
Package ‘Cairo’
July 7, 2020

Version 1.5-12.2

Title R Graphics Device using Cairo Graphics Library for Creating
High-Quality Bitmap (PNG, JPEG, TIFF), Vector (PDF, SVG,
PostScript) and Display (X11 and Win32) Output

Author Simon Urbanek <Simon.Urbanek@r-project.org>, Jef-
frey Horner <jeff.horner@vanderbilt.edu>

Maintainer Simon Urbanek <Simon.Urbanek@r-project.org>

Depends R (>= 2.4.0)

Imports grDevices, graphics

Suggests png

Enhances FastRWeb

Description R graphics device using cairographics library that can be used to create high-quality vec-
tor (PDF, PostScript and SVG) and bitmap output (PNG,JPEG,TIFF), and high-quality render-
ing in displays (X11 and Win32). Since it uses the same back-end for all output, copy-
ing across formats is WYSIWYG. Files are created without the dependence on X11 or other ex-
ternal programs. This device supports alpha channel (semi-transparent drawing) and result-
ing images can contain transparent and semi-transparent regions. It is ideal for use in server envi-
ronments (file output) and as a replacement for other devices that don't have Cairo's capabili-
ties such as alpha support or anti-aliasing. Backends are modular such that any subset of back-
ends is supported.

License GPL-2

SystemRequirements cairo (>= 1.2 http://www.cairographics.org/)

URL http://www.rforge.net/Cairo/

NeedsCompilation yes

Repository CRAN

Date/Publication 2020-07-07 06:11:04 UTC

R topics documented:
Cairo . 2
Cairo.capabilities . 5

1

http://www.rforge.net/Cairo/

2 Cairo

Cairo.capture . 6
Cairo.onSave . 7
Cairo.serial . 8
CairoFonMatch . 8
CairoFonts . 10

Index 12

Cairo Create a new Cairo-based graphics device

Description

Cairo initializes a new graphics device that uses the cairo graphics library for rendering. The
current implementation produces high-quality PNG, JPEG, TIFF bitmap files, high resolution PDF
files with embedded fonts, SVG graphics and PostScript files. It also provides X11 and Windows
interactive graphics devices. Unlike other devices it supports all graphics features including alpha
blending, anti-aliasing etc.

CairoX11, CairoPNG, CairoPDF, CairoPS and CairoSVG are convenience wrappers of Cairo that
take the same arguments as the corresponding device it replaces such as X11, png, pdf, etc. Use of
the Cairo function is encouraged as it is more flexible than the wrappers.

Usage

Cairo(width = 640, height = 480, file="", type="png", pointsize=12,
bg = "transparent", canvas = "white", units = "px", dpi = "auto",
...)

CairoX11(display=Sys.getenv("DISPLAY"), width = 7, height = 7,
pointsize = 12, gamma = getOption("gamma"), bg = "transparent",
canvas = "white", xpos = NA, ypos = NA, ...)

CairoPNG(filename = "Rplot%03d.png", width = 480, height = 480,
pointsize = 12, bg = "white", res = NA, ...)

CairoJPEG(filename = "Rplot%03d.jpeg", width = 480, height = 480,
pointsize = 12, quality = 75, bg = "white", res = NA, ...)

CairoTIFF(filename = "Rplot%03d.tiff", width = 480, height = 480,
pointsize = 12, bg = "white", res = NA, ...)

CairoPDF(file = ifelse(onefile, "Rplots.pdf","Rplot%03d.pdf"),
width = 6, height = 6, onefile = TRUE, family = "Helvetica",
title = "R Graphics Output", fonts = NULL, version = "1.1",
paper = "special", encoding, bg, fg, pointsize, pagecentre)

CairoSVG(file = ifelse(onefile, "Rplots.svg", "Rplot%03d.svg"),
width = 6, height = 6, onefile = TRUE, bg = "transparent",
pointsize = 12, ...)

CairoWin(width = 7, height = 7, pointsize = 12,
record = getOption("graphics.record"),
rescale = c("R", "fit", "fixed"), xpinch, ypinch, bg =
"transparent", canvas = "white", gamma = getOption("gamma"),

Cairo 3

xpos = NA, ypos = NA, buffered = getOption("windowsBuffered"),
restoreConsole = FALSE, ...)

CairoPS(file = ifelse(onefile, "Rplots.ps", "Rplot%03d.ps"),
onefile = TRUE, family, title = "R Graphics Output", fonts = NULL,
encoding, bg, fg, width, height, horizontal, pointsize, paper,
pagecentre, print.it, command, colormodel)

Arguments

width width of the plot area (also see units).

height height of the plot area (also see units).

file name of the file to be created or connection to write to. Only PDF, PS and
PNG types support connections. For X11 type file specifies the display name.
If NULL or "" a reasonable default will be chosen which is "plot.type" for
file-oriented types and value of the DISPLAY environment variable for X11. For
image types the file name can contain printf-style formatting expecting one inte-
ger parameter which is the page number, such as "Rplot%03d.png". The page
numbers start at one. The filename is expanded using path.expand.

type output type. This version of Cario supports "png", "jpeg" and "tiff" bitmaps
(png/tiff with transparent background), "pdf" PDF-file with embedded fonts,
"svg" SVG-file, "ps" PostScript-file, "x11" X11 interactive window and "win"
Windows graphics. A special type "raster" creates an image back-end that pro-
duces no actual output file but can be used in conjunction with any of dev.capture(),
grid.cap() or Cairo:::.image() to create in-memory images. Depending on
the support of various backends in cairo graphics some of the options may not
be available for your system. See Cairo.capabilities function.

pointsize initial text size (in points).

canvas canvas color (must be opaque). The canvas is only used by devices that display
graphics on a screen and the canvas is only visible only if bg is transparent.

bg plot background color (can include alpha-component or be transparent allto-
gether).

units units for of the width and height specifications. It can be any of "px" (pixels),
"in" (inches), "pt" (points), "cm" (centimeters) or "mm" (millimeters).

dpi DPI used for the conversion of units to pixels. If set to "auto" the DPI resolution
will be determined by the back-end.

... additional backend specific parameters (e.g. quality setting for JPEG (0..100),
compression for TIFF (0,1=none, 5=LZW (default), 7=JPEG, 8=Adobe De-
flate), locator for a custom locator function in image back-ends)
All parameters listed below are defined by the other devices are are used by the
wrappers to make it easier replace other devices by Cairo. They are described
in detail in the documentation corresponding to the device that is being replaced.

display X11 display, see X11

gamma gamma correction

xpos see X11

ypos see X11

4 Cairo

filename same as file in Cairo

res resolution in ppi, see png, will override dpi in Cairo if set to anything other than
NA or NULL. Note that cairographics does not support tagging PNG output files
with DPI so the raster image will be produced with the dpi setting, but readers
may render it at some default dpi setting.

quality quality of the jpeg, see jpeg

onefile logical: if true (the default) allow multiple figures in one file (see pdf). false is
currently not supported by vector devices

family font family, see pdf

title see pdf (ignored)

fonts see pdf, ignored, Cairo automatically detects and embeds fonts

version PDF version, see pdf (ignored)

paper see pdf (ignored, Cairo uses device dimensions)

encoding see pdf (ignored, Cairo uses native enconding except for symbols)

fg see pdf (ignored)

pagecentre see pdf (ignored, Cairo uses device dimensions and thus it is irrelevant)

record Windows-specific, ignored on unix

rescale Windows-specific, ignored on unix

xpinch Windows-specific, ignored on unix

ypinch Windows-specific, ignored on unix

buffered Windows-specific, ignored on unix

restoreConsole Windows-specific, ignored on unix

horizontal see postscript (ignored)

print.it see postscript (ignored)

command see postscript (ignored)

colormodel see postscript (ignored, Cairo always uses RGB or ARGB)

Value

The (invisible) return value is NULL if the device couldn’t be created or a Cairo object if successful.
The vaule of the object is the device number.

Known issues

• The X11 backend is quite slow. The reason is the cairographics implementation of the back-
end, so we can’t do much about it. It should be possible to drop cairographics’ Xlib backend
entirely and use image backend copied into an X11 window instead. We may try that in future
releases.

• TrueType (and OpenType) fonts are supported when this package is compiled against a cairo
graphics library configured with FreeType and Fontconfig support. Therefore make sure have
a cairo graphics library with all bells and whistles to get a good result.

• R math symbols are supported, but require a TrueType "Symbol" font accessible to Cairo
under that name.

Cairo.capabilities 5

See Also

CairoFonts

Examples

very simple KDE
Cairo(600, 600, file="plot.png", type="png", bg="white")
plot(rnorm(4000),rnorm(4000),col="#ff000018",pch=19,cex=2) # semi-transparent red
dev.off() # creates a file "plot.png" with the above plot

you can use any Cairo backend and get the same result
vector, bitmap or on-screen
CairoPDF("plot.pdf", 6, 6, bg="transparent")
data(iris)
attach(iris)
plot(Petal.Length, rep(-0.03,length(Species)), xlim=c(1,7),

ylim=c(0,1.7), xlab="Petal.Length", ylab="Density",
pch=21, cex=1.5, col="#00000001", main = "Iris (yet again)",
bg=c("#ff000020","#00ff0020","#0000ff20")[unclass(Species)])

for (i in 1:3)
polygon(density(Petal.Length[unclass(Species)==i],bw=0.2),
col=c("#ff000040","#00ff0040","#0000ff40")[i])

dev.off()

remove the example files if not in an interactive session
if (!interactive()) unlink(c("plot.png","plot.pdf"))

Cairo.capabilities Reports which output types are supported by this Cairo build

Description

Cairo.capabilities returns a logical vector describing the capabilities of this particular Cairo
build.

Usage

Cairo.capabilities()

Details

The Cairo package provides multiple back-ends, such as images (PNG, JPEG, TIFF), vector graph-
ics (PDF, PostScript, SVG) or displays (X11, Windows). However, not all systems support all back-
ends. The Cairo.capabilities function returns a logical vector showing which capabilities are
supported in this particular Cairo build.

Note that the capabilities depend both on the libraries available in the system as well as the compiled-
in modules in cairo graphics.

6 Cairo.capture

See Also

Cairo

Cairo.capture Capture contents of an image backend or a display list snapshot.

Description

Cairo.capture is essentially the same as dev.capture(native=TRUE) with the exception that it
works where dev.capture doesn’t such as onSave callbacks.

Cairo.snapshot is very similar to recordPlot except it also allows to retrieve the last snapshot.

Usage

Cairo.capture(device = dev.cur())
Cairo.snapshot(device = dev.cur(), last=FALSE)

Arguments

device device number or an object of the class Cairo (as obtained from the Cairo
function).

last logical, if FALSE then a new snapshot is created (exactly the same as recordPlot()),
if TRUE then the last known snapshot is retrieved, if NA then a snapshot is created
first, but if the display list is empty last snapshot is retrieved instead.

Value

Cairo.capture: object of the class nativeRaster.

Cairo.snapshot: object of the class recordedplot.

Author(s)

Simon Urbanek

Cairo.onSave 7

Cairo.onSave Cairo callbacks

Description

Cairo.onSave set the onSave callback which allows R code to be run when Cairo finalizes a page
(either due to a new page being created or by the device being closed). The callback expects
function(device,page) where device will be the device number and page is the currently fin-
ished page number (starting at 1).

Usage

Cairo.onSave(device = dev.cur(), onSave)

Arguments

device device number or Cairo object (as returned by the Cairo function)
onSave function that will replace the current callback or NULL to remove the current

callback

Value

The old callback being replaced or NULL if there was none.

Note

The function onSave will be evaluated in the global environment and no error checking is done, so
you must make sure to catch errors, otherwise the behavior is undefined (and may included crashing
R or other bad things).

Author(s)

Simon Urbanek

See Also

Cairo

Examples

if (require(png, quietly=TRUE)) {
dev <- Cairo(800, 600, type='raster')
Cairo.onSave(dev, function(dev, page)

.GlobalEnv$png <- writePNG(Cairo.capture(dev))
)
plot(1:10, col=2)
dev.off()
str(png)

}

8 CairoFonMatch

Cairo.serial Check for changes in the graphics state of Cairo devices.

Description

Cairo.serial returns an integer that is increased with every plotting operation on the device. This
allows user code to determine whether any new content has been added to the device since it was
last checked.

Usage

Cairo.serial(device = dev.cur())

Arguments

device device number or an object of the class Cairo (as obtained from the Cairo
function).

Value

Integer value.

Note

The integer value overflows to 0 at 2^31. Typically only equality should be checked and for such it
is extremely unlikely that the state has changed yet the serial value is the same due to overflow.

Author(s)

Simon Urbanek

CairoFonMatch Find installed fonts with a fontconfig pattern

Description

CairoFontMatch searches for fonts based on a fontconfig pattern.

Usage

CairoFontMatch(fontpattern="Helvetica",sort=FALSE,verbose=FALSE)

CairoFonMatch 9

Arguments

fontpattern character; a fontconfig pattern.

sort logical; if ’FALSE’, display only the best matching font for the pattern. If
’TRUE’, display a sorted list of best matching fonts.

verbose logical; if ’FALSE’, display the family, style, and file property for the pattern. if
’TRUE’, display the canonical font pattern for each match.

Details

This function displays a list of one or more fonts matching the supplied fontconfig pattern. sort=’FALSE’
displays the font that Cairo will use for the supplied pattern, while sort=’TRUE’ displays a sorted
list of best matching fonts. The simplest fontconfig pattern matching all installed fonts is ":". Here’s
what CairoFontMatch(":") displays on this system:

1. family: "Bitstream Vera Sans", style: "Roman", file: "/usr/share/fonts/truetype/ttf-bitstream-vera/Vera.ttf"

verbose=’FALSE’ displays the font properties ’family’, ’style’, and ’file’, while verbose=’TRUE’
will display the canonical font pattern, displaying all properties known for the font (output of Cairo-
FontMatch(":",verbose=TRUE)):

1. family: "Bitstream Vera Sans", style: "Roman", file: "/usr/share/fonts/truetype/ttf-bitstream-vera/Vera.ttf"
"Bitstream Vera Sans-12:familylang=en:style=Roman:stylelang=en:slant=0:weight=80:width=100:pixelsize=12.5:foundry=bitstream:hintstyle=3:hinting=True:verticallayout=False:autohint=False:globaladvance=True:index=0:outline=True:scalable=True:dpi=75:rgba=1:scale=1:fontversion=131072:fontformat=TrueType:embeddedbitmap=True:decorative=False"

A simple approach to selecting a font starts with calling CairoFontMatch(":",sort=TRUE) to list all
available fonts. Next, the user will choose a font from the list and call CairoFontMatch("FamilyName:style=PreferredStyle",sort=TRUE)
substituting "FamilyName" and "PreferredStyle" with the desired values. If only one font is found,
then the user has found the fontconfig pattern that will select the desired font. Otherwise, the user
will call CairoFontMatch with verbose=TRUE to determine other properties to add to the pattern to
attain the desired font, for instance the fontformat.

The following excerpt is from the fontconfig user’s manual (http://fontconfig.org/) and better de-
scribes the fontconfig pattern definition:

"Fontconfig provides a textual representation for patterns that the library can both accept and gen-
erate. The representation is in three parts, first a list of family names, second a list of point sizes
and finally a list of additional properties:

<families>-<point sizes>:<name1>=<values1>:<name2>=<values2>...

Values in a list are separated with commas. The name needn’t include either families or point sizes;
they can be elided. In addition, there are symbolic constants that simultaneously indicate both a
name and a value. Here are some examples:

Font Pattern Meaning
--
Times-12 12 point Times Roman
Times-12:bold 12 point Times Bold
Courier:italic Courier Italic in the default size
Monospace:matrix=1 .1 0 1 The users preferred monospace font

with artificial obliquing

10 CairoFonts

The ’\’, ’-’, ’:’ and ’,’ characters in family names must be preceeded by a ’\’ character to avoid
having them misinterpreted. Similarly, values containing ’\’, ’=’, ’_’, ’:’ and ’,’ must also have
them preceeded by a ’\’ character. The ’\’ characters are stripped out of the family name and values
as the font name is read."

Known issues

• This function is only available when the Cairo graphics library is configured with FreeType
and Fontcofig support.

See Also

CairoFonts, Cairo

CairoFonts Set the fonts used for all Cairo graphics devices.

Description

CairoFonts initializes the fonts used for Cairo graphics devices.

Usage

CairoFonts(
regular="Helvetica:style=Regular",
bold="Helvetica:style=Bold",
italic="Helvetica:style=Italic",
bolditalic="Helvetica:style=Bold Italic,BoldItalic",
symbol="Symbol"
)

Arguments

regular character; fontconfig pattern for the ’plain text’ font.

bold character; fontconfig pattern for the ’bold face’ font.

italic character; fontconfig pattern for the ’italic’ font.

bolditalic character; fontconfig pattern for the ’bold italic’ font.

symbol character; fontconfig pattern for the ’symbol’ font.

Details

This function sets the fonts for Cairo graphics devices globally; previously opened Cairo graphics
devices will also use these fonts. The argument names correspond to the five values of the graphical
parameter ’font’, i.e. regular is 1, bold is 2, italic is 3, etc.

For an explanation of fontconfig patterns, see CairoFontMatch.

CairoFonts 11

Known issues

• This function is only available when the cairo graphics library is configured with FreeType
and Fontcofig support.

• R math symbols are supported,but require a "Symbol" font with the Adobe symbol encoding.
At the time of this release the authors are unaware of a free version of this font, however they
do exist on Windows and Mac OS X.

See Also

CairoFontMatch, Cairo, par,

Examples

Not run:
#
The following fontconfig patterns define the free truetype fonts
available in the debian package 'ttf-freefont'.
#
Freesans is very similar to Helvetica
CairoFonts(
regular="FreeSans:style=Medium",
bold="FreeSans:style=Bold",
italic="FreeSans:style=Oblique",
bolditalic="FreeSans:style=BoldOblique"
)

End(Not run)

Index

∗ device
Cairo, 2
Cairo.capabilities, 5
Cairo.capture, 6
Cairo.onSave, 7
Cairo.serial, 8
CairoFonMatch, 8
CairoFonts, 10

Cairo, 2, 6–8, 10, 11
Cairo.capabilities, 3, 5
Cairo.capture, 6
Cairo.onSave, 7
Cairo.serial, 8
Cairo.snapshot (Cairo.capture), 6
CairoFonMatch, 8
CairoFontMatch, 10, 11
CairoFontMatch (CairoFonMatch), 8
CairoFonts, 5, 10, 10
CairoJPEG (Cairo), 2
CairoPDF (Cairo), 2
CairoPNG (Cairo), 2
CairoPS (Cairo), 2
CairoSVG (Cairo), 2
CairoTIFF (Cairo), 2
CairoWin (Cairo), 2
CairoX11 (Cairo), 2

jpeg, 4

par, 11
path.expand, 3
pdf, 4
png, 4
postscript, 4

X11, 3

12

	Cairo
	Cairo.capabilities
	Cairo.capture
	Cairo.onSave
	Cairo.serial
	CairoFonMatch
	CairoFonts
	Index

