuning the principal components with GLMs
Tuning the principal components with GLMs

\section*{Description}

Tuning the number of principal components in the generalised linear models.

\section*{Usage}
```

 pcr.tune(y, x, nfolds \(=10\), maxk \(=50\), folds \(=\) NULL, ncores \(=1\),
 seed \(=\) FALSE, graph \(=\) TRUE)
 glmpcr.tune (y, x, nfolds = 10, maxk = 10, folds = NULL, ncores = 1,
 seed \(=\) FALSE, graph = TRUE)
 multinompcr.tune \((\mathrm{y}, \mathrm{x}, \mathrm{nfolds}=10\), maxk \(=10\), folds \(=\) NULL, ncores \(=1\),
 seed \(=\) FALSE, graph = TRUE)
    ```

\section*{Arguments}
y A real valued vector for "pcr.tune". A real valued vector for the "glmpcr.tune" with either two numbers, 0 and 1 for example, for the binomial regression or with positive discrete numbers for the poisson. For the "multinompcr.tune" a vector or a factor with more than just two values. This is a multinomial regression.
x
A matrix with the predictor variables, they have to be continuous.
nfolds
The number of folds in the cross validation.
maxk The maximum number of principal components to check.
folds If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
ncores The number of cores to use. If more than 1, parallel computing will take place. It is advisable to use it if you have many observations and or many variables, otherwise it will slow down th process.
seed If seed is TRUE the results will always be the same.
graph If graph is TRUE a plot of the performance for each fold along the values of \(\alpha\) will appear.

\section*{Details}

Cross validation is performed to select the optimal number of principal components in the GLMs or the multinomial regression. This is used by alfapcr. tune.

\section*{Value}

If graph is TRUE a plot of the performance versus the number of principal components will appear. A list including:
msp A matrix with the mean deviance of prediction or mean accuracy for every fold.
mpd A vector with the mean deviance of prediction or mean accuracy, each value corresponds to a number of principal components.
\(\mathrm{k} \quad\) The number of principal components which minimizes the deviance or maximises the accuracy.
performance The optimal performance, MSE for the linea regression, minimum deviance for the GLMs and maximum accuracy for the multinomial regression.
runtime The time required by the cross-validation procedure.

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Aguilera A.M., Escabias M. and Valderrama M.J. (2006). Using principal components for estimating logistic regression with high-dimensional multicollinear data. Computational Statistics \(\backslash \&\) Data Analysis 50(8): 1905-1924.
Jolliffe I.T. (2002). Principal Component Analysis.

\section*{See Also}
pcr.tune,glm.pcr, alfa.pcr, alfapcr.tune

\section*{Examples}
```

library(MASS)
x <- as.matrix(fgl[, 2:9])
y <- rpois(214, 10)
glmpcr.tune(y, x, nfolds = 10, maxk = 20, folds = NULL, ncores = 1)

```

Tuning the value of alpha in the alpha-regression Tuning the value of \(\alpha\) in the \(\alpha\)-regression

\section*{Description}

Tuning the value of \(\alpha\) in the \(\alpha\)-regression.

\section*{Usage}
alfareg.tune(y, x, a = seq(0.1, 1, by = 0.1), nfolds = 10,
folds \(=\) NULL, \(n c=1\), seed \(=\) FALSE, graph \(=\) FALSE)

\section*{Arguments}
y A matrix with compositional data. zero values are allowed.
\(x \quad\) A matrix with the continuous predictor variables or a data frame including categorical predictor variables.
a The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If \(\alpha=0\) the isometric log-ratio transformation is applied.
nfolds The number of folds to split the data.
folds If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
nc The number of cores to use. IF you have a multicore computer it is advisable to use more than 1. It makes the procedure faster. It is advisable to use it if you have many observations and or many variables, otherwise it will slow down th process.
seed If seed is TRUE the results will always be the same.
graph If graph is TRUE a plot of the performance for each fold along the values of \(\alpha\) will appear.

\section*{Details}

The \(\alpha\)-transformation is applied to the compositional data and the numerical optimisation is performed for the regression, unless \(\alpha=0\), where the coefficients are available in closed form.

\section*{Value}

A plot of the estimated Kullback-Leibler divergences (multiplied by 2) along the values of \(\alpha\) (if graph is set to TRUE). A list including:
\begin{tabular}{ll} 
runtime & The runtime required by the cross-validation. \\
kula & \begin{tabular}{l} 
A matrix with twice the Kullback-Leibler divergence of the observed from the \\
fitted values. Each row corresponds to a fold and each column to a value of \(\alpha\). \\
The average over the columns equal the next argument, "kl".
\end{tabular} \\
kl & \begin{tabular}{l} 
A vector with twice the Kullback-Leibler divergence of the observed from the \\
fitted values. Every value corresponds to a value of \(\alpha\).
\end{tabular} \\
opt & \begin{tabular}{l} 
The optimal value of \(\alpha\).
\end{tabular} \\
value & The minimum value of twice the Kullback-Leibler.
\end{tabular}

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>

\section*{References}

Tsagris Michail (2015). Regression analysis with compositional data containing zero values. Chilean Journal of Statistics, 6(2): 47-57. http://arxiv.org/pdf/1508.01913v1.pdf
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. http://arxiv.org/pdf/1106.1451.pdf

\section*{See Also}
alfa.reg,alfa

\section*{Examples}
library (MASS)
y <- as.matrix(fgl[1:40, 2:4])
\(\mathrm{y}<-\mathrm{y} /\) rowSums(y)
\(x<-\) as. \(\operatorname{vector}(f g l[1: 40,1])\)
\(\bmod <-\) alfareg.tune \((y, x, a=c(0.2,0.35,0.05), n f o l d s=5)\)
```

Zero adjusted Dirichlet regression

```

\section*{Description}

Zero adjusted Dirichlet regression.

\section*{Usage}
zadr (y, x, xnew \(=\) NULL, tol \(=1 \mathrm{e}-05\) )
mixreg (param, z)

\section*{Arguments}
y A matrix with the compositional data (dependent variable). The number of observations with at least one zero value should not be more than the columns of the predictor variables. Otherwise, the initial values will not be calculated.
\(x\)
xnew
The predictor variable(s), they can be either continnuous or categorical or both.

\section*{tol}

If you have new data use it, otherwise leave it NULL.
param
z
A tolerance level to terminate the maximisation process.
Some arguments passed on to the mixreg helper function.
Some arguments passed on to the mixreg helper function.

\section*{Details}

A zero adjusted Dirichlet regression is being fittd. The likelihood conists of two components. The contributions of the non zero compositional values and the contributions of the compositional vectors with at least one zero value. The second component may have many different sub-categories, one for each pattern of zeros. The function "mixreg" is a helper function and is not intended to be called directly by the user.

\section*{Value}

A list including:
\begin{tabular}{ll} 
runtime & The time required by the regression. \\
loglik & The value of the log-likelihood. \\
phi & \begin{tabular}{l} 
The precision parameter. If covariates are linked with it (function "diri.reg2"), \\
this will be a vector.
\end{tabular} \\
be & \begin{tabular}{l} 
The beta coefficients. \\
seb
\end{tabular} \\
sigma & \begin{tabular}{l} 
The standard error of the beta coefficients. \\
Th covariance matrix of the regression parameters (for the mean vector and the \\
phi parameter) in the function "diri.reg2".
\end{tabular} \\
est & The fitted or the predicted values (if xnew is not NULL).
\end{tabular}

\section*{Author(s)}

Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

\section*{References}

Tsagris M. and Stewart C. (2018). A Dirichlet Regression Model for Compositional Data with Zeros. Accepted at the Lobachevskii Journal of Mathematics.
Preprint available from https://arxiv.org/pdf/1410.5011.pdf

\section*{See Also}
diri.reg,kl.compreg,ols.compreg,alfa.reg

\section*{Examples}
```

x <- as.vector(iris[, 4])
y <- as.matrix(iris[, 1:3])
y <- y / rowSums(y)
mod1 <- diri.reg(y, x)
y[sample(1:450, 15)] <- 0
mod2 <- zadr(y, x)

```

\section*{Index}
* Additive log-ratio-transformation

The additive log-ratio transformation and its inverse, 107
* Bhattacharyya distance

Kullback-Leibler divergence and Bhattacharyya distance between two Dirichlet distributions, 63
* Compositional data

Compositional-package, 4
* Contour plots

Compositional-package, 4
* Dirichelt mean vector

Log-likelihood ratio test for a Dirichlet mean vector, 64
* Dirichlet distribution

Contour plot of a Dirichlet distribution in \(\mathrm{S}^{\wedge} 2,8\)
Density values of a Dirichlet distribution, 26
Dirichlet random values simulation, 28
Fitting a Dirichlet distribution, 46
Fitting a Dirichlet distribution via Newton-Rapshon, 47
Kullback-Leibler divergence and Bhattacharyya distance between two Dirichlet distributions, 63
* Dirichlet regression

Dirichlet regression, 29
* Discriminant analysis

Compositional-package, 4
* Equality of the covariance matrices

Hotelling's multivariate version of the 2 sample t-test for Euclidean data, 57
Multivariate analysis of variance, 71

\section*{* Euclidean distance}

The alpha-distance, 108
The k-nearest neighbours using the alpha-distance, 115

\section*{* Frechet mean}

Helper Frechet mean for compositional data, 53
The Frechet mean for compositional data, 113
* GLMs

Quasi binomial regression for proportions, 89
* GLM

Tuning the principal components with GLMs, 130
* Gaussian mixture models

Simulation of compositional data from Gaussian mixture models, 101
Simulation of compositional data from the folded normal distribution, 103

\section*{* Gaussian mixtures}

Gaussian mixture models for compositional data, 50

\section*{* Gaussianmixture model}

Contour plot of a Gaussian mixture model in \(\mathrm{S}^{\wedge} 2,9\)

\section*{* Hypothesis test}

Empirical likelihood for a one sample mean vector hypothesis testing, 35
Exponential empirical likelihood for a one sample mean vector hypothesis testing, 42
Hotelling's multivariate version of the 1 sample t-test for Euclidean data, 56
* Kullback-Lebler divergence

Helper functions for the Kullback-Leibler regression, 54
* Kullback-Leibler divergence

Kullback-Leibler divergence and Bhattacharyya distance between two Dirichlet distributions, 63
* Log-likelihood ratio test

Log-likelihood ratio test for a Dirichlet mean vector, 64
Log-likelihood ratio test for a symmetric Dirichlet distribution, 65
* MLE

Compositional-package, 4
* Manhattan distance

The alpha-distance, 108
The k-nearest neighbours using the alpha-distance, 115
* Multivariate analysis of variance

Hotelling's multivariate version of the 2 sample t-test for Euclidean data, 57
James multivariate version of the t-test, 61
Multivariate analysis of variance, 71

Multivariate analysis of variance (James test), 72
* Multivariate hypothesis testing

Empirical likelihood hypothesis testing for two mean vectors, 36
Exponential empirical likelihood hypothesis testing for two mean vectors, 43
Hypothesis testing for two or more compositional mean vectors, 58
* Newton-Raphson

Fitting a Dirichlet distribution via Newton-Rapshon, 47
* No equality of the covariance matrices

Multivariate analysis of variance (James test), 72
* Non parametric test

Empirical likelihood hypothesis testing for two mean vectors, 36

\section*{* Quasi regression}

Quasi binomial regression for proportions, 89

\section*{* Regression}

Compositional-package, 4
* Regularised discriminant analysis

Cross validation for the regularised and flexible discriminant analysis with compositional data using the alpha-transformation, 19
Regularised and flexible discriminant analysis for compositional data using the alpha-transformation, 92
Regularised discriminant analysis for Euclidean data, 94
Tuning of the k-NN algorithm for compositional data, 123
Tuning of the projection pursuit regression for compositional data, 125
Tuning the parameters of the regularised discriminant analysis, 128
* Ridge regression

Cross validation for the ridge regression, 21
* Tuning of the hyper-parameters

Tuning the parameters of the regularised discriminant analysis, 128
* Unequality of the covariance matrices

James multivariate version of the t-test, 61
* bandwidth tuning

Tuning of the bandwidth \(h\) of the kernel using the maximum likelihood cross validation, 120
* bivariate normal distribution

Contour plot of the normal distribution in \(\mathrm{S}^{\wedge} 2,12\)
* bivariate skew skewnormal distribution

Contour plot of the skew skew-normal distribution in \(S^{\wedge} 2,13\)
* bivariate \(\mathbf{t}\) distribution

Contour plot of the \(t\) distribution in \(\mathrm{S}^{\wedge} 2,14\)
* compositional data

Hypothesis testing for two or more compositional mean vectors, 58
* contour plot

Contour plot of a Dirichlet distribution in \(\mathrm{S}^{\wedge} 2,8\)
Contour plot of a Gaussian mixture model in \(\mathrm{S}^{\wedge} 2,9\)
Contour plot of the kernel density estimate in \(\mathrm{S}^{\wedge} 2,10\)
Contour plot of the normal distribution in \(\mathrm{S}^{\wedge} 2,12\)
Contour plot of the skew skew-normal distribution in S^2, 13
Contour plot of the \(t\) distribution in \(\mathrm{S}^{\wedge} 2,14\)
* cross-validation

Cross validation for the regularised and flexible discriminant analysis with compositional data using the alpha-transformation, 19
* density values

Density values of a Dirichlet distribution, 26
* fractional response

Quasi binomial regression for proportions, 89
* inverse transformation

Inverse of the alpha-transformation, 60
* k-NN algorithm

Projection pursuit regression for compositional data, 88
The \(k-N N\) algorithm for compositional data, 117
* kernel density estimate

Multivariate kernel density estimation, 74
* kernel density

Contour plot of the kernel density estimate in \(\mathrm{S}^{\wedge} 2,10\)
Tuning of the bandwidth \(h\) of the kernel using the maximum likelihood cross validation,

120
* location and scatter

Estimating location and scatter parameters for compositional data, 38
* maximum likelihood cross validation

Tuning of the bandwidth \(h\) of the kernel using the maximum likelihood cross validation, 120
* maximum likelihood estimation

Estimation of the value of alpha in the folded model, 39
Fitting a Dirichlet distribution, 46
Fitting a Dirichlet distribution via Newton-Rapshon, 47
MLE of the folded model for a given value of alpha, 70
* maximum log-likelihood estimation

Fast estimation of the value of alpha, 45
* mean vector

Empirical likelihood for a one sample mean vector hypothesis testing, 35
Exponential empirical likelihood for a one sample mean vector hypothesis testing, 42
Hotelling's multivariate version of the 1 sample t-test for Euclidean data, 56
* mixtures of normal distributions

Mixture model selection via BIC, 66
* model based clustering

Gaussian mixture models for compositional data, 50
* model selection

Mixture model selection via BIC, 66
* multivariate kernel

Multivariate kernel density estimation, 74
* multivariate linear regression Multivariate linear regression, 75
* multivariate normal distribution

Multivariate normal random values simulation on the simplex, 76
* multivariate regression
```

 Dirichlet regression, 29
 Helper functions for the
 Kullback-Leibler regression,
 54
 Non linear least squares
regression for compositional
data, }8
Regression with compositional data
using the
alpha-transformation,91
Spatial median regression,104

* multivariate rgression
Multivariate regression with
compositional data,79
* multivariate skew normal distribution
Multivariate skew normal random
values simulation on the
simplex,80
* multivariate t distribution
MLE for the multivarite t
distribution,68
Multivariate t random values
simulation on the simplex,81
* non parametric test
Exponential empirical likelihood
hypothesis testing for two
mean vectors,43
Hypothesis testing for two or more
compositional mean vectors, 58
* ordinary least squares
Non linear least squares
regression for compositional
data,83
* orthogonal matrix
The Helmert sub-matrix, 114
* parameters tuning
Cross validation for the ridge
regression with compositional
data as predictor using the
alpha-transformation, 23
* plot
Ridge regression plot,97
Ridge regression with the
alpha-transformation plot,99
* principal components regression
Multivariate or univariate
regression with compositional
data in the covariates side

```
using the alpha-transformation, 77
Tuning the number of PCs in the PCR with compositional data using the alpha-transformation, 126
* principal components

Tuning the principal components with GLMs, 130
* profile log-likelihood

Estimation of the value of alpha
via the profile log-likelihood, 40
* random values simulation

Dirichlet random values simulation, 28
Multivariate normal random values simulation on the simplex, 76
Multivariate skew normal random values simulation on the simplex, 80
Multivariate \(t\) random values simulation on the simplex, 81
* random vectors simulation

Simulation of compositional data from Gaussian mixture models, 101
Simulation of compositional data from the folded normal distribution, 103
* regularisation

Ridge regression, 96
* ridge regression

Cross validation for the ridge regression with compositional data as predictor using the alpha-transformation, 23
Ridge regression, 96
Ridge regression plot, 97
Ridge regression with compositional data in the covariates side using the alpha-transformation, 98
Ridge regression with the alpha-transformation plot, 99

\section*{* robust estimation}

Estimating location and scatter parameters for compositional
data, 38
* spatial median regression

Multivariate regression with compositional data, 79
Spatial median regression, 104
* symmetric Dirichlet distribution

Log-likelihood ratio test for a symmetric Dirichlet distribution, 65
* ternary plot

Ternary diagram, 106
* tuning

Tuning the number of PCs in the PCR with compositional data using the alpha-transformation, 126
* visualisation

Ternary diagram, 106
a.est, 70, 71, 104, 112, 113
a.est (Estimation of the value of alpha in the folded model), 39
a.mle, 112
a.mle (MLE of the folded model for a given value of alpha), 70
Aithison's simple zero replacement strategy, 5
aknn.reg, 53, 111, 116
aknn.reg (The alpha-k-NN regression for compositional response data), 109
aknnreg.tune, 16
aknnreg.tune (Cross validation for the alpha-k-NN regression for compositional response data), 16
alef (The alpha-transformation), 112
alfa, \(6,40,41,46,54,61,71,86,89,94,95\), 104, 106, 107, 109, 114-116, 118, \(119,124,126,128,129,133\)
alfa (The alpha-transformation), 112 alfa.fda, 18, 19, 21
alfa.fda (Regularised and flexible discriminant analysis for compositional data using the alpha-transformation), 92
alfa.knn, 111, 116
alfa.knn (The k-NN algorithm for compositional data), 117
alfa.knn.reg (The alpha-k-NN
regression with compositional predictor variables), 110
alfa.pcr, 86, 87, 111, 128, 131
alfa.per (Multivariate or univariate regression with compositional data in the covariates side using the alpha-transformation), 77
alfa.profile, \(40,45,46,71,107,113,119\)
alfa.profile (Estimation of the value of alpha via the profile log-likelihood), 40
alfa.rda, 18, 19, 21, 93, 95, 129
alfa.rda (Regularised and flexible discriminant analysis for compositional data using the alpha-transformation), 92
alfa.reg, 30, 84, 105, 109, 110, 133, 134
alfa.reg (Regression with compositional data using the alpha-transformation), 91
alfa.ridge, 24, 96-98, 100, 111
alfa.ridge (Ridge regression with compositional data in the covariates side using the alpha-transformation), 98
alfa.tune, 41, 107, 113, 119
alfa.tune (Fast estimation of the value of alpha), 45
alfadist, 61
alfadist (The alpha-distance), 108
alfadista (The alpha-distance), 108
alfafda.tune (Cross validation for the regularised and flexible discriminant analysis with compositional data using the alpha-transformation), 19
alfainv, 40, 41, 46, 54, 71, 109, 113-116
alfainv (Inverse of the alpha-transformation), 60
alfaknn.tune (Tuning of the k-NN algorithm for compositional data), 123
alfaknnreg.tune (Cross validation for the alpha-k-NN regression with compositional predictor variables), 18
alfann (The k-nearest neighbours using the alpha-distance), 115
alfapcr.tune, \(33,78,87,122,130,131\)
alfapcr.tune (Tuning the number of PCs in the PCR with compositional data using the alpha-transformation), 126
alfarda.tune (Cross validation for the regularised and flexible discriminant analysis with compositional data using the alpha-transformation), 19
alfareg.tune, 79, 91, 92
alfareg. tune (Tuning the value of alpha in the alpha-regression), 131
alfaridge.plot, 98, 99
alfaridge.plot (Ridge regression with the alpha-transformation plot), 99
alfaridge.tune, 22, 99
alfaridge.tune (Cross validation for the ridge regression with compositional data as predictor using the alpha-transformation), 23
All pairwise additive log-ratio transformations, 6
alpha.mle, 40, 104, 112, 113
alpha.mle (MLE of the folded model for a given value of alpha), 70
alr, 7
alr (The additive log-ratio transformation and its inverse), 107
alr.all (All pairwise additive log-ratio transformations), 6
alrinv (The additive log-ratio transformation and its inverse), 107
anova_propreg, 90
Beta regression, 7
beta.est, 8
beta.est (MLE of distributions defined in the ( 0,1 ) interval), 69
beta.reg (Beta regression), 7
bic.mixcompnorm, 10, 51, 101
bic.mixcompnorm (Mixture model selection via BIC), 66
bivt.contour, 9, 11, 12, 14, 68, 69
bivt. contour (Contour plot of the \(t\) distribution in S^2), 14
comp. den, 68, 69, 77, 81, 82, 106
comp.den (Estimating location and scatter parameters for compositional data), 38
comp.kerncontour, 9, 74, 106, 121
comp.kerncontour (Contour plot of the kernel density estimate in S^2), 10
comp.knn, 34, 124
comp.knn (The k-NN algorithm for compositional data), 117
comp.ppr, 110, 126
comp.ppr (Projection pursuit
regression for compositional data), 88
comp.reg, \(16,30,32,55,76,84,92,105,110\), 126
comp.reg (Multivariate regression with compositional data), 79
comp.test, 36, 37, 43, 44, 57, 58, 62, 72, 73
comp.test (Hypothesis testing for two or more compositional mean vectors), 58
compknn.tune, 89, 118
compknn.tune (Tuning of the \(k-N N\) algorithm for compositional data), 123
Compositional-package, 4
compppr.tune, 16
compppr.tune (Tuning of the projection pursuit regression for compositional data), 125
Contour plot of a Dirichlet distribution in \(\mathrm{S}^{\wedge} 2,8\)
Contour plot of a Gaussian mixture model in \(\mathrm{S}^{\wedge} 2,9\)
Contour plot of the kernel density estimate in \(\mathrm{S}^{\wedge} 2,10\)
Contour plot of the normal distribution in \(\mathrm{S}^{\wedge} 2,12\)
Contour plot of the skew skew-normal distribution in \(\mathrm{S}^{\wedge} 2,13\)
Contour plot of the \(t\) distribution in \(S^{\wedge} 2,14\)
```

Cross validation for some
compositional regression
models, 15
Cross validation for the alpha-k-NN
regression for compositional
response data, 16
Cross validation for the alpha-k-NN
regression with compositional
predictor variables,18
Cross validation for the regularised
and flexible discriminant
analysis with compositional
data using the
alpha-transformation,19
Cross validation for the ridge
regression,21
Cross validation for the ridge
regression with compositional
data as predictor using the
alpha-transformation, 23
cv.comp.reg(Cross validation for some
compositional regression
models), 15
ddiri,47, 48,65
ddiri (Density values of a Dirichlet
distribution),26
Density of the Dirichlet distribution,
24
Density of the Flexible Dirichlet
distribution, 25
Density values of a Dirichlet
distribution, 26
diri.contour, 10-12, 14, 15, 27, 28, 47, 48,
106
diri.contour (Contour plot of a
Dirichlet distribution in
S^2),8
diri.density (Density of the Dirichlet
distribution), 24
diri.est, 27, 28, 48, 64-66
diri.est(Fitting a Dirichlet
distribution),46
diri.nr, 25, 27, 28, 47, 64-66
diri.nr(Fitting a Dirichlet
distribution via
Newton-Rapshon),47
diri.nr2,70
diri.reg, 8, 32, 55, 76, 80, 84, 92, 105, 134
Cross validation for some compositional regression models, 15
Cross validation for the alpha-k-NN regression for compositional response data, 16
Cross validation for the alpha-k-NN regression with compositional predictor variables, 18
Cross validation for the regularised and flexible discriminant analysis with compositional data using the alpha-transformation, 19
Cross validation for the ridge regression, 21
Cross validation for the ridge regression with compositional data as predictor using the alpha-transformation, 23
cv.comp.reg (Cross validation for some compositional regression models), 15
ddiri, 47, 48, 65
ddiri (Density values of a Dirichlet distribution), 26
Density of the Dirichlet distribution, 24
Density of the Flexible Dirichlet distribution, 25
Density values of a Dirichlet distribution, 26
diri.contour, 10-12, 14, 15, 27, 28, 47, 48, 106
diri.contour (Contour plot of a Dirichlet distribution in S^2), 8
diri.density (Density of the Dirichlet distribution), 24
diri.est, 27, 28, 48, 64-66
diri.est (Fitting a Dirichlet
distribution), 46
diri.nr, 25, 27, 28, 47, 64-66
diri.nr (Fitting a Dirichlet
distribution via
Newton-Rapshon), 47
diri.nr2, 70
diri.reg, 8, 32, 55, 76, 80, 84, 92, 105, 134

```
diri.reg (Dirichlet regression), 29
diri.reg2 (Dirichlet regression), 29
Dirichlet random values simulation, 28
Dirichlet regression, 29
dirimean.test, 66
dirimean.test (Log-likelihood ratio test for a Dirichlet mean vector), 64
divergence (Divergence matrix of compositional data), 34
Divergence based regression for compositional data, 30
Divergence based regression for compositional data with compositional data in the covariates side using the alpha-transformation, 32
Divergence matrix of compositional data, 34
eel.test1, 36, 57
eel.test1 (Exponential empirical likelihood for a one sample mean vector hypothesis testing), 42
eel.test2, 37
eel.test2 (Exponential empirical likelihood hypothesis testing for two mean vectors), 43
el, 62
el.test, 35
el.test1, 43, 57
el.test1 (Empirical likelihood for a one sample mean vector hypothesis testing), 35
el.test2, 36, 43, 44, 57, 58, 60
el.test2 (Empirical likelihood hypothesis testing for two mean vectors), 36
Empirical likelihood for a one sample mean vector hypothesis testing, 35
Empirical likelihood hypothesis testing for two mean vectors, 36
Estimating location and scatter parameters for compositional data, 38

Estimation of the value of alpha in the folded model, 39
Estimation of the value of alpha via the profile log-likelihood, 40
Exponential empirical likelihood for a one sample mean vector hypothesis testing, 42
Exponential empirical likelihood hypothesis testing for two mean vectors, 43

Fast estimation of the value of alpha, 45
fd.density, 25, 49, 103
fd.density (Density of the Flexible Dirichlet distribution), 25
fd.est, 26, 103
fd.est (Fitting a Flexible Dirichlet distribution), 49
Fitting a Dirichlet distribution, 46
Fitting a Dirichlet distribution via Newton-Rapshon, 47
Fitting a Flexible Dirichlet distribution, 49
frechet (The Frechet mean for compositional data), 113
frechet2 (Helper Frechet mean for compositional data), 53

Gaussian mixture models for compositional data, 50
Generate random folds for cross-validation, 52
glm, 128
glm.pcr, 33, 78, 122, 131
glm.pcr (Principal component generalised linear models), 86
glmper.tune, 128
glmpcr.tune (Tuning the principal components with GLMs), 130
helm (The Helmert sub-matrix), 114
Helper Frechet mean for compositional data, 53
Helper functions for the Kullback-Leibler regression, 54
hotel1T2, 36, 43
hotel1T2 (Hotelling's multivariate version of the 1 sample t-test for Euclidean data), 56
hotel2T2, 36, 37, 43, 44, 57, 60, 62, 72, 73
hotel2T2 (Hotelling's multivariate version of the 2 sample t-test for Euclidean data), 57
Hotelling's multivariate version of the 1 sample t-test for Euclidean data, 56
Hotelling's multivariate version of the 2 sample t-test for Euclidean data, 57
hsecant01.est (MLE of distributions defined in the ( 0,1 ) interval), 69
Hypothesis testing for two or more compositional mean vectors, 58
ibeta.est (MLE of distributions defined in the ( 0,1 ) interval), 69
Inverse of the alpha-transformation, 60
james, 36, 37, 43, 44, 57, 58, 72, 73
james (James multivariate version of the t-test), 61
James multivariate version of the t-test, 61
js.compreg, 30, 32, 34, 55, 76, 80, 84, 92, 105
js.compreg (Divergence based
regression for compositional data), 30
kl.alfapcr, 122
kl.alfapcr (Divergence based regression for compositional data with compositional data in the covariates side using the alpha-transformation), 32
kl. compreg, 16, 30, 55, 76, 84, 92, 110, 134
kl.compreg (Divergence based
regression for compositional data), 30
kl.compreg2 (Helper functions for the Kullback-Leibler regression), 54
kl.diri (Kullback-Leibler divergence and Bhattacharyya distance
between two Dirichlet distributions), 63
klalfapcr.tune, 33
klalfapcr.tune (Tuning of the divergence based regression for compositional data with compositional data in the covariates side using the alpha-transformation), 121
klcompreg.boot (Helper functions for the Kullback-Leibler regression), 54
Kullback-Leibler divergence and Bhattacharyya distance between two Dirichlet distributions, 63
kumar.est (MLE of distributions defined in the ( 0,1 ) interval), 69
lm, 75
lm.ridge, 96
Log-likelihood ratio test for a Dirichlet mean vector, 64
Log-likelihood ratio test for a symmetric Dirichlet distribution, 65
logistic_only, 90
logitnorm.est (MLE of distributions defined in the ( 0,1 ) interval), 69
makefolds (Generate random folds for cross-validation), 52
maov, 36, 37, 43, 44, 57, 58, 60, 73
maov (Multivariate analysis of variance), 71
maovjames, 37, 44, 60, 62, 72
maovjames (Multivariate analysis of variance (James test)), 72
mix. compnorm, 9, 10, 67, 101
mix.compnorm (Gaussian mixture models for compositional data), 50
mixnorm. contour, \(9,11,12,14,15,51,67\)
mixnorm. contour (Contour plot of a Gaussian mixture model in S^2), 9
mixreg (Zero adjusted Dirichlet regression), 133
Mixture model selection via BIC, 66
mkde, 121
mkde (Multivariate kernel density estimation), 74
mkde.tune, 74
mkde.tune (Tuning of the bandwidth \(h\) of the kernel using the maximum likelihood cross validation), 120
MLE for the multivarite \(t\) distribution, 68
MLE of distributions defined in the \((0,1)\) interval, 69
MLE of the folded model for a given value of alpha, 70
multinompcr.tune (Tuning the principal components with GLMs), 130
Multivariate analysis of variance, 71
Multivariate analysis of variance (James test), 72
Multivariate kernel density estimation, 74
Multivariate linear regression, 75
Multivariate normal random values simulation on the simplex, 76
Multivariate or univariate regression with compositional data in the covariates side using the alpha-transformation, 77
Multivariate regression with compositional data, 79
Multivariate skew normal random values simulation on the simplex, 80
Multivariate t random values simulation on the simplex, 81
multivreg, 80, 105
multivreg (Multivariate linear regression), 75
multivt, 39
multivt (MLE for the multivarite t distribution), 68

Non linear least squares regression for compositional data, 83
norm. contour, 9, 11, 14, 15
norm. contour (Contour plot of the normal distribution in \(\mathrm{S}^{\wedge} 2\) ), 12
ols.compreg, 30, 32, 55, 76, 92, 134
ols.compreg (Non linear least squares regression for compositional
data), 83
pcr, 33, 78, 122
pcr (Principal component generalised linear models), 86
pcr.tune, 128, 131
pcr.tune (Tuning the principal components with GLMs), 130
perturbation, 6, 86
perturbation (Perturbation operation), 84
Perturbation operation, 84
pow (Power operation), 85
power, 85
Power operation, 85
Principal component generalised linear models, 86
profile, 54, 114, 128
Projection pursuit regression for compositional data, 88
prop.reg, 8
propreg (Quasi binomial regression for proportions), 89
propregs (Quasi binomial regression for proportions), 89

Quasi binomial regression for proportions, 89
rcompnorm, 81, 82
rcompnorm(Multivariate normal random values simulation on the simplex), 76
rcompsn, 77
rcompsn (Multivariate skew normal random values simulation on the simplex), 80
rcompt, 77
rcompt (Multivariate t random values simulation on the simplex), 81
rda, 89, 94, 118, 124, 129
rda (Regularised discriminant analysis for Euclidean data), 94
rda.tune, 18, 19, 21, 52, 95
rda.tune (Tuning the parameters of the regularised discriminant analysis), 128
rdiri, \(25,27,47,48,65,66,77,81,82\)
rdiri (Dirichlet random values simulation), 28
Regression with compositional data using the alpha-transformation, 91
Regularised and flexible discriminant analysis for compositional data using the alpha-transformation, 92
Regularised discriminant analysis for Euclidean data, 94
rfd, 26, 49
rfd (Simulation of compositional data from the Flexible Dirichlet distribution), 102
rfolded (Simulation of compositional data from the folded normal distribution), 103
Ridge regression, 96
Ridge regression plot, 97
Ridge regression with compositional data in the covariates side
using the alpha-transformation, 98
Ridge regression with the alpha-transformation plot, 99
ridge.plot, 97, 100
ridge. plot (Ridge regression plot), 97
ridge.reg, 22, 98, 99
ridge.reg (Ridge regression), 96
ridge.tune, 24, 97, 98
ridge.tune (Cross validation for the ridge regression), 21
rmixcomp, 51, 67
rmixcomp (Simulation of compositional data from Gaussian mixture models), 101
rmvt, 69, 81, 82
score.glms, 90
simplex.est (MLE of distributions defined in the (0, 1) interval), 69
Simulation of compositional data from Gaussian mixture models, 101
Simulation of compositional data from the Flexible Dirichlet distribution, 102

Simulation of compositional data from the folded normal distribution, 103
skewnorm. contour, 12, 15
skewnorm. contour (Contour plot of the skew skew-normal distribution in \(\mathrm{S}^{\wedge} 2\) ), 13
Spatial median regression, 104
spatmed. reg, 39, 80
spatmed.reg (Spatial median
regression), 104
sym.test, 65
sym.test (Log-likelihood ratio test for a symmetric Dirichlet distribution), 65
symkl.compreg (Divergence based regression for compositional data), 30
ternary (Ternary diagram), 106
Ternary diagram, 106
The additive log-ratio transformation and its inverse, 107
The alpha-distance, 108
The alpha-k-NN regression for compositional response data, 109
The alpha- \(\mathrm{k}-\mathrm{NN}\) regression with compositional predictor variables, 110
The alpha-transformation, 112
The Frechet mean for compositional data, 113
The Helmert sub-matrix, 114
The k-nearest neighbours using the alpha-distance, 115
The k-NN algorithm for compositional data, 117
Total variability, 119
totvar (Total variability), 119
Tuning of the bandwidth \(h\) of the kernel using the maximum likelihood cross validation, 120
Tuning of the divergence based regression for compositional data with compositional data in the covariates side using the alpha-transformation, 121

Tuning of the \(\mathrm{k}-\mathrm{NN}\) algorithm for compositional data, 123
Tuning of the projection pursuit regression for compositional data, 125
Tuning the number of PCs in the PCR with compositional data using the alpha-transformation, 126
Tuning the parameters of the regularised discriminant analysis, 128
Tuning the principal components with GLMs, 130
Tuning the value of alpha in the alpha-regression, 131
univglms, 90
zadr (Zero adjusted Dirichlet regression), 133
Zero adjusted Dirichlet regression, 133
zeroreplace (Aithison's simple zero replacement strategy), 5```

