Package 'ChaosGame'

December 18, 2018

Type Package Title Chaos Game Version 0.4 Date 2018-12-13 Author Manuela Schreyer <manuelalarissa.schreyer@sbg.ac.at>, Wolfgang Trutschnig <Wolfgang.Trutschnig@sbg.ac.at> Maintainer Florian Griessenberger <florian.griessenberger@sbg.ac.at> Description The main objective of the package is to enter a word of at least two letters based on which an Iterated Function System with Probabilities is constructed, and a two-dimensional fractal containing the chosen word infinitely often is generated via the Chaos Game. Additionally, the package allows to project the two-dimensional fractal on several three-dimensional surfaces and to transform the fractal into another fractal with uniform marginals. Imports ggplot2, gridExtra, sphereplot, plot3D Depends rgl, RColorBrewer, colorRamps License GPL-2 NeedsCompilation no

Repository CRAN

Date/Publication 2018-12-18 11:00:19 UTC

R topics documented:

Cha	osGame-p	ackage	• •			 •	•	 •		•	 •			•			•		•		2
plo	_word				•		•			•	 •	•		•	 •		•				3
plo	t_word3D				•		•			•	 •	•		•	 •		•				4
																					8

Index

ChaosGame-package

Description

The main objective of the package is to enter a word of at least two letters based on which an Iterated Function System with Probabilities (IFSP) is constructed, and a two-dimensional fractal containing the chosen word infinitely often is generated via the Chaos Game. Additionally, the package allows to project the two-dimensional fractal on several three-dimensional surfaces and to transform the fractal into another fractal with uniform marginals.

Details

Package:	ChaosGame
Type:	Package
Version:	0.4
Date:	2018-12-13

Author(s)

Manuela Schreyer <manuelalarissa.schreyer@sbg.ac.at>, Wolfgang Trutschnig <Wolfgang.Trutschnig@sbg.ac.at>

Examples

```
# function with word as input, runs the chaos game and
# projects the result on the Enneper Minimal Surface:
# for nice results use, for example, R = 20 and orbit = 3000
A <- plot_word3D(word = "copula", R = 50, orbit = 100, copula = FALSE,
                 plot.surface = "EnneperMinimalSurface", histogram = FALSE)
# further examples:
# same example as before, now with histogram = TRUE
# A <- plot_word3D(word = "copula", R = 100, orbit = 300, copula = FALSE,
                   plot.surface = "EnneperMinimalSurface")
#
# same example as before, now (approximately) probability-integral-transformed
# (i.e. copula = TRUE)
# A <- plot_word3D(word = "copula", R = 100, orbit = 300, copula = TRUE,
                   plot.surface = "EnneperMinimalSurface")
#
# projection of the fractal on a Catalan Surface
# A <- plot_word3D(word = "copula", R = 100, orbit = 300, copula = FALSE,
```

```
color.rgl.plot = "blue2green", plot.surface = "CatalanSurface")
# Catalan Surface (approximately) probability-integral-transformed (i.e. copula = TRUE)
# A <- plot_word3D(word = "copula", R = 100, orbit = 300, copula = TRUE,</pre>
                   color.rgl.plot = "blue2green", plot.surface = "CatalanSurface")
#
# projection of the fractal on a Helix
# A <- plot_word3D(word = "copula", R = 100, orbit = 300, copula = FALSE,
                   color.rgl.plot = "green2red", plot.surface = "Helix")
#
# Helix (approximately) probability-integral-transformed (i.e. copula = TRUE)
# A <- plot_word3D(word = "copula", R = 100, orbit = 300, copula = TRUE,
                   color.rgl.plot = "green2red", plot.surface = "Helix")
# projection of the fractal on a Torus
# A <- plot_word3D(word = "copula", R = 100, orbit = 300, copula = FALSE,
#
                   color.rgl.plot = "blue2yellow", plot.surface = "Torus")
# Torus (approximately) probability-integral-transformed (i.e. copula = TRUE)
# A <- plot_word3D(word = "copula", R = 100, orbit = 300, copula = TRUE,</pre>
#
                   color.rgl.plot = "blue2yellow", plot.surface = "Torus")
# projection of the fractal on a Sphere
# A <- plot_word3D(word = "copula", R = 100, orbit = 300, copula = FALSE,</pre>
                   color.rgl.plot = "ygobb", plot.surface = "Sphere")
#
# Sphere (approximately) probability-integral-transformed (i.e. copula = TRUE)
# A <- plot_word3D(word = "copula", R = 100, orbit = 300, copula = TRUE,
                   color.rgl.plot = "ygobb", plot.surface = "Sphere")
#
```

plot_word

Plot the 2D fractal containing the chosen word

Description

The function allows to enter a word of at least two letters based on which an Iterated Function System with Probabilities (IFSP) is constructed. This IFSP is then used to generate a two-dimensional fractal containing the chosen word infinitely often, which is then plotted (and optionally probabilityintegral-transformed).

Usage

Arguments

word

Word which the fractal should contain infinitely often.

R	Number of runs of the chaos game.
phi	Angle of the rotation.
copula	If copula = TRUE the sample is (approximately) probability-integral-transformed.
portion	Portion based on which the empirical distribution functions are calculated, if copula = TRUE.
shift	Distance between letters.
orbit	Number of steps in each run of the chaos game.

Author(s)

Manuela Schreyer <manuelalarissa.schreyer@sbg.ac.at>, Wolfgang Trutschnig <Wolfgang.Trutschnig@sbg.ac.at>

Examples

```
# function with word as input, constructs the IFSP and runs the chaos game:
# for nice results use, for example, R = 20 and orbit = 3000
A <- plot_word(word = "copula", R = 50, orbit = 100)
# plot without histograms of the marginal distributions
plot(A, pch =19, col = 4, cex = 0.1)
# further examples:
# with rotation
# A <- plot_word(word = "copula", R = 100, orbit = 300, phi = pi/8)
# A <- plot_word(word = "fractal", R = 100, orbit = 300, phi = pi/6)
# (approximately) probability-integral-transformed
# A <- plot_word(word = "copula", R = 100, orbit = 300, phi = pi/8, copula = TRUE)
# A <- plot_word(word = "fractal", R = 100, orbit = 300, phi = pi/8, copula = TRUE)</pre>
```

plot_word3D

Plot the 3D fractal containing the chosen word

Description

The function allows to enter a word of at least two letters based on which an Iterated Function System with Probabilities (IFSP) is constructed. This IFSP is then used to generate a two-dimensional fractal containing the chosen word infinitely often, which is then projected onto several threedimensional surfaces. Optionally, the projection is transformed into another fractal with uniform marginals.

plot_word3D

Usage

Arguments

word	Word which the fractal should contain infinitely often.
R	Number of runs of the chaos game.
plot.rgl	If plot.rgl = TRUE a rgl-plot is generated. Otherwise a scatter-plot with plot3D is produced.
copula	If copula = TRUE the sample is (approximately) probability-integral-transformed.
portion	Portion based on which the empirical distribution functions are calculated, if copula = TRUE.
color.rgl.plot	Plotting color/color-range for the rgl-plot. One can choose between "gray", "blue2green", "green2red", "blue2yellow", "ygobb", "magenta2green" and "green2magenta".
plot.surface	Three-dimensional surface on which the two-dimensional fractal is projected. Options are "Sphere", "Helix", "Torus", "EnneperMinimalSurface" and "CatalanSurface".
histogram	It is an option available only under the rgl-plot option (i.e if plot.rgl = TRUE). If histogram = TRUE, two-dimensional and one-dimensional marginal his- tograms are plotted in the rgl-plot.
shift	Distance between letters.
orbit	Number of steps in each run of the chaos game.
cex.label	Font size, for exporting as a pdf or png file (see examples).
size.lines	Line width, for exporting as a pdf or png file (see examples).
Theta, Phi	Angles defining the viewing direction. Theta gives the azimuthal direction and Phi the colatitude in the scatter-plot (see Package plot3D). Can be chosen only under the scatter-plot option (i.e if plot.rgl = FALSE).
Box	If TRUE, axis, two-dimensional projections (if projection = TRUE) and marginal histograms are plotted.
projection	An option available only if Box = TRUE. If projection = TRUE, the two- dimensional projections are plotted together with axis and marginal histograms.

Author(s)

Manuela Schreyer <manuelalarissa.schreyer@sbg.ac.at>, Wolfgang Trutschnig <Wolfgang.Trutschnig@sbg.ac.at>

Examples

```
# function with a word as input, runs the chaos game, calculates the
# copula transformation and projects the result on a sphere:
# for nice results use, for example, R = 20 and orbit = 3000
A \le plot_word3D(word = "copula", copula = FALSE, R = 50, orbit = 100)
# further examples:
# projection of the fractal on the Enneper Minimal Surface:
# A <- plot_word3D(word = "copula", R = 75, orbit = 300, copula = FALSE,</pre>
                   plot.surface = "EnneperMinimalSurface", histogram = FALSE)
#
# same example as before, now with histogram = TRUE
# A <- plot_word3D(word = "copula", R = 100, orbit = 300, copula = FALSE,
                  plot.surface = "EnneperMinimalSurface")
#
# same example as before (approximately) probability-integral-transformed
# (i.e. copula = TRUE)
\# A \leq plot_word3D(word = "copula", R = 100, orbit = 300, copula = TRUE,
                   plot.surface = "EnneperMinimalSurface")
# projection of the fractal on a Catalan Surface
# A <- plot_word3D(word = "copula", R = 100, orbit = 300, copula = FALSE,
                   color.rgl.plot = "blue2green", plot.surface = "CatalanSurface")
#
# Catalan Surface (approximately) probability-integral-transformed
# (i.e. copula = TRUE)
# A <- plot_word3D(word = "copula", R = 100, orbit = 300, copula = TRUE,
#
                  color.rgl.plot = "blue2green", plot.surface = "CatalanSurface")
# projection of the fractal on a Helix
# A <- plot_word3D(word = "copula", R = 100, orbit = 300, copula = FALSE,
                   color.rgl.plot = "green2red", plot.surface = "Helix")
#
# Helix (approximately) probability-integral-transformed (i.e. copula = TRUE)
# A <- plot_word3D(word = "copula", R = 100, orbit = 300, copula = TRUE,
#
                   color.rgl.plot = "green2red", plot.surface = "Helix")
# projection of the fractal on a Torus
# A <- plot_word3D(word = "copula", R = 100, orbit = 300, copula = FALSE,</pre>
                   color.rgl.plot = "blue2yellow", plot.surface = "Torus")
#
# Torus (approximately) probability-integral-transformed (i.e. copula = TRUE)
# A <- plot_word3D(word = "copula", R = 100, orbit = 300, copula = TRUE,
                   color.rgl.plot = "blue2yellow", plot.surface = "Torus")
#
# projection of the fractal on a Sphere
# A <- plot_word3D(word = "copula", R = 100, orbit = 300, copula = FALSE,</pre>
#
                   color.rgl.plot = "ygobb", plot.surface = "Sphere")
# Sphere (approximately) probability-integral-transformed (i.e. copula = TRUE)
# A <- plot_word3D(word = "copula", R = 100, orbit = 300, copula = TRUE,
```

```
#
                   color.rgl.plot = "ygobb", plot.surface = "Sphere")
# scatter-plot with plot3D (i.e. plot.rgl = FALSE)
# A <- plot_word3D(word = "copula", R = 10, orbit = 300, copula = FALSE,</pre>
#
                   plot.surface = "Sphere", plot.rgl = FALSE)
# scatter-plot with plot3D (i.e. plot.rgl = FALSE) for exporting as a pdf file
# setwd("working_directory")
# pdf(file = "Sphere.pdf", width = 30, height = 25)
# A <- plot_word3D(word = "copula", R = 100, orbit = 300, copula = FALSE, plot.rgl = FALSE,
                   plot.surface = "Sphere", cex.label = 1.8, size.lines = 0.001)
#
# dev.off()
# scatter-plot with plot3D (i.e. plot.rgl = FALSE) for exporting as a png file
# setwd("working_directory")
# png(file = "Sphere.png", width = 5000, height = 4000)
# A <- plot_word3D(word = "copula", R = 100, orbit = 300, copula = FALSE, plot.rgl = FALSE,
                   plot.surface = "Sphere", cex.label = 5, size.lines = 2)
#
# dev.off()
```

Index

*Topic **package** ChaosGame-package, 2

ChaosGame (ChaosGame-package), 2 ChaosGame-package, 2

plot_word, 3
plot_word3D, 4