Package ‘ChoiceModelR’

February 19, 2015

Type Package
Title Choice Modeling in R
Version 1.2
Date 2012-11-16
Author Ryan Sermas, assisted by John V. Colias, Ph.D.

<DecisionAnalystR@decisionanalyst.com>
Suggests bayesm, MASS, lattice, Matrix

Description Implements an MCMC algorithm to estimate a hierarchical
multinomial logit model with a normal heterogeneity
distribution. The algorithm uses a hybrid Gibbs Sampler with a
random walk metropolis step for the MNL coefficients for each
unit. Dependent variable may be discrete or continuous.
Independent variables may be discrete or continuous with
optional order constraints. Means of the distribution of
heterogeneity can optionally be modeled as a linear function of
unit characteristics variables.

License GPL (>= 3)

Copyright (C) 2012 Decision Analyst, Inc. (ChoiceModelR is a trademark
of Decision Analyst, Inc.)

URL http://www.decisionanalyst.com

LazyLoad yes

Maintainer John V Colias <jcolias@decisionanalyst.com>

Depends R (>=2.10)

Repository CRAN

Date/Publication 2012-11-20 23:23:09

NeedsCompilation no

http://www.decisionanalyst.com

2 ChoiceModelR-package

R topics documented:

ChoiceModelR-package e 2
choicemodelr e 3
datar L e e e 10
sharedatar L 13
truebetas L e e e e e e 16
Index 18

ChoiceModelR-package Choice Modeling in R

Description

Estimates coefficients of a Hierarchical Bayes Multinomial Logit Model

Details

Package: ChoiceModelR

Type: Package
Version: 1.2
Date: 2012-11-16

License: GPL (>=3)
LazyLoad: yes

The ChoiceModelR package includes the function choicemodelr that implements an MCMC algo-
rithm to estimate a hierarchical multinomial logit model with a normal heterogeneity distribution.
The algorithm uses a hybrid Gibbs Sampler with a random walk metropolis step for the MNL co-
efficients for each unit. Means of the distribution of heterogeneity can optionally be modeled as a
linear function of unit descriptor variables.

The dependent variable can be either discrete or a share. If the dependent variable y_i is a share
(0 to 1 inclusive), instead of discrete (1 ,..., nalt; where nalt is the number of alternatives in choice
set), then each choice observation is replicated wgt times with alternative i chosen in wgt*y_i ob-
servations. Independent variables can be continuous or discrete, with order constraints imposed on
estimated coefficients.

The basic structure of the code for this algorithm was derived from the rhierMnlRwMixture pro-
gram of the bayesm package available at cran.r-project.org. Significant modifications were made to
greatly reduce the run time, to allow constraints on estimated parameters, handle varying number
of choice observations, handle varying number of choice alternatives within each choice scenario,
and to optionally allow the dependent variable to be a share (between 0 and 1) instead of discrete (1
,..., nalt; where nalt is the number of alternatives in choice set).

Author(s)

Ryan Sermas, assisted by John V. Colias Ph.D., at Decision Analyst, Inc. <DecisionAnalystR@decisionanalyst.com>

choicemodelr

Maintainer: John V. Colias <jcolias@decisionanalyst.com>

References

Rossi, Peter; Allenby, Greg M.; and McCulloch, Robert (2005), Bayesian Statistics and Marketing,
John Wiley and Sons.

choicemodelr

Choice Modeling in R

Description

Estimates coefficients of a Hierarchical Bayes Multinomial Logit Model

Usage

choicemodelr(data, xcoding, demos, prior, mcmc, constraints, options)

Arguments

data

Required. A data frame. The column variables of the data frame are as follows,
where natts is the number of attributes; i.e., independent variables:

UnitID Set Alt X_1 ... X_natts y

The first column contains the ID of the unit (e.g. customer or survey respon-
dent). The second column contains the choice set number for the unit, where
each choice set is an observation for the unit. The third column contains the al-
ternative number within the choice set. The last column contains the dependent
variable.

If the dependent variable y is discrete, then the dependent variable takes a non-
zero value only in the first row of the choice set data, and takes a value from 1
to the number of alternatives in the choice set.

For example, the following 2 rows of the data frame “data” shows 2 choice sets
for unitID=103322 , 3 alternatives per choice set (note that the “none” alter-
native is excluded in this example), 3 independent variables X1 to X3, and a
dependent variable y indicating choice of alternative 2 in the first choice set and
alternative 3 in the second choice set.

103322114612
103322121110
103322213613
103322224810

The next example is identical to the first example, except that the dependent

xcoding

demos

prior

mcmc

choicemodelr

variable is a share, indicating 30 percent and 40 percent for alternatives 1 and 2
of choice set 1.

For a share dependent variable, the “none” alternative must be explicitly in-
cluded in the data.

103322114610.3
1033221211104
103322100000.3
103322213610.5
103322224810.5
103322200000.0

Required. A vector that specifies the way in which each attribute will be coded:

0 = categorical (effects coded)
1 = continuous (the program mean centers the variable across the levels appear-
ing in the data)

The order of attributes in xcoding must match the order of the attributes appear-
ing in the data file.

An “ni by nz” matrix of demographic variables or unit characteristics, where
“ni” is the number of units and “nz” is the number of unit-level demographic or
descriptor variables.

list(mubar, Amu, df, v, deltabar, Ad)

mubar = prior mean of the distribution of mu; must be a vector of length equal
to the number of attributes (default is a vector of zeros)

Amu = precision parameter (default is 0.01)
df = prior degrees of freedom (default is 5, must be > 2)
v = prior variance (default is 2, must be > 0)

deltabar = prior mean of the distribution of delta; must be a vector of length
equal to the number (nz) of unit descriptor variables in the upper level model
(default is a vector of zeros with length nz)

Ad = precision parameter; must be a vector of length equal to natts * nz (default
is 0)

Required. A list with 3 arguments: list(R, use, s).

R = total number of iterations of the Markov chain Monte Carlo (MCMC chain)
to be performed (R is required).

use = the number of iterations to be used in parameter estimation (use is re-
quired).

s = a scaling parameter that is used to adjust the standard deviation of random
draws of unit-level parameters during the random walk metropolis step of the
MCMC chain. Only specify s if you wish to keep a constant scaling parame-
ter. (By default, s = 0.1 and is adjusted at each iteration to keep acceptance of
random draws of unit parameters at approximately 30 percent.)

choicemodelr

constraints

options

A list of matrices containing the values 0, 1, and -1. If specifying constraints,
a constraints matrix must be specified for EVERY attribute. Simply declare a
matrix of Os for an unconstrained attribute.

Each matrix must be square with dimensions equal to the number of levels of the
attribute it represents. For a continuous attribute declare a 1 x 1 matrix contain-
ing the appropriate value. The matrices for categorical variables are interpreted
as follows:

e cl[i,j] =1, beta_i > beta_j
e cl[i,j] =-1, beta_i < beta_j
* cl[i, j] =0, no constraint

The lower-triangular and diagonal portions of the matrix have no meaning and
values in these positions are ignored.

For example, for a model with 3 attributes, set constraints = list(c1, c2, c3).

¢l = matrix(c(0,-1,-1,-1,

0,0,-1,-1,

0,0,0,-1,

0,0,0,0), ncol = 4, byrow = TRUE)

¢2 = matrix(c(0,1,1,1,1,1,1,1,1,
0,0,1,1,1,1,1,1,1,

0,0,0,1,1,1,1,1,1,

0,0,0,0,1,1,1,1,1,

0,0,0,0,0,1,1,1,1,

0,0,0,0,0,0,1,1,1,

0,0,0,0,0,0,0,1,1,

0,0,0,0,0,0,0,0,1,

0,0,0,0,0,0,0,0,0), ncol = 9, byrow = TRUE)

¢3 = matrix(c(0,1,1,1,

0,0,1,1,

0,0,0,1,

0,0,0,0), ncol = 4, byrow = TRUE)

The 1 x 1 matrices for continuous variables are interpreted as follows:

e c4[1,1]=1,beta>0
e c4[1,1]=-1,beta<0

e c4[1, 1] =0, no constraint

A list with 5 possible arguments: list(none, save, keep, wgt, restart).

none: set to TRUE to estimate a none parameter, and the data does not include
a row for “none” (i.e., no choice) (default is FALSE).

6 choicemodelr
save: set to TRUE to save draws of betas, deltas, mu, rooti, and the log likelihood
(default is FALSE).
keep = the thinning parameter defining the number of random draws to save
(default is 10).
wgt = the choice-set weight parameter; possible values are 1 to 10. This param-
eter only needs to be specified if estimating a model using a share dependent
variable (default is 5).
restart: Set to TRUE if restarting from a previous model estimation. To use this
option, a model estimation must have been completed prior to the current run,
and the restart.txt file must be in the working directory. All iterations from the
previous run are treated as burn-in. When restarting, keep all arguments (except
for R and use) identical to those of the previous run to avoid errors.
Details
Model:
Y_jj ~ MNL(beta_i*X_ij) for all i units and choice sets j
(X_ij is nvar by 1, where nvar is the number of independent variables)
beta i =7Z_idelta+u_i
(beta_i is 1 by nvar)
Z_i = a column vector (nz by 1) of unit characteristics variables
delta = a matrix (nz by nvar) of parameters where each column corresponds
to a column of beta_i
u_i ~ N(mu,Sigma), a multivariate normal distribution
mu = a vector of means of the distribution of heterogeneity of length nvar
Sigma = Covariance matrix of the distribution of heterogeneity
Priors:
delta ~ N(deltabar, inverse(A_d))
mu ~ N(mubar, inverse(SigmaAmu)
Sigma_j ~IW(nu,V)
deltabar = nz by nvar vector of prior means =0
Ad = prior precision matrix for deltabar = .011
mubar = nvar by 1 prior mean vector for mu = vector of zeros
nu = nul is the degrees of freedom parameter for IW prior for Sigma
v = location parameter for IW prior for Sigma
Amu = prior precision for normal mean = .01
Value
betadraw An ni by natt by floor(use/keep) array of MCMC random draws of unit-level

multinomial logit model parameter estimates.

choicemodelr 7

betadraw.c An ni by natt by floor(use/keep) array of constrained MCMC random draws of
unit-level multinomial logit model parameter estimates.

deltadraw A floor(use/keep) by nz*natt array of MCMC random draws of parameter esti-
mates on covariates to the distribution of heterogeneity.

compdraw A list of floor(use/keep) MCMC random draws of estimates of means and roots
for the multivariate normal distribution of heterogeneity.

loglike A floor(use/keep) vector of likelihoods for the MCMC draws of multinomial
logit parameters.

Written to Console During Model Estimation
During model estimation, the following statistics are written to the screen after
each 100 iterations. The selection of these particular statistics was suggested
by Sawtooth Software’s technical paper, “The CBC/HB System for Hierarchical
Bayes Estimation,” Version 5.0 Technical Paper (2009). Following Sawtooth
Software’s approach for certain statistics, we use a weighted average with a
weight of 0.01 for the last 100 iterations and 0.99 for previous iterations.

Acceptance Percent of MCMC draws accepted in the Metropolis Hastings step.
RLH nth root of the likelihood, where n is the average number of choice tasks (weighted
average).

Percent Certainty
Percent difference between log likelihood and log likelihood of a chance model
(weighted average).

Average Variance
Average variance of latest estimates of model coefficients across all units (weighted
average).

RMS Root mean squared of latest estimates of model coefficients across all units
(weighted average).

Graphic Output During model estimation, estimates of mu (mean of model coefficients from the
distribution of heterogeneity) are plotted in the graphics window.

Written to Disk
At the end of model estimation, average of MCMC draws of unit-level model
coefficients are written to Xbetas.csv. A log file, documenting run-time output
is written to Rlog.txt. Latest MCMC draws are written to restart.txt.

Note

For further explanation of model and priors, see rhierMnlRwMixture of the bayesm package, au-
thored by Peter Rossi, Ph.D., Anderson School, UCLA. For further discussion, see Rossi, Allenby
and McCulloch (2005). The model specification is identical to that in bayesm, except that (a) the
step length of the random walk metropolis algorithm was simplified to use increments of covariance
(s**2)(Sigma), where “s” is a scaling parameter mentioned above and “Sigma” is the current draw
of the covariance matrix of the distribution of heterogeneity and (b) the distribution of heterogeneity
was simplified to a normal vs. a mixture of normals.

Author(s)

Ryan Sermas, assisted by John V. Colias Ph.D., at Decision Analyst, Inc. < DecisionAnalystR@decisionanalyst.com>

8 choicemodelr

References

Rossi, Peter; Allenby, Greg M.; and McCulloch, Robert (2005), Bayesian Statistics and Marketing,
John Wiley and Sons.

Sawtooth Software (2009), “The CBC/HB System for Hierarchical Bayes Estimation”, Version 5.0
Technical Paper, www.sawtoothsoftware.com.

Examples

EXAMPLE 1: MULTINOMIAL LOGIT

LOAD ARTIFICIAL (SIMULATED) DATA THAT WAS CREATED
BY R CODE FOUND IN datar SECTION OF THE HELP FILES.

data(datar)
data(truebetas)

USE choicemodelr TO ESTIMATE THE PARAMETERS OF THE CHOICE MODEL.
FOR CONVERGENCE OF MCMC CHAIN, SET R = 4000 AND use = 2000.

xcoding = c(@, @)
mcme = list(R = 10, use = 10)

options = list(none=FALSE, save=TRUE, keep=1)

attlevels = c(5, 3)
constype = ¢(0, 1)
constraints = vector("list", 2)

for (i in 1:length(attlevels)) {
constraints[[i]] = diag(@, attlevels[i])

if (constype[i] == 1) {
constraints[[i]][upper.tri(constraints[[i]])]
3

else if (constypel[i] == 2) {
constraints[[i]][upper.tri(constraints[[i]])]
3

3

1l
1
—_

1l
—_

out = choicemodelr(datar, xcoding, mcmc = mcmc, options = options, constraints = constraints)

CALCULATE MEAN ABSOLUTE ERROR BETWEEN ESTIMATED AND TRUE BETAS.

estbetas = apply(out$betadraw.c,c(1,2),mean)

estbetas = cbind(estbetas[,1:4],0-apply(estbetas[,1:4],1,sum),estbetas[,5:6],0-apply(estbetas[,5:6],1,sum))
colnames(estbetas) = c("A1B1", "A1B2", "A1B3", "A1B4", "A1B5", "A2B1", "A2B2", "A2B3")

MAE = mean(abs(estbetas - truebetas))
print(MAE)

CALCULATE MEAN ABSOLUTE ERROR BETWEEN PROBABILITY
DIFFERENCES USING ESTIMATED AND TRUE BETAS.

choicemodelr 9

TrueProb = cbind(exp(truebetas[,1:5]) / apply(exp(truebetas[,1:5]),1,sum),
exp(truebetas[,6:8]) / apply(exp(truebetas[,6:81),1,sum))

EstProb = cbind(exp(estbetas[,1:5]) / apply(exp(estbetas[,1:5]),1,sum),
exp(estbetas[,6:8]) / apply(exp(estbetas[,6:8]),1,sum))

MAEProb = mean(abs(TrueProb - EstProb))

print (MAEProb)

EXAMPLE 2: FRACTIONAL MULTINOMIAL LOGIT

LOAD ARTIFICIAL (SIMULATED) FRACTIONAL MULTINOMIAL LOGIT DATA CREATED
BY R CODE FOUND IN sharedatar SECTION OF THE HELP FILES.

data(sharedatar)
data(truebetas)

USE choicemodelr TO ESTIMATE THE PARAMETERS OF THE CHOICE MODEL.
FOR CONVERGENCE OF MCMC CHAIN, SET R = 2000 AND use = 1000.

xcoding = c(@, 0)
mcme = list(R = 10, use = 10)

options = list(none=FALSE, save=TRUE, keep=1)

attlevels = c(5, 3)
constype = ¢(0, 1)
constraints = vector("list", 2)

for (i in 1:length(attlevels)) {
constraints[[i]] = diag(@, attlevels[i])

if (constype[i] == 1) {
constraints[[i]][upper.tri(constraints[[i]])]
3

else if (constypel[i] == 2) {
constraints[[i]][upper.tri(constraints[[i]])]
3

3

1
|
—_

1
—_

out = choicemodelr(sharedatar, xcoding, mcmc = mcmc, options = options, constraints = constraints)

CALCULATE MEAN ABSOLUTE ERROR BETWEEN ESTIMATED AND TRUE BETAS.

estbetas = apply(out$betadraw.c,c(1,2),mean)

estbetas = cbind(estbetas[,1:4],0-apply(estbetas[,1:4],1,sum),estbetas[,5:6],0-apply(estbetas[,5:6],1,sum))
colnames(estbetas) = c("A1B1", "A1B2", "A1B3", "A1B4", "A1B5", "A2B1", "A2B2", "A2B3")

MAE = mean(abs(estbetas - truebetas))
print (MAE)

CALCULATE MEAN ABSOLUTE ERROR BETWEEN PROBABILITY
DIFFERENCES USING ESTIMATED AND TRUE BETAS.

10 datar

TrueProb = cbind(exp(truebetas[,1:5]) / apply(exp(truebetas[,1:5]),1,sum),
exp(truebetas[,6:8]) / apply(exp(truebetas[,6:8]1),1,sum))
EstProb = cbind(exp(estbetas[,1:5]) / apply(exp(estbetas[,1:51),1,sum),
exp(estbetas[,6:8]) / apply(exp(estbetas[,6:8]),1,sum))
MAEProb = mean(abs(TrueProb - EstProb))

print (MAEProb)

datar Arificial (Simulated) Choice Data for choicemodelr

Description

Artificial (simulated) choice data for 300 units with a discrete dependent variable. The choice data
has a maximum of 50 choice sets per unit (varies from unit to unit). The choice sets have a maximum
of 5 alternatives per choice set (varies from choice set to choice set).

Usage

data(datar)

Format
The format is: num [1:61342, 1:6]1 111111111 ... -attr(*, "dimnames")=List of 2 ..$: NULL
"$: ChI’ [16] meeonnonn onn .

Source

Choice data was simulated using the code in the example.

Examples

data(datar)
head(datar)

datar DATA SET WAS CREATED USING THE FOLLOWING CODE.

if (0) {

LOAD LIBRARIES REQUIRED TO CREATE THE SIMULATED DATA. YOU MAY NEED TO INSTALL THESE PACKAGES.
library(MASS)

library(lattice)

library(Matrix)

library(bayesm)

set.seed(88)

CREATE FUNCTION TO SIMULATE ARTIFICIAL MULTINOMIAL CHOICE DATA BASED SIMULATED TRUE BETAS.

datar

simmnlv2 = function(p,n,beta)

p. rossi 2004
Modified by John Colias 2011

Purpose: simulate from MNL (including X values)

{

#

#

#

#

#

#

Arguments:

p is number of alternatives

n is number of obs

beta is true parm value

#

Output:

list of X (note: we include full set of intercepts and 2 unif(-1,1) X vars)
#
#
#
#

y (indicator of choice-- 1, ...,p
prob is a n x p matrix of choice probs

note: first choice alternative has intercept set to zero
#
k=length(beta)
x1=runif(n*p,min=-1,max=1)
x2=runif (nxp,min=-1,max=1)
x3=runif(n*p,min=-1,max=1)
I2=diag(rep(1,p-1))
zero=rep(0,p-1)
xadd=rbind(zero,I2)
for(i in 2:n) {

xadd=rbind(xadd, zero,I12)

3

xlast3 = cbind(x1,x2,x3)
xmax = apply(xlast3,1,max)
xcat = (xlast3 == xmax)x*1
X=cbind(xadd, xcat)

now construct probabilities
Xbeta=X%*%beta
p=nrow(Xbeta)/n
Xbeta=matrix(Xbeta,byrow=TRUE,ncol=p)
Prob=exp(Xbeta)
iota=c(rep(1,p))
denom=Prob%x%iota
Prob=Prob/as.vector(denom)
draw y
y=vector("double”, n)
ind=1:p
for (i in 1:n)
{
yvec=rmultinom(1,1,Prob[i,1)
y[il=ind%x%yvec
}

11

12

return(list(y=y, X=X, beta=beta,prob=Prob))
3

DEFINE DIMENSIONS OF ARTIFICIAL DATA.

nunits = 300 # number of units
cmax = 50 # maximum number of cards per unit
amax = 5 # maximum number of alternatives per card

CREATE SIGMA FOR MULTIVARIATE NORMAL DISTRIBUTION OF HETEROGENEITY.

sigma = 0.2*matrix(runif(49),7,7)

tsigma = t(sigma)

sigmal[lower.tri(sigma)] = tsigma[lower.tri(tsigma)]
sigma = nearPD(sigma)$mat

DEFINE MEANS FOR MULTIVARIATE NORMAL DISTRIBUTION OF HETEROGENEITY.

avgbeta = c¢(.5,-1.5,.9,1.0,-1, -0.5, 1.5)

DRAW BETAS FOR EACH UNIT.
LAST THREE BETAS ARE 3 LEVELS OF ONE ATTRIBUTE
THAT IS NON-DECREASING IN VALUE.

betatemp = mvrnorm(n=nunits, avgbeta, sigma)

beta = betatemp[,1:5]

beta = cbind(beta,betal,5]+texp(betatemp[,6]))

beta = cbind(beta,betal,6]+exp(betatemp[,7]1))

tbeta = cbind(betal,1:4]1,0) - apply(cbind(betal,1:4],0),1,mean)
betal,1:4] = tbetal,1:4]

tbeta = betal,5:7] - apply(betal,5:7]1,1,mean)

betal[,5:7] = tbeta

CREATE MULTINOMIAL LOGIT y AND X FOR EACH UNIT ASSUMING beta IS "TRUE".

datah=NULL
for (i in 1:nunits) {
datah[[i]] = simmnlv2(amax,cmax,betali,])

3

SAMPLE cmax-2, cmax-1, or cmax CARDS
FOR EACH UNIT TO CREATE DATA WITH VARYING
NUMBER OF CHOICE CARDS PER UNIT.
SAMPLE amax-2, amax-1, or amax ALTERNATIVES
FOR EACH CHOICE CARD OF EACH UNIT
TO CREATE DATA WITH VARYING NUMBER OF
ALTERNATIVES PER CHOICE CARD.
ny = NULL
datar = NULL
for (i in 1:nunits) {
if (1 ==1){

cat("Please wait ... this may take a few minutes.”, fill = TRUE)

cat("", fill = TRUE) }

SAMPLE CHOICE CARDS.
cards = sample(c(1:cmax),sample(c(cmax-2,cmax-1,cmax),1))

datar

sharedatar 13

chum = @
for (c in cards) {
cnum = cnum + 1
cond = @
KEEP SAMPLING ALTERNATIVES UNTIL THE CHOSEN ALTERNATIVE IS WITHIN THE SAMPLED ALTERNATIVES.
while (cond==0) {
alts = sample(c(1:amax),sample(c(amax-2,amax-1,amax),1))
depvar = datah[[i]]$y[c]
if (is.element(depvar,alts)) {
cond = 1
depvar = sum((depvar==alts)*c(1:length(alts))) } }
anum = @
for (a in alts) {
anum = anum + 1
if (anum > 1) {depvar = 0}
xx = datah[[i]]$X[(c-1)*amax+a,]
xa = xx[1:(length(xx)-3)1%*%c(1: (length(xx)-3))
if (sum(xa)==0) {xa = length(xx) - 2}
xb = which.max(xx[(length(xx)-2):1length(xx)]1)
datar = rbind(datar,c(i,cnum,anum,xa,xb,depvar)) } } }

truebetas = cbind(betal,1:4],0-apply(betal,1:4]1,1,sum),betal,5:7])
colnames(truebetas) = c("A1B1", "A1B2", "A1B3", "A1B4", "A1B5”, "A2B1", "A2B2", "A2B3")

END OF CODE TO CREATE ARTIFICIAL DATA.
}

sharedatar Arificial (Simulated) Fractional Choice Data for choicemodelr

Description

Artificial (simulated) fractional choice data for 300 units with a share dependent variable. The
choice data has 50 choice sets per unit. The choice sets have 5 alternatives per choice set.

Usage

data(sharedatar)

Format

The format is: num [1:75000, 1:6]1 111111111 ... - attr(*, "dimnames")=List of 2 ..$: NULL
'.$: Chr [1:6] meeonnonn oan .

Source

Fractional choice data was simulated using the code in the example.

14 sharedatar

Examples

data(sharedatar)
head(sharedatar)

sharedatar WAS CREATED USING THE FOLLOWING CODE.
if (@ {

LOAD LIBRARIES REQUIRED TO CREATE THE SIMULATED DATA.
YOU MAY NEED TO INSTALL THESE PACKAGES.

library(MASS)

library(lattice)

library(Matrix)

library(bayesm)

set.seed(88)

CREATE FUNCTION TO SIMULATE ARTIFICIAL MULTINOMIAL
FRACTIONAL CHOICE DATA BASED SIMULATED TRUE BETAS.

simmnlv3 = function(p,n,1,beta)

p. rossi 2004
Modified by John Colias 2011

Purpose: simulate from Fractional MNL (including X values)

{

#

#

#

#

#

#

Arguments:

p is number of alternatives

n is number of obs

1 is number of draws to construct the share
beta is true parm value

#
#
#
#
#
#
#

Output:
list of X (note: we include full set of intercepts and 2 unif(-1,1) X vars)
y (indicator of choice-- 1, ...,p
prob is a n x p matrix of choice probs

note: first choice alternative has intercept set to zero
#
k=length(beta)
x1=runif (nxp,min=-1,max=1)
x2=runif(n*p,min=-1,max=1)
x3=runif (nxp,min=-1,max=1)
I2=diag(rep(1,p-1))
zero=rep(0,p-1)
xadd=rbind(zero,I2)
for(i in 2:n) {

xadd=rbind(xadd, zero, I12)

sharedatar

xlast3 = cbind(x1,x2,x3)
xmax = apply(xlast3,1,max)
xcat = (xlast3 == xmax)=*1
X=cbind(xadd, xcat)

now construct probabilities
Xbeta=X%*%beta
p=nrow(Xbeta)/n
Xbeta=matrix(Xbeta,byrow=T,ncol=p)
Prob=exp(Xbeta)
iota=c(rep(1,p))
denom=Prob%=*%iota
Prob=Prob/as.vector(denom)
draw y
y=array(double(1),dim=c(n,p,1))
for (i in 1:n)
{
for (1 in 1:1) {
yvec=rmultinom(1,1,Prob[i,])
y[i,,1] = yvec
3
3
return(list(y=apply(y,c(1,2),mean),X=X,beta=beta,prob=Prob))
3

DEFINE DIMENSIONS OF ARTIFICIAL DATA.

nunits = 300 # number of units

cnum = 50 # number of cards per unit

anum = 5 # number of alternatives per card

lnum = 50 # number of draws to construct the shares for each card

CREATE SIGMA FOR MULTIVARIATE NORMAL DISTRIBUTION OF HETEROGENEITY.
sigma = 0.2xmatrix(runif(49),7,7)

tsigma = t(sigma)

sigmal[lower.tri(sigma)] = tsigma[lower.tri(tsigma)]

sigma = nearPD(sigma)$mat

DEFINE MEANS FOR MULTIVARIATE NORMAL DISTRIBUTION OF HETEROGENEITY.
avgbeta = ¢(.5,-1.5,.9,1.0,-1, -0.5, 1.5)

DRAW BETAS FOR EACH UNIT.
LAST THREE BETAS ARE 3 LEVELS OF ONE ATTRIBUTE
THAT IS NON-DECREASING IN VALUE.

betatemp = mvrnorm(n=nunits, avgbeta, sigma)

beta = betatemp[,1:5]

beta = cbind(beta,betal,5]+exp(betatemp[,6]))

beta = cbind(beta,betal,6]+exp(betatempl[,7]))

tbeta = cbind(betal,1:41,0) - apply(cbind(betal,1:4]1,0),1,mean)
beta[,1:4] = tbetal,1:4]

tbeta = betal,5:7] - apply(betal,5:7],1,mean)

betal[,5:7] = tbeta

15

16 truebetas

CREATE MULTINOMIAL LOGIT y AND X FOR EACH UNIT ASSUMING beta IS "TRUE".
datah=NULL

for (i in 1:nunits) {

datah[[i]] = simmnlv3(anum,cnum,lnum,betali,])

}

sharedatar = NULL
for (i in 1:nunits) {
if (A ==1){
cat("Please wait ... this may take a few minutes.”, fill = TRUE)
cat("", fill = TRUE) }
for (c in 1:cnum) {
depvar = datah[[i]]$y[c,]
for (a in 1:anum) {
xx = datah[[i]]$X[(c-1)*anum+a,]
xa = xx[1:(1length(xx)-3)1%*%c(1: (length(xx)-3))
if (sum(xa)==0) {xa = length(xx) - 2}
xb = which.max(xx[(length(xx)-2):1length(xx)1)
sharedatar = rbind(sharedatar,c(i,c,a,xa,xb,depvarfal)) } } }

END OF CODE TO CREATE ARTIFICIAL DATA.

3
truebetas True betas used to simulate data in the choice data set named datar,
which is used in the example.
Description

True betas are effects-coded betas for two variables for 300 units. The first variable is a four-level
categorical and the second variable is a three-level categorical variable. The latter is constrained to
be non-decreasing. These betas were used to simulate the choice data in the example data set named
datar.

Usage

data(truebetas)

Format
The format is: num [1:300, 1:8] 0.7314 0.0484 0.1874 0.3961 0.5678 ... - attr(*, "dimnames")=List
of 2..$:NULL ..$: chr [1:8] "TA1B1" "A1B2" "A1B3" "A1B4" ...

Source

The true betas were created using the code in the example.

truebetas

Examples

data(truebetas)
head(truebetas)

17

Index

+Topic datasets
datar, 10
sharedatar, 13
truebetas, 16
*Topic models
choicemodelr, 3
ChoiceModelR-package, 2
xTopic multivariate
choicemodelr, 3
ChoiceModelR-package, 2
+Topic package
choicemodelr, 3
ChoiceModelR-package, 2

choicemodelr, 3
ChoiceModelR-package, 2

datar, 10
sharedatar, 13

truebetas, 16

18

	ChoiceModelR-package
	choicemodelr
	datar
	sharedatar
	truebetas
	Index

