
Package ‘Claddis’
December 5, 2019

Type Package

Title Measuring Morphological Diversity and Evolutionary Tempo

Version 0.3.4

Date 2019-12-04

Maintainer Graeme T. Lloyd <graemetlloyd@gmail.com>

Depends ape, phytools, strap

Imports clipr, gdata, graphics, grDevices, stats, utils

Suggests rgl

Description Measures morphological diversity from discrete character data and
estimates evolutionary tempo on phylogenetic trees. Imports morphological
data from #NEXUS (Maddison et al. (1997) <doi:10.1093/sysbio/46.4.590>)
format with ReadMorphNexus(), and writes to both #NEXUS and TNT format
(Goloboff et al. (2008) <doi:10.1111/j.1096-0031.2008.00217.x>). Main
functions are DiscreteCharacterRate(), which implements likelihood ratio
tests for discrete character rates introduced across Lloyd et al. (2012)
<doi:10.1111/j.1558-5646.2011.01460.x>, Brusatte et al. (2014)
<doi:10.1016/j.cub.2014.08.034>, Close et al. (2015)
<doi:10.1016/j.cub.2015.06.047>, and Lloyd (2016) <doi:10.1111/bij.12746>,
and MorphDistMatrix(), which implements multiple discrete character
distance metrics from Gower (1971) <doi:10.2307/2528823>, Wills (1998)
<doi:10.1006/bijl.1998.0255>, Lloyd (2016) <doi:10.1111/bij.12746>, and
Hopkins and St John (2018) <doi:10.1098/rspb.2018.1784>. Multiple functions
implement various morphospace plots: ChronoPhyloMorphospacePlot() implements
Sakamoto and Ruta (2012) <doi:10.1371/journal.pone.0039752>,
MorphospacePlot() implements Wills et al. (1994)
<doi:10.1017/S009483730001263X>, PlotCharacterChanges() implements Wang and
Lloyd (2016) <doi:10.1098/rspb.2016.0214>, and StackPlot() implements Foote
(1993) <doi:10.1017/S0094837300015864>. Other functions include
SafeTaxonomicReduction(), which implements Wilkinson (1995)
<doi:10.1093/sysbio/44.4.501>, and DolloSCM() implements the Dollo
stochastic character mapping of Tarver et al. (2018)
<doi:10.1093/gbe/evy096>.

Encoding UTF-8

1

2 R topics documented:

License GPL (>= 2)

LazyData yes

ByteCompile yes

RoxygenNote 6.1.1

NeedsCompilation no

Author Graeme T. Lloyd [aut, cre, cph],
Thomas Guillerme [aut, cph],
Emma Sherratt [aut, cph],
Steve C. Wang [aut, cph]

Repository CRAN

Date/Publication 2019-12-05 06:50:17 UTC

R topics documented:
Claddis-package . 3
AncStateEstMatrix . 3
BlockAligner . 5
ChangesInBins . 6
ChronoPhyloMorphospacePlot . 7
CompactifyMatrix . 9
CorrectRootTime . 10
Day2016 . 11
DiscreteCharacterRate . 11
DolloSCM . 19
EdgeLengthsInBins . 20
EdgeMatch . 21
FindAncestor . 22
FindLinkedEdges . 23
Gauthier1986 . 24
GetAllStateChanges . 25
GetDescendantEdges . 27
GetNodeAges . 28
MakeMorphMatrix . 29
MatrixPruner . 31
Michaux1989 . 32
MinSpanTreeEdges . 32
MorphDistMatrix . 33
MorphMatrix2PCoA . 37
MorphospacePlot . 40
MultiMorphospacePlot . 42
PhyloCharCompletenessInBins . 43
PlotCharacterChanges . 44
ReadMorphNexus . 45
SafeTaxonomicReduction . 47
SafeTaxonomicReinsertion . 48
StackPlot . 49

Claddis-package 3

TrimMorphDistMatrix . 51
WriteMorphNexus . 53
WriteMorphTNT . 54

Index 55

Claddis-package Measuring Morphological Diversity and Evolutionary Tempo

Description

Measures morphological diversity from discrete character data and estimates evolutionary tempo
on phylogenetic trees.

Author(s)

Graeme T. Lloyd <graemetlloyd@gmail.com>

References

Lloyd, G. T., 2016. Estimating morphological diversity and tempo with discrete character-taxon
matrices: implementation, challenges, progress, and future directions. Biological Journal of the
Linnean Society, 118, 131-151.

Examples

Get morphological distances for Michaux (1989) data set:
distances <- MorphDistMatrix(Michaux1989)

Show distances:
distances

AncStateEstMatrix Ancestral Character State Estimation

Description

Given a tree and a cladistic matrix uses likelihood to estimate the ancestral states for every character.

Usage

AncStateEstMatrix(CladisticMatrix, Tree, EstimateAllNodes = FALSE,
EstimateTipValues = FALSE, InapplicablesAsMissing = FALSE,
PolymorphismBehaviour = "equalp", UncertaintyBehaviour = "equalp",
Threshold = 0.01)

4 AncStateEstMatrix

Arguments

CladisticMatrix

A character-taxon matrix in the format imported by ReadMorphNexus.

Tree A tree (phylo object) with branch lengths that represents the relationships of the
taxa in CladisticMatrix.

EstimateAllNodes

Logical that allows the user to make estimates for all ancestral values. The
default (FALSE) will only make estimates for nodes that link coded terminals
(recommended).

EstimateTipValues

Logical that allows the user to make estimates for tip values. The default (FALSE)
will only makes estimates for internal nodes (recommended).

InapplicablesAsMissing

Logical that decides whether or not to treat inapplicables as missing (TRUE) or
not (FALSE, the default and recommended option).

PolymorphismBehaviour

One of either "equalp" or "treatasmissing".
UncertaintyBehaviour

One of either "equalp" or "treatasmissing".

Threshold The threshold value to use when collapsing marginal likelihoods to discrete
state(s).

Details

Uses either the rerootingMethod (Yang et al. 1995) as implemented in the phytools package (dis-
crete characters) or the ace function in the ape package (continuous characters) to make ancestral
state estimates. For discrete characters these are collapsed to the most likely state (or states, given
equal likelihoods or likelihood within a defined threshold value). In the latter case the resulting
states are represented as an uncertainty (i.e., states separated by a slash, e.g., 0/1. This is the
method used by Brusatte et al. (2014).

Value

anc.lik.matrix A matrix of nodes (hypothetical ancestors; rows) against characters (columns)
listing the reconstructed ancestral states.

Author(s)

Graeme T. Lloyd <graemetlloyd@gmail.com> and Thomas Guillerme <guillert@tcd.ie>

References

Brusatte, S. L., Lloyd, G. T., Wang, S. C. and Norell, M. A., 2014. Gradual assembly of avian
body plan culminated in rapid rates of evolution across dinosaur-bird transition. Current Biology,
24, 2386-2392.

Yang, Z., Kumar, S. and Nei, M., 1995. A new method of inference of ancestral nucleotide and
amino acid sequences. Genetics, 141, 1641-1650.

BlockAligner 5

Examples

Set random seed:
set.seed(4)

Generate a random tree for the Day data set:
tree <- rtree(n = nrow(Day2016$Matrix_1$Matrix))

Update taxon names to match those in the data matrix:
tree$tip.label <- rownames(Day2016$Matrix_1$Matrix)

Set root time by making youngest taxon extant:
tree$root.time <- max(diag(vcv(tree)))

Use Day matrix as cladistic matrix:
CladisticMatrix <- Day2016

Prune most characters out to make example run fast:
CladisticMatrix <- MatrixPruner(CladisticMatrix,

characters2prune = c(2:3, 5:37))

Estimate ancestral states:
AncStateEstMatrix(CladisticMatrix = CladisticMatrix,

Tree = tree)

BlockAligner Align a phylogenetic matrix block

Description

Given a block of taxa and characters aligns start of character block.

Usage

BlockAligner(Block)

Arguments

Block The raw input text.

Details

The function serves to help build NEXUS files by neatly aligning block of taxa and characters. Or
in simple terms it takes inut that looks like this:

Allosaurus 012100?1011
Abelisaurus 0100???0000
Tyrannosaurus 01012012010
Yi 10101?0????

6 ChangesInBins

And turns it into something that looks like this:

Allosaurus 012100?1011
Abelisaurus 0100???0000
Tyrannosaurus 01012012010
Yi 10101?0????

I use this in building the NEXUS on my site, graemetlloyd.com.

Value

Nothing is returned, instead the aligned block is sent to the clipboard ready for pasting into a text
editor.

Author(s)

Graeme T. Lloyd <graemetlloyd@gmail.com>

Examples

Build example block from above:
x <- paste(c("Allosaurus 012100?1011",

"Abelisaurus 0100???0000",
"Tyrannosaurus 01012012010",
"Yi 10101?0????"), collapse = "\n")

Look at block pre-alignment:
x

Example block from above:
#BlockAligner(x)

To test the response open a text editor and paste the
contents of the clipboard.

ChangesInBins Counts the changes in a series of time bins

Description

Given a vector of dates for a series of time bins and another for the times when a character change
occurred will return the total number of changes in each bin.

Usage

ChangesInBins(change.times, time.bins)

http://www.graemetlloyd.com/matr.html

ChronoPhyloMorphospacePlot 7

Arguments

change.times A vector of ages in millions of years at which character changes are hypothesised
to have occurred.

time.bins A vector of ages in millions of years of time bin boundaries in old-to-young
order.

Details

Calculates the total number of evolutionary changes in a series of time bins. This is intended as an
internal function for rate calculations, but could be used for other purposes (e.g., counting any point
events in a series of time bins).

Value

A vector giving the number of changes for each time bin. Names indicate the maximum and mini-
mum (bottom and top) values for each time bin.

Author(s)

Graeme T. Lloyd <graemetlloyd@gmail.com>

Examples

Create a random dataset of 100 changes:
change.times <- runif(100, 0, 100)

Create time bins:
time.bins <- seq(100, 0, length.out=11)

Get N changes for each bin:
ChangesInBins(change.times, time.bins)

ChronoPhyloMorphospacePlot

Chronophylomorphospace Plot

Description

Plots a 3D chronophylomorphospace.

Usage

ChronoPhyloMorphospacePlot(pcoa_data, x_axis = 1, y_axis = 2,
shadow = TRUE)

8 ChronoPhyloMorphospacePlot

Arguments

pcoa_data Principal coordinate data in the format output by MorphMatrix2PCoA that in-
cludes a tree and ancestral states.

x_axis Which ordination axis to plot as the x-axis.

y_axis Which ordination axis to plot as the y-axis.

shadow Whether or not to plot a shadow (2D plot) on the bottom face of the 3D plot
(defaults to TRUE).

Details

Creates a movable three-dimensional (two ordination axes plus time) plot of a phylomorphospace.

Intended to mimic the data visualisation of Sakamoto and Ruta (2012; their Video S1).

Author(s)

Emma Sherratt <emma.sherratt@gmail.com> and Graeme T. Lloyd <graemetlloyd@gmail.com>

References

Sakamoto, M. and Ruta, M. 2012. Convergence and divergence in the evolution of cat skulls:
temporal and spatial patterns of morphological diversity. PLoS ONE, 7, e39752.

Examples

Not run:
require(rgl)

Set random seed:
set.seed(4)

Generate a random tree for the Michaux 1989 data set:
Tree <- rtree(nrow(Michaux1989$Matrix_1$Matrix))

Set root time so latest tip terminates at the present:
Tree$root.time <- max(diag(vcv(Tree)))

Add taxon names to the tree:
Tree$tip.label <- rownames(Michaux1989$Matrix_1$Matrix)

Perform a phylogenetic Principal Coordinates Analysis:
pcoa_data <- MorphMatrix2PCoA(Michaux1989, Tree = Tree)

Plot a chronophylomorphospace:
ChronoPhyloMorphospacePlot(pcoa_data)

End(Not run)

CompactifyMatrix 9

CompactifyMatrix Collapses matrix to unique character state distributions

Description

Collapses a cladistic matrix to just unique character state distributions and taxon names.

Usage

CompactifyMatrix(CladisticMatrix, Message = TRUE)

Arguments

CladisticMatrix

The cladistic matrix in the format imported by ReadMorphNexus.

Message Logical indicating whether or not a message should be printed to the screen if
the matrix cannot be compactified.

Details

Important: not recommended for general use.

This function is intended to make a matrix with redundant character state distributions smaller by
collapsing these to single characters and upweighting them accordingly. It is intended purely for
use with MRP matrices, but may have some very restricted uses elsewhere.

The function also deletes any characters weighted zero from the matrix and will merge duplicate
taxon anmes into unique character strings.

Author(s)

Graeme T. Lloyd <graemetlloyd@gmail.com>

See Also

SafeTaxonomicReduction and MatrixPruner

Examples

Examine the matrix pre-compactification:
Michaux1989$Matrix_1$Matrix

Examine the weights pre-compactification:
Michaux1989$Matrix_1$Weights

Compactify the matrix:
Michaux1989compact <- CompactifyMatrix(Michaux1989)

Examine the matrix post-compactification:

10 CorrectRootTime

Michaux1989compact$Matrix_1$Matrix

Examine the weights post-compactification:
Michaux1989compact$Matrix_1$Weights

CorrectRootTime Corrects root.time after taxa have been pruned from a tree

Description

Corrects root.time after taxa have been pruned from a tree using drop.tip

Usage

CorrectRootTime(original.tree, pruned.tree)

Arguments

original.tree A tree in phylo format.

pruned.tree A tree in phylo format that represents a pruned version of original.tree.

Details

(NB: This function is designed to only cope with trees containing at least three tips.)

When removing taxa from a time-scaled tree using drop.tip in ape $root.time is left unchanged.
This can cause downstream problems if not corrected and that is what this function does.

Note that fixRootTime in the paleotree package performs the same function, but is not called
here to reduce the number of libraries on which Claddis is dependent. Interested users should also
refer to the dropPaleoTip function in paleotree.

Value

Returns a tree (phylo object) with a corrected $root.time.

Author(s)

Graeme T. Lloyd <graemetlloyd@gmail.com>

Examples

Create a simple four-taxon tree with branch lengths:
tree <- read.tree(text = "(A:1,(B:1,(C:1,D:1):1):1);")

Set root age as 20 Ma:
tree$root.time <- 20

Day2016 11

Now prune taxon A:
pruned.tree <- drop.tip(tree, "A")

Show that drop.tip has not updated the tree's root time:
pruned.tree$root.time

Use the function to correct the root time:
pruned.tree <- CorrectRootTime(tree, pruned.tree)

Show that the root time is now correct (19 Ma):
pruned.tree$root.time

Day2016 Character-taxon matrix from Day et al. 2016

Description

The character-taxon matrix from Day et al. (2016).

Format

A character-taxon matrix in the format imported by ReadMorphNexus.

References

Day, M. O., Rubidge, B. S. and Abdala, F., 2016. A new mid-Permian burnetiamorph therapsid
from the Main Karoo Basin of South Africa and a phylogenetic review of Burnetiamorpha. Acta
Palaeontologica Polonica, 61, 701-719.

DiscreteCharacterRate Discrete character rates across trees, time, and character types

Description

Given a tree and a cladistic-type matrix uses likelihood ratio tests to compare N-rate and 1-rate
models across branches, clades, time bins, or character partitions.

Usage

DiscreteCharacterRate(tree, CladisticMatrix, TimeBins,
BranchPartitionsToTest = NULL, CharacterPartitionsToTest = NULL,
CladePartitionsToTest = NULL, TimeBinPartitionsToTest = NULL,
ChangeTimes = "random", Alpha = 0.01,
MultipleComparisonCorrection = "BenjaminiHochberg",
PolymorphismState = "missing", UncertaintyState = "missing",
InapplicableState = "missing", TimeBinApproach = "Lloyd",

12 DiscreteCharacterRate

EnsureAllWeightsAreIntegers = FALSE, EstimateAllNodes = FALSE,
EstimateTipValues = FALSE, InapplicablesAsMissing = FALSE,
PolymorphismBehaviour = "equalp", UncertaintyBehaviour = "equalp",
Threshold = 0.01)

Arguments

tree A tree (phylo object) with branch lengths that represents the relationships of the
taxa in CladisticMatrix.

CladisticMatrix

A character-taxon matrix in the format imported by ReadMorphNexus.

TimeBins A vector of ages (in millions of years) indicating the boundaries of a series of
time bins in order from oldest to youngest.

BranchPartitionsToTest

A list of branch(es) (edge numbers) to test for a 2-rate parameter model (i.e.,
one rate for the edge and another for the rest of the tree). If NULL (the default)
then no partition test(s) will be made.

CharacterPartitionsToTest

A list of character partition(s) (character numbers) to test for a 2-rate parameter
model (i.e., one rate for the partition and another for the remaining characters).
If NULL (the default) then no partition test(s) will be made.

CladePartitionsToTest

A list of clade partition(s) (node numbers) to test for a 2-rate parameter model
(i.e., one rate for the clade and another for the rest of the tree). If NULL (the
default) then no partition test(s) will be made.

TimeBinPartitionsToTest

A list of time bin partition(s) (numbered 1 to N) to test for a 2-rate parameter
model (i.e., one rate for the time bin(s) and another for the remaining time bins).
If NULL (the default) then no partition test(s) will be made.

ChangeTimes The time at which to record the character changes. One of "midpoint" (changes
occur at the midpoint of the branch), "spaced" (changes equally spaced along
branch), or "random" (change times drawn at random from a uniform distribu-
tion; the default and recommended option). Note: this is only meaningful if
testing for time bin partitions.

Alpha The alpha value to be used for the significance tests. The default is 0.01.
MultipleComparisonCorrection

One of "BenjaminiHochberg" (the Benjamini and Hochberg 1995 false discov-
ery rate approach; default and recommended) or "Bonferroni" (the Bonferroni
correction).

PolymorphismState

One of "missing" (converts polymorphic values to NA; the default) or "random"
(picks one of the possible polymorphic states at random).

UncertaintyState

One of "missing" (converts uncertain values to NA; the default) or "random"
(picks one of the possible uncertain states at random).

InapplicableState

The only current option is "missing" (converts value to NA).

DiscreteCharacterRate 13

TimeBinApproach

One of "Close" or "Lloyd" (the default).
EnsureAllWeightsAreIntegers

Logical for whether (TRUE) to reweight non-integer weights until all weights are
integers or to leave them as they are (FALSE; the default).

EstimateAllNodes

Option passed to internal use of AncStateEstMatrix.
EstimateTipValues

Option passed to internal use of AncStateEstMatrix.
InapplicablesAsMissing

Option passed to internal use of AncStateEstMatrix.
PolymorphismBehaviour

Option passed to internal use of AncStateEstMatrix.
UncertaintyBehaviour

Option passed to internal use of AncStateEstMatrix.

Threshold Option passed to internal use of AncStateEstMatrix.

Details

Introduction

Morphological change can be captured by discrete characters and their evolution modelled as oc-
curring along the branches of a phylogenetic tree. This function takes as primary input a character-
taxon matrix of discrete characters (in the format imported by ReadMorphNexus) and a time-scaled
phylogenetic tree (in the format of paleotree or strap) and begins by inferring ancestral states at
the tree’s internal nodes using the AncStateEstMatrix function. From here changes along individual
branches can be estimated (only the minimum number of changes are inferred; see GetAllState-
Changes for an alternative but unfinished approach) and hence rates can be calculated.

A discrete character rate can be expressed as the mean number of changes per million years (users
may wish to normalise this by the number of characters for interpretation) and can be calculated
for a branch (edge) of the tree, a clade (a mean rate for the edges descended from a single node), a
character partition (the mean rate for a subset of the characters across all edges), or, most complex
(see Lloyd 2016), the mean rate across the edges (or parts of edges) present in a time bin (defined
by two values denoting the beginning and end of the time bin). In an ideal scenario these rates could
be compared at face value, but that would require a large number of characters and very minimal (or
zero) missing data. I.e., at an extreme of missing data if only one character can be observed along
a branch it will either change (the maximum possible rate of evolution) or it will not (the minimum
possible rate of evolution). In such cases it would be unwise to consider either outcome as being a
significant departure from the mean rate.

Because of these complications Lloyd et al. (2012) devised tests by which the significance of
an edge (or other paritioning of the data, i.e., a clade, time bin etc.) could be considered to be
significantly high or low in comparison to the mean rate for the whole tree (i.e., whether a two-rate
model could be considered more likely than a one-rate model). This is achieved through a likelihood
ratio test:

LR = valueoflikehoodfunctionunderthenull(one−rate)hypothesis/maximumpossiblevalueoflikehoodfunctionunderthealternative(two−rate)hypotheses

14 DiscreteCharacterRate

Typically we might expect the two hypotheses to be well defined a priori. E.g., an expectation
that a specific branch of the tree might have a higher or lower rate than background due to some
evolutionary shift. However, Lloyd et al. (2012) instead provided an exploratory approach whereby
every possible one edge value was compared with the rate for the rest of the tree (and the equivalent
with clades and time bins). This was the default in Claddis up to version 0.2, but this has now been
replaced (since version 0.3) with a more customisable set of options that allows different types of
hypotheses (e.g., partitioning the data by character), as well as more complex hypotheses (e.g., a
three-rate model), to be tested.

The four types of rate hypothesis
Following Cloutier (1991), Lloyd (2016) extended the two main types of rate hypotheses to four:

1. A branch rate (available here with the BranchPartitionsToTest option).

2. A clade rate (available here with the CladePartitionsToTest option).

3. A time bin rate (available here with the TimeBinPartitionsToTest option).

4. A character partition rate (available here with the CharacterPartitionsToTest option).

In Claddis (>=0.3) these partitions are defined as a list of lists of vectors where only the first N - 1
partitions need be defined. E.g., if comparing the first edge value to the rest of the tree then the user
only needs to define the value "1" and the function will automatically add a second partition contain-
ing all other edges. This can be set with the option BranchPartitionsToTest = list(list(1)).
Similarly, to do what Lloyd et al. (2012) did and repeat the test for every edge in the tree (and assum-
ing this variable is already named "tree") you could use, BranchPartitionsToTest = lapply(as.list(1:nrow(tree$edge)),as.list).

Because of the flexibility of this function the user can define any set of edges. For example, they
could test whether terminal branches have a different rate from internal branches with BranchPartitionsToTest
= list(list(match(1:Ntip(tree),tree$edge[,2]))). The CladePartitionsToTest is re-
ally just a special subset of this type of hypothesis, but with edges being defined as descend-
ing from a specific internal node in the tree. Once again, an exploratory approach like that of
Lloyd et al. (2012) can be used with: CladePartitionsToTest = lapply(as.list(Ntip(tree)
+ (2:Nnode(tree))),as.list). Note that this excludes the root node as this would define a sin-
gle partition and hence would represent the null hypothesis (a single rate model for the whole tree).
More generally clades must be defined by the node numbers they correspond to. In R an easy way
to identify these is with: plot(tree); nodelabels().

Time bin partitions are defined in a similar way, but are numbered 1:N starting from the oldest
time bin. So if wanting to do an exploratory test of single bin partitions (and only four time bins
were specified) you could use: TimeBinPartitionsToTest = lapply(as.list(1:4),as.list).
Bins can be combined too, just as edges are above. For example, time bins 1 and 2 could form
a single partition with: TimeBinPartitionsToTest = list(list(1:2)). Or if looking to test
a model where each bin has its’ own rate value you could use: TimeBinPartitionsToTest =
list(as.list(1:3)). Note, as before we do not need to specify the fourth bin as this will be au-
tomatically done by the function, however, TimeBinPartitionsToTest = list(as.list(1:4))
will also work. Some caution needs to be applied with N-rate models (where N is three or larger) as
a result favouring such models does not necessarily endorse N-separate rates. I.e., it could simply
be that one bin has such a large excursion that overall the N-rate model fits better than the 1-rate
model, but some 2-rate models might be better still. It is up to the user to check this themselves by
exploring smaller combinations of bins.

Finally, character partitions allow the user to explore whether rates vary across different character
types, e.g., skeletal characters versus soft tissue characters, or cranial characters versus postcranial

DiscreteCharacterRate 15

characters. Here characters are simply numbered 1:N, but here single character partitions are less
likely to be of interest. As an example of use lets say the first ten characters are what we are
interested in as a partition (the second partition being the remaining characters), we could use:
CharacterPartitionsToTest = list(list(1:10)) to test for a two-rate model.

Note that the list of lists structure is critical to defining partitions as it allows them to be of different
sizes and numbers. For example, one partition of three and another of six, or one set of two partitions
and another set of four partitions - structures not possible using vectors or matrices. However, it
may not be intuitive to some users so it is recommended that the user refers to the examples above
as a guide.

Additionally, it should be noted that the user can test multiple types of hypotheses simultaneously
with the function. For example, performing several branch tests whilst also performing clade tests.
However, it is not necessary to perform all types simultaneously (as was the case in version 0.2) and
unused partition types can be set to NULL, the default in each case.

Other options

Since Claddis version 0.3 this function has allowed the user greater control with many more options
than were offered previously and these should be considered carefully before running any tests.

Firstly, the user can pick an option for ChangeTimes which sets the times character changes are
inferred to occur. This is only relevant when the user is performing time bin partition test(s) as this
requires some inference to be made about when changes occur on branches that may span multiple
time bins. The current options are: "midpoint" (all changes are inferred to occur midway along the
branch, effectively mimicking the approach of Ruta et al. 2006), "spaced" (all changes are inferred
to occur equally spaced along the branch, with changes occurring in character number order), or
"random" (changes are assigned a random time by drawing from a uniform distribution between the
beginning and end of each branch). The first of these is likely to lead to unrealistically "clumped"
changes and by extension implies completely correlated character change that would violate the
assumptions of the Poisson distribution that underlies the significance tests here (Lloyd et al. 2012).
At the other extreme, the equally spaced option will likely unrealistically smooth out time series
and potentially make it harder to reject the single-rate null. For these reasons, the random option
is recommended and is set as the default. However, because it is random this makes the function
stochastic (the answer can vary each time it is run) and so the user should therefore run the function
multiple times if using this option (i.e., by using a for loop) and aggregating the results at the end
(e.g., as was done by previous authors; Lloyd et al. 2012; Close et al. 2015).

Secondly, the Alpha value sets the significance threshold by which the likelihood ratio test’s result-
ing p-value is compared. Following Lloyd et al. (2012) this is set lower (0.01) than the standard
0.05 value by default as those authors found rates to be highly heterogenous in their data set (fossil
lungfish). However, this should not be adopted as a "standard" value without question. Note that
the function also corrects for multiple comparisons (using the MultipleComparisonCorrection
option) to avoid Type I errors (false positives). It does so (following Lloyd et al. 2012) using the
Benjamini-Hochberg (Benjamini and Hochberg 1995) False Discovery Rate approach (see Lloyd et
al. 2012 for a discussion of why), but the Bonferroni correction is also offered.

Thirdly, polymorphisms and uncertainities create complications for assessing character changes
along branches. These can occur at the tips (true polymorphisms or uncertainties in sampled taxa)
and internal nodes (uncertainty over the estimated ancestral state). There are two options presented
here, and applicable to both PolymorphismState and UncertaintyState (allowing these to be set
separately). These are to convert such values to missing (NA) or to pick one of the possible states
at random. Using missing values will increase overall uncertainty and potentially lead to Type II

16 DiscreteCharacterRate

errors (false negatives), but represents a conservative solution. The random option is an attempt to
avoid Type II errors, but can be considered unrealistic, especially if there are true polymorphisms.
Additionally, the random option will again make the function stochastic meaning the user should run
it multiple times amd aggregate the results. Note that if there are no polymorphisms or uncertainties
in the character-taxon matrix the latter can still occur with ancestral state estimates, especially if the
threshold value is set at a high value (see AncStateEstMatrix for details).

Fourthly, inapplicable characters can additionally complicate matters as they are not quite the same
as missing data. I.e., they can mean that change in a particular character is not even possible along
a branch. However, there is no easy way to deal with such characters at present so the user is not
presented with a true option here - currently all inapplicable states are simply converted to missing
values by the function. In future, though, other options may be available here. For now it is simply
noted that users should be careful in making inferences if there are inapplicable characters in their
data and should perhaps consider removing them with MatrixPruner to gauge their effect.

Fifthly, there are currenty two further options for assessing rates across time bins. As noted above
a complication here is that character changes (the rate numerator) and character completeness (part
of the rate denominator) are typically assessed on branches. However, branches will typically span
time bin boundaries and hence many bins will contain only some portion of particular branches. The
exact portion can be easily calculated for branch durations (the other part of the rate denominator)
and the ChangeTimes option above is used to set the rate numerator, however, the completeness
remains complex to deal with. The first attempt to deal with this was made by Close et al. (2015)
who simply did weighted mean completeness by using the proportion of a branch in each bin as the
weight and multiplying this by each branch’s completeness (the "Close" option here). However,
this may lead to unrealistic "smoothing" of the data and perhaps more importantly makes no account
of which characters are known in a bin. Lloyd (2016) proposed an alternative "subtree" approach
which assesses completeness by considering each character to be represented by a subtree where
only branches that are complete are retained then branch durations in each bin are summed across
subtrees such that the duration term automatically includes completeness (the "Lloyd" option here).
Here the latter is strongly recommended, for example, because this will lead to the same global rate
across the whole tree as the branch, clade or character partitions, whereas the Close approach will
not.

Sixthly, all character changes are weighted according to the weights provided in the input character-
taxon matrix. In many cases these will simply all be one, although see the equalise weights option
in ReadMorphNexus. However, when weights vary they can create some issues for the function.
Specifically, changes are expected to be in the same (integer) units, but if weights vary then they
have to be modelled accordingly. I.e., a character twice the weight of another may lead to a single
change being counted as two changes. This is most problematic when the user has continuous
characters which are automatically converted to gap-weighted (Thiele 1993) characters. However,
this conversion creates drastically down-weighted characters and hence the user may wish to set the
EnsureAllWeightsAreIntegers option to TRUE. Note that reweighting will affect the results and
hence shifting the weights of characters up or down will necessarily lead to shifts in the relative
Type I and II errors. This is an unexplored aspect of such approaches, but is something the user
should be aware of. More broadly it is recommended that continuous (or gap-weighted) characters
be avoided when using these approaches.

Finally, the remaining options (EstimateAllNodes, EstimateTipValues, InapplicablesAsMissing,
PolymorphismBehaviour, UncertaintyBehaviour, and Threshold) are all simply passed directly
to AncStateEstMatrix for estimating the ancestral states and users should consult the help file for
that function for further details.

DiscreteCharacterRate 17

Note that currently the function cannot deal with step matrices and that the terminal versus internal
option from Brusatte et al. (2014) is yet to be implemented.

Output
The output for each test (i.e., the components of the BranchPartitionResults, CharacterPartitionResults,
CladePartitionResults and TimeBinResults parts of the output) includes three main parts:

1. Rates.

2. PValue.

3. CorrectedAlpha.

For each rate test the Rates part of the output is a vector of the absolute rate (number of changes
per million years) for each partition in the test. So, for example, a branch rate test for the sixth edge
in a tree would be the rate for the sixth edge followed by the pooled rate for all other edges. The
length of the vector is the length of the number of partitions.

The PValue is a single value indicating the probability that the likelihood ratio (see above and Lloyd
et al. 2012) is one, i.e., that the likelihoods of the one-rate and N-rate models are the same.

The CorrectedAlpha is the alpha-value that should be used to determine the significance of the cur-
rent partition test (i.e., The PValue, above). If the PValue exceeds the CorrectedAlpha then the null
(single-rate) hypothesis should be accepted, if lower then the null should be rejected in favour of the
N-rate hypthesis. Note that the CorrectedAlpha will not typically be the same for each partition and
will also typically be different from the input Alpha value due to the MultipleComparisonCorrection
option used.

Value
InferredCharacterChanges

Matrix of inferred character changes.
IntrinsicCharacterRate

The intrinsic (global) character rate in changes per million years.
ContinuousCharactersConvertedToDiscrete

Whether or not continuous characters were converted to discrete characters (im-
portant for handling the data in downstream analys(es)).

BranchPartitionResults

List of branch partition results (corresponding to BranchPartitionsToTest.
NULL if not requested.

CharacterPartitionResults

List of character partition results (corresponding to CharacterPartitionsToTest.
NULL if not requested.

CladePartitionResults

List of clade partition results (corresponding to CladePartitionsToTest. NULL
if not requested.

TimeBinResults List of time bin partition results (corresponding to TimeBinPartitionsToTest.
NULL if not requested.

Author(s)

Graeme T. Lloyd <graemetlloyd@gmail.com> and Steve C. Wang <scwang@swarthmore.edu>

18 DiscreteCharacterRate

References

Benjamini, Y. and Hochberg, Y., 1995. Controlling the false discovery rate: a practical and powerful
approach to multiple testing. Journal of the Royal Statistical Society, Series B, 57, 289-300.

Brusatte, S. L., Lloyd, G. T., Wang, S. C. and Norell, M. A., 2014. Gradual assembly of avian
body plan culminated in rapid rates of evolution across dinosaur-bird transition. Current Biology,
24, 2386-2392.

Close, R. A., Friedman, M., Lloyd, G. T. and Benson, R. B. J., 2015. Evidence for a mid-Jurassic
adaptive radiation in mammals. Current Biology, 25, 2137-2142.

Cloutier, R., 1991. Patterns, trends, and rates of evolution within the Actinistia. Environmental
Biology of Fishes, 32, 23–58.

Lloyd, G. T., 2016. Estimating morphological diversity and tempo with discrete character-taxon
matrices: implementation, challenges, progress, and future directions. Biological Journal of the
Linnean Society, 118, 131-151.

Lloyd, G. T., Wang, S. C. and Brusatte, S. L., 2012. Identifying heterogeneity in rates of morpho-
logical evolution: discrete character change in the evolution of lungfish (Sarcopterygii; Dipnoi).
Evolution, 66, 330-348.

Ruta, M., Wagner, P. J. and Coates, M. I., 2006. Evolutionary patterns in early tetrapods. I. Rapid
initial diversification followed by decrease in rates of character change. Proceedinsg of the Royal
Society of London B, 273, 2107–2111.

Thiele, K.. 1993. The Holy Grail of the perfect character: the cladistic treatment of morphometric
data. Cladistics, 9, 275-304.

Examples

Set random seed:
set.seed(17)

Generate a random tree for the Michaux data set:
tree <- rtree(nrow(Michaux1989$Matrix_1$Matrix))

Update taxon names to match those in the data matrix:
tree$tip.label <- rownames(Michaux1989$Matrix_1$Matrix)

Set root time by making youngest taxon extant:
tree$root.time <- max(diag(vcv(tree)))

Get discrete character rates:
x <- DiscreteCharacterRate(tree = tree, CladisticMatrix =

Michaux1989, TimeBins = seq(from = tree$root.time,
to = 0, length.out = 5), BranchPartitionsToTest =
lapply(as.list(1:nrow(tree$edge)), as.list),
CharacterPartitionsToTest = lapply(as.list(1:3),
as.list), CladePartitionsToTest =
lapply(as.list(Ntip(tree) + (2:Nnode(tree))),
as.list), TimeBinPartitionsToTest =
lapply(as.list(1:4), as.list), ChangeTimes =
"random", Alpha = 0.01, PolymorphismState =

DolloSCM 19

"missing", UncertaintyState = "missing",
InapplicableState = "missing", TimeBinApproach =
"Lloyd")

DolloSCM Stochastic Character Map For Dollo Character

Description

Given a tree with binary tip states produces a stochastic Dollo character map.

Usage

DolloSCM(tree, tip.states)

Arguments

tree A tree in phylo format with barnch lengths and a value for $root.time.

tip.states A vector of tip states (must be 0 or 1) with names matching tree$tip.label.

Details

A non-ideal solution to the problem of generating a stochastic character map for a Dollo character
(i.e., a single gain of the derived state (1) with any number of losses).

The function operates as follows:

1) Establishes least inclusive clade exhibiting the derived state (1). 2) Assumes single gain occurred
on branch subtending this clade and with equal probability of occurring at any point along the
branch. 3) Treats inclusive clade as a subtree and places a strong prior on the root of the derived
state (1). 4) Calls make.simmap from the phytools package to generate a stochastic character map
using a model where only losses are possible. 5) Outputs both the stochastic character map (time
spent in each state on each branch) and a matrix of state changes.

(NB: As the map is stochastic the answer will be different each time the function is run and multiple
replicates are strongly advised in order to ascertain uncertainty.)

This was the method used in Tarver et al. (2018).

Value

Changes A matrix of all changes (gains and losses).

SCM The stochastic character map.

Author(s)

Graeme T. Lloyd <graemetlloyd@gmail.com>

20 EdgeLengthsInBins

References

Tarver, J. E., Taylor, R. S., Puttick, M. N., Lloyd, G. T., Pett, W., Fromm, B., Schirrmeister, B. E.,
Pisani, D., Peterson, K. J. and Donoghue, P. C. J., 2018. Well-annotated microRNAomes do not
evidence pervasive miRNA loss. Genome Biology and Evolution, 6, 1457-1470.

Examples

Create a random 10-taxon tree:
tree <- rtree(10)

Arbitrarily add a root.time value of 100 Ma:
tree$root.time <- 100

Generate random tip states (0s and 1s):
tip.states <- sample(c(0, 1), 10, replace = TRUE)

Add labels to tip states:
names(tip.states) <- tree$tip.label

Get a single stochastic character map:
out <- DolloSCM(tree, tip.states)

View matrix of changes:
out$Changes

View stochastic character map (time spent in each state on each branch):
out$SCM

EdgeLengthsInBins Edge-lengths present in time-bins

Description

Given a time-scaled tree and set of time bin boundaries will sum the edge-lengths present in each
bin.

Usage

EdgeLengthsInBins(tree, time.bins, pruned.tree = NULL)

Arguments

tree A time-scaled tree in phylo format with a $root.time value.

time.bins A vector of ages in millions of years of time bin boundaries in old-to-young
order.

pruned.tree A time-scaled tree in phylo format with a $root.time value that is a subset of
tree.

EdgeMatch 21

Details

Calculates the total edge length present in each of a series of time bins. This is intended as an
internal function for rate calculations, but may be of use to someone.

The option of using a pruned.tree allows the user to correctly classify internal and terminal
branches in a subtree of the larger tree. So for example, if taxa A and B are sisters then after
pruning B the subtree branch leading to A is composed of an internal and a terminal branch on the
complete tree.

Value
edge.length.in.bin

A vector giving the summed values in millions of years for each time bin. Names
indicate the maximum and minimum values for each time bin.

terminal.edge.length.in.bin

As above, but counting terminal edges only.
internal.edge.length.in.bin

As above, but counting internal edges only.

Author(s)

Graeme T. Lloyd <graemetlloyd@gmail.com>

Examples

Create a random 10-taxon tree:
tree <- rtree(10)

Add root age:
tree$root.time <- 100

Create time bins:
time.bins <- seq(100, 0, length.out = 11)

Get edge lengths for each bin:
EdgeLengthsInBins(tree, time.bins)

EdgeMatch Edge matching function

Description

Given two trees where one is a pruned version of the other gives matching edges and nodes of
pruned tree to original tree.

Usage

EdgeMatch(original.tree, pruned.tree)

22 FindAncestor

Arguments

original.tree A tree in phylo format.

pruned.tree A tree in phylo format that represents a pruned version of original.tree.

Details

Finds matching edge(s) and node(s) for a pruned tree in the original tree from which it was created.
This is intended as an internal function, but may be of use to someone.

Value

matching.edges A list of the matching edges.

matching.nodes A matrix of matching node numbers.

removed.edges A vector of the removed edges.

Author(s)

Graeme T. Lloyd <graemetlloyd@gmail.com>

Examples

Create a random 10-taxon tree:
original.tree <- rtree(10)

Remove three leaves:
pruned.tree <- drop.tip(original.tree, c("t1", "t3", "t8"))

Find matching edges:
X <- EdgeMatch(original.tree, pruned.tree)

Show matching edges:
X$matching.edges

Show removed edges:
X$removed.edges

FindAncestor Find ancestor

Description

Finds the last common ancestor (node) of a set of two or more descendant tips.

Usage

FindAncestor(descs, tree)

FindLinkedEdges 23

Arguments

descs A vector of mode character representing the tip names for which an ancestor is
sought.

tree The tree as a phylo object.

Details

Intended for use as an internal function for TrimMorphDistMatrix, but potentially of more general
use.

Value

anc.node The ancestral node number.

Author(s)

Graeme T. Lloyd <graemetlloyd@gmail.com>

Examples

Create a simple four-taxon tree:
tree <- read.tree(text = "(A,(B,(C,D)));")

Plot the tree:
plot(tree)

Add nodelabels and show that the most recent common
ancestor of B, C, and D is node 6:
nodelabels()

Use FindAncestor to show that the most recent common
ancestor of B, C, and D is node 6:
FindAncestor(c("B", "C", "D"), tree)

FindLinkedEdges Find linked edges for a tree

Description

Given a tree finds edges that are linked to each other.

Usage

FindLinkedEdges(tree)

24 Gauthier1986

Arguments

tree A tree (phylo object).

Details

Finds all edges that link (share a node) with each edge of a tree.

This is intended as an internal function, but may be of use to someone else.

Value

Returns a matrix where links are scored 1 and everything else 0. The diagonal is left as zero.

Author(s)

Graeme T. Lloyd <graemetlloyd@gmail.com>

Examples

Create a simple four-taxon tree:
tree <- read.tree(text="(A,(B,(C,D)));")

Find linked (1) edges matrix for tree:
FindLinkedEdges(tree)

Gauthier1986 Character-taxon matrix from Gauthier 1986

Description

The character-taxon matrix from Gauthier (1986).

Format

A character-taxon matrix in the format imported by ReadMorphNexus.

References

Gauthier, J. A., 1986. Saurischian monophyly and the origin of birds. In Padian, K. (ed.) The
Origin of Birds and the Evolution of Flight. Towne and Bacon, San Francisco, CA, United States,
1-55.

GetAllStateChanges 25

GetAllStateChanges Finds all state changes on a tree using stochastic character mapping

Description

Takes a cladistic matrix and time-scaled tree and makes point estimates for every character change
using stochastic character mapping.

Usage

GetAllStateChanges(CladisticMatrix, Tree, TimeBins, NSimulations = 10,
PolymorphismBehaviour = "equalp", UncertaintyBehaviour = "equalp",
InapplicableBehaviour = "missing")

Arguments

CladisticMatrix

A character-taxon matrix in the format imported by ReadMorphNexus.

Tree A time-scaled tree (phylo object) that represents the relationships of the taxa in
CladisticMatrix.

TimeBins A vector of ages representing the boundaries of a series of time bins.

NSimulations The number of simulations to perform (passed to make.simmap.

PolymorphismBehaviour

What to do with polymorphic (&) characters. One of "equalp", "missing", or
"random". See details.

UncertaintyBehaviour

What to do with uncertain (/) characters. One of "equalp", "missing", or "ran-
dom". See details.

InapplicableBehaviour

What to do with inapplicable characters. Only one option currently ("missing").
See details.

Details

Important: this function is not yet complete and should not be used.

A wrapper function for make.simmap in the phytools package.

This function is intended to enumerate all possible changes on a tree (including to and from miss-
ing or inapplicable states) under the assumptions of stochastic character mapping as an alternative
means of establishing branch-lengths (for rate analyses) or recording the state occupied at a partic-
ular point in time for disparity analyses.

26 GetAllStateChanges

Value

RootStates A matrix of the root states for each character (column) and simulation (rows).
AllStateChanges

A matrix of rows for each change with columns corresponding to the character,
the simulation number, the edge number, the time the change occurred, and the
start and end states.

CharacterTimes A vector of the sampled tree-length (in Ma) for each character.
EdgeLengthsPerBin

A matrix of time bins (columns) and characters (rows) indicating the sampled
tree-length (in Ma).

TerminalEdgeLengthsPerBin

As above, but for terminal edges only.
InternalEdgeLengthsPerBin

As above, but for internal edges only.

Author(s)

Graeme T. Lloyd <graemetlloyd@gmail.com>

Examples

Set random seed:
set.seed(2)

Use Day 2016 as source matrix:
CladisticMatrix <- Day2016

Prune out continuous characters:
CladisticMatrix <- MatrixPruner(CladisticMatrix =

CladisticMatrix, blocks2prune = 1)

Prune out majority of characters so
example runs quickly:
CladisticMatrix <- MatrixPruner(CladisticMatrix =

CladisticMatrix, characters2prune = 1:32)

Generete random tree for matrix taxa:
Tree <- rtree(nrow(Day2016$Matrix_1$Matrix))

Add taxon names to tree:
Tree$tip.label <- rownames(Day2016$Matrix_1$Matrix)

Add root age to tree:
Tree$root.time <- max(diag(vcv(Tree)))

Get all state changes for two simulations:
StateChanges <-

GetAllStateChanges(CladisticMatrix = CladisticMatrix,
Tree = Tree, TimeBins = seq(Tree$root.time, 0,

GetDescendantEdges 27

length.out = 3), NSimulations = 2)

View matrix of all stochstic character changes:
StateChanges$AllStateChanges

View vector of sampled time for each
character:
StateChanges$CharacterTimes

View matrix of edge lengths in each time bin:
StateChanges$EdgeLengthsPerBin

View matrix of termnial edge lengths in each time bin:
StateChanges$TerminalEdgeLengthsPerBin

View matrix of internal edge lengths in each time bin:
StateChanges$InternalEdgeLengthsPerBin

GetDescendantEdges Gets descendant edges of an internal node

Description

Returns all descendant edges of an internal node for a phylo object.

Usage

GetDescendantEdges(n, tree)

Arguments

n An integer corresponding to the internal node for which the descendant edges
are sought.

tree A tree as a phylo object.

Details

Returns a vector of integers corresponding to row numbers in $edge or cells in $edge.length of
the descendant edges of the internal node supplied.

Author(s)

Graeme T. Lloyd <graemetlloyd@gmail.com>

28 GetNodeAges

Examples

Create simple four-taxon tree:
tree <- read.tree(text = "(A,(B,(C,D)));")

Plot tree:
plot(tree)

Add nodelabels:
nodelabels()

Add edgelabels (note that edges 5 and 6
are descendants of node 7):
edgelabels()

Use GdtDescendantEdges to show that edges
5 and 6 are descendants of node 7:
GetDescendantEdges(7, tree)

GetNodeAges Returns node ages for a time-scaled tree

Description

Given a tree with branch-lengths scaled to time and a value for $root.time will return a vector of
node ages.

Usage

GetNodeAges(tree)

Arguments

tree A tree (phylo object) with branch lengths representing time and a value for
$root.time.

Details

Returns a vector of node ages (terminal and internal) labelled by their node number.

Author(s)

Graeme T. Lloyd <graemetlloyd@gmail.com>

MakeMorphMatrix 29

Examples

Create simple four-taxon tree with edge lengths all
set to 1 Ma:
tree <- read.tree(text="(A:1,(B:1,(C:1,D:1):1):1);")

Set root.time as 10 Ma:
tree$root.time <- 10

Get node ages:
GetNodeAges(tree)

MakeMorphMatrix Creates a morphological data file from a matrix

Description

Creates a morphological data file from a character-taxon matrix.

Usage

MakeMorphMatrix(CharacterTaxonMatrix, header = "", Weights = NULL,
ordering = NULL, symbols = NULL, equalise.weights = FALSE,
ignore.duplicate.taxa = FALSE)

Arguments

CharacterTaxonMatrix

A Character-Taxon (columns-rows) matrix, with taxon names as rownames.

header A scalar indicating any header text (defaults to an empty string: "").

Weights A vector specifying the weights used (if not specified defaults to 1).

ordering A vector indicating whether characters are ordered ("ord") or unordered ("un-
ord") (if no specified defaults to ordered).

symbols The symbols to use if writing to a file (defaults to the numbers 0:9 then the letters
A to V).

equalise.weights

Optional that overrides the weights specified above make all characters truly
equally weighted.

ignore.duplicate.taxa

Logical indicating whether or not to ignore (allow; TRUE) duplicate taxa or not
(FALSE; default).

30 MakeMorphMatrix

Details

Claddis generally assumes that matrices will be imported into R from the #NEXUS format, but in
some cases (e.g., when using simulated data) it might be desirable to build a matrix within R. This
function allows the user to convert such a matrix into the format required by other Claddis functions
as long as it only contains a single block.

NB: Currently the function cannot deal directly with step matrices or continuous characters.

Value

Topper Contains any header text or step matrices and pertains to the entire file.

Matrix_N One or more matrix blocks (numbered 1 to N) with associated information
pertaining only to that matrix block. This includes the block name (if speci-
ficed, NA if not), the block datatype (one of "CONTINUOUS", "DNA", "NU-
CLEOTIDE", "PROTEIN", "RESTRICTION", "RNA", or "STANDARD"), the
actual matrix (taxa as rows, names stored as rownames and characters as columns),
the ordering type of each character ("ord" = ordered, "unord" = unordered), the
character weights, the minimum and maximum values (used by Claddis’ dis-
tance functions), and the original characters (symbols, missing, and gap values)
used for writing out the data.

Author(s)

Graeme T. Lloyd <graemetlloyd@gmail.com>

See Also

ReadMorphNexus

Examples

Create random 10-by-50 matrix:
CharacterTaxonMatrix <- matrix(sample(c("0", "1", "0&1", NA, ""),

500, replace = TRUE), nrow = 10, dimnames =
list(apply(matrix(sample(LETTERS, 40,
replace = TRUE), nrow = 10), 1, paste,
collapse = ""), c()))

Reformat for use elsewhere in Claddis:
MakeMorphMatrix(CharacterTaxonMatrix)

MatrixPruner 31

MatrixPruner Prunes a character matrix of characters or taxa

Description

Prunes a character matrix of characters, taxa, or both.

Usage

MatrixPruner(CladisticMatrix, blocks2prune = c(),
characters2prune = c(), taxa2prune = c(), removeinvariant = FALSE)

Arguments

CladisticMatrix

The cladistic matrix in the format imported by ReadMorphNexus.

blocks2prune A vector of number(s) of any blocks to prune.

characters2prune

A vector of character numbers to prune.

taxa2prune A vector of taxon names to prune (these must be present in rownames(CladisticMatrix$matrix).

removeinvariant

A logical for whether invariant characters should (TRUE) or should not (FALSE,
default) be pruned.

Details

Removing characters or taxa from a matrix imported using ReadMorphNexus is not simple due to
associated vectors for ordering, character weights etc. To save repetitively pruning each part this
function takes the matrix as input and vector(s) of either block numbers, character numbers, taxon
names, or any combination thereof and returns a matrix with these items removed. Minimum and
maximum values (used by MorphDistMatrix) are also updated and the user has the option to remove
constant characters this way as well (e.g, to reduce the memory required for a DNA matrix).

Author(s)

Graeme T. Lloyd <graemetlloyd@gmail.com>

See Also

ReadMorphNexus

32 MinSpanTreeEdges

Examples

Remove the outgroup taxon and characters 11 and 53 from Gauthier1986:
prunedmatrix <- MatrixPruner(CladisticMatrix = Gauthier1986, characters2prune = c(11, 53),

taxa2prune = c("Outgroup"))

Show priuned matrix:
prunedmatrix$Matrix_1$Matrix

Michaux1989 Character-taxon matrix from Michaux 1989

Description

The character-taxon matrix from Michaux (1989).

Format

A character-taxon matrix in the format imported by ReadMorphNexus.

References

Michaux, B., 1989. Cladograms can reconstruct phylogenies: an example from the fossil record.
Alcheringa, 13, 21-36.

MinSpanTreeEdges Get edges of minimum spanning tree

Description

Returns edges of a minimum spanning tree given a distance matrix.

Usage

MinSpanTreeEdges(dist.matrix)

Arguments

dist.matrix A square matrix of distances between objects.

Details

This function is a wrapper for mst in the ape package, but returns a vector of edges rather than a
square matrix of links.

MorphDistMatrix 33

Value

A vector of named edges (X->Y) with their distances. The sum of this vector is the length of the
minimum spanning tree.

Author(s)

Graeme T. Lloyd <graemetlloyd@gmail.com>

Examples

Create a simple square matrix of distances:
dist.matrix <- matrix(c(0,1,2,3,1,0,1,2,2,1,0,1,3,2,1,0), nrow = 4,

dimnames = list(LETTERS[1:4], LETTERS[1:4]))

Show matrix to confirm that the off diagonal has the shortest
distances:
dist.matrix

Use MinSpanTreeEdges to get the edges for the minimum spanning
tree:
MinSpanTreeEdges(dist.matrix)

Use sum of MinSpanTreeEdges to get the length of the minimum
spanning tree:
sum(MinSpanTreeEdges(dist.matrix))

MorphDistMatrix Get distance matrices from a cladistic matrix

Description

Takes a cladistic morphological dataset and converts it into a set of pairwise distances.

Usage

MorphDistMatrix(CladisticMatrix, Distance = "MORD", GEDType = "Wills",
TransformDistances = "arcsine_sqrt",
PolymorphismBehaviour = "min.difference",
UncertaintyBehaviour = "min.difference",
InapplicableBehaviour = "missing", CharacterDependencies = NULL,
Alpha = 0.5)

34 MorphDistMatrix

Arguments

CladisticMatrix

A character-taxon matrix in the format imported by ReadMorphNexus.

Distance The distance metric to use. Must be one of "GC", "GED", "RED", or "MORD" (the
default).

GEDType The type of GED to use. Must be one of "Legacy", "Hybrid", or "Wills" (the
default). See details for an explanation.

TransformDistances

Whether to transform the distances. Options are "none", "sqrt", or "arcsine_sqrt"
(the default). (Note: this is only really appropriate for the proportional distances,
i.e., "GC" and "MORD".)

PolymorphismBehaviour

The distance behaviour for dealing with polymorphisms. Must be one of "mean.difference",
"min.difference" (the default), or "random".

UncertaintyBehaviour

The distance behaviour for dealing with uncertainties. Must be one of "mean.difference",
"min.difference" (the default), or "random".

InapplicableBehaviour

The behaviour for dealing with inapplicables. Must be one of "missing" (de-
fault), or "HSJ" (Hopkins and St John 2018; see details).

CharacterDependencies

Only relevant if using InapplicableBehaviour = "HSJ". Must be a two-column
matrix with colnames "DependentCharacter" and "IndependentCharacter" that
specifies character hierarchies. See details.

Alpha The alpha value (sensu Hopkins and St John 2018). Only relevant if using
InapplicableBehaviour = "HSJ". See details.

Details

There are many options to consider when generating a distance matrix from morphological data,
including the metric to use, how to treat inapplicable, polymorphic (e.g., 0&1), or uncertain (e.g.,
0/1) states, and whether the output should be transformed (e.g., by taking the square root so that
the distances are - or approximate - Euclidean distances). Some of these issues have been discussed
previously in the literature (e.g., Lloyd 2016; Hopkins and St John 2018), but all likely require
further study.

Claddis currently offers four different distance metrics: 1. Raw Euclidean Distance (RED) - this is
only really applicable if there are no missing data, 2. The Gower Coefficient (GC; Gower 1971) -
this rescales distances by the number of characters that can be coded for both taxa in each pair-
wise comparison thus correcting for missing data, 3. The Maximum Observable Rescaled Distance
(MORD) - this was introduced by Lloyd (2016) as an extension of the GC designed to deal with the
fact that multistate ordered characters can lead to GCs of greater than 1 and works by rescaling by
the maximum possible distance that could be observed based on the number of characters codable
in each pairwise comparison meaning all resulting distances are on a zero to one scale, and 4. The
Generalised Euclidean Distance - this was introduced by Wills (1998) as a means of correcting for
the fact that a RED metric will become increasingly non-Euclidean as the amount of missing data in-
creases and works by filling in missing distances (for characters that are coded as missing in at least

MorphDistMatrix 35

one taxon in the pairwise comparison) by using the mean pairwise dissimilarity for that taxon pair
as a substitute. In effect then, RED makes no consideration of missing data, GC and MORD normalise
by the available data (and are identical if there are no ordered multistate characters), and GED fills in
missing distances by extrapolating from the available data.

Note that Lloyd (2016) misidentified the substitute dissimilarity for the GED as the mean for the
whole data set (Hopkins and St John 2018) and this was the way the GED implementation of Clad-
dis operated up to version 0.2. This has now been amended (as of version 0.3) so that the function
produces the GED in the form that Wills (1998) intended. However, this implementation can still be
accessed as the Legacy option for GEDType, with Wills being the WIlls (1998) implementation. An
advantage of this misinterpreted form of GED is that it will always return a complete pairwise dis-
tance matrix, however it is not recommended (see Lloyd 2016). Instead a third option for GEDType
- (Hybrid) - offers the same outcome but only uses the mean distance from the entire matrix in the
case where there are no codable characters in common in a pairwise comparison. This new hybrid
option has not been used in a published study.

Typically the resulting distance matrix will be used in an ordination procedure such as principal
coordinates (effectively classical multidimensional scaling where k, the number of axes, is max-
imised at N - 1, where N is the number of rows (i.e., taxa) in the matrix). As such the distance
should be - or approximate - Euclidean and hence a square root transformation is typically applied
(TransformDistances with the sqrt option). However, if applying pre-ordination (i.e., ordination-
free) disparity metrics (e.g., weighted mean pairwise distance) you may wish to avoid any transfor-
mation (none option). In particular the MORD will only fall on a zero to one scale if this is the case.
However, if transforming the MORD for ordination this zero to one property may mean the arcsine
square root (arcsine_sqrt option) is preferred. (Note that if using only unordered multistate or
binary characters and the GC the zero to one scale will apply too.)

An unexplored option in distance matrix construction is how to deal with polymorphisms (Lloyd
2016). Up to version 0.2 of Claddis all polymorphisms were treated the same regardless of whether
they were true polymorphisms (multiple states are observed in the taxon) or uncertainties (mul-
tiple, but not all states, are posited for the taxon). Since version 0.3, however, these two forms
can be distinguished by using the different #NEXUS forms (Maddison et al. 1997), i.e., (01) for
polymorphisms and {01} for uncertainties and within Claddis these are represented as 0&1 or 0/1,
respectively. Thus, since 0.3 Claddis allows these two forms to be treated separately, and hence dif-
ferently (with PolymorphismBehaviour and UncertaintyBehaviour). Again, up to version 0.2 of
Claddis no options for polymorphism behaviour were offered, instead only a minimum distance was
employed. I.e., the distance between a taxon coded 0&1 and a taxon coded 2 would be the smaller
of the comparisons 0 with 2 or 1 with 2. Since version 0.3 this is encoded in the min.difference
option. Currentlly two alternatives (mean.difference and random) are offered. The first takes the
mean of each possible difference and the second simply samples one of the states at random. Note
this latter option makes the function stochastic and so it should be rerun multiple times (for exam-
ple, with a for loop or apply function). In general this issue (and these options) are not explored
in the literature and so no recommendation can be made beyond that users should think carefully
about what this choice may mean for their individual data set(s) and question(s).

A final consideration is how to deal with inapplicable characters. Up to version 0.2 Claddis treated
inapplicable and missing characters the same (as NA values, i.e., missing data). However, since
Claddis version 0.3 these can be imported separately, i.e., by using the "MISSING" and "GAP"
states in #NEXUS format (Maddison et al. 1997), with the latter typically representing the inap-
plicable character. These appear as NA and empty strings (""), respectively, in Claddis format.
Hopkins and St John (2018) showed how inapplicable characters - typically assumed to represent

36 MorphDistMatrix

secondary characters - could be treated in generating distance matrices. These are usually hierar-
chical in form. E.g., a primary character might record the presence or absence of feathers and a
secondary character whether those feathers are symmetric or asymmetric. The latter will generate
inapplicable states for taxa without feathers and without correcting for this ranked distances can be
incorrect (Hopkins and St John 2018). Unfortunately, however, the #NEXUS format (Maddison et
al. 1997) does not really allow explicit linkage between primary and secondary characters and so
this information must be provided separately to use the Hopkins and St John (2018) approach. This
is done here with the CharacterDependencies option. This must be in the form of a two-column
matrix with column headers of "DependentCharacter" and "IndependentCharacter". The former be-
ing secondary characters and the latter the corresponding primary character. (Note that characters
are to be numbered across the whole matrix from 1 to N and do not restart with each block of the
matrix.) If using InapplicableBehaviour = "HSJ" the user must also provide an Alpha value be-
tween zero and one. When Alpha = 0 the secondary characters contribute nothing to the distance
and when Alpha = 1 the primary character is not counted in the weight separately (see Hopkins and
St John 2018). The default value (0.5) offers a compromise bteween these two extremes.

Here the implementation of this approach differs somewhat from the code available in the supple-
mentary materials to Hopkins and St John (2018). Specifically, this approach is incorporated (and
used) regardless of the overriding distance metric (i.e., the Distance option). Additionally, the
Hopkins and St John function specifically allows an extra level of dependency (secondary and ter-
tary characters) with these being applied recursively (tertiary first then secondary). Here, though,
additional levels of dependency do not need to be defined by the user as this information is al-
ready encoded in the CharacterDependencies option. Furthermore, because of this any level of
dependency is possible (if unlikely).

Value

DistanceMetric The distance metric used.

DistanceMatrix The distance matrix returned.
ComparableCharacterMatrix

The matrix of characters that can be compared for each pairwise distance.

Author(s)

Graeme T. Lloyd <graemetlloyd@gmail.com> and Thomas Guillerme <guillert@tcd.ie>

References

Gower, J. C., 1971. A general coefficient of similarity and some of its properties. Biometrics 27,
857–871.

Hopkins, M. J. and St John, K., 2018. A new family of dissimilarity metrics for discrete character
matrices that include inapplicable characters and its importance for disparity studies. Proceedings
of the Royal Society of London B, 285, 20181784.

Lloyd, G. T., 2016. Estimating morphological diversity and tempo with discrete character-taxon
matrices: implementation, challenges, progress, and future directions. Biological Journal of the
Linnean Society, 118, 131-151.

Maddison, D. R., Swofford, D. L. and Maddison, W. P., 1997. NEXUS: an extensible file format
for systematic information. Systematic Biology, 46, 590-621.

MorphMatrix2PCoA 37

Wills, M. A., 1998. Crustacean disparity through the Phanerozoic: comparing morphological and
stratigraphic data. Biological Journal of the Linnean Society, 65, 455-500.

Examples

Get morphological distances for the Day et
al. (2016) data set:
distances <- MorphDistMatrix(Day2016)

Show distance metric:
distances$DistanceMetric

Show distance matrix:
distances$DistanceMatrix

Show number of characters that can be scored for
each pairwise comparison:
distances$ComparableCharacterMatrix

To repeat using the Hopkins and St John approach
we first need to define the character dependency
(here there is only one, character 8 is a
secondary where 7 is the primary character):
CharacterDependencies <- matrix(c(8, 7), ncol = 2,

byrow = TRUE, dimnames = list(c(),
c("DependentCharacter",
"IndependentCharacter")))

Get morphological distances for the Day et
al. (2016) data set using HSJ approach:
distances <- MorphDistMatrix(Day2016,

InapplicableBehaviour = "HSJ",
CharacterDependencies = CharacterDependencies,
Alpha = 0.5)

Show distance metric:
distances$DistanceMetric

Show distance matrix:
distances$DistanceMatrix

Show number of characters that can be scored for
each pairwise comparison:
distances$ComparableCharacterMatrix

MorphMatrix2PCoA Principal Coordinates on a Cladistic Matrix

38 MorphMatrix2PCoA

Description

Performs Principal Coordinates Analysis (PCoA) on a cladistic matrix.

Usage

MorphMatrix2PCoA(CladisticMatrix, Distance = "MORD", GEDType = "Wills",
TransformDistances = "arcsine_sqrt",
DistPolymorphismBehaviour = "min.difference",
DistUncertaintyBehaviour = "min.difference",
DistInapplicableBehaviour = "missing", CharacterDependencies = NULL,
Alpha = 0.5, correction = "cailliez", Tree = NULL,
EstimateAllNodes = FALSE, EstimateTipValues = FALSE,
InapplicablesAsMissing = FALSE,
AncestralPolymorphismBehaviour = "equalp",
AncestralUncertaintyBehaviour = "equalp", Threshold = 0.01)

Arguments

CladisticMatrix

A vector of mode character representing the tip names for which an ancestor is
sought.

Distance The distance method to use (one of "RED", "GED", "GC", or "MORD" - the
default). See MorphDistMatrix for more details.

GEDType The type of GED use. Must be one of "Legacy", "Hybrid", or "Wills" (the
default). See details for an explanation.

TransformDistances

The transformation to apply to distances. See MorphDistMatrix for details.
DistPolymorphismBehaviour

The distance behaviour for dealing with polymorphisms. Must be one of "mean.difference",
"min.difference" (the default), or "random". See MorphDistMatrix for de-
tails.

DistUncertaintyBehaviour

The distance behaviour for dealing with uncertainties. Must be one of "mean.difference",
"min.difference" (the default), or "random". See MorphDistMatrix for de-
tails.

DistInapplicableBehaviour

The behaviour for dealing with inapplicables. Must be one of "missing" (de-
fault), or "HSJ". See MorphDistMatrix for details.

CharacterDependencies

Only relevant if using InapplicableBehaviour = "HSJ". Must be a two-column
matrix with colnames "DependentCharacter" and "IndependentCharacter" that
specifies character hierarchies. See MorphDistMatrix for details.

Alpha The alpha value (sensu Hopkins and St John 2018). Only relevant if using
InapplicableBehaviour = "HSJ". See MorphDistMatrix for details.

correction The negative eigenvalue correction to use (one of "lingoes", "none", or "cailliez"
- the default). See pcoa for more details.

MorphMatrix2PCoA 39

Tree If a phylmorphospace is desired then a tree with root age and branch-lengths
must be included.

EstimateAllNodes

If including a tree whether you want to estinate ancestral states for all characters
(default is FALSE). See AncStateEstMatrix for more details.

EstimateTipValues

If including a tree whether you want to estinate missing or polymorphic tip states
(default is FALSE). See AncStateEstMatrix for more details.

InapplicablesAsMissing

See AncStateEstMatrix.
AncestralPolymorphismBehaviour

Behaviour for dealing with polymorphisms when producing ancestral state esti-
mates - see AncStateEstMatrix.

AncestralUncertaintyBehaviour

Behaviour for dealing with uncertainties when producing ancestral state esti-
mates - see AncStateEstMatrix.

Threshold Threshold for ancestral state estimation of discrete characters - see AncSta-
teEstMatrix for details.

Details

Takes a cladistic matrix in the format imported by ReadMorphNexus and performs Principal Coor-
dinates (Gower 1966) analysis on it.

This function is effectively a wrapper for pcoa from the ape package and the user is referred there
for some of the options (e.g., using the Caillez 1983 approach to avoiding negative eigenvalues).

If providing a tree and inferring ancestral states then options to also infer missing or uncertain tips
and whether to infer values for all characters at all internal nodes are provided (via AncStateEstMa-
trix).

Other options within the function concern the distance metric to use and the transformation to be
used if selecting a propotional distance (see MorphDistMatrix).

IMPORTANT: The function can remove taxa (or if including a tree, nodes as well) if they lead to
an incomplete distance matrix (see TrimMorphDistMatrix).

Value

Tree The tree (if supplied). Note this may be pruned from the input tree by TrimMor-
phDistMatrix.

DistMatrix The distance matrix. Note this may be pruned by TrimMorphDistMatrix and
thus not include all taxa.

RemovedTaxa A vector of taxa (or nodes) removed by TrimMorphDistMatrix. Returns NULL
if none are removed.

note See pcoa.
values See pcoa.
vectors See pcoa.
trace See pcoa.
vectors.cor See pcoa.
trace.cor See pcoa.

40 MorphospacePlot

Author(s)

Graeme T. Lloyd <graemetlloyd@gmail.com>

References

Cailliez, F., 1983. The analytical solution of the additive constant problem. Psychometrika, 48,
305-308.

Gower, J. C., 1966. Some distance properties of latent root and vector methods used in multivariate
analysis. Biometrika, 53, 325-338.

Examples

Run on Michaux (189) data set with defaults:
x <- MorphMatrix2PCoA(Michaux1989)

Show output:
x

Generate a (made up) tree:
Tree <- rtree(length(rownames(Michaux1989$Matrix_1$Matrix)))

Add taxon names to it:
Tree$tip.label <- rownames(Michaux1989$Matrix_1$Matrix)

Set root time by making youngest taxon extant:
Tree$root.time <- max(diag(vcv(Tree)))

Run with tree:
y <- MorphMatrix2PCoA(Michaux1989, Tree = Tree)

Show new output:
y

MorphospacePlot Plot Morphopace

Description

Plots a morphospace using the output from MorphMatrix2PCoA.

Usage

MorphospacePlot(pcoa_input, x_axis = 1, y_axis = 2, z_axis = NULL,
plot_taxon_names = FALSE, plot_internal_nodes = FALSE,
plot_root = TRUE, root_colour = "grey")

MorphospacePlot 41

Arguments

pcoa_input The main input in the format output from MorphMatrix2PCoA.

x_axis Which ordination axis to plot as the x-axis (defaults to 1).

y_axis Which ordination axis to plot as the y-axis (defaults to 2).

z_axis Which ordination axis to plot as the z-axis (defaults to NULL, i.e., is not plot-
ted).

plot_taxon_names

Optional to plot the names of the taxa (defaults to FALSE).
plot_internal_nodes

Optional to plot the internal nodes of the tree (if included in pcoa_input) (de-
faults to FALSE).

plot_root Optional to plot the root separately (defaults to FALSE).

root_colour If plotting the root separately (previous option) sets the root colour.

Details

Uses output from MorphMatrix2PCoA as input.

Allows plotting of a third axis using the technique of Matthew Wills (Wills et al. 1994; their
Figures 4 and 8; Wills 1998; his Figure 4), where black and white indicate positive and negative
values respectovely, and the size of points there magnitudes.

Author(s)

Graeme T. Lloyd <graemetlloyd@gmail.com> and Emma Sherratt <emma.sherratt@gmail.com>

References

Wills, M. A., 1998. Cambrian and Recent disparity: the picture from priapulids. Paleobiology, 24,
177-199.

Wills, M. A., Briggs, D. E. G. and Fortey, R. A., 1994. Disparity as an evolutionary index: a
comparison of Cambrian and Recent arthropods. Paleobiology, 20, 93-130.

Examples

Set random seed:
set.seed(4)

Generate a random tree for the Michaux 1989 data set:
tree <- rtree(length(rownames(Michaux1989$Matrix_1$Matrix)))

Add taxon names to the tree:
tree$tip.label <- rownames(Michaux1989$Matrix_1$Matrix)

Perform a phylogenetic Principal Coordinates Analysis:
pcoa_input <- MorphMatrix2PCoA(Michaux1989, Tree = tree)

42 MultiMorphospacePlot

Plot the results:
MorphospacePlot(pcoa_input, plot_taxon_names = TRUE)

MultiMorphospacePlot Plot Multiple Morphopaces

Description

Plots morphospaces for any number of axes.

Usage

MultiMorphospacePlot(pcoa_input, N_axes = 4, plot_taxon_names = FALSE,
plot_internal_nodes = FALSE, plot_root = TRUE,
root_colour = "grey")

Arguments

pcoa_input The main input in the format output from MorphMatrix2PCoA.

N_axes An integer indicating the total number of axes to plot (should minimally be
three).

plot_taxon_names

Optional to plot the names of the taxa (defaults to FALSE).

plot_internal_nodes

Optional to plot the internal nodes of the tree (if included in pcoa_input) (de-
faults to FALSE).

plot_root Optional to plot the root separately (defaults to FALSE).

root_colour If plotting the root separately (previous option) sets the root colour.

Details

Takes output from MorphMatrix2PCoA as input and serves as a wrapper function for Morphospace-
Plot.

Plots multiple bivariate plots of ordination axes starting with 1 and up to N, such that every possible
bivariate plot is produced.

Author(s)

Emma Sherratt <emma.sherratt@gmail.com> and Graeme T. Lloyd <graemetlloyd@gmail.com>

PhyloCharCompletenessInBins 43

Examples

Create PCOA data:
pcoa_input <- MorphMatrix2PCoA(Michaux1989)

Plot first three axes:
MultiMorphospacePlot(pcoa_input, N_axes = 3)

PhyloCharCompletenessInBins

Phylogenetic character completeness in time-bins

Description

Given a cladistic matrix, time-scaled tree, and set of time bin boundaries will return the proportional
character completeness in each bin.

Usage

PhyloCharCompletenessInBins(CladisticMatrix, TimeTree, TimeBins,
plot = FALSE, CI = 0.95)

Arguments

CladisticMatrix

A cladistic matrix in the form imported by ReadMorphNexus.

TimeTree A time-scaled phylogenetic tree containing all the taxa in CladisticMatrix.

TimeBins A set of time bin boundaries (oldest to youngest) in millions of years.

plot An optional choice to plot the results (default is FALSE).

CI The confidence interval to be used as a proportion (0 to 1). Default is 0.95 (i.e.,
95%).

Details

Character completeness metrics have been used as an additional metric for comparing fossil record
quality across time, space, and taxa. However, these only usually refer to point samples of fossils
in bins, and not our ability to infer information along the branches of a phylogenetic tree.

This function returns the proportional phylogenetic character completeness for a set of time bins.

Value

A list summarising the mean, upper and lower 95

Author(s)

Graeme T. Lloyd <graemetlloyd@gmail.com>

44 PlotCharacterChanges

Examples

Create a random tree for the Day et al. 2016 data set:
Day2016tree <- rtree(nrow(Day2016$Matrix_1$Matrix))
Day2016tree$tip.label <- rownames(Day2016$Matrix_1$Matrix)
Day2016tree$root.time <- max(diag(vcv(Day2016tree)))

Get proportional phylogenetic character completeness in ten equal-length
time bins:
PhyloCharCompletenessInBins(CladisticMatrix = Day2016,

TimeTree = Day2016tree, TimeBins = seq(from =
Day2016tree$root.time, to = Day2016tree$root.time -
max(diag(vcv(Day2016tree))), length.out = 11))

PlotCharacterChanges Plots character changes on branches

Description

Plots character changes in boxes on branches.

Usage

PlotCharacterChanges(character.changes, tree)

Arguments

character.changes

A matrix of character changes.

tree Tree on which character changes occur.

Details

Takes the character.changes output from DiscreteCharacterRate and plots it on the tree used to
generate it.

Value

A plot of character changes on a tree.

Author(s)

Graeme T. Lloyd <graemetlloyd@gmail.com>

ReadMorphNexus 45

Examples

Set random seed:
set.seed(17)

Generate a random tree for the Michaux data set:
tree <- rtree(nrow(Michaux1989$Matrix_1$Matrix))

Update taxon names to match those in the data matrix:
tree$tip.label <- rownames(Michaux1989$Matrix_1$Matrix)

Set root time by making youngest taxon extant:
tree$root.time <- max(diag(vcv(tree)))

Get discrete character rates (includes changes):
out <- DiscreteCharacterRate(tree, Michaux1989,

seq(tree$root.time, 0, length.out = 3),
BranchPartitionsToTest = list(list(1)), Alpha = 0.01)

Plot character changes on the tree:
PlotCharacterChanges(out$InferredCharacterChanges,

tree)

ReadMorphNexus Reads in a morphological #NEXUS data file

Description

Reads in a morphological data file in #NEXUS format.

Usage

ReadMorphNexus(File, EqualiseWeights = FALSE)

Arguments

File A file name specified by either a variable of mode character, or a double-quoted
string.

EqualiseWeights

Optional that overrides the weights specified in the file to make all characters
truly equally weighted.

Details

Reads in a #NEXUS (Maddison et al. 1997) data file representing the distribution of characters
(continuous, discrete, DNA etc.) in a set of taxa. Unlike read.nexus.data this function can handle
polymorphisms (e.g., (012)).

46 ReadMorphNexus

Note that the function is generally intolerant to excursions from a standard format and it is recom-
mended your data be formatted like the morphmatrix.nex example below. However, the function
also produces informative error messages if (expected) excursions are discovered.

Previously all empty values (missing or inapplicable) were treated as NAs. But now anything coded
as a "gap" now appears as an empty text string ("") in the matrix. Additionally, previously poly-
morphisms and uncertianties were both considered as polymorphisms with multiple states separated
by an ampersand ("&"), but now polymorphisms use the ampersand ("&") and uncertainties use a
slash ("/"), allowing for different treatment later and correct outputting when writing to #NEXUS
format. (NB: TNT does not allow this distinction and so both polymorphisms and uncertainties will
be output as polymorphisms.)

Value

Topper Contains any header text or step matrices and pertains to the entire file.

Matrix_N One or more matrix blocks (numbered 1 to N) with associated information
pertaining only to that matrix block. This includes the block name (if speci-
ficed, NA if not), the block datatype (one of "CONTINUOUS", "DNA", "NU-
CLEOTIDE", "PROTEIN", "RESTRICTION", "RNA", or "STANDARD"), the
actual matrix (taxa as rows, names stored as rownames and characters as columns),
the ordering type of each character ("ord" = ordered, "unord" = unordered), the
character weights, the minimum and maximum values (used by Claddis’ dis-
tance functions), and the original characters (symbols, missing, and gap values)
used for writing out the data.

Author(s)

Graeme T. Lloyd <graemetlloyd@gmail.com>

References

Maddison, D. R., Swofford, D. L. and Maddison, W. P., 1997. NEXUS: an extensible file format
for systematic information. Systematic Biology, 46, 590-621.

See Also

read.nexus.data

Examples

Create example matrix (NB: creates a file in the current
working directory called "morphmatrix.nex"):
cat("#NEXUS\n\nBEGIN DATA;\n\tDIMENSIONS NTAX=5 NCHAR=5;\n\t
FORMAT SYMBOLS= \" 0 1 2\" MISSING=? GAP=- ;\nMATRIX\n\n
Taxon_1 010?0\nTaxon_2 021?0\nTaxon_3 02111\nTaxon_4 011-1
\nTaxon_5 001-1\n;\nEND;\n\nBEGIN ASSUMPTIONS;\n\t
OPTIONS DEFTYPE=unord PolyTcount=MINSTEPS ;\n\t
TYPESET * UNTITLED = unord: 1 3-5, ord: 2;\n\t
WTSET * UNTITLED = 1: 2, 2: 1 3-5;\nEND;", file = "morphmatrix.nex")

SafeTaxonomicReduction 47

Read in example matrix:
morph.matrix <- ReadMorphNexus("morphmatrix.nex")

View example matrix in R:
morph.matrix

Remove the generated data set:
file.remove("morphmatrix.nex")

SafeTaxonomicReduction

Safe Taxonomic Reduction

Description

Performs Safe Taxonomic Reduction (STR) on a character-taxon matrix.

Usage

SafeTaxonomicReduction(CladisticMatrix)

Arguments

CladisticMatrix

A character-taxon matrix in the format imported by ReadMorphNexus.

Details

Performs Safe Taxonomic Reduction (Wilkinson 1995).

If no taxa can be safely removed will print the text "No taxa can be safely removed", and the
str.list and removed.matrix will have no rows.

NB: If your data contains inapplicable characters these will be treated as missing data, but this
is inappropriate. Thus the user is advised to double check that any removed taxa make sense in
the light of inapplicable states. (As far as I am aware this same behaviour occurs in the TAXEQ3
software.)

Value

str.list A matrix listing the taxa that can be removed (Junior), the taxa which they are
equivalent to (Senior) and the rule under which they can be safely removed
(Rule).

reduced.matrix A character-taxon matrix excluding the taxa that can be safely removed.

removed.matrix A character-taxon matrix of the taxa that can be safely removed.

Author(s)

Graeme T. Lloyd <graemetlloyd@gmail.com>

48 SafeTaxonomicReinsertion

References

Wilkinson, M., 1995. Coping with abundant missing entries in phylogenetic inference using parsi-
mony. Systematic Biology, 44, 501-514.

Examples

Performs STR on the Gauthier 1986 dataset used in Wilkinson (1995):
str.out <- SafeTaxonomicReduction(Gauthier1986)

View deleted taxa:
str.out$str.list

View reduced matrix:
str.out$reduced.matrix

View removed matrix:
str.out$removed.matrix

SafeTaxonomicReinsertion

Reinsert Safely Removed Taxa Into A Tree

Description

Following Safe Taxonomic Reduction reinsert removed taxa.

Usage

SafeTaxonomicReinsertion(treefile.in, treefile.out, str.list,
multi.placements = "exclude")

Arguments

treefile.in A Newick-formatted tree file containing tree(s) without safely removed taxa.

treefile.out A file name where the newly generated trees will be written out to (required).

str.list The safe taxonomic reduction table as generated by SafeTaxonomicReduction.
multi.placements

An optional for what to do with taxa that have more than one possible reinser-
tion position. Options are "exclude" (does not reinsert them; the default) or
"random" (picks one of the possible positions and uses that; will vary stochasti-
cally if multiple trees exist).

Details

TEXT NEEDED!

StackPlot 49

Value

Nothing is returned, but a new file (treefile.out) is written.

Author(s)

Graeme T. Lloyd <graemetlloyd@gmail.com>

Examples

Nothing yet

StackPlot Plot Stacked Ordination Spaces

Description

Plots a stack of ordination spaces representing multiple time-slices.

Usage

StackPlot(ordination_axes, ages, groups = NULL, time_slices,
shear = 0.2, x_axis = 1, y_axis = 2, axis_label = "PC")

Arguments

ordination_axes

A matrix of the ordination axes supplied (rownames should be object names).
First column should be values for first axis, second for second axis and so on.

ages A two-column matrix of the first and last apperance dates for the taxa in the
same format supplied to DatePhylo.

groups A vector of colours (for plotting) with for each object name.

time_slices A vector of the boundaries for a series of time slices.

shear A single value (0 to 1) for the degree of shearing in the stacked ordination spaces.

x_axis The ordination axis to plot on the x-axis.

y_axis The ordination axis to plot nn the y-axis.

axis_label The text used to precede the axis number. Here "PC" (for principal compo-
nents/coordinates) is the assumed default, but the user may wish to use some-
thing else like "RW" instead.

50 StackPlot

Details

This style of plot is taken from various papers by Michael Foote (Foote 1993; his Figures 2, 4, 6, 8,
10, 12, and 14; Foote 1994; his Figure 2; Foote 1995; his Figure 3; Foote 1999; his Figure 22), and
can be seen elsehwere in the litarture (e.g., Friedman and Coates 2006; their Figure 2c).

Here multiple ordination (or morpho-) spaces are plotted as a seriours of successive "stacks" repre-
senting specific intervals of time. Following geologic conventions the oldest time-slice is plotted at
the base and the sequence gets younger towards the top.

Note that the user needs to supply three pieces of data: 1) a matrix representing the ordination axes
(NB: these can come from any source, they do not have to be from Claddis functions), 2) a set of
ages (first adn last appearances) in the same format as required by the DatePhylo function in the
strap library, and 3) a vector of ages marking the boundaries of the time-slices.

Author(s)

Graeme T. Lloyd <graemetlloyd@gmail.com> and Emma Sherratt <emma.sherratt@gmail.com>

References

Foote, M., 1993. Discordance and concordance between morphological and taxonomic diversity.
Paleobiology, 19, 185-204.

Foote, M., 1994. Morphological disparity in Ordovician-Devonian crinoids and the early saturation
of morphological space. Paleobiology, 20, 320-344.

Foote, M., 1995. Morphological diversification of Paleozoic crinoids. Paleobiology, 21, 273-299.

Foote, M., 1999. Morphological diversity in the evolutionary radiation of Paleozoic and post-
Paleozoic crinoids. Paleobiology, 25, 1-115.

Friedman, M. and Coates, M. I., 2006. A newly recognized fossil coelacanth highlights the early
morphological diversification of the clade. Proceedings of the Royal Society of London B, 273,
245-250

Examples

Create x-values that will form a grid:
x <- c(c(seq(0, 100, length.out = 101), seq(0, 100, length.out = 101),

seq(0, 100, length.out = 101), seq(0, 100, length.out = 101)),
c(rep(20, 101), rep(40, 101), rep(60, 101), rep(80, 101)))

Create y-values that will form grid:
y <- c(c(rep(20, 101), rep(40, 101), rep(60, 101), rep(80, 101)),

c(seq(0, 100, length.out = 101), seq(0, 100, length.out = 101),
seq(0, 100, length.out = 101), seq(0, 100, length.out = 101)))

Combine x and y values into
ordination_axes <- matrix(c(x, y), ncol = 2, dimnames =

list(as.list(apply(matrix(sample(LETTERS, 8 * 8 * 101,
replace = TRUE), nrow = 8 * 101), 1, paste, collapse = "")), NULL))

Assign ages as though taxa range through entire interval (100-0 Ma):

TrimMorphDistMatrix 51

ages <- matrix(c(rep(100, 8 * 101), rep(0, 8 * 101)), ncol = 2,
dimnames = list(as.list(rownames(ordination_axes)), as.list(c("FAD",
"LAD"))))

Create five 20 million year time slices:
time_slices <- seq(0, 100, length.out = 6)

Plot grid lines to show "shearing" effect is working:
StackPlot(ordination_axes = ordination_axes, ages = ages, time_slices = time_slices)

Set random seed:
set.seed(17)

Create random values to represent ordination axes:
ordination_axes <- matrix(rnorm(10000), nrow = 100, dimnames =

list(as.list(apply(matrix(sample(LETTERS, 8 * 100, replace = TRUE), nrow = 100),
1, paste, collapse = "")), NULL))

Create random first and last appearance dates for objects:
ages <- matrix(as.vector(apply(matrix(runif(200, 0, 100), ncol = 2), 1, sort,

decreasing = TRUE)), ncol = 2, byrow=TRUE, dimnames =
list(as.list(rownames(ordination_axes)), as.list(c("FAD", "LAD"))))

Create five 20 million year long time slices:
time_slices <- seq(0, 100, length.out = 6)

Define groups for objects at random ("red" and "blue"):
groups <- sample(x = c("red", "blue"), size = nrow(ordination_axes), replace = TRUE)

Randomly assign objects to groups:
names(groups) <- rownames(ordination_axes)

Make stacked ordination plot with convex hulls for groups:
StackPlot(ordination_axes, ages, groups, time_slices)

TrimMorphDistMatrix Trims a morphological distance matrix

Description

Trims a morphological distance matrix by removing objects that cause empty cells.

Usage

TrimMorphDistMatrix(dist.matrix, Tree = NULL)

52 TrimMorphDistMatrix

Arguments

dist.matrix A distance matrix in the format created by MorphDistMatrix.

Tree If the distance matrix includes ancestors this should be the tree (phylo object)
used to reconstruct them.

Details

Trims a morphological distance matrix by removing nodes (terminal or internal) that cause empty
cells allowing it to be passed to an ordination function such as cmdscale.

Some distances are not calculable from cladistic matrices if there are taxa that have no coded char-
acters in common. This algorithm iteratively removes the taxa responsible for the most empty cells
until the matrix is complete (no empty cells).

If the matrix includes reconstructed ancestors the user should also provide the tree used (as the
tree argument). The function will then also remove the tips from the tree and where reconstructed
ancestors also cause empty cells will prune the minimum number of descendants of that node. The
function will then renumber the nodes in the distance matrix so they match the pruned tree.

Value

DistMatrix A complete distance matrix with all cells filled. If there were no empty cells will
return original.

Tree A tree (if supplied) with the removed taxa (see below) pruned. If no taxa are
dropped will return the same tree as inputted. If no tree is supplied this is set to
NULL.

RemovedTaxa A character vector listing the taxa removed. If none are removed this will be set
to NULL.

Author(s)

Graeme T. Lloyd <graemetlloyd@gmail.com>

Examples

Get morphological distances for Michaux (1989) data set:
distances <- MorphDistMatrix(Michaux1989)

Attempt to trim max.dist.matrix:
TrimMorphDistMatrix(distances$DistanceMatrix)

WriteMorphNexus 53

WriteMorphNexus Writes out a morphological #NEXUS data file

Description

Writes out a morphological data file in #NEXUS format.

Usage

WriteMorphNexus(CladisticMatrix, filename)

Arguments

CladisticMatrix

The cladistic matrix in the format imported by ReadMorphNexus.

filename The file name to write to. Should end in .nex.

Details

Writes out a #NEXUS (Maddison et al. 1997) data file representing the distribution of characters in
a set of taxa. Data must be in the format created by importing data with ReadMorphNexus.

Author(s)

Graeme T. Lloyd <graemetlloyd@gmail.com>

References

Maddison, D. R., Swofford, D. L. and Maddison, W. P., 1997. NEXUS: an extensible file format
for systematic information. Systematic Biology, 46, 590-621.

See Also

WriteMorphTNT

Examples

Write out Michaux 1989 to current working directory:
WriteMorphNexus(CladisticMatrix = Michaux1989, filename = "Michaux1989.nex")

Remove file when finished:
file.remove("Michaux1989.nex")

54 WriteMorphTNT

WriteMorphTNT Writes out a morphological TNT data file

Description

Writes out a morphological data file in Hennig86/TNT format.

Usage

WriteMorphTNT(CladisticMatrix, filename, add.analysis.block = FALSE)

Arguments

CladisticMatrix

The cladistic matrix in the format imported by ReadMorphNexus.

filename The file name to write to. Should end in .tnt.
add.analysis.block

Whether or not to add analysis block (i.e., tree search commands).

Details

Writes out a TNT (Goloboff et al. 2008) data file representing the distribution of discrete mor-
phological characters in a set of taxa. Data must be in the format created by importing data with
ReadMorphNexus.

Author(s)

Graeme T. Lloyd <graemetlloyd@gmail.com>

References

Goloboff, P., Farris, J. and Nixon, K., 2008. TNT, a free program for phylogenetic analysis. Cladis-
tics, 24, 774-786.

See Also

WriteMorphNexus

Examples

Write out Michaux 1989 to current working directory:
WriteMorphTNT(CladisticMatrix = Michaux1989, filename = "Michaux1989.tnt")

Remove file when finished:
file.remove("Michaux1989.tnt")

Index

∗Topic datasets
Day2016, 11
Gauthier1986, 24
Michaux1989, 32

ace, 4
AncStateEstMatrix, 3, 13, 16, 39
ape, 4, 10, 32, 39

BlockAligner, 5

ChangesInBins, 6
ChronoPhyloMorphospacePlot, 7
Claddis, 50
Claddis (Claddis-package), 3
Claddis-package, 3
cmdscale, 52
CompactifyMatrix, 9
CorrectRootTime, 10

DatePhylo, 49, 50
Day2016, 11
DiscreteCharacterRate, 11, 44
DolloSCM, 19
drop.tip, 10

EdgeLengthsInBins, 20
EdgeMatch, 21

FindAncestor, 22
FindLinkedEdges, 23

Gauthier1986, 24
GetAllStateChanges, 13, 25
GetDescendantEdges, 27
GetNodeAges, 28

make.simmap, 25
MakeMorphMatrix, 29
MatrixPruner, 9, 16, 31
Michaux1989, 32

MinSpanTreeEdges, 32
MorphDistMatrix, 31, 33, 38, 39, 52
MorphMatrix2PCoA, 8, 37, 41, 42
MorphospacePlot, 40, 42
mst, 32
MultiMorphospacePlot, 42

pcoa, 38, 39
PhyloCharCompletenessInBins, 43
phytools, 4, 25
PlotCharacterChanges, 44

read.nexus.data, 45, 46
ReadMorphNexus, 4, 9, 11–13, 16, 24, 25,

30–32, 34, 39, 43, 45, 47, 53, 54
rerootingMethod, 4

SafeTaxonomicReduction, 9, 47, 48
SafeTaxonomicReinsertion, 48
StackPlot, 49
strap, 50

TrimMorphDistMatrix, 23, 39, 51

WriteMorphNexus, 53, 54
WriteMorphTNT, 53, 54

55

	Claddis-package
	AncStateEstMatrix
	BlockAligner
	ChangesInBins
	ChronoPhyloMorphospacePlot
	CompactifyMatrix
	CorrectRootTime
	Day2016
	DiscreteCharacterRate
	DolloSCM
	EdgeLengthsInBins
	EdgeMatch
	FindAncestor
	FindLinkedEdges
	Gauthier1986
	GetAllStateChanges
	GetDescendantEdges
	GetNodeAges
	MakeMorphMatrix
	MatrixPruner
	Michaux1989
	MinSpanTreeEdges
	MorphDistMatrix
	MorphMatrix2PCoA
	MorphospacePlot
	MultiMorphospacePlot
	PhyloCharCompletenessInBins
	PlotCharacterChanges
	ReadMorphNexus
	SafeTaxonomicReduction
	SafeTaxonomicReinsertion
	StackPlot
	TrimMorphDistMatrix
	WriteMorphNexus
	WriteMorphTNT
	Index

