Package 'CVcalibration'

February 19, 2015

Type Package
Title Estimation of the Calibration Equation with Error-in Observations
Version 1.0-1
Date 2013-12-20
Author He Qi and Lu Tian
Maintainer Lu Tian <lutian@stanford.edu>
Description Statistical inferences for estimating the calibration equation with error-in observations
License GPL-2
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2014-01-28 08:44:03

R topics documented:

	calfun	1 2
X		4

Index

calfun

Estimating the Calibration Equation

Description

Estimating the calibration equation "y=a+b*x" with error-in observations assuming that the coefficients of the variation of the measurements are constants.

Usage

```
calfun(x, y, CVx, CVy, lambda0)
```

samplesize

Arguments

х	The observed \$x\$ values
У	The observed \$y\$ values
CVx	The underlying coefficient of variation of measurement \$x\$
CVy	The underlying coefficient of variation of measurement \$y\$
lambda0	The ratio, \$CV_y^2/CV_x^2\$

Value

result	The estimated regression coefficients, standard error and confidence intervals
	based on (1) CVx only; (2) CVy only; (3) both CVx and CVy; and (4) the ratio
	of CVy^2/CVx^2.

Author(s)

Lu Tian, He Qi

Examples

n=100 sigma0=10

beta0=5 beta1=1.2 CVx=0.15 CVy=0.07

lambda0=CVy^2/CVx^2

```
x0=runif(n, 20, 200)
y0=beta0+beta1*x0+rnorm(n)*sigma0
x=x0+x0*CVx*rnorm(n)
y=y0+y0*CVy*rnorm(n)
```

fit=calfun(x, y, CVx, CVy, lambda0)
fit

samplesize

Sample Size Estimation For Calibration Study

Description

Compute the sample size needed for a calibration study assuming that the coefficients of the variation of measurements are constants.

Usage

```
samplesize(x0, d0, x=seq(20, 200, length=1000), CVx, CVy)
```

samplesize

Arguments

x()	The x-value you plan to calibrate with the estimated calibration equation
d)	The required length of the 95% confidence interval of the calibrated x-value based on the estimated calibration equation. The narrow confidence interval require a large sample size.
х		The empirical observations of the target distribution from which x -values will be drawn in the planned study.
C١	/x	The underlying coefficient of variation of measurement \$x\$
C١	/у	The underlying coefficient of variation of measurement \$y\$

Value

size	The sample size needed for estimating the calibration equation based on (1) CVx
	only; (2) CVy only; (3) both CVx and CVy; and (4) the ratio of CVy^2/CVx^2.

Author(s)

Lu Tian, He Qi

Examples

samplesize(40, 10, x=seq(10, 200, length=1000), CVx=0.1, CVy=0.05)

Index

calfun, <mark>1</mark>

samplesize, 2