
Package ‘CSTools’
July 2, 2020

Title Assessing Skill of Climate Forecasts on Seasonal-to-Decadal
Timescales

Version 3.1.0

Description Exploits dynamical seasonal forecasts in order to provide
information relevant to stakeholders at the seasonal timescale. The package
contains process-based methods for forecast calibration, bias correction,
statistical and stochastic downscaling, optimal forecast combination and
multivariate verification, as well as basic and advanced tools to obtain
tailored products. This package was developed in the context of the
ERA4CS project MEDSCOPE and the H2020 S2S4E project.
Doblas-Reyes et al. (2005) <doi:10.1111/j.1600-0870.2005.00104.x>.
Mishra et al. (2018) <doi:10.1007/s00382-018-4404-z>.
Sanchez-Garcia et al. (2019) <doi:10.5194/asr-16-165-2019>.
Straus et al. (2007) <doi:10.1175/JCLI4070.1>.
Terzago et al. (2018) <doi:10.5194/nhess-18-2825-2018>.
Torralba et al. (2017) <doi:10.1175/JAMC-D-16-0204.1>.
D'Onofrio et al. (2014) <doi:10.1175/JHM-D-13-096.1>.
Van Schaeybroeck et al. (2019) <doi:10.1016/B978-0-12-812372-0.00010-8>.
Yiou et al. (2013) <doi:10.1007/s00382-012-1626-3>.

Depends R (>= 3.4.0), maps

Imports s2dverification, s2dv, rainfarmr, multiApply (>= 2.1.1), qmap,
ClimProjDiags, ncdf4, plyr, abind, data.table, reshape2,
ggplot2, RColorBrewer, graphics, grDevices, stats, utils,
verification

Suggests zeallot, testthat, knitr, markdown, rmarkdown, startR

VignetteBuilder knitr

License Apache License 2.0

Encoding UTF-8

LazyData true

RoxygenNote 7.0.2

NeedsCompilation no

1

2 R topics documented:

Author Nuria Perez-Zanon [aut, cre] (<https://orcid.org/0000-0001-8568-3071>),
Louis-Philippe Caron [aut] (<https://orcid.org/0000-0001-5221-0147>),
Carmen Alvarez-Castro [aut],
Jost von Hardenberg [aut] (<https://orcid.org/0000-0002-5312-8070>),
Llorenç LLedo [aut],
Nicolau Manubens [aut],
Eroteida Sanchez-Garcia [aut],
Bert van Schaeybroeck [aut],
Veronica Torralba [aut],
Deborah Verfaillie [aut],
Lauriane Batte [ctb],
Filippo Cali Quaglia [ctb],
Chihchung Chou [ctb],
Nicola Cortesi [ctb],
Susanna Corti [ctb],
Paolo Davini [ctb],
Marta Dominguez [ctb],
Federico Fabiano [ctb],
Ignazio Giuntoli [ctb],
Raul Marcos [ctb],
Niti Mishra [ctb],
Jesus Peña [ctb],
Francesc Roura-Adserias [ctb],
Silvia Terzago [ctb],
Danila Volpi [ctb],
BSC-CNS [cph]

Maintainer Nuria Perez-Zanon <nuria.perez@bsc.es>

Repository CRAN

Date/Publication 2020-07-02 09:30:03 UTC

R topics documented:
Analogs . 3
areave_data . 11
as.s2dv_cube . 12
BEI_PDFBest . 13
BEI_Weights . 15
Calibration . 17
CST_Analogs . 18
CST_Anomaly . 20
CST_BEI_Weighting . 22
CST_BiasCorrection . 24
CST_Calibration . 25
CST_CategoricalEnsCombination . 26
CST_EnsClustering . 29
CST_Load . 31
CST_MergeDims . 33

Analogs 3

CST_MultiEOF . 34
CST_MultiMetric . 35
CST_MultivarRMSE . 37
CST_QuantileMapping . 38
CST_RainFARM . 40
CST_RegimesAssign . 43
CST_RFSlope . 44
CST_RFTemp . 45
CST_RFWeights . 47
CST_SaveExp . 49
CST_SplitDim . 50
CST_WeatherRegimes . 51
EnsClustering . 52
lonlat_data . 54
lonlat_prec . 55
MergeDims . 56
MultiEOF . 57
PlotCombinedMap . 58
PlotForecastPDF . 61
PlotMostLikelyQuantileMap . 62
PlotPDFsOLE . 65
PlotTriangles4Categories . 66
RainFARM . 69
RegimesAssign . 71
RFSlope . 73
RFTemp . 74
s2dv_cube . 76
SaveExp . 78
SplitDim . 80
WeatherRegime . 81

Index 83

Analogs Analogs based on large scale fields.

Description

This function perform a downscaling using Analogs. To compute the analogs, the function search
for days with similar large scale conditions to downscaled fields in the local scale. The large scale
and the local scale regions are defined by the user. The large scale is usually given by atmospheric
circulation as sea level pressure or geopotential height (Yiou et al, 2013) but the function gives the
possibility to use another field. The local scale will be usually given by precipitation or temperature
fields, but might be another variable. The analogs function will find the best analogs based in
three criterias: (1) Minimum Euclidean distance in the large scale pattern (i.e. SLP) (2) Minimum
Euclidean distance in the large scale pattern (i.e. SLP) and minimum Euclidean distance in the
local scale pattern (i.e. SLP). (3) Minimum Euclidean distance in the large scale pattern (i.e. SLP),
minimum distance in the local scale pattern (i.e. SLP) and highest correlation in the local variable

4 Analogs

to downscale (i.e Precipitation). The search of analogs must be done in the longest dataset posible.
This is important since it is necessary to have a good representation of the possible states of the
field in the past, and therefore, to get better analogs. Once the search of the analogs is complete,
and in order to used the three criterias the user can select a number of analogs , using parameter
’nAnalogs’ to restrict the selection of the best analogs in a short number of posibilities, the best
ones. This function has not constrains of specific regions, variables to downscale, or data to be used
(seasonal forecast data, climate projections data, reanalyses data). The regrid into a finner scale is
done interpolating with CST_Load. Then, this interpolation is corrected selecting the analogs in the
large and local scale in based of the observations. The function is an adapted version of the method
of Yiou et al 2013.

Usage

Analogs(
expL,
obsL,
time_obsL,
expVar = NULL,
obsVar = NULL,
criteria = "Large_dist",
lonVar = NULL,
latVar = NULL,
region = NULL,
nAnalogs = NULL,
return_list = FALSE

)

Arguments

expL an array of N named dimensions containing the experimental field on the large
scale for which the analog is aimed. This field is used to in all the criterias. If
parameter ’expVar’ is not provided, the function will return the expL analog.
The element ’data’ in the ’s2dv_cube’ object must have, at least, latitudinal and
longitudinal dimensions. The object is expect to be already subset for the desired
large scale region.

obsL an array of N named dimensions containing the observational field on the large
scale. The element ’data’ in the ’s2dv_cube’ object must have the same latitudi-
nal and longitudinal dimensions as parameter ’expL’ and a temporal dimension
with the maximum number of available observations.

time_obsL a character string indicating the date of the observations in the format "dd/mm/yyyy"

expVar an array of N named dimensions containing the experimental field on the local
scale, usually a different variable to the parameter ’expL’. If it is not NULL
(by default, NULL), the returned field by this function will be the analog of
parameter ’expVar’.

obsVar an array of N named dimensions containing the field of the same variable as the
passed in parameter ’expVar’ for the same region.

criteria a character string indicating the criteria to be used for the selection of analogs:

Analogs 5

• Large_dist minimum Euclidean distance in the large scale pattern;
• Local_dist minimum Euclidean distance in the large scale pattern and min-

imum Euclidean distance in the local scale pattern; and
• Local_cor minimum Euclidean distance in the large scale pattern, minimum

Euclidean distance in the local scale pattern and highest correlation in the
local variable to downscale.

lonVar a vector containing the longitude of parameter ’expVar’.

latVar a vector containing the latitude of parameter ’expVar’.

region a vector of length four indicating the minimum longitude, the maximum longi-
tude, the minimum latitude and the maximum latitude.

nAnalogs number of Analogs to be selected to apply the criterias ’Local_dist’ or ’Lo-
cal_cor’. This is not the necessary the number of analogs that the user can get,
but the number of events with minimum distance in which perform the search
of the best Analog. The default value for the ’Large_dist’ criteria is 1, for ’Lo-
cal_dist’ and ’Local_cor’criterias must be selected by the user otherwise the
default value will be set as 10.

return_list TRUE to get a list with the best analogs. FALSE to get a single analog, the best
analog. For Downscaling return_list must be FALSE.

Value

AnalogsFields, dowscaled values of the best analogs for the criteria selected.

AnalogsInfo, a dataframe with information about the number of the best analogs, the corresponding
value of the metric used in the selected criteria (distance values for Large_dist and Local_dist,correlation
values for Local_cor), date of the analog). The analogs are listed in decreasing order, the first one is
the best analog (i.e if the selected criteria is Local_cor the best analog will be the one with highest
correlation, while for Large_dist criteria the best analog will be the day with minimum Euclidean
distance)

Author(s)

M. Carmen Alvarez-Castro, <carmen.alvarez-castro@cmcc.it>

Nuria Perez-Zanon <nuria.perez@bsc.es>

References

Yiou, P., T. Salameh, P. Drobinski, L. Menut, R. Vautard, and M. Vrac, 2013 : Ensemble reconstruc-
tion of the atmospheric column from surface pressure using analogues. Clim. Dyn., 41, 1419-1437.
<pascal.yiou@lsce.ipsl.fr>

Examples

require(zeallot)

Example 1:Downscaling using criteria 'Large_dist' and a single variable:
The best analog is found using a single variable (i.e. Sea level pressure,
SLP). The downscaling will be done in the same variable used to study the

6 Analogs

minimal distance (i.e. SLP). obsVar and expVar NULLS or equal to obsL and
expL respectively region, lonVar and latVar not necessary here.
return_list=FALSE

expSLP <- rnorm(1:20)
dim(expSLP) <- c(lat = 4, lon = 5)
obsSLP <- c(rnorm(1:180),expSLP*1.2)
dim(obsSLP) <- c(lat = 4, lon = 5, time = 10)
time_obsSLP <- paste(rep("01", 10), rep("01", 10), 1994 : 2003, sep = "-")
downscale_field <- Analogs(expL=expSLP, obsL=obsSLP, time_obsL=time_obsSLP)
str(downscale_field)

Example 2: Downscaling using criteria 'Large_dist' and 2 variables:
The best analog is found using 2 variables (i.e. Sea Level Pressure, SLP
and precipitation, pr): one variable (i.e. sea level pressure, expL) to
find the best analog day (defined in criteria 'Large_dist' as the day, in
obsL, with the minimum Euclidean distance to the day of interest in expL)
The second variable will be the variable to donwscale (i.e. precipitation,
obsVar). Parameter obsVar must be different to obsL.The downscaled
precipitation will be the precipitation that belongs to the best analog day
in SLP. Region not needed here since will be the same for both variables.

expSLP <- rnorm(1:20)
dim(expSLP) <- c(lat = 4, lon = 5)
obsSLP <- c(rnorm(1:180),expSLP*2)
dim(obsSLP) <- c(lat = 4, lon = 5, time = 10)
time_obsSLP <- paste(rep("01", 10), rep("01", 10), 1994 : 2003, sep = "-")
obs.pr <- c(rnorm(1:200)*0.001)
dim(obs.pr)=dim(obsSLP)
downscale_field <- Analogs(expL=expSLP, obsL=obsSLP,

obsVar=obs.pr,
time_obsL=time_obsSLP)

str(downscale_field)

Example 3:List of best Analogs using criteria 'Large_dist' and a single
variable: same as Example 1 but getting a list of best analogs (return_list
=TRUE) with the corresponding downscaled values, instead of only 1 single
donwscaled value instead of 1 single downscaled value. Imposing nAnalogs
(number of analogs to do the search of the best Analogs). obsVar and expVar
NULL or equal to obsL and expL,respectively.

expSLP <- rnorm(1:20)
dim(expSLP) <- c(lat = 4, lon = 5)
obsSLP <- c(rnorm(1:1980),expSLP*1.5)
dim(obsSLP) <- c(lat = 4, lon = 5, time = 100)
time_obsSLP <- paste(rep("01", 100), rep("01", 100), 1920 : 2019, sep = "-")
downscale_field<- Analogs(expL=expSLP, obsL=obsSLP, time_obsSLP,

nAnalogs=5,return_list = TRUE)
str(downscale_field)

Example 4:List of best Analogs using criteria 'Large_dist' and 2 variables:
same as example 2 but getting a list of best analogs (return_list =TRUE)
with the values instead of only a single downscaled value. Imposing

Analogs 7

nAnalogs (number of analogs to do the search of the best Analogs). obsVar
and expVar must be different to obsL and expL.

expSLP <- rnorm(1:20)
dim(expSLP) <- c(lat = 4, lon = 5)
obsSLP <- c(rnorm(1:180),expSLP*2)
dim(obsSLP) <- c(lat = 4, lon = 5, time = 10)
time_obsSLP <- paste(rep("01", 10), rep("01", 10), 1994 : 2003, sep = "-")
obs.pr <- c(rnorm(1:200)*0.001)
dim(obs.pr)=dim(obsSLP)
downscale_field <- Analogs(expL=expSLP, obsL=obsSLP,

obsVar=obs.pr,
time_obsL=time_obsSLP,nAnalogs=5,
return_list = TRUE)

str(downscale_field)

Example 5: Downscaling using criteria 'Local_dist' and 2 variables:
The best analog is found using 2 variables (i.e. Sea Level Pressure,
SLP and precipitation, pr). Parameter obsVar must be different to obsL.The
downscaled precipitation will be the precipitation that belongs to the best
analog day in SLP. lonVar, latVar and Region must be given here to select
the local scale

expSLP <- rnorm(1:20)
dim(expSLP) <- c(lat = 4, lon = 5)
obsSLP <- c(rnorm(1:180),expSLP*2)
dim(obsSLP) <- c(lat = 4, lon = 5, time = 10)
time_obsSLP <- paste(rep("01", 10), rep("01", 10), 1994 : 2003, sep = "-")
obs.pr <- c(rnorm(1:200)*0.001)
dim(obs.pr)=dim(obsSLP)
analogs of local scale using criteria 2
lonmin=-1
lonmax=2
latmin=30
latmax=33
region=c(lonmin,lonmax,latmin,latmax)
Local_scale <- Analogs(expL=expSLP,

obsL=obsSLP, time_obsL=time_obsSLP,
obsVar=obs.pr,
criteria="Local_dist",lonVar=seq(-1,5,1.5),
latVar=seq(30,35,1.5),region=region,
nAnalogs = 10, return_list = FALSE)

str(Local_scale)

Example 6: list of best analogs using criteria 'Local_dist' and 2
variables:
The best analog is found using 2 variables. Parameter obsVar must be
different to obsL in this case.The downscaled precipitation will be the
precipitation that belongs to the best analog day in SLP. lonVar, latVar
and Region needed. return_list=TRUE

expSLP <- rnorm(1:20)
dim(expSLP) <- c(lat = 4, lon = 5)

8 Analogs

obsSLP <- c(rnorm(1:180),expSLP*2)
dim(obsSLP) <- c(lat = 4, lon = 5, time = 10)
time_obsSLP <- paste(rep("01", 10), rep("01", 10), 1994 : 2003, sep = "-")
obs.pr <- c(rnorm(1:200)*0.001)
dim(obs.pr)=dim(obsSLP)
analogs of local scale using criteria 2
lonmin=-1
lonmax=2
latmin=30
latmax=33
region=c(lonmin,lonmax,latmin,latmax)
Local_scale <- Analogs(expL=expSLP,

obsL=obsSLP, time_obsL=time_obsSLP,
obsVar=obs.pr,
criteria="Local_dist",lonVar=seq(-1,5,1.5),
latVar=seq(30,35,1.5),region=region,
nAnalogs = 5, return_list = TRUE)

str(Local_scale)

Example 7: Downscaling using Local_dist criteria
without parameters obsVar and expVar. return list =FALSE

expSLP <- rnorm(1:20)
dim(expSLP) <- c(lat = 4, lon = 5)
obsSLP <- c(rnorm(1:180),expSLP*2)
dim(obsSLP) <- c(lat = 4, lon = 5, time = 10)
time_obsSLP <- paste(rep("01", 10), rep("01", 10), 1994 : 2003, sep = "-")
analogs of local scale using criteria 2
lonmin=-1
lonmax=2
latmin=30
latmax=33
region=c(lonmin,lonmax,latmin,latmax)
Local_scale <- Analogs(expL=expSLP,

obsL=obsSLP, time_obsL=time_obsSLP,
criteria="Local_dist",lonVar=seq(-1,5,1.5),
latVar=seq(30,35,1.5),region=region,
nAnalogs = 10, return_list = TRUE)

str(Local_scale)

Example 8: Downscaling using criteria 'Local_cor' and 2 variables:
The best analog is found using 2 variables. Parameter obsVar and expVar
are necessary and must be different to obsL and expL, respectively.
The downscaled precipitation will be the precipitation that belongs to
the best analog day in SLP large and local scales, and to the day with
the higher correlation in precipitation. return_list=FALSE. two options
for nAnalogs

expSLP <- rnorm(1:20)
dim(expSLP) <- c(lat = 4, lon = 5)
obsSLP <- c(rnorm(1:180),expSLP*2)
dim(obsSLP) <- c(lat = 4, lon = 5, time = 10)
time_obsSLP <- paste(rep("01", 10), rep("01", 10), 1994 : 2003, sep = "-")

Analogs 9

exp.pr <- c(rnorm(1:20)*0.001)
dim(exp.pr)=dim(expSLP)
obs.pr <- c(rnorm(1:200)*0.001)
dim(obs.pr)=dim(obsSLP)
analogs of local scale using criteria 2
lonmin=-1
lonmax=2
latmin=30
latmax=33
region=c(lonmin,lonmax,latmin,latmax)
Local_scalecor <- Analogs(expL=expSLP,

obsL=obsSLP, time_obsL=time_obsSLP,
obsVar=obs.pr,expVar=exp.pr,
criteria="Local_cor",lonVar=seq(-1,5,1.5),
latVar=seq(30,35,1.5),nAnalogs=8,region=region,
return_list = FALSE)

Local_scalecor$AnalogsInfo
Local_scalecor$DatesAnalogs
same but without imposing nAnalogs, so nAnalogs will be set by default as 10
Local_scalecor <- Analogs(expL=expSLP,

obsL=obsSLP, time_obsL=time_obsSLP,
obsVar=obs.pr,expVar=exp.pr,
criteria="Local_cor",lonVar=seq(-1,5,1.5),
latVar=seq(30,35,1.5),region=region,
return_list = FALSE)

Local_scalecor$AnalogsInfo
Local_scalecor$DatesAnalogs

Example 9: List of best analogs in the three criterias Large_dist,
Local_dist, and Local_cor return list TRUE same variable

expSLP <- rnorm(1:20)
dim(expSLP) <- c(lat = 4, lon = 5)
obsSLP <- c(rnorm(1:180),expSLP*2)
dim(obsSLP) <- c(lat = 4, lon = 5, time = 10)
time_obsSLP <- paste(rep("01", 10), rep("01", 10), 1994 : 2003, sep = "-")
analogs of large scale using criteria 1
Large_scale <- Analogs(expL=expSLP,

obsL=obsSLP, time_obsL=time_obsSLP,
criteria="Large_dist",
nAnalogs = 7, return_list = TRUE)

str(Large_scale)
Large_scale$AnalogsInfo
analogs of local scale using criteria 2
lonmin=-1
lonmax=2
latmin=30
latmax=33
region=c(lonmin,lonmax,latmin,latmax)
Local_scale <- Analogs(expL=expSLP,

obsL=obsSLP, time_obsL=time_obsSLP,
criteria="Local_dist",lonVar=seq(-1,5,1.5),
latVar=seq(30,35,1.5),nAnalogs=7,region=region,

10 Analogs

return_list = TRUE)
str(Local_scale)
Local_scale$AnalogsInfo
analogs of local scale using criteria 3
Local_scalecor <- Analogs(expL=expSLP,

obsL=obsSLP, time_obsL=time_obsSLP,
obsVar=obsSLP,expVar=expSLP,
criteria="Local_cor",lonVar=seq(-1,5,1.5),
latVar=seq(30,35,1.5),nAnalogs=7,region=region,
return_list = TRUE)

str(Local_scalecor)
Local_scalecor$AnalogsInfo

Example 10: Downscaling in the three criteria Large_dist, Local_dist, and
Local_cor return list FALSE, different variable

expSLP <- rnorm(1:20)
dim(expSLP) <- c(lat = 4, lon = 5)
obsSLP <- c(rnorm(1:180),expSLP*2)
dim(obsSLP) <- c(lat = 4, lon = 5, time = 10)
time_obsSLP <- paste(rep("01", 10), rep("01", 10), 1994 : 2003, sep = "-")
exp.pr <- c(rnorm(1:20)*0.001)
dim(exp.pr)=dim(expSLP)
obs.pr <- c(rnorm(1:200)*0.001)
dim(obs.pr)=dim(obsSLP)
analogs of large scale using criteria 1
Large_scale <- Analogs(expL=expSLP,

obsL=obsSLP, time_obsL=time_obsSLP,
criteria="Large_dist",
nAnalogs = 7, return_list = FALSE)

str(Large_scale)
Large_scale$AnalogsInfo
analogs of local scale using criteria 2
lonmin=-1
lonmax=2
latmin=30
latmax=33
region=c(lonmin,lonmax,latmin,latmax)
Local_scale <- Analogs(expL=expSLP,

obsL=obsSLP, time_obsL=time_obsSLP,
obsVar=obs.pr,
criteria="Local_dist",lonVar=seq(-1,5,1.5),
latVar=seq(30,35,1.5),nAnalogs=7,region=region,
return_list = FALSE)

str(Local_scale)
Local_scale$AnalogsInfo
analogs of local scale using criteria 3
Local_scalecor <- Analogs(expL=expSLP,

obsL=obsSLP, time_obsL=time_obsSLP,
obsVar=obs.pr,expVar=exp.pr,
criteria="Local_cor",lonVar=seq(-1,5,1.5),
latVar=seq(30,35,1.5),nAnalogs=7,region=region,
return_list = FALSE)

areave_data 11

str(Local_scalecor)
Local_scalecor$AnalogsInfo

areave_data Sample Of Experimental And Observational Climate Data Averaged
Over A Region

Description

This sample data set contains area-averaged seasonal forecast and corresponding observational data
from the Copernicus Climate Change ECMWF-System 5 forecast system, and from the Copernicus
Climate Change ERA-5 reconstruction. Specifically, for the ’tas’ (2-meter temperature) variable,
for the 15 first forecast ensemble members, monthly averaged, for the 3 first forecast time steps
(lead months 1 to 4) of the November start dates of 2000 to 2005, for the Mediterranean region
(27N-48N, 12W-40E).

Details

It is recommended to use the data set as follows:

require(zeallot)
c(exp, obs)

The ‘CST_Load‘ call used to generate the data set in the infrastructure of the Earth Sciences Depart-
ment of the Barcelona Supercomputing Center is shown next. Note that ‘CST_Load‘ internally calls
‘s2dverification::Load‘, which would require a configuration file (not provided here) expressing the
distribution of the ’system5c3s’ and ’era5’ NetCDF files in the file system.

library(CSTools)
require(zeallot)

startDates <- c('20001101', '20011101', '20021101',
'20031101', '20041101', '20051101')

areave_data <-
CST_Load(
var = 'tas',
exp = 'system5c3s',
obs = 'era5',
nmember = 15,
sdates = startDates,
leadtimemax = 3,
latmin = 27, latmax = 48,
lonmin = -12, lonmax = 40,
output = 'areave',
nprocs = 1

)

12 as.s2dv_cube

Author(s)

Nicolau Manubens <nicolau.manubens@bsc.es>

as.s2dv_cube Conversion of ’startR_array’ or ’list’ objects to ’s2dv_cube’

Description

This function converts data loaded using startR package or s2dverification Load function into a
’s2dv_cube’ object.

Usage

as.s2dv_cube(object)

Arguments

object an object of class ’startR_array’ generated from function Start from startR
package (version 0.1.3 from earth.bsc.es/gitlab/es/startR) or a list output from
function Load from s2dverification package.

Value

The function returns a ’s2dv_cube’ object to be easily used with functions CST from CSTools pack-
age.

Author(s)

Perez-Zanon Nuria, <nuria.perez@bsc.es>

Nicolau Manubens, <nicolau.manubens@bsc.es>

See Also

s2dv_cube, Load, Start and CST_Load

Examples

Not run:
library(startR)
repos <- '/esarchive/exp/ecmwf/system5_m1/monthly_mean/var_f6h/var_$sdate$.nc'
data <- Start(dat = repos,

var = 'tas',
sdate = c('20170101', '20180101'),
ensemble = indices(1:20),
time = 'all',
latitude = 'all',
longitude = indices(1:40),
return_vars = list(latitude = 'dat', longitude = 'dat', time = 'sdate'),

BEI_PDFBest 13

retrieve = TRUE)
data <- as.s2dv_cube(data)
class(data)
startDates <- c('20001101', '20011101', '20021101',

'20031101', '20041101', '20051101')
data <- Load(var = 'tas', exp = 'system5c3s',

nmember = 15, sdates = startDates,
leadtimemax = 3, latmin = 27, latmax = 48,
lonmin = -12, lonmax = 40, output = 'lonlat')

data <- as.s2dv_cube(data)
class(data)

End(Not run)

BEI_PDFBest Computing the Best Index PDFs combining Index PDFs from two SFSs

Description

This function implements the computation to obtain the index Probability Density Functions (PDFs)
(e.g. NAO index) obtained to combining the Index PDFs for two Seasonal Forecast Systems (SFSs),
the Best Index estimation (see Sanchez-Garcia, E. et al (2019), https://doi.org/10.5194/asr-16-165-
2019 for more details about the methodology applied to estimate the Best Index).

Usage

BEI_PDFBest(
index_obs,
index_hind1,
index_hind2,
index_fcst1 = NULL,
index_fcst2 = NULL,
method_BC = "none",
time_dim_name = "time",
na.rm = FALSE

)

Arguments

index_obs Index (e.g. NAO index) array from an observational database or reanalysis with
at least a temporal dimension (by default ’time’), which must be greater than 2.

index_hind1 Index (e.g. NAO index) array from a SFS (named SFS1) with at least two dimen-
sions (time , member) or (time, statistic). The temporal dimension, by default
’time’, must be greater than 2. The dimension ’member’ must be greater than 1.
The dimension ’statistic’ must be equal to 2, for containing the two paramenters
of a normal distribution (mean and sd) representing the ensemble of a SFS. It is
not possible to have the dimension ’member’ and ’statistic’ at the same time.

14 BEI_PDFBest

index_hind2 Index (e.g. NAO index) array from a SFS (named SFS2) with at least two dimen-
sions (time , member) or (time, statistic). The temporal dimension, by default
’time’, must be greater than 2. The dimension ’member’ must be greater than 1.
The dimension ’statistic’ must be equal to 2, for containing the two paramenters
of a normal distribution (mean and sd) representing the ensemble of a SFS. It is
not possible to have the dimension ’member’ and ’statistic’ together.

index_fcst1 (optional, default = NULL) Index (e.g. NAO index) array from forescating of
SFS1 with at least two dimensions (time , member) or (time, statistic). The
temporal dimension, by default ’time’, must be equal to 1, the forecast year tar-
get. The dimension ’member’ must be greater than 1. The dimension ’statistic’
must be equal to 2, for containing the two paramenters of a normal distribution
(mean and sd) representing the ensemble of a SFS. It is not possible to have the
dimension ’member’ and ’statistic’ together.

index_fcst2 (optional, default = NULL) Index (e.g. NAO index) array from forescating of
SFS2 with at least two dimensions (time , member) or (time, statistic). The
temporal dimension, by default ’time’, must be equal to 1, the forecast year tar-
get. The dimension ’member’ must be greater than 1. The dimension ’statistic’
must be equal to 2, for containing the two paramenters of a normal distribution
(mean and sd) representing the ensemble of a SFS. It is not possible to have the
dimension ’member’ and ’statistic’ together.

method_BC A character vector of maximun length 2 indicating the bias correction method-
ology to be applied on each SFS. If it is ’none’ or any of its elements is ’none’,
the bias correction won’t be applied. Available methods developped are "ME"
(a bias correction scheme based on the mean error or bias between observation
and predictions to correct the predicted values), and "LMEV" (a bias correction
scheme based on a linear model using ensemble variance of index as predictor).
(see Sanchez-Garcia, E. et al (2019), https://doi.org/10.5194/asr-16-165-2019
for more details).

time_dim_name A character string indicating the name of the temporal dimension, by default
’time’.

na.rm Logical (default = FALSE). Should missing values be removed?

Value

BEI_PDFBest() returns an array with the parameters that caracterize the PDFs, with at least a tem-
poral dimension, by default ’time’ and dimension ’statistic’ equal to 2. The firt statistic is the
parameter ’mean’ of the PDF for the best estimation combining the two SFSs PDFs. The second
statistic is the parameter ’standard deviation’ of the PDF for the best estimation combining the
two SFSs PDFs. If index_fcst1 and/or index_fcst2 are null, returns the values for hindcast period.
Otherwise, it returns the values for a forecast year.

Author(s)

Eroteida Sanchez-Garcia - AEMET, <esanchezg@aemet.es>

BEI_Weights 15

References

Regionally improved seasonal forecast of precipitation through Best estimation of winter NAO,
Sanchez-Garcia, E. et al., Adv. Sci. Res., 16, 165174, 2019, https://doi.org/10.5194/asr-16-165-
2019

Examples

Example 1 for the BEI_PDFBest function
index_obs<- rnorm(10, sd = 3)
dim(index_obs) <- c(time = 5, season = 2)
index_hind1 <- rnorm(40, mean = 0.2, sd = 3)
dim(index_hind1) <- c(time = 5, member = 4, season = 2)
index_hind2 <- rnorm(60, mean = -0.5, sd = 4)
dim(index_hind2) <- c(time = 5, member = 6, season = 2)
index_fcst1 <- rnorm(16, mean = 0.2, sd = 3)
dim(index_fcst1) <- c(time = 1, member = 8, season = 2)
index_fcst2 <- rnorm(18, mean = -0.5, sd = 4)
dim(index_fcst2) <- c(time = 1, member = 9, season = 2)
method_BC <- 'ME'
res <- BEI_PDFBest(index_obs, index_hind1, index_hind2, index_fcst1,
index_fcst2, method_BC)
dim(res)
time statistic season
1 2 2
Example 2 for the BEI_PDFBest function
index_obs<- rnorm(10, sd = 3)
dim(index_obs) <- c(time = 5, season = 2)
index_hind1 <- rnorm(40, mean = 0.2, sd = 3)
dim(index_hind1) <- c(time = 5, member = 4, season = 2)
index_hind2 <- rnorm(60, mean = -0.5, sd = 4)
dim(index_hind2) <- c(time = 5, member = 6, season = 2)
index_fcst1 <- rnorm(16, mean = 0.2, sd = 3)
dim(index_fcst1) <- c(time = 1, member = 8, season = 2)
index_fcst2 <- rnorm(18, mean = -0.5, sd = 4)
dim(index_fcst2) <- c(time = 1, member = 9, season = 2)
method_BC <- c('LMEV', 'ME')
res <- BEI_PDFBest(index_obs, index_hind1, index_hind2, index_fcst1, index_fcst2, method_BC)
dim(res)
time statistic season
1 2 2

BEI_Weights Computing the weights for SFSs using the Best Index PDFs.

Description

This function implements the computation to obtain the normalized weights for each member of
each Seasonal Forecast Systems (SFS) or dataset using the Probability Density Functions (PDFs)
indicated by the parameter ’pdf_weight’ (for instance the Best Index estimation obtained using the

16 BEI_Weights

’PDFBest’ function). The weight of each member is proportional to the probability of its index
calculated with the PDF "pdf_weight".

Usage

BEI_Weights(index_weight, pdf_weight, time_dim_name = "time")

Arguments

index_weight Index (e.g. NAO index) array, from a dataset of SFSs for a period of years,
with at least dimensions ’member’. Additional dimensions, for instance, a tem-
poral dimension as ’time’, must have the same lenght in both parameters, ’in-
dex_weight’ and ’pdf_weight’.

pdf_weight Statistics array to define a Gaussian PDF with at least dimensions ’statistic’.
The firt statistic is the parameter ’mean’ of the PDF and the second statistic is
the parameter ’standard deviation’ of the PDF.

time_dim_name A character string indicating the name of the temporal dimension, by default
’time’.

Value

BEI_Weights() returns a normalized weights array with the same dimensions that index_weight.

Author(s)

Eroteida Sanchez-Garcia - AEMET, <esanchezg@aemet.es>

References

Regionally improved seasonal forecast of precipitation through Best estimation of winter NAO,
Sanchez-Garcia, E. et al., Adv. Sci. Res., 16, 165174, 2019, https://doi.org/10.5194/asr-16-165-
2019

Examples

Example for the BEI_Weights function
index_weight <- 1 : (10 * 3 * 5 * 1)
dim(index_weight) <- c(sdate = 10, dataset = 3, member = 5, season = 1)
pdf_weight <- 1 : (10 * 3 * 2 * 1)
dim(pdf_weight) <- c(sdate = 10, dataset = 3, statistic = 2, season = 1)
res <- BEI_Weights(index_weight, pdf_weight)
dim(res)
sdate dataset member season
10 3 5 1

Calibration 17

Calibration Forecast Calibration

Description

Four types of member-by-member bias correction can be performed. The bias method corrects the
bias only, the evmos method applies a variance inflation technique to ensure the correction of the
bias and the correspondence of variance between forecast and observation (Van Schaeybroeck and
Vannitsem, 2011). The ensemble calibration methods "mse_min" and "crps_min" correct the bias,
the overall forecast variance and the ensemble spread as described in Doblas-Reyes et al. (2005) and
Van Schaeybroeck and Vannitsem (2015), respectively. While the "mse_min" method minimizes
a constrained mean-squared error using three parameters, the "crps_min" method features four
parameters and minimizes the Continuous Ranked Probability Score (CRPS).

Both in-sample or our out-of-sample (leave-one-out cross validation) calibration are possible.

Usage

Calibration(
exp,
obs,
cal.method = "mse_min",
eval.method = "leave-one-out",
multi.model = FALSE,
na.fill = TRUE,
ncores = 1

)

Arguments

exp an array containing the seasonal forecast experiment data.

obs an array containing the observed data.

cal.method is the calibration method used, can be either bias, evmos, mse_min or crps_min.
Default value is mse_min.

eval.method is the sampling method used, can be either in-sample or leave-one-out. De-
fault value is the leave-one-out cross validation.

multi.model is a boolean that is used only for the mse_min method. If multi-model ensembles
or ensembles of different sizes are used, it must be set to TRUE. By default it is
FALSE. Differences between the two approaches are generally small but may
become large when using small ensemble sizes. Using multi.model when the
calibration method is bias, evmos or crps_min will not affect the result.

na.fill is a boolean that indicates what happens in case calibration is not possible or will
yield unreliable results. This happens when three or less forecasts-observation
pairs are available to perform the training phase of the calibration. By default
na.fill is set to true such that NA values will be returned. If na.fill is set to
false, the uncorrected data will be returned.

18 CST_Analogs

ncores is an integer that indicates the number of cores for parallel computations using
multiApply function. The default value is one.

Value

an array containing the calibrated forecasts with the same dimensions as the exp array.

Author(s)

Verónica Torralba, <veronica.torralba@bsc.es>

Bert Van Schaeybroeck, <bertvs@meteo.be>

References

Doblas-Reyes F.J, Hagedorn R, Palmer T.N. The rationale behind the success of multi-model en-
sembles in seasonal forecasting-II calibration and combination. Tellus A. 2005;57:234-252. doi:10.1111/j.1600-
0870.2005.00104.x

Van Schaeybroeck, B., & Vannitsem, S. (2011). Post-processing through linear regression. Nonlin-
ear Processes in Geophysics, 18(2), 147. doi:10.5194/npg-18-147-2011

Van Schaeybroeck, B., & Vannitsem, S. (2015). Ensemble post-processing using member-by-
member approaches: theoretical aspects. Quarterly Journal of the Royal Meteorological Society,
141(688), 807-818. doi:10.1002/qj.2397

See Also

CST_Load

Examples

mod1 <- 1 : (1 * 3 * 4 * 5 * 6 * 7)
dim(mod1) <- c(dataset = 1, member = 3, sdate = 4, ftime = 5, lat = 6, lon = 7)
obs1 <- 1 : (1 * 1 * 4 * 5 * 6 * 7)
dim(obs1) <- c(dataset = 1, member = 1, sdate = 4, ftime = 5, lat = 6, lon = 7)
a <- Calibration(exp = mod1, obs = obs1)
str(a)

CST_Analogs Downscaling using Analogs based on large scale fields.

Description

This function perform a downscaling using Analogs. To compute the analogs, the function search
for days with similar large scale conditions to downscaled fields in the local scale. The large scale
and the local scale regions are defined by the user. The large scale is usually given by atmospheric
circulation as sea level pressure or geopotential height (Yiou et al, 2013) but the function gives the
possibility to use another field. The local scale will be usually given by precipitation or temperature
fields, but might be another variable.The analogs function will find the best analogs based in three

CST_Analogs 19

criterias: (1) Minimal distance in the large scale pattern (i.e. SLP) (2) Minimal distance in the large
scale pattern (i.e. SLP) and minimal distance in the local scale pattern (i.e. SLP). (3) Minimal
distance in the large scale pattern (i.e. SLP), minimal distance in the local scale pattern (i.e. SLP)
and maxima correlation in the local variable to downscale (i.e Precipitation). The search of analogs
must be done in the longest dataset posible. This is important since it is necessary to have a good
representation of the possible states of the field in the past, and therefore, to get better analogs. Once
the search of the analogs is complete, and in order to used the three criterias the user can select a
number of analogs, using parameter ’nAnalogs’ to restrict the selection of the best analogs in a short
number of posibilities, the best ones. This function has not constrains of specific regions, variables
to downscale, or data to be used (seasonal forecast data, climate projections data, reanalyses data).
The regrid into a finner scale is done interpolating with CST_Load. Then, this interpolation is
corrected selecting the analogs in the large and local scale in based of the observations. The function
is an adapted version of the method of Yiou et al 2013.

Usage

CST_Analogs(
expL,
obsL,
time_obsL,
expVar = NULL,
obsVar = NULL,
region = NULL,
criteria = "Large_dist"

)

Arguments

expL an ’s2dv_cube’ object containing the experimental field on the large scale for
which the analog is aimed. This field is used to in all the criterias. If parameter
’expVar’ is not provided, the function will return the expL analog. The element
’data’ in the ’s2dv_cube’ object must have, at least, latitudinal and longitudinal
dimensions. The object is expect to be already subset for the desired large scale
region.

obsL an ’s2dv_cube’ object containing the observational field on the large scale. The
element ’data’ in the ’s2dv_cube’ object must have the same latitudinal and lon-
gitudinal dimensions as parameter ’expL’ and a temporal dimension with the
maximum number of available observations.

time_obsL a character string indicating the date of the observations in the format "dd/mm/yyyy"

expVar an ’s2dv_cube’ object containing the experimental field on the local scale, usu-
ally a different variable to the parameter ’expL’. If it is not NULL (by default,
NULL), the returned field by this function will be the analog of parameter ’exp-
Var’.

obsVar an ’s2dv_cube’ containing the field of the same variable as the passed in param-
eter ’expVar’ for the same region.

region a vector of length four indicating the minimum longitude, the maximum longi-
tude, the minimum latitude and the maximum latitude.

20 CST_Anomaly

criteria a character string indicating the criteria to be used for the selection of analogs:

• Large_dist minimal distance in the large scale pattern;
• Local_dist minimal distance in the large scale pattern and minimal distance

in the local scale pattern; and
• Local_cor minimal distance in the large scale pattern, minimal distance in

the local scale pattern and maxima correlation in the local variable to down-
scale.

Value

An ’s2dv_cube’ object containing the dowscaled values of the best analogs in the criteria selected.

Author(s)

M. Carmen Alvarez-Castro, <carmen.alvarez-castro@cmcc.it>

Nuria Perez-Zanon <nuria.perez@bsc.es>

References

Yiou, P., T. Salameh, P. Drobinski, L. Menut, R. Vautard, and M. Vrac, 2013 : Ensemble reconstruc-
tion of the atmospheric column from surface pressure using analogues. Clim. Dyn., 41, 1419-1437.
<pascal.yiou@lsce.ipsl.fr>

See Also

codeCST_Load, Load and CDORemap

Examples

res <- CST_Analogs(expL = lonlat_data$exp, obsL = lonlat_data$obs)

CST_Anomaly Anomalies relative to a climatology along selected dimension with or
without cross-validation

Description

This function computes the anomalies relative to a climatology computed along the selected di-
mension (usually starting dates or forecast time) allowing the application or not of crossvalidated
climatologies. The computation is carried out independently for experimental and observational
data products.

CST_Anomaly 21

Usage

CST_Anomaly(
exp = NULL,
obs = NULL,
cross = FALSE,
memb = TRUE,
filter_span = NULL,
dim_anom = 3

)

Arguments

exp an object of class s2dv_cube as returned by CST_Load function, containing the
seasonal forecast experiment data in the element named $data.

obs an object of class s2dv_cube as returned by CST_Load function, containing the
observed data in the element named $data.’

cross A logical value indicating whether cross-validation should be applied or not.
Default = FALSE.

memb A logical value indicating whether Clim() computes one climatology for each
experimental data product member(TRUE) or it computes one sole climatology
for all members (FALSE). Default = TRUE.

filter_span a numeric value indicating the degree of smoothing. This option is only available
if parameter cross is set to FALSE.

dim_anom An integer indicating the dimension along which the climatology will be com-
puted. It usually corresponds to 3 (sdates) or 4 (ftime). Default = 3.

Value

A list with two S3 objects, ’exp’ and ’obs’, of the class ’s2dv_cube’, containing experimental and
date-corresponding observational anomalies, respectively. These ’s2dv_cube’s can be ingested by
other functions in CSTools.

Author(s)

Perez-Zanon Nuria, <nuria.perez@bsc.es>

Pena Jesus, <jesus.pena@bsc.es>

See Also

Ano_CrossValid, Clim and CST_Load

Examples

Example 1:
mod <- 1 : (2 * 3 * 4 * 5 * 6 * 7)
dim(mod) <- c(dataset = 2, member = 3, sdate = 4, ftime = 5, lat = 6, lon = 7)
obs <- 1 : (1 * 1 * 4 * 5 * 6 * 7)
dim(obs) <- c(dataset = 1, member = 1, sdate = 4, ftime = 5, lat = 6, lon = 7)

22 CST_BEI_Weighting

lon <- seq(0, 30, 5)
lat <- seq(0, 25, 5)
exp <- list(data = mod, lat = lat, lon = lon)
obs <- list(data = obs, lat = lat, lon = lon)
attr(exp, 'class') <- 's2dv_cube'
attr(obs, 'class') <- 's2dv_cube'

anom1 <- CST_Anomaly(exp = exp, obs = obs, cross = FALSE, memb = TRUE)
str(anom1)
anom2 <- CST_Anomaly(exp = exp, obs = obs, cross = TRUE, memb = TRUE)
str(anom2)

anom3 <- CST_Anomaly(exp = exp, obs = obs, cross = TRUE, memb = FALSE)
str(anom3)

anom4 <- CST_Anomaly(exp = exp, obs = obs, cross = FALSE, memb = FALSE)
str(anom4)

anom5 <- CST_Anomaly(lonlat_data$exp)

anom6 <- CST_Anomaly(obs = lonlat_data$obs)

CST_BEI_Weighting Weighting SFSs of a CSTools object.

Description

Function to apply weights to a ’s2dv_cube’ object. It could return a weighted ensemble mean (de-
terministic output) or the terciles probabilities (probabilistic output) for Seasonal Forecast Systems
(SFSs).

Usage

CST_BEI_Weighting(
var_exp,
aweights,
terciles = NULL,
type = "ensembleMean",
time_dim_name = "time"

)

Arguments

var_exp An object of the class ’s2dv_cube’ containing the variable (e.g. precipitation,
temperature, NAO index) array. The var_exp object is expected to have an ele-
ment named $data with at least a temporal dimension and a dimension named
’member’.

CST_BEI_Weighting 23

aweights Normalized weights array with at least dimensions (time, member), when ’time’
is the temporal dimension as default. When ’aweights’ parameter has any other
dimensions (as e.g. ’lat’) and ’var_exp’ parameter has also the same dimension,
they must be equals.

terciles A numeric array with at least one dimension ’tercil’ equal to 2, the first element
is the lower tercil for a hindcast period, and the second element is the upper
tercile. By default is NULL, the terciles are computed from var_exp data.

type A character string indicating the type of output. If ’type’ = ’probs’, the func-
tion returns, in the element data from ’var_exp’ parameter, an array with at least
two or four dimensions depending if the variable is spatially aggregated vari-
able (as e.g. NAO index), dimension (time, tercil) or it is spatial variable (as
e.g. precipitation or temperature), dimension (time, tercile, lat, lon), containing
the terciles probabilities computing with weighted members. The first tercil is
the lower tercile, the second is the normal tercile and the third is the upper ter-
cile. If ’type’ = ’ensembleMean’, the function returns, in the element data from
’var_exp’ parameter, an array with at least one or three dimensions depending if
the variable is a spatially aggregated variable (as e.g. NAO index)(time) or it is
spatial variable (as e.g. precipitation or temperature) (time, lat, lon), containing
the ensemble means computing with weighted members.

time_dim_name A character string indicating the name of the temporal dimension, by default
’time’.

Value

CST_BEI_Weighting() returns a CSTools object (i.e., of the class ’s2dv_cube’). This object has at
least an element named $data with at least a temporal dimension (and dimension ’tercil’ when the
output are tercile probabilities), containing the ensemble means computing with weighted members
or probabilities of terciles.

Author(s)

Eroteida Sanchez-Garcia - AEMET, <esanchezg@aemet.es>

References

Regionally improved seasonal forecast of precipitation through Best estimation of winter NAO,
Sanchez-Garcia, E. et al., Adv. Sci. Res., 16, 165174, 2019, https://doi.org/10.5194/asr-16-165-
2019

Examples

var_exp <- 1 : (2 * 4 * 3 * 2)
dim(var_exp) <- c(time = 2, member = 4, lat = 3, lon = 2)
aweights <- c(0.2, 0.1, 0.3, 0.4, 0.1, 0.2, 0.4, 0.3, 0.1, 0.2, 0.4, 0.4, 0.1, 0.2, 0.4, 0.2)
dim(aweights) <- c(time = 2, member = 4, dataset = 2)
var_exp <- list(data = var_exp)
class(var_exp) <- 's2dv_cube'
res_CST <- CST_BEI_Weighting(var_exp, aweights)
dim(res_CST$data)

24 CST_BiasCorrection

time lat lon dataset
2 3 2 2

CST_BiasCorrection Bias Correction based on the mean and standard deviation adjustment

Description

This function applies the simple bias adjustment technique described in Torralba et al. (2017). The
adjusted forecasts have an equivalent standard deviation and mean to that of the reference dataset.

Usage

CST_BiasCorrection(exp, obs, na.rm = FALSE)

Arguments

exp an object of class s2dv_cube as returned by CST_Load function, containing the
seasonal forecast experiment data in the element named $data

obs an object of class s2dv_cube as returned by CST_Load function, containing the
observed data in the element named $data.

na.rm a logical value indicating whether missing values should be stripped before the
computation proceeds, by default it is set to FALSE.

Value

an object of class s2dv_cube containing the bias corrected forecasts in the element called $data
with the same dimensions of the experimental data.

Author(s)

Verónica Torralba, <veronica.torralba@bsc.es>

References

Torralba, V., F.J. Doblas-Reyes, D. MacLeod, I. Christel and M. Davis (2017). Seasonal climate
prediction: a new source of information for the management of wind energy resources. Jour-
nal of Applied Meteorology and Climatology, 56, 1231-1247, doi:10.1175/JAMC-D-16-0204.1.
(CLIM4ENERGY, EUPORIAS, NEWA, RESILIENCE, SPECS)

Examples

Example
Creation of sample s2dverification objects. These are not complete
s2dverification objects though. The Load function returns complete objects.
mod1 <- 1 : (1 * 3 * 4 * 5 * 6 * 7)
dim(mod1) <- c(dataset = 1, member = 3, sdate = 4, ftime = 5, lat = 6, lon = 7)

CST_Calibration 25

obs1 <- 1 : (1 * 1 * 4 * 5 * 6 * 7)
dim(obs1) <- c(dataset = 1, member = 1, sdate = 4, ftime = 5, lat = 6, lon = 7)
lon <- seq(0, 30, 5)
lat <- seq(0, 25, 5)
exp <- list(data = mod1, lat = lat, lon = lon)
obs <- list(data = obs1, lat = lat, lon = lon)
attr(exp, 'class') <- 's2dv_cube'
attr(obs, 'class') <- 's2dv_cube'
a <- CST_BiasCorrection(exp = exp, obs = obs)
str(a)

CST_Calibration Forecast Calibration

Description

Equivalent to function Calibration but for objects of class s2dv_cube.

Usage

CST_Calibration(
exp,
obs,
cal.method = "mse_min",
eval.method = "leave-one-out",
multi.model = FALSE,
na.fill = TRUE,
ncores = 1

)

Arguments

exp an object of class s2dv_cube as returned by CST_Load function, containing the
seasonal forecast experiment data in the element named $data.

obs an object of class s2dv_cube as returned by CST_Load function, containing the
observed data in the element named $data.

cal.method is the calibration method used, can be either bias, evmos, mse_min or crps_min.
Default value is mse_min.

eval.method is the sampling method used, can be either in-sample or leave-one-out. De-
fault value is the leave-one-out cross validation.

multi.model is a boolean that is used only for the mse_min method. If multi-model ensembles
or ensembles of different sizes are used, it must be set to TRUE. By default it is
FALSE. Differences between the two approaches are generally small but may
become large when using small ensemble sizes. Using multi.model when the
calibration method is bias, evmos or crps_min will not affect the result.

26 CST_CategoricalEnsCombination

na.fill is a boolean that indicates what happens in case calibration is not possible or will
yield unreliable results. This happens when three or less forecasts-observation
pairs are available to perform the training phase of the calibration. By default
na.fill is set to true such that NA values will be returned. If na.fill is set to
false, the uncorrected data will be returned.

ncores is an integer that indicates the number of cores for parallel computations using
multiApply function. The default value is one.

Value

an object of class s2dv_cube containing the calibrated forecasts in the element $data with the same
dimensions as the one in the exp object.

Author(s)

Verónica Torralba, <veronica.torralba@bsc.es>

Bert Van Schaeybroeck, <bertvs@meteo.be>

See Also

CST_Load

Examples

Example 1:
mod1 <- 1 : (1 * 3 * 4 * 5 * 6 * 7)
dim(mod1) <- c(dataset = 1, member = 3, sdate = 4, ftime = 5, lat = 6, lon = 7)
obs1 <- 1 : (1 * 1 * 4 * 5 * 6 * 7)
dim(obs1) <- c(dataset = 1, member = 1, sdate = 4, ftime = 5, lat = 6, lon = 7)
lon <- seq(0, 30, 5)
lat <- seq(0, 25, 5)
exp <- list(data = mod1, lat = lat, lon = lon)
obs <- list(data = obs1, lat = lat, lon = lon)
attr(exp, 'class') <- 's2dv_cube'
attr(obs, 'class') <- 's2dv_cube'
a <- CST_Calibration(exp = exp, obs = obs, cal.method = "mse_min", eval.method = "in-sample")
str(a)

CST_CategoricalEnsCombination

Make categorical forecast based on a multi-model forecast with po-
tential for calibrate

CST_CategoricalEnsCombination 27

Description

This function converts a multi-model ensemble forecast into a categorical forecast by giving the
probability for each category. Different methods are available to combine the different ensemble
forecasting models into probabilistic categorical forecasts.

Motivation: Beyond the short range, the unpredictable component of weather predictions becomes
substantial due to the chaotic nature of the earth system. Therefore, predictions can mostly be
skillful when used in a probabilistic sense. In practice this is done using ensemble forecasts. It is
then common to convert the ensemble forecasts to occurence probabilities for different categories.
These categories typically are taken as terciles from climatolgical distributions. For instance for
temperature, there is a cold, normal and warm class. Commonly multiple ensemble forecasting
systems are available but some models may be more competitive than others for the variable, region
and user need under consideration. Therefore, when calculating the category probabilities, the
ensemble members of the different forecasting system may be differently weighted. Such weighting
is typically done by comparison of the ensemble forecasts with observations.

Description of the tool: The tool considers all forecasts (all members from all forecasting systems)
and converts them into occurrence probabilities of different categories. The amount of categories
can be changed and are taken as the climatological quantiles (e.g. terciles), extracted from the ob-
servational data. The methods that are available to combine the ensemble forecasting models into
probabilistic categorical forecasts are: 1) ensemble pooling where all ensemble members of all en-
semble systems are weighted equally, 2) model combination where each model system is weighted
equally, and, 3) model weighting. The model weighting method is described in Rajagopalan et al.
(2002), Robertson et al. 2004 and Van Schaeybroeck and Vannitsem (2019). More specifically, this
method uses different weights for the occurence probability predicted by the available models and
by a climatological model and optimizes the weights by minimizing the ignorance score. Finally,
the function can also be used to categorize the observations in the categorical quantiles.

Usage

CST_CategoricalEnsCombination(
exp,
obs,
cat.method = "pool",
eval.method = "leave-one-out",
amt.cat = 3,
...

)

Arguments

exp an object of class s2dv_cube as returned by CST_Load function, containing the
seasonal forecast experiment data in the element named $data. The amount of
forecasting models is equal to the size of the dataset dimension of the data
array. The amount of members per model may be different. The size of the
member dimension of the data array is equal to the maximum of the ensemble
members among the models. Models with smaller ensemble sizes have residual
indices of member dimension in the data array filled with NA values.

obs an object of class s2dv_cube as returned by CST_Load function, containing the
observed data in the element named $data.

28 CST_CategoricalEnsCombination

cat.method method used to produce the categorical forecast, can be either pool, comb, mmw
or obs. The method pool assumes equal weight for all ensemble members while
the method comb assumes equal weight for each model. The weighting method
is descirbed in Rajagopalan et al. (2002), Robertson et al. (2004) and Van
Schaeybroeck and Vannitsem (2019). Finally, the obs method classifies the
observations into the different categories and therefore contains only 0 and 1
values.

eval.method is the sampling method used, can be either "in-sample" or "leave-one-out".
Default value is the "leave-one-out" cross validation.

amt.cat is the amount of categories. Equally-sized quantiles will be calculated based on
the amount of categories.

... other parameters to be passed on to the calibration procedure.

Value

an object of class s2dv_cube containing the categorical forecasts in the element called $data. The
first two dimensions of the returned object are named dataset and member and are both of size one.
An additional dimension named category is introduced and is of size amt.cat.

Author(s)

Bert Van Schaeybroeck, <bertvs@meteo.be>

References

Rajagopalan, B., Lall, U., & Zebiak, S. E. (2002). Categorical climate forecasts through regular-
ization and optimal combination of multiple GCM ensembles. Monthly Weather Review, 130(7),
1792-1811.

Robertson, A. W., Lall, U., Zebiak, S. E., & Goddard, L. (2004). Improved combination of multiple
atmospheric GCM ensembles for seasonal prediction. Monthly Weather Review, 132(12), 2732-
2744.

Van Schaeybroeck, B., & Vannitsem, S. (2019). Postprocessing of Long-Range Forecasts. In Sta-
tistical Postprocessing of Ensemble Forecasts (pp. 267-290).

Examples

mod1 <- 1 : (2 * 3 * 4 * 5 * 6 * 7)
dim(mod1) <- c(dataset = 2, member = 3, sdate = 4, ftime = 5, lat = 6, lon = 7)
mod1[2, 3, , , ,] <- NA
dimnames(mod1)[[1]] <- c("MF", "UKMO")
obs1 <- 1 : (1 * 1 * 4 * 5 * 6 * 7)
dim(obs1) <- c(dataset = 1, member = 1, sdate = 4, ftime = 5, lat = 6, lon = 7)
lon <- seq(0, 30, 5)
lat <- seq(0, 25, 5)
exp <- list(data = mod1, lat = lat, lon = lon)
obs <- list(data = obs1, lat = lat, lon = lon)
attr(exp, 'class') <- 's2dv_cube'
attr(obs, 'class') <- 's2dv_cube'

CST_EnsClustering 29

a <- CST_CategoricalEnsCombination(exp = exp, obs = obs, amt.cat = 3, cat.method = "mmw")

CST_EnsClustering Ensemble clustering

Description

This function performs a clustering on members/starting dates and returns a number of scenarios,
with representative members for each of them. The clustering is performed in a reduced EOF space.

Motivation: Ensemble forecasts give a probabilistic insight of average weather conditions on ex-
tended timescales, i.e. from sub-seasonal to seasonal and beyond. With large ensembles, it is often
an advantage to be able to group members according to similar characteristics and to select the
most representative member for each cluster. This can be useful to characterize the most probable
forecast scenarios in a multi-model (or single model) ensemble prediction. This approach, applied
at a regional level, can also be used to identify the subset of ensemble members that best represent
the full range of possible solutions for downscaling applications. The choice of the ensemble mem-
bers is made flexible in order to meet the requirements of specific (regional) climate information
products, to be tailored for different regions and user needs.

Description of the tool: EnsClustering is a cluster analysis tool, based on the k-means algorithm, for
ensemble predictions. The aim is to group ensemble members according to similar characteristics
and to select the most representative member for each cluster. The user chooses which feature of
the data is used to group the ensemble members by clustering: time mean, maximum, a certain
percentile (e.g., 75 standard deviation and trend over the time period. For each ensemble member
this value is computed at each grid point, obtaining N lat-lon maps, where N is the number of en-
semble members. The anomaly is computed subtracting the ensemble mean of these maps to each
of the single maps. The anomaly is therefore computed with respect to the ensemble members (and
not with respect to the time) and the Empirical Orthogonal Function (EOF) analysis is applied to
these anomaly maps. Regarding the EOF analysis, the user can choose either how many Princi-
pal Components (PCs) to retain or the percentage of explained variance to keep. After reducing
dimensionality via EOF analysis, k-means analysis is applied using the desired subset of PCs.

The major final outputs are the classification in clusters, i.e. which member belongs to which cluster
(in k-means analysis the number k of clusters needs to be defined prior to the analysis) and the most
representative member for each cluster, which is the closest member to the cluster centroid. Other
outputs refer to the statistics of clustering: in the PC space, the minimum and the maximum distance
between a member in a cluster and the cluster centroid (i.e. the closest and the furthest member),
the intra-cluster standard deviation for each cluster (i.e. how much the cluster is compact).

Usage

CST_EnsClustering(
exp,
time_moment = "mean",
numclus = NULL,
lon_lim = NULL,

30 CST_EnsClustering

lat_lim = NULL,
variance_explained = 80,
numpcs = NULL,
time_dim = NULL,
time_percentile = 90,
cluster_dim = "member",
verbose = F

)

Arguments

exp An object of the class ’s2dv_cube’, containing the variables to be analysed. Each
data object in the list is expected to have an element named $data with at least
two spatial dimensions named "lon" and "lat", and dimensions "dataset", "mem-
ber", "ftime", "sdate".

time_moment Decides the moment to be applied to the time dimension. Can be either ’mean’
(time mean), ’sd’ (standard deviation along time) or ’perc’ (a selected percentile
on time). If ’perc’ the keyword ’time_percentile’ is also used.

numclus Number of clusters (scenarios) to be calculated. If set to NULL the number of
ensemble members divided by 10 is used, with a minimum of 2 and a maximum
of 8.

lon_lim List with the two longitude margins in ‘c(-180,180)‘ format.

lat_lim List with the two latitude margins.
variance_explained

variance (percentage) to be explained by the set of EOFs. Defaults to 80. Not
used if numpcs is specified.

numpcs Number of EOFs retained in the analysis (optional).

time_dim String or character array with name(s) of dimension(s) over which to compute
statistics. If omitted c("ftime", "sdate", "time") are searched in this order.

time_percentile

Set the percentile in time you want to analyse (used for ‘time_moment = "perc").

cluster_dim Dimension along which to cluster. Typically "member" or "sdate". This can also
be a list like c("member", "sdate").

verbose Logical for verbose output

Value

A list with elements $cluster (cluster assigned for each member), $freq (relative frequency of
each cluster), $closest_member (representative member for each cluster), $repr_field (list of
fields for each representative member), composites (list of mean fields for each cluster), $lon
(selected longitudes of output fields), $lat (selected longitudes of output fields).

Author(s)

Federico Fabiano - ISAC-CNR, <f.fabiano@isac.cnr.it>

Ignazio Giuntoli - ISAC-CNR, <i.giuntoli@isac.cnr.it>

CST_Load 31

Danila Volpi - ISAC-CNR, <d.volpi@isac.cnr.it>

Paolo Davini - ISAC-CNR, <p.davini@isac.cnr.it>

Jost von Hardenberg - ISAC-CNR, <j.vonhardenberg@isac.cnr.it>

Examples

exp <- lonlat_data$exp
Example 1: Cluster on all start dates, members and models
res <- CST_EnsClustering(exp, numclus = 3,

cluster_dim = c("member", "dataset", "sdate"))
iclus = res$cluster[2, 1, 3]

print(paste("Cluster of 2. member, 1. dataset, 3. sdate:", iclus))
print(paste("Frequency (numerosity) of cluster (", iclus, ") :", res$freq[iclus]))
library(s2dverification)
PlotEquiMap(res$repr_field[iclus, ,], explon, explat,

filled.continents = FALSE,
toptitle = paste("Representative field of cluster", iclus))

Example 2: Cluster on members retaining 4 EOFs during
preliminary dimensional reduction

res <- CST_EnsClustering(exp, numclus = 3, numpcs = 4, cluster_dim = "member")
Example 3: Cluster on members, retain 80% of variance during
preliminary dimensional reduction

res <- CST_EnsClustering(exp, numclus = 3, variance_explained = 80,
cluster_dim = "member")

Example 4: Compute percentile in time

res <- CST_EnsClustering(exp, numclus = 3, time_percentile = 90,
time_moment = "perc", cluster_dim = "member")

CST_Load CSTools Data Retreival Function

Description

This function aggregates, subsets and retrieves sub-seasonal, seasonal, decadal or climate projection
data from NetCDF files in a local file system or on remote OPeNDAP servers, and arranges it for
easy application of the CSTools functions.

Usage

CST_Load(...)

32 CST_Load

Arguments

... Parameters that are automatically forwarded to the ‘s2dverification::Load‘ func-
tion. See details in ‘?s2dverification::Load‘.

Details

It receives any number of parameters (‘...‘) that are automatically forwarded to the ‘s2dverification::Load‘
function. See details in ‘?s2dverification::Load‘.

It is recommended to use this function in combination with the ‘zeallot::"

Value

A list with one or two S3 objects, named ’exp’ and ’obs’, of the class ’s2dv_cube’, containing
experimental and date-corresponding observational data, respectively. These ’s2dv_cube’s can be
ingested by other functions in CSTools. If the parameter ‘exp‘ in the call to ‘CST_Load‘ is set to
‘NULL‘, then only the ’obs’ component is returned, and viceversa.

Author(s)

Nicolau Manubens, <nicolau.manubens@bsc.es>

Examples

Not run:
library(zeallot)
startDates <- c('20001101', '20011101', '20021101',

'20031101', '20041101', '20051101')
c(exp, obs) %<-%

CST_Load(
var = 'tas',
exp = 'system5c3s',
obs = 'era5',
nmember = 15,
sdates = startDates,
leadtimemax = 3,
latmin = 27, latmax = 48,
lonmin = -12, lonmax = 40,
output = 'lonlat',
nprocs = 1

)

End(Not run)

CST_MergeDims 33

CST_MergeDims Function to Merge Dimensions

Description

This function merges two dimensions of the array data in a ’s2dv_cube’ object into one. The user
can select the dimensions to merge and provide the final name of the dimension. The user can select
to remove NA values or keep them.

Usage

CST_MergeDims(
data,
merge_dims = c("ftime", "monthly"),
rename_dim = NULL,
na.rm = FALSE

)

Arguments

data a ’s2dv_cube’ object

merge_dims a character vector indicating the names of the dimensions to merge

rename_dim a character string indicating the name of the output dimension. If left at NULL,
the first dimension name provided in parameter merge_dims will be used.

na.rm a logical indicating if the NA values should be removed or not.

Author(s)

Nuria Perez-Zanon, <nuria.perez@bsc.es>

Examples

data <- 1 : c(2 * 3 * 4 * 5 * 6 * 7)
dim(data) <- c(time = 7, lat = 2, lon = 3, monthly = 4, member = 6,

dataset = 5, var = 1)
data[2,,,,,,] <- NA
data[c(3,27)] <- NA
data <-list(data = data)
class(data) <- 's2dv_cube'
new_data <- CST_MergeDims(data, merge_dims = c('time', 'monthly'))
dim(new_data$data)
new_data <- CST_MergeDims(data, merge_dims = c('lon', 'lat'), rename_dim = 'grid')
dim(new_data$data)
new_data <- CST_MergeDims(data, merge_dims = c('time', 'monthly'), na.rm = TRUE)
dim(new_data$data)

34 CST_MultiEOF

CST_MultiEOF EOF analysis of multiple variables

Description

This function performs EOF analysis over multiple variables, accepting in input a list of CSTools
objects. Based on Singular Value Decomposition. For each field the EOFs are computed and the
corresponding PCs are standardized (unit variance, zero mean); the minimum number of principal
components needed to reach the user-defined variance is retained. The function weights the input
data for the latitude cosine square root.

Usage

CST_MultiEOF(
datalist,
neof_max = 40,
neof_composed = 5,
minvar = 0.6,
lon_lim = NULL,
lat_lim = NULL

)

Arguments

datalist A list of objects of the class ’s2dv_cube’, containing the variables to be analysed.
Each data object in the list is expected to have an element named $data with at
least two spatial dimensions named "lon" and "lat", a dimension "ftime" and a
dimension "sdate".

neof_max Maximum number of single eofs considered in the first decomposition

neof_composed Number of composed eofs to return in output

minvar Minimum variance fraction to be explained in first decomposition

lon_lim Vector with longitudinal range limits for the EOF calculation for all input vari-
ables

lat_lim Vector with latitudinal range limits for the EOF calculation for all input variables

Value

A list with elements $coeff (an array of time-varying principal component coefficients), $variance
(a matrix of explained variances), eof_pattern (a matrix of EOF patterns obtained by regression
for each variable).

Author(s)

Jost von Hardenberg - ISAC-CNR, <j.vonhardenberg@isac.cnr.it>

Paolo Davini - ISAC-CNR, <p.davini@isac.cnr.it>

CST_MultiMetric 35

Examples

library(zeallot)
library(ClimProjDiags)
c(exp, obs) %<-% lonlat_data
Create three datasets (from the members)
exp1 <- exp
exp2 <- exp
exp3 <- exp
exp1$data <- Subset(exp$data, along = 2, indices = 1 : 5)
exp2$data <- Subset(exp$data, along = 2, indices = 6 : 10)
exp3$data <- Subset(exp$data, along = 2, indices = 11 : 15)

cal <- CST_MultiEOF(list(exp1, exp2, exp3), neof_max=5, neof_composed=2)
str(cal)
List of 3
$ coeff : num [1:3, 1:6, 1:2, 1:5] -0.312 -0.588 0.724 1.202 1.181 ...
$ variance : num [1:2, 1:5] 0.413 0.239 0.352 0.27 0.389 ...
$ eof_pattern: num [1:3, 1:53, 1:22, 1:2, 1:5] -1.47 -0.446 -0.656 -1.534 -0.464 ...
dim(cal$coeff)
ftime sdate eof member
3 6 2 3

cal <- CST_MultiEOF(list(exp1, exp2, exp3) , minvar=0.9)
str(cal)
$ coeff : num [1:3, 1:6, 1:5, 1:5] 0.338 0.603 -0.736 -1.191 -1.198 ...
$ variance : num [1:5, 1:5] 0.3903 0.2264 0.1861 0.1032 0.0379 ...
$ eof_pattern: num [1:3, 1:53, 1:22, 1:5, 1:5] 1.477 0.454 0.651 1.541 0.47 ...

cal <- CST_MultiEOF(list(exp1, exp2))
cal <- CST_MultiEOF(list(exp1, exp2, exp3), lon_lim=c(5, 30), lat_lim=c(35, 50), neof_composed=3)

CST_MultiMetric Multiple Metrics applied in Multiple Model Anomalies

Description

This function calculates correlation (Anomaly Correlation Coefficient; ACC), root mean square
error (RMS) and the root mean square error skill score (RMSSS) of individual anomaly models and
multi-models mean (if desired) with the observations.

Usage

CST_MultiMetric(exp, obs, metric = "correlation", multimodel = TRUE)

36 CST_MultiMetric

Arguments

exp an object of class s2dv_cube as returned by CST_Anomaly function, contain-
ing the anomaly of the seasonal forecast experiment data in the element named
$data.

obs an object of class s2dv_cube as returned by CST_Anomaly function, containing
the anomaly of observed data in the element named $data.

metric a character string giving the metric for computing the maximum skill. This must
be one of the strings ’correlation’, ’rms’ or ’rmsss.

multimodel a logical value indicating whether a Multi-Model Mean should be computed.

Value

an object of class s2dv_cube containing the statistics of the selected metric in the element $data
which is an array with two datset dimensions equal to the ’dataset’ dimension in the exp$data and
obs$data inputs. If multimodel is TRUE, the greatest first dimension correspons to the Multi-
Model Mean. The third dimension contains the statistics selected. For metric correlation, the
third dimension is of length four and they corresponds to the lower limit of the 95% confidence
interval, the statistics itselfs, the upper limit of the 95% confidence interval and the 95% significance
level. For metric rms, the third dimension is length three and they corresponds to the lower limit
of the 95% confidence interval, the RMSE and the upper limit of the 95% confidence interval. For
metric rmsss, the third dimension is length two and they corresponds to the statistics itselfs and the
p-value of the one-sided Fisher test with Ho: RMSSS = 0.

Author(s)

Mishra Niti, <niti.mishra@bsc.es>

Perez-Zanon Nuria, <nuria.perez@bsc.es>

References

Mishra, N., Prodhomme, C., & Guemas, V. (n.d.). Multi-Model Skill Assessment of Seasonal Tem-
perature and Precipitation Forecasts over Europe, 29-31.http://link.springer.com/10.1007/
s00382-018-4404-z

See Also

Corr, RMS, RMSSS and CST_Load

Examples

library(zeallot)
mod <- 1 : (2 * 3 * 4 * 5 * 6 * 7)
dim(mod) <- c(dataset = 2, member = 3, sdate = 4, ftime = 5, lat = 6, lon = 7)
obs <- 1 : (1 * 1 * 4 * 5 * 6 * 7)
dim(obs) <- c(dataset = 1, member = 1, sdate = 4, ftime = 5, lat = 6, lon = 7)
lon <- seq(0, 30, 5)
lat <- seq(0, 25, 5)
exp <- list(data = mod, lat = lat, lon = lon)
obs <- list(data = obs, lat = lat, lon = lon)

http://link.springer.com/10.1007/s00382-018-4404-z
http://link.springer.com/10.1007/s00382-018-4404-z

CST_MultivarRMSE 37

attr(exp, 'class') <- 's2dv_cube'
attr(obs, 'class') <- 's2dv_cube'
c(ano_exp, ano_obs) %<-% CST_Anomaly(exp = exp, obs = obs, cross = TRUE, memb = TRUE)
a <- CST_MultiMetric(exp = ano_exp, obs = ano_obs)
str(a)

CST_MultivarRMSE Multivariate Root Mean Square Error (RMSE)

Description

This function calculates the RMSE from multiple variables, as the mean of each variable’s RMSE
scaled by its observed standard deviation. Variables can be weighted based on their relative impor-
tance (defined by the user).

Usage

CST_MultivarRMSE(exp, obs, weight = NULL)

Arguments

exp a list of objects, one for each variable, of class s2dv_cube as returned by CST_Anomaly
function, containing the anomaly of the seasonal forecast experiment data in the
element named $data.

obs a list of objects, one for each variable (in the same order than the input in ’exp’)
of class s2dv_cube as returned by CST_Anomaly function, containing the ob-
served anomaly data in the element named $data.

weight (optional) a vector of weight values to assign to each variable. If no weights are
defined, a value of 1 is assigned to every variable.

Value

an object of class s2dv_cube containing the RMSE in the element $data which is an array with
two datset dimensions equal to the ’dataset’ dimension in the exp$data and obs$data inputs. An
array with dimensions: c(number of exp, number of obs, 1 (the multivariate RMSE value), number
of lat, number of lon)

Author(s)

Deborah Verfaillie, <deborah.verfaillie@bsc.es>

See Also

RMS and CST_Load

38 CST_QuantileMapping

Examples

Creation of sample s2dverification objects. These are not complete
s2dverification objects though. The Load function returns complete objects.
using package zeallot is optional:
library(zeallot)
Example with 2 variables
mod1 <- 1 : (1 * 3 * 4 * 5 * 6 * 7)
mod2 <- 1 : (1 * 3 * 4 * 5 * 6 * 7)
dim(mod1) <- c(dataset = 1, member = 3, sdate = 4, ftime = 5, lat = 6, lon = 7)
dim(mod2) <- c(dataset = 1, member = 3, sdate = 4, ftime = 5, lat = 6, lon = 7)
obs1 <- 1 : (1 * 1 * 4 * 5 * 6 * 7)
obs2 <- 1 : (1 * 1 * 4 * 5 * 6 * 7)
dim(obs1) <- c(dataset = 1, member = 1, sdate = 4, ftime = 5, lat = 6, lon = 7)
dim(obs2) <- c(dataset = 1, member = 1, sdate = 4, ftime = 5, lat = 6, lon = 7)
lon <- seq(0, 30, 5)
lat <- seq(0, 25, 5)
exp1 <- list(data = mod1, lat = lat, lon = lon, Datasets = "EXP1",

source_files = "file1", Variable = list('pre'))
attr(exp1, 'class') <- 's2dv_cube'
exp2 <- list(data = mod2, lat = lat, lon = lon, Datasets = "EXP2",

source_files = "file2", Variable = list('tas'))
attr(exp2, 'class') <- 's2dv_cube'
obs1 <- list(data = obs1, lat = lat, lon = lon, Datasets = "OBS1",

source_files = "file1", Variable = list('pre'))
attr(obs1, 'class') <- 's2dv_cube'
obs2 <- list(data = obs2, lat = lat, lon = lon, Datasets = "OBS2",

source_files = "file2", Variable = list('tas'))
attr(obs2, 'class') <- 's2dv_cube'

c(ano_exp1, ano_obs1) %<-% CST_Anomaly(exp1, obs1, cross = TRUE, memb = TRUE)
c(ano_exp2, ano_obs2) %<-% CST_Anomaly(exp2, obs2, cross = TRUE, memb = TRUE)
ano_exp <- list(exp1, exp2)
ano_obs <- list(ano_obs1, ano_obs2)
weight <- c(1, 2)
a <- CST_MultivarRMSE(exp = ano_exp, obs = ano_obs, weight = weight)
str(a)

CST_QuantileMapping Quantiles Mapping for seasonal or decadal forecast data

Description

This function is a wrapper from fitQmap and doQmap from package ’qmap’to be applied in CSTools
objects of class ’s2dv_cube’. The quantile mapping adjustment between an experiment, tipically a
hindcast, and observations is applied to the experiment itself or to a provided forecast.

Usage

CST_QuantileMapping(

CST_QuantileMapping 39

exp,
obs,
exp_cor = NULL,
sample_dims = c("sdate", "ftime", "member"),
sample_length = NULL,
method = "QUANT",
ncores = NULL,
...

)

Arguments

exp an object of class s2dv_cube

obs an object of class s2dv_cube

exp_cor an object of class s2dv_cube in which the quantile mapping correction will be
applied. If it is not specified, the correction is applied in object exp.

sample_dims a character vector indicating the dimensions that can be used as sample for the
same distribution

sample_length a numeric value indicating the length of the timeseries window to be used as
sample for the sample distribution and correction. By default, NULL, the total
length of the timeseries will be used.

method a character string indicating the method to be used: ’PTF’,’DIST’,’RQUANT’,’QUANT’,’SSPLIN’.
By default, the empirical quantile mapping ’QUANT’ is used.

ncores an integer indicating the number of parallel processes to spawn for the use for
parallel computation in multiple cores.

... additional arguments passed to the method specified by method.

Details

The different methods are:

• ’PTF’ fits a parametric transformations to the quantile-quantile relation of observed and mod-
elled values. See ?qmap::fitQmapPTF.

• ’DIST’ fits a theoretical distribution to observed and to modelled time series. See ?qmap::fitQmapDIST.

• ’RQUANT’ estimates the values of the quantile-quantile relation of observed and modelled
time series for regularly spaced quantiles using local linear least square regression. See
?qmap::fitQmapRQUANT.

• ’QUANT’ estimates values of the empirical cumulative distribution function of observed and
modelled time series for regularly spaced quantiles. See ?qmap::fitQmapQUANT.

• ’SSPLIN’ fits a smoothing spline to the quantile-quantile plot of observed and modelled time
series. See ?qmap::fitQmapSSPLIN.

All methods accepts some common arguments:

• wet.day logical indicating whether to perform wet day correction or not.(Not available in ’DIS’
method)

• qstep NULL or a numeric value between 0 and 1.

40 CST_RainFARM

Value

an oject of class s2dv_cube containing the experimental data after applyingthe quantile mapping
correction.) <- c(dataset = 1, member = 10, sdate = 20, ftime = 60 ,

Author(s)

Nuria Perez-Zanon, <nuria.perez@bsc.es>

See Also

qmap::fitQmap and qmap::doQmap

Examples

library(qmap)
exp <- 1 : (1 * 5 * 10 * 6 * 2 * 3)
dim(exp) <- c(dataset = 1, member = 10, sdate = 5, ftime = 6 ,

lat = 2, lon = 3)
exp <- list(data = exp)
class(exp) <- 's2dv_cube'
obs <- 101 : (100 + 1 * 1 * 5 * 6 * 2 * 3)
dim(obs) <- c(dataset = 1, member = 1, sdate = 5, ftime = 6 ,

lat = 2, lon = 3)
obs <- list(data = obs)
class(obs) <- 's2dv_cube'
res <- CST_QuantileMapping(exp, obs, method = 'RQUANT')

exp <- lonlat_data$exp
obs <- lonlat_data$obs
res <- CST_QuantileMapping(exp, obs)

data(obsprecip)
data(modprecip)
exp <- modprecip$MOSS[1:10000]
dim(exp) <- c(time = length(exp))
exp <- list(data = exp)
class(exp) <- 's2dv_cube'
obs <- obsprecip$MOSS[1:10000]
dim(obs) <- c(time = length(obs))
obs <- list(data = obs)
class(obs) <- 's2dv_cube'
res <- CST_QuantileMapping(exp = exp, obs = obs, sample_dims = 'time',

method = 'DIST')

CST_RainFARM RainFARM stochastic precipitation downscaling of a CSTools object

CST_RainFARM 41

Description

This function implements the RainFARM stochastic precipitation downscaling method and accepts
a CSTools object (an object of the class ’s2dv_cube’ as provided by ‘CST_Load‘) as input. Adapted
for climate downscaling and including orographic correction as described in Terzago et al. 2018.

Usage

CST_RainFARM(
data,
nf,
weights = 1,
slope = 0,
kmin = 1,
nens = 1,
fglob = FALSE,
fsmooth = TRUE,
nprocs = 1,
time_dim = NULL,
verbose = FALSE,
drop_realization_dim = FALSE

)

Arguments

data An object of the class ’s2dv_cube’ as returned by ‘CST_Load‘, containing the
spatial precipitation fields to downscale. The data object is expected to have
an element named $data with at least two spatial dimensions named "lon" and
"lat" and one or more dimensions over which to compute average spectral slopes
(unless specified with parameter slope), which can be specified by parameter
time_dim. The number of longitudes and latitudes in the input data is expected
to be even and the same. If not the function will perform a subsetting to ensure
this condition.

nf Refinement factor for downscaling (the output resolution is increased by this
factor).

weights Matrix with climatological weights which can be obtained using the CST_RFWeights
function. If weights=1. (default) no weights are used. The matrix should
have dimensions (lon, lat) in this order. The names of these dimensions are
not checked.

slope Prescribed spectral slope. The default is slope=0. meaning that the slope is
determined automatically over the dimensions specified by time_dim.

kmin First wavenumber for spectral slope (default: kmin=1).

nens Number of ensemble members to produce (default: nens=1).

fglob Logical to conserve global precipitation over the domain (default: FALSE).

fsmooth Logical to conserve precipitation with a smoothing kernel (default: TRUE).

nprocs The number of parallel processes to spawn for the use for parallel computation
in multiple cores. (default: 1)

42 CST_RainFARM

time_dim String or character array with name(s) of dimension(s) (e.g. "ftime", "sdate",
"member" ...) over which to compute spectral slopes. If a character array of
dimension names is provided, the spectral slopes will be computed as an average
over all elements belonging to those dimensions. If omitted one of c("ftime",
"sdate", "time") is searched and the first one with more than one element is
chosen.

verbose Logical for verbose output (default: FALSE).
drop_realization_dim

Logical to remove the "realization" stochastic ensemble dimension, needed for
saving data through function CST_SaveData (default: FALSE) with the follow-
ing behaviour if set to TRUE:
1) if nens==1: the dimension is dropped;
2) if nens>1 and a "member" dimension exists: the "realization" and "member"
dimensions are compacted (multiplied) and the resulting dimension is named
"member";
3) if nens>1 and a "member" dimension does not exist: the "realization" dimen-
sion is renamed to "member".

Value

CST_RainFARM() returns a downscaled CSTools object (i.e., of the class ’s2dv_cube’). If nens>1
an additional dimension named "realization" is added to the $data array after the "member" dimen-
sion (unless drop_realization_dim=TRUE is specified). The ordering of the remaining dimensions
in the $data element of the input object is maintained.

Author(s)

Jost von Hardenberg - ISAC-CNR, <j.vonhardenberg@isac.cnr.it>

References

Terzago, S. et al. (2018). NHESS 18(11), 2825-2840. http://doi.org/10.5194/nhess-18-2825-2018 ;
D’Onofrio et al. (2014), J of Hydrometeorology 15, 830-843; Rebora et. al. (2006), JHM 7, 724.

Examples

#Example 1: using CST_RainFARM for a CSTools object
nf <- 8 # Choose a downscaling by factor 8
exp <- 1 : (2 * 3 * 4 * 8 * 8)
dim(exp) <- c(dataset = 1, member = 2, sdate = 3, ftime = 4, lat = 8, lon = 8)
lon <- seq(10, 13.5, 0.5)
dim(lon) <- c(lon = length(lon))
lat <- seq(40, 43.5, 0.5)
dim(lat) <- c(lat = length(lat))
data <- list(data = exp, lon = lon, lat = lat)
Create a test array of weights
ww <- array(1., dim = c(8 * nf, 8 * nf))
res <- CST_RainFARM(data, nf, ww, nens=3)
str(res)
#List of 3

CST_RegimesAssign 43

$ data: num [1, 1:2, 1:3, 1:3, 1:4, 1:64, 1:64] 260 553 281 278 143 ...
$ lon : num [1:64] 9.78 9.84 9.91 9.97 10.03 ...
$ lat : num [1:64] 39.8 39.8 39.9 40 40 ...
dim(res$data)
dataset member realization sdate ftime lat lon
1 2 3 3 4 64 64

CST_RegimesAssign Function for matching a field of anomalies with a set of maps used as
a reference (e.g. clusters obtained from the WeatherRegime function)

Description

This function performs the matching between a field of anomalies and a set of maps which will be
used as a reference. The anomalies will be assigned to the reference map for which the minimum
Eucledian distance (method=’distance’) or highest spatial correlation (method=‘ACC’) is obtained.

Usage

CST_RegimesAssign(
data,
ref_maps,
method = "distance",
composite = FALSE,
memb = FALSE,
ncores = NULL

)

Arguments

data a ’s2dv_cube’ object.

ref_maps a ’s2dv_cube’ object as the output of CST_WeatherRegimes.

method whether the matching will be performed in terms of minimum distance (default
= ’distance’) or the maximum spatial correlation (method = ’ACC’) between the
maps.

composite a logical parameter indicating if the composite maps are computed or not (de-
fault = FALSE).

memb a logical value indicating whether to compute composites for separate members
(default FALSE) or as unique ensemble (TRUE). This option is only available
for when parameter ’composite’ is set to TRUE and the data object has a dimen-
sion named ’member’.

ncores the number of multicore threads to use for parallel computation.

44 CST_RFSlope

Value

A list with two elements $data (a ’s2dv_cube’ object containing the composites cluster=1,..,K for
case (*1) $pvalue (array with the same structure as $data containing the pvalue of the composites
obtained through a t-test that accounts for the serial dependence of the data with the same structure
as Composite.)(only when composite = ’TRUE’), $cluster (array with the same dimensions as
data (except latitude and longitude which are removed) indicating the ref_maps to which each point
is allocated.) , $frequency (A vector of integers (from k=1,...k n reference maps) indicating the
percentage of assignations corresponding to each map.),

Author(s)

Verónica Torralba - BSC, <veronica.torralba@bsc.es>

References

Torralba, V. (2019) Seasonal climate prediction for the wind energy sector: methods and tools
for the development of a climate service. Thesis. Available online: https://eprints.ucm.es/
56841/

Examples

Not run:
regimes <- CST_WeatherRegimes(data = lonlat_data$obs, EOFs = FALSE, ncenters = 4)
res1 <- CST_RegimesAssign(data = lonlat_data$exp, ref_maps = regimes, composite = FALSE)
res2 <- CST_RegimesAssign(data = lonlat_data$exp, ref_maps = regimes, composite = TRUE)

End(Not run)

CST_RFSlope RainFARM spectral slopes from a CSTools object

Description

This function computes spatial spectral slopes from a CSTools object to be used for RainFARM
stochastic precipitation downscaling method and accepts a CSTools object (of the class ’s2dv_cube’)
as input.

Usage

CST_RFSlope(data, kmin = 1, time_dim = NULL)

Arguments

data An object of the class ’s2dv_cube’, containing the spatial precipitation fields to
downscale. The data object is expected to have an element named $data with
at least two spatial dimensions named "lon" and "lat" and one or more dimen-
sions over which to average these slopes, which can be specified by parameter
time_dim.

https://eprints.ucm.es/56841/
https://eprints.ucm.es/56841/

CST_RFTemp 45

kmin First wavenumber for spectral slope (default kmin=1).

time_dim String or character array with name(s) of dimension(s) (e.g. "ftime", "sdate",
"member" ...) over which to compute spectral slopes. If a character array of
dimension names is provided, the spectral slopes will be computed as an average
over all elements belonging to those dimensions. If omitted one of c("ftime",
"sdate", "time") is searched and the first one with more than one element is
chosen.

Value

CST_RFSlope() returns spectral slopes using the RainFARM convention (the logarithmic slope of
k*|A(k)|^2 where A(k) are the spectral amplitudes). The returned array has the same dimensions
as the exp element of the input object, minus the dimensions specified by lon_dim, lat_dim and
time_dim.

Author(s)

Jost von Hardenberg - ISAC-CNR, <j.vonhardenberg@isac.cnr.it>

Examples

#Example using CST_RFSlope for a CSTools object
exp <- 1 : (2 * 3 * 4 * 8 * 8)
dim(exp) <- c(dataset = 1, member = 2, sdate = 3, ftime = 4, lat = 8, lon = 8)
lon <- seq(10, 13.5, 0.5)
dim(lon) <- c(lon = length(lon))
lat <- seq(40, 43.5, 0.5)
dim(lat) <- c(lat = length(lat))
data <- list(data = exp, lon = lon, lat = lat)
slopes <- CST_RFSlope(data)
dim(slopes)
dataset member sdate
1 2 3
slopes
[,1] [,2] [,3]
#[1,] 1.893503 1.893503 1.893503
#[2,] 1.893503 1.893503 1.893503

CST_RFTemp Temperature downscaling of a CSTools object using lapse rate correc-
tion or a reference field

Description

This function implements a simple lapse rate correction of a temperature field (an object of class
’s2dv_cube’ as provided by ‘CST_Load‘) as input. The input lon grid must be increasing (but can
be modulo 360). The input lat grid can be irregularly spaced (e.g. a Gaussian grid) The output grid
can be irregularly spaced in lon and/or lat.

46 CST_RFTemp

Usage

CST_RFTemp(
data,
oro,
xlim = NULL,
ylim = NULL,
lapse = 6.5,
lon_dim = "lon",
lat_dim = "lat",
time_dim = NULL,
nolapse = FALSE,
verbose = FALSE,
compute_delta = FALSE,
method = "bilinear",
delta = NULL

)

Arguments

data An object of the class ’s2dv_cube’ as returned by ‘CST_Load‘, containing the
temperature fields to downscale. The data object is expected to have an element
named $data with at least two spatial dimensions named "lon" and "lat". (these
default names can be changed with the lon_dim and lat_dim parameters)

oro An object of the class ’s2dv_cube’ as returned by ‘CST_Load‘, containing fine
scale orography (in meters). The destination downscaling area must be con-
tained in the orography field.

xlim vector with longitude bounds for downscaling; the full input field is downscaled
if ‘xlim‘ and ‘ylim‘ are not specified.

ylim vector with latitude bounds for downscaling
lapse float with environmental lapse rate
lon_dim string with name of longitude dimension
lat_dim string with name of latitude dimension
time_dim a vector of character string indicating the name of temporal dimension. By

default, it is set to NULL and it considers "ftime", "sdate" and "time" as temporal
dimensions.

nolapse logical, if true ‘oro‘ is interpreted as a fine-scale climatology and used directly
for bias correction

verbose logical if to print diagnostic output
compute_delta logical if true returns only a delta to be used for out-of-sample forecasts. Returns

an object of the class ’s2dv_cube’, containing a delta. Activates ‘nolapse =
TRUE‘.

method string indicating the method used for interpolation: "nearest" (nearest neigh-
bours followed by smoothing with a circular uniform weights kernel), "bilinear"
(bilinear interpolation) The two methods provide similar results, but nearest is
slightly better provided that the fine-scale grid is correctly centered as a subdi-
vision of the large-scale grid

CST_RFWeights 47

delta An object of the class ’s2dv_cube’, containing a delta to be applied to the down-
scaled input data. Activates ‘nolapse = TRUE‘. The grid of this object must
coincide with that of the required output.

Value

CST_RFTemp() returns a downscaled CSTools object (i.e., of the class ’s2dv_cube’).

Author(s)

Jost von Hardenberg - ISAC-CNR, <j.vonhardenberg@isac.cnr.it>

References

Method described in ERA4CS MEDSCOPE milestone M3.2: High-quality climate prediction data
available to WP4 [https://www.medscope-project.eu/the-project/deliverables-reports/]([https://www.medscope-
project.eu/the-project/deliverables-reports/) and in H2020 ECOPOTENTIAL Deliverable No. 8.1:
High resolution (1-10 km) climate, land use and ocean change scenarios [https://www.ecopotential-
project.eu/images/ecopotential/documents/D8.1.pdf](https://www.ecopotential-project.eu/images/ecopotential/documents/D8.1.pdf)

Examples

Generate simple synthetic data and downscale by factor 4
t <- rnorm(7 * 6 * 2 * 3 * 4)*10 + 273.15 + 10
dim(t) <- c(dataset = 1, member = 2, sdate = 3, ftime = 4, lat = 6, lon = 7)
lon <- seq(3, 9, 1)
lat <- seq(42, 47, 1)
exp <- list(data = t, lat = lat, lon = lon)
attr(exp, 'class') <- 's2dv_cube'
o <- runif(29*29)*3000
dim(o) <- c(lat = 29, lon = 29)
lon <- seq(3, 10, 0.25)
lat <- seq(41, 48, 0.25)
oro <- list(data = o, lat = lat, lon = lon)
attr(oro, 'class') <- 's2dv_cube'
res <- CST_RFTemp(exp, oro, xlim=c(4,8), ylim=c(43, 46), lapse=6.5)

CST_RFWeights Compute climatological weights for RainFARM stochastic precipita-
tion downscaling

Description

Compute climatological ("orographic") weights from a fine-scale precipitation climatology file.

Usage

CST_RFWeights(climfile, nf, lon, lat, varname = "", fsmooth = TRUE)

48 CST_RFWeights

Arguments

climfile Filename of a fine-scale precipitation climatology. The file is expected to be in
NetCDF format and should contain at least one precipitation field. If several
fields at different times are provided, a climatology is derived by time averag-
ing. Suitable climatology files could be for example a fine-scale precipitation
climatology from a high-resolution regional climate model (see e.g. Terzago
et al. 2018), a local high-resolution gridded climatology from observations, or
a reconstruction such as those which can be downloaded from the WORLD-
CLIM (http://www.worldclim.org) or CHELSA (http://chelsa-climate.org) web-
sites. The latter data will need to be converted to NetCDF format before being
used (see for example the GDAL tools (https://www.gdal.org).

nf Refinement factor for downscaling (the output resolution is increased by this
factor).

lon Vector of longitudes.
lat Vector of latitudes. The number of longitudes and latitudes is expected to be

even and the same. If not the function will perform a subsetting to ensure this
condition.

varname Name of the variable to be read from climfile.
fsmooth Logical to use smooth conservation (default) or large-scale box-average conser-

vation.

Value

A matrix containing the weights with dimensions (lon, lat).

Author(s)

Jost von Hardenberg - ISAC-CNR, <j.vonhardenberg@isac.cnr.it>

References

Terzago, S., Palazzi, E., & von Hardenberg, J. (2018). Stochastic downscaling of precipitation
in complex orography: A simple method to reproduce a realistic fine-scale climatology. Natural
Hazards and Earth System Sciences, 18(11), 2825-2840. http://doi.org/10.5194/nhess-18-2825-
2018 .

Examples

Create weights to be used with the CST_RainFARM() or RainFARM() functions
using an external fine-scale climatology file.

Not run:
Specify lon and lat of the input
lon <- seq(10,13.5,0.5)
lat <- seq(40,43.5,0.5)
nf <- 8
ww <- CST_RFWeights("./worldclim.nc", nf, lon, lat, fsmooth = TRUE)

End(Not run)

CST_SaveExp 49

CST_SaveExp Save CSTools objects of class ’s2dv_cube’ containing experiments or
observed data in NetCDF format

Description

This function allows to divide and save a object of class ’s2dv_cube’ into a NetCDF file, allowing
to reload the saved data using CST_Load function.

Usage

CST_SaveExp(data, destination = "./CST_Data")

Arguments

data an object of class s2dv_cube.

destination a character string containing the directory name in which to save the data. NetCDF
file for each starting date are saved into the folder tree: destination/experiment/variable/.
By default the function creates and saves the data into the folder "CST_Data" in
the working directory.

Author(s)

Perez-Zanon Nuria, <nuria.perez@bsc.es>

See Also

CST_Load, as.s2dv_cube and s2dv_cube

Examples

Not run:
library(CSTools)
data <- lonlat_data$exp
destination <- "./path/"
CST_SaveExp(data = data, destination = destination)

End(Not run)

50 CST_SplitDim

CST_SplitDim Function to Split Dimension

Description

This function split a dimension in two. The user can select the dimension to split and provide
indices indicating how to split that dimension or dates and the frequency expected (monthly or by
day, month and year). The user can also provide a numeric frequency indicating the length of each
division.

Usage

CST_SplitDim(data, split_dim = "time", indices = NULL, freq = "monthly")

Arguments

data a ’s2dv_cube’ object

split_dim a character string indicating the name of the dimension to split

indices a vector of numeric indices or dates. If left at NULL, the dates provided in the
s2dv_cube object (element Dates) will be used.

freq a character string indicating the frequency: by ’day’, ’month’ and ’year’ or
’monthly’ (by default). ’month’ identifies months between 1 and 12 indepen-
dently of the year they belong to, while ’monthly’ differenciates months from
different years.

Author(s)

Nuria Perez-Zanon, <nuria.perez@bsc.es>

Examples

data <- 1 : 20
dim(data) <- c(time = 10, lat = 2)
data <-list(data = data)
class(data) <- 's2dv_cube'
indices <- c(rep(1,5), rep(2,5))
new_data <- CST_SplitDim(data, indices = indices)
time <- c(seq(ISOdate(1903, 1, 1), ISOdate(1903, 1, 4), "days"),

seq(ISOdate(1903, 2, 1), ISOdate(1903, 2, 4), "days"),
seq(ISOdate(1904, 1, 1), ISOdate(1904, 1, 2), "days"))

data <- list(data = data$data, Dates = time)
class(data) <- 's2dv_cube'
new_data <- CST_SplitDim(data, indices = time)
dim(new_data$data)
new_data <- CST_SplitDim(data, indices = time, freq = 'day')
dim(new_data$data)
new_data <- CST_SplitDim(data, indices = time, freq = 'month')

CST_WeatherRegimes 51

dim(new_data$data)
new_data <- CST_SplitDim(data, indices = time, freq = 'year')
dim(new_data$data)

CST_WeatherRegimes Function for Calculating the Cluster analysis

Description

This function computes the weather regimes from a cluster analysis. It is applied on the array
data in a ’s2dv_cube’ object. The dimensionality of this object can be also reduced by using PCs
obtained from the application of the #’EOFs analysis to filter the dataset. The cluster analysis can
be performed with the traditional k-means or those methods included in the hclust (stats package).

Usage

CST_WeatherRegimes(
data,
ncenters = NULL,
EOFs = TRUE,
neofs = 30,
varThreshold = NULL,
method = "kmeans",
iter.max = 100,
nstart = 30,
ncores = NULL

)

Arguments

data a ’s2dv_cube’ object

ncenters Number of clusters to be calculated with the clustering function.

EOFs Whether to compute the EOFs (default = ’TRUE’) or not (FALSE) to filter the
data.

neofs number of modes to be kept (default = 30).

varThreshold Value with the percentage of variance to be explained by the PCs. Only sufficient
PCs to explain this much variance will be used in the clustering.

method Different options to estimate the clusters. The most traditional approach is the
k-means analysis (default=’kmeans’) but the function also support the different
methods included in the hclust . These methods are: "ward.D", "ward.D2", "sin-
gle", "complete", "average" (= UPGMA), "mcquitty" (= WPGMA), "median" (=
WPGMC) or "centroid" (= UPGMC). For more details about these methods see
the hclust function documentation included in the stats package.

iter.max Parameter to select the maximum number of iterations allowed (Only if method=’kmeans’
is selected).

52 EnsClustering

nstart Parameter for the cluster analysis determining how many random sets to choose
(Only if method=’kmeans’ is selected).

ncores The number of multicore threads to use for parallel computation.

Value

A list with two elements $data (a ’s2dv_cube’ object containing the composites cluster=1,..,K
for case (*1) $pvalue (array with the same structure as $data containing the pvalue of the com-
posites obtained through a t-test that accounts for the serial dependence.), cluster (A matrix
or vector with integers (from 1:k) indicating the cluster to which each time step is allocated.),
persistence (Percentage of days in a month/season before a cluster is replaced for a new one
(only if method=’kmeans’ has been selected.)), frequency (Percentage of days in a month/season
belonging to each cluster (only if method=’kmeans’ has been selected).),

Author(s)

Verónica Torralba - BSC, <veronica.torralba@bsc.es>

References

Cortesi, N., V., Torralba, N., González-Reviriego, A., Soret, and F.J., Doblas-Reyes (2019). Char-
acterization of European wind speed variability using weather regimes. Climate Dynamics,53,
4961–4976, doi:10.1007/s00382-019-04839-5.

Torralba, V. (2019) Seasonal climate prediction for the wind energy sector: methods and tools
for the development of a climate service. Thesis. Available online: https://eprints.ucm.es/
56841/

Examples

Not run:
res1 <- CST_WeatherRegimes(data = lonlat_data$obs, EOFs = FALSE, ncenters = 4)
res2 <- CST_WeatherRegimes(data = lonlat_data$obs, EOFs = TRUE, ncenters = 3)

End(Not run)

EnsClustering Ensemble clustering

Description

This function performs a clustering on members/starting dates and returns a number of scenarios,
with representative members for each of them. The clustering is performed in a reduced EOF space.

https://eprints.ucm.es/56841/
https://eprints.ucm.es/56841/

EnsClustering 53

Usage

EnsClustering(
data,
lat,
lon,
time_moment = "mean",
numclus = NULL,
lon_lim = NULL,
lat_lim = NULL,
variance_explained = 80,
numpcs = NULL,
time_percentile = 90,
time_dim = NULL,
cluster_dim = "member",
verbose = T

)

Arguments

data A matrix of dimensions ’dataset member sdate ftime lat lon’ containing the vari-
ables to be analysed.

lat Vector of latitudes.

lon Vector of longitudes.

time_moment Decides the moment to be applied to the time dimension. Can be either ’mean’
(time mean), ’sd’ (standard deviation along time) or ’perc’ (a selected percentile
on time). If ’perc’ the keyword ’time_percentile’ is also used.

numclus Number of clusters (scenarios) to be calculated. If set to NULL the number of
ensemble members divided by 10 is used, with a minimum of 2 and a maximum
of 8.

lon_lim List with the two longitude margins in ‘c(-180,180)‘ format.

lat_lim List with the two latitude margins.

variance_explained

variance (percentage) to be explained by the set of EOFs. Defaults to 80. Not
used if numpcs is specified.

numpcs Number of EOFs retained in the analysis (optional).

time_percentile

Set the percentile in time you want to analyse (used for ‘time_moment = "perc").

time_dim String or character array with name(s) of dimension(s) over which to compute
statistics. If omitted c("ftime", "sdate", "time") are searched in this order.

cluster_dim Dimension along which to cluster. Typically "member" or "sdate". This can also
be a list like c("member", "sdate").

verbose Logical for verbose output

54 lonlat_data

Value

A list with elements $cluster (cluster assigned for each member), $freq (relative frequency of
each cluster), $closest_member (representative member for each cluster), $repr_field (list of
fields for each representative member), composites (list of mean fields for each cluster), $lon
(selected longitudes of output fields), $lat (selected longitudes of output fields).

Author(s)

Federico Fabiano - ISAC-CNR, <f.fabiano@isac.cnr.it>

Ignazio Giuntoli - ISAC-CNR, <i.giuntoli@isac.cnr.it>

Danila Volpi - ISAC-CNR, <d.volpi@isac.cnr.it>

Paolo Davini - ISAC-CNR, <p.davini@isac.cnr.it>

Jost von Hardenberg - ISAC-CNR, <j.vonhardenberg@isac.cnr.it>

Examples

exp <- lonlat_data$exp
res <- EnsClustering(exp$data, exp$lat, exp$lon, numclus = 3,

cluster_dim = c("member", "dataset", "sdate"))

lonlat_data Sample Of Experimental And Observational Climate Data In Function
Of Longitudes And Latitudes

Description

This sample data set contains gridded seasonal forecast and corresponding observational data from
the Copernicus Climate Change ECMWF-System 5 forecast system, and from the Copernicus Cli-
mate Change ERA-5 reconstruction. Specifically, for the ’tas’ (2-meter temperature) variable, for
the 15 first forecast ensemble members, monthly averaged, for the 3 first forecast time steps (lead
months 1 to 4) of the November start dates of 2000 to 2005, for the Mediterranean region (27N-48N,
12W-40E). The data was generated on (or interpolated onto, for the reconstruction) a rectangular
regular grid of size 360 by 181.

Details

It is recommended to use the data set as follows:

require(zeallot)
c(exp, obs)

The ‘CST_Load‘ call used to generate the data set in the infrastructure of the Earth Sciences Depart-
ment of the Barcelona Supercomputing Center is shown next. Note that ‘CST_Load‘ internally calls
‘s2dverification::Load‘, which would require a configuration file (not provided here) expressing the
distribution of the ’system5c3s’ and ’era5’ NetCDF files in the file system.

lonlat_prec 55

library(CSTools)
require(zeallot)

startDates <- c('20001101', '20011101', '20021101',
'20031101', '20041101', '20051101')

lonlat_data <-
CST_Load(
var = 'tas',
exp = 'system5c3s',
obs = 'era5',
nmember = 15,
sdates = startDates,
leadtimemax = 3,
latmin = 27, latmax = 48,
lonmin = -12, lonmax = 40,
output = 'lonlat',
nprocs = 1

)

Author(s)

Nicolau Manubens <nicolau.manubens@bsc.es>

lonlat_prec Sample Of Experimental Precipitation Data In Function Of Longi-
tudes And Latitudes

Description

This sample data set contains a small cutout of gridded seasonal precipitation forecast data from
the Copernicus Climate Change ECMWF-System 5 forecast system, to be used to demonstrate
downscaling. Specifically, for the ’pr’ (precipitation) variable, for the first 6 forecast ensemble
members, daily values, for all 31 days in March following the forecast starting dates in November
of years 2010 to 2012, for a small 4x4 pixel cutout in a region in the North-Western Italian Alps
(44N-47N, 6E-9E). The data resolution is 1 degree.

Details

The ‘CST_Load‘ call used to generate the data set in the infrastructure of the Marconi machine at
CINECA is shown next, working on files which were extracted from forecast data available in the
MEDSCOPE internal archive.

library(CSTools)

infile <- list(path = '../medscope/nwalps/data/VAR_NAME_$START_DATE$_nwalps.nc')
lonlat_prec <- CST_Load('prlr', exp = list(infile), obs = NULL,

56 MergeDims

sdates = c('20101101', '20111101', '20121101'),
leadtimemin = 121, leadtimemax = 151,
latmin = 44, latmax = 47,
lonmin = 5, lonmax = 9,
nmember = 25,
storefreq = "daily", sampleperiod = 1,
output = "lonlat"
)$exp

Author(s)

Jost von Hardenberg <j.vonhardenberg@isac.cnr.it>

MergeDims Function to Split Dimension

Description

This function merges two dimensions of an array into one. The user can select the dimensions to
merge and provide the final name of the dimension. The user can select to remove NA values or
keep them.

Usage

MergeDims(
data,
merge_dims = c("time", "monthly"),
rename_dim = NULL,
na.rm = FALSE

)

Arguments

data an n-dimensional array with named dimensions
merge_dims a character vector indicating the names of the dimensions to merge
rename_dim a character string indicating the name of the output dimension. If left at NULL,

the first dimension name provided in parameter merge_dims will be used.
na.rm a logical indicating if the NA values should be removed or not.

Author(s)

Nuria Perez-Zanon, <nuria.perez@bsc.es>

Examples

data <- 1 : 20
dim(data) <- c(time = 10, lat = 2)
new_data <- MergeDims(data, merge_dims = c('time', 'lat'))

MultiEOF 57

MultiEOF EOF analysis of multiple variables starting from an array (reduced
version)

Description

This function performs EOF analysis over multiple variables, accepting in input an array with a
dimension "var" for each variable to analyse. Based on Singular Value Decomposition. For each
field the EOFs are computed and the corresponding PCs are standardized (unit variance, zero mean);
the minimum number of principal components needed to reach the user-defined variance is retained.
The function weights the input data for the latitude cosine square root.

Usage

MultiEOF(
data,
lon,
lat,
time,
lon_dim = "lon",
lat_dim = "lat",
neof_max = 40,
neof_composed = 5,
minvar = 0.6,
lon_lim = NULL,
lat_lim = NULL

)

Arguments

data A multidimensional array with dimension "var", containing the variables to be
analysed. The other diemnsions follow the same structure as the "exp" element
of a ’s2dv_cube’ object.

lon Vector of longitudes.

lat Vector of latitudes.

time Vector or matrix of dates in POSIXct format.

lon_dim String with dimension name of longitudinal coordinate

lat_dim String with dimension name of latitudinal coordinate

neof_max Maximum number of single eofs considered in the first decomposition

neof_composed Number of composed eofs to return in output

minvar Minimum variance fraction to be explained in first decomposition

lon_lim Vector with longitudinal range limits for the calculation for all input variables

lat_lim Vector with latitudinal range limits for the calculation for all input variables

58 PlotCombinedMap

Value

A list with elements $coeff (an array of time-varying principal component coefficients), $variance
(a matrix of explained variances), eof_pattern (a matrix of EOF patterns obtained by regression
for each variable).

Author(s)

Jost von Hardenberg - ISAC-CNR, <j.vonhardenberg@isac.cnr.it>

Paolo Davini - ISAC-CNR, <p.davini@isac.cnr.it>

PlotCombinedMap Plot Multiple Lon-Lat Variables In a Single Map According to a Deci-
sion Function

Description

Plot a number a two dimensional matrices with (longitude, latitude) dimensions on a single map
with the cylindrical equidistant latitude and longitude projection.

Usage

PlotCombinedMap(
maps,
lon,
lat,
map_select_fun,
display_range,
map_dim = "map",
brks = NULL,
cols = NULL,
col_unknown_map = "white",
mask = NULL,
col_mask = "grey",
bar_titles = NULL,
legend_scale = 1,
fileout = NULL,
width = 8,
height = 5,
size_units = "in",
res = 100,
...

)

PlotCombinedMap 59

Arguments

maps List of matrices to plot, each with (longitude, latitude) dimensions, or 3-dimensional
array with the dimensions (longitude, latitude, map). Dimension names are re-
quired.

lon Vector of longitudes. Must match the length of the corresponding dimension in
’maps’.

lat Vector of latitudes. Must match the length of the corresponding dimension in
’maps’.

map_select_fun Function that selects, for each grid point, which value to take among all the
provided maps. This function receives as input a vector of values for a same
grid point for all the provided maps, and must return a single selected value (not
its index!) or NA. For example, the min and max functions are accepted.

display_range Range of values to be displayed for all the maps. This must be a numeric vector
c(range min, range max). The values in the parameter ’maps’ can go beyond
the limits specified in this range. If the selected value for a given grid point
(according to ’map_select_fun’) falls outside the range, it will be coloured with
’col_unknown_map’.

map_dim Optional name for the dimension of ’maps’ along which the multiple maps are
arranged. Only applies when ’maps’ is provided as a 3-dimensional array. Takes
the value ’map’ by default.

brks Colour levels to be sent to PlotEquiMap. This parameter is optional and adjusted
automatically by the function.

cols List of vectors of colours to be sent to PlotEquiMap for the colour bar of each
map. This parameter is optional and adjusted automatically by the function (up
to 5 maps). The colours provided for each colour bar will be automatically
interpolated to match the number of breaks. Each item in this list can be named,
and the name will be used as title for the corresponding colour bar (equivalent
to the parameter ’bar_titles’).

col_unknown_map

Colour to use to paint the grid cells for which a map is not possible to be
chosen according to ’map_select_fun’ or for those values that go beyond ’dis-
play_range’. Takes the value ’white’ by default.

mask Optional numeric array with dimensions (latitude, longitude), with values in the
range [0, 1], indicating the opacity of the mask over each grid point. Cells with
a 0 will result in no mask, whereas cells with a 1 will result in a totally opaque
superimposed pixel coloured in ’col_mask’.

col_mask Colour to be used for the superimposed mask (if specified in ’mask’). Takes the
value ’grey’ by default.

bar_titles Optional vector of character strings providing the titles to be shown on top of
each of the colour bars.

legend_scale Scale factor for the size of the colour bar labels. Takes 1 by default.

fileout File where to save the plot. If not specified (default) a graphics device will pop
up. Extensions allowed: eps/ps, jpeg, png, pdf, bmp and tiff

60 PlotCombinedMap

width File width, in the units specified in the parameter size_units (inches by default).
Takes 8 by default.

height File height, in the units specified in the parameter size_units (inches by default).
Takes 5 by default.

size_units Units of the size of the device (file or window) to plot in. Inches (’in’) by default.
See ?Devices and the creator function of the corresponding device.

res Resolution of the device (file or window) to plot in. See ?Devices and the creator
function of the corresponding device.

... Additional parameters to be passed on to PlotEquiMap.

Author(s)

Nicolau Manubens, <nicolau.manubens@bsc.es>

Veronica Torralba, <veronica.torralba@bsc.es>

See Also

PlotCombinedMap and PlotEquiMap

Examples

Simple example
x <- array(1:(20 * 10), dim = c(lat = 10, lon = 20)) / 200
a <- x * 0.6
b <- (1 - x) * 0.6
c <- 1 - (a + b)
lons <- seq(0, 359.5, length = 20)
lats <- seq(-89.5, 89.5, length = 10)
PlotCombinedMap(list(a, b, c), lons, lats,

toptitle = 'Maximum map',
map_select_fun = max,
display_range = c(0, 1),
bar_titles = paste('% of belonging to', c('a', 'b', 'c')),
brks = 20, width = 10, height = 8)

Lon <- c(0:40, 350:359)
Lat <- 51:26
data <- rnorm(51 * 26 * 3)
dim(data) <- c(map = 3, lon = 51, lat = 26)
mask <- sample(c(0,1), replace = TRUE, size = 51 * 26)
dim(mask) <- c(lat = 26, lon = 51)
PlotCombinedMap(data, lon = Lon, lat = Lat, map_select_fun = max,

display_range = range(data), mask = mask,
width = 12, height = 8)

PlotForecastPDF 61

PlotForecastPDF Plot one or multiple ensemble forecast pdfs for the same event

Description

This function plots the probability distribution function of several ensemble forecasts. Separate
panels are used to plot forecasts valid or initialized at different times or by different models or even
at different locations. Probabilities for tercile categories are computed, plotted in colors and anno-
tated. An asterisk marks the tercile with higher probabilities. Probabilities for extreme categories
(above P90 and below P10) can also be included as hatched areas. Individual ensemble members
can be plotted as jittered points. The observed value is optionally shown as a diamond.

Usage

PlotForecastPDF(
fcst,
tercile.limits,
extreme.limits = NULL,
obs = NULL,
plotfile = NULL,
title = "Set a title",
var.name = "Varname (units)",
fcst.names = NULL,
add.ensmemb = c("above", "below", "no"),
color.set = c("ggplot", "s2s4e", "hydro")

)

Arguments

fcst a dataframe or array containing all the ensember members for each forecast. If
'fcst' is an array, it should have two labelled dimensions, and one of them
should be 'members'. If 'fcsts' is a data.frame, each column shoul be a sep-
arate forecast, with the rows beeing the different ensemble members.

tercile.limits an array or vector with P33 and P66 values that define the tercile categories for
each panel. Use an array of dimensions (nforecasts,2) to define different terciles
for each forecast panel, or a vector with two elements to reuse the same tercile
limits for all forecast panels.

extreme.limits (optional) an array or vector with P10 and P90 values that define the extreme
categories for each panel. Use an array of (nforecasts,2) to define different ex-
treme limits for each forecast panel, or a vector with two elements to reuse the
same tercile limits for all forecast panels. (Default: extreme categories are not
shown).

obs (optional) A vector providing the observed values for each forecast panel or a
single value that will be reused for all forecast panels. (Default: observation is
not shown).

62 PlotMostLikelyQuantileMap

plotfile (optional) a filename (pdf, png...) where the plot will be saved. (Default: the
plot is not saved).

title a string with the plot title.

var.name a string with the variable name and units.

fcst.names (optional) an array of strings with the titles of each individual forecast.

add.ensmemb either to add the ensemble members 'above' (default) or 'below' the pdf, or
not ('no').

color.set a selection of predefined color sets: use 'ggplot' (default) for blue/green/red,
's2s4e' for blue/grey/orange, or 'hydro' for yellow/gray/blue (suitable for
precipitation and inflows).

Value

a ggplot object containing the plot.

Author(s)

Llorenç Lledó <llledo@bsc.es>

Examples

fcsts <- data.frame(fcst1 = rnorm(10), fcst2 = rnorm(10, 0.5, 1.2),
fcst3 = rnorm(10, -0.5, 0.9))

PlotForecastPDF(fcsts,c(-1,1))

fcsts2 <- array(rnorm(100), dim = c(members = 20, fcst = 5))
PlotForecastPDF(fcsts2, c(-0.66, 0.66), extreme.limits = c(-1.2, 1.2),

fcst.names = paste0('random fcst ', 1 : 5), obs = 0.7)

PlotMostLikelyQuantileMap

Plot Maps of Most Likely Quantiles

Description

This function receives as main input (via the parameter probs) a collection of longitude-latitude
maps, each containing the probabilities (from 0 to 1) of the different grid cells of belonging to
a category. As many categories as maps provided as inputs are understood to exist. The maps
of probabilities must be provided on a common rectangular regular grid, and a vector with the
longitudes and a vector with the latitudes of the grid must be provided. The input maps can be
provided in two forms, either as a list of multiple two-dimensional arrays (one for each category) or
as a three-dimensional array, where one of the dimensions corresponds to the different categories.

PlotMostLikelyQuantileMap 63

Usage

PlotMostLikelyQuantileMap(
probs,
lon,
lat,
cat_dim = "bin",
bar_titles = NULL,
col_unknown_cat = "white",
...

)

Arguments

probs a list of bi-dimensional arrays with the named dimensions ’latitude’ (or ’lat’)
and ’longitude’ (or ’lon’), with equal size and in the same order, or a single
tri-dimensional array with an additional dimension (e.g. ’bin’) for the different
categories. The arrays must contain probability values between 0 and 1, and the
probabilities for all categories of a grid cell should not exceed 1 when added.

lon a numeric vector with the longitudes of the map grid, in the same order as the
values along the corresponding dimension in probs.

lat a numeric vector with the latitudes of the map grid, in the same order as the
values along the corresponding dimension in probs.

cat_dim the name of the dimension along which the different categories are stored in
probs. This only applies if probs is provided in the form of 3-dimensional
array. The default expected name is ’bin’.

bar_titles vector of character strings with the names to be drawn on top of the color bar
for each of the categories. As many titles as categories provided in probs must
be provided.

col_unknown_cat

character string with a colour representation of the colour to be used to paint the
cells for which no category can be clearly assigned. Takes the value ’white’ by
default.

... additional parameters to be sent to PlotCombinedMap and PlotEquiMap.

Author(s)

Veronica Torralba, <veronica.torralba@bsc.es>, Nicolau Manubens, <nicolau.manubens@bsc.es>

See Also

PlotCombinedMap and PlotEquiMap

Examples

Simple example
x <- array(1:(20 * 10), dim = c(lat = 10, lon = 20)) / 200
a <- x * 0.6

64 PlotMostLikelyQuantileMap

b <- (1 - x) * 0.6
c <- 1 - (a + b)
lons <- seq(0, 359.5, length = 20)
lats <- seq(-89.5, 89.5, length = 10)
PlotMostLikelyQuantileMap(list(a, b, c), lons, lats,

toptitle = 'Most likely tercile map',
bar_titles = paste('% of belonging to', c('a', 'b', 'c')),
brks = 20, width = 10, height = 8)

More complex example
n_lons <- 40
n_lats <- 20
n_timesteps <- 100
n_bins <- 4

1. Generation of sample data
lons <- seq(0, 359.5, length = n_lons)
lats <- seq(-89.5, 89.5, length = n_lats)

This function builds a 3-D gaussian at a specified point in the map.
make_gaussian <- function(lon, sd_lon, lat, sd_lat) {
w <- outer(lons, lats, function(x, y) dnorm(x, lon, sd_lon) * dnorm(y, lat, sd_lat))
min_w <- min(w)
w <- w - min_w
w <- w / max(w)
w <- t(w)
names(dim(w)) <- c('lat', 'lon')
w

}

This function generates random time series (with values ranging 1 to 5)
according to 2 input weights.
gen_data <- function(w1, w2, n) {
r <- sample(1:5, n,

prob = c(.05, .9 * w1, .05, .05, .9 * w2),
replace = TRUE)

r <- r + runif(n, -0.5, 0.5)
dim(r) <- c(time = n)
r

}

We build two 3-D gaussians.
w1 <- make_gaussian(120, 80, 20, 30)
w2 <- make_gaussian(260, 60, -10, 40)

We generate sample data (with dimensions time, lat, lon) according
to the generated gaussians
sample_data <- multiApply::Apply(list(w1, w2), NULL,

gen_data, n = n_timesteps)$output1

2. Binning sample data
prob_thresholds <- 1:n_bins / n_bins
prob_thresholds <- prob_thresholds[1:(n_bins - 1)]

PlotPDFsOLE 65

thresholds <- quantile(sample_data, prob_thresholds)

binning <- function(x, thresholds) {
n_samples <- length(x)
n_bins <- length(thresholds) + 1

thresholds <- c(thresholds, max(x))
result <- 1:n_bins
lower_threshold <- min(x) - 1
for (i in 1:n_bins) {
result[i] <- sum(x > lower_threshold & x <= thresholds[i]) / n_samples
lower_threshold <- thresholds[i]

}

dim(result) <- c(bin = n_bins)
result

}

bins <- multiApply::Apply(sample_data, 'time', binning, thresholds)$output1

3. Plotting most likely quantile/bin
PlotMostLikelyQuantileMap(bins, lons, lats,

toptitle = 'Most likely quantile map',
bar_titles = paste('% of belonging to', letters[1:n_bins]),
mask = 1 - (w1 + w2 / max(c(w1, w2))),
brks = 20, width = 10, height = 8)

PlotPDFsOLE Plotting two probability density gaussian functions and the optimal
linear estimation (OLE) as result of combining them.

Description

This function plots two probability density gaussian functions and the optimal linear estimation
(OLE) as result of combining them.

Usage

PlotPDFsOLE(
pdf_1,
pdf_2,
nsigma = 3,
plotfile = NULL,
width = 30,
height = 15,
units = "cm",
dpi = 300

)

66 PlotTriangles4Categories

Arguments

pdf_1 A numeric array with a dimension named ’statistic’, containg two parameters:
mean’ and ’standard deviation’ of the first gaussian pdf to combining.

pdf_2 A numeric array with a dimension named ’statistic’, containg two parameters:
mean’ and ’standard deviation’ of the second gaussian pdf to combining.

nsigma (optional) A numeric value for setting the limits of X axis. (Default nsigma =
3).

plotfile (optional) A filename where the plot will be saved. (Default: the plot is not
saved).

width (optional) A numeric value indicating the plot width in units ("in", "cm", or
"mm"). (Default width = 30).

height (optional) A numeric value indicating the plot height. (Default height = 15).

units (optional) A character value indicating the plot size unit. (Default units = ’cm’).

dpi (optional) A numeric value indicating the plot resolution. (Default dpi = 300).

Value

PlotPDFsOLE() returns a ggplot object containing the plot.

Author(s)

Eroteida Sanchez-Garcia - AEMET, //emailesanchezg@aemet.es

Examples

Example 1
pdf_1 <- c(1.1,0.6)
attr(pdf_1, "name") <- "NAO1"
dim(pdf_1) <- c(statistic = 2)
pdf_2 <- c(1,0.5)
attr(pdf_2, "name") <- "NAO2"
dim(pdf_2) <- c(statistic = 2)

PlotPDFsOLE(pdf_1, pdf_2)

PlotTriangles4Categories

Function to convert any 3-d numerical array to a grid of coloured
triangles.

Description

This function converts a 3-d numerical data array into a coloured grid with triangles. It is useful for
a slide or article to present tabular results as colors instead of numbers. This can be used to compare
the outputs of two or four categories (e.g. modes of variability, clusters, or forecast systems).

PlotTriangles4Categories 67

Usage

PlotTriangles4Categories(
data,
brks = NULL,
cols = NULL,
toptitle = NULL,
sig_data = NULL,
pch_sig = 18,
col_sig = "black",
cex_sig = 1,
xlab = TRUE,
ylab = TRUE,
xlabels = NULL,
xtitle = NULL,
ylabels = NULL,
ytitle = NULL,
legend = TRUE,
lab_legend = NULL,
cex_leg = 1,
col_leg = "black",
fileout = NULL,
size_units = "px",
res = 100,
figure.width = 1,
...

)

Arguments

data array with three named dimensions: ’dimx’, ’dimy’, ’dimcat’, containing the
values to be displayed in a coloured image with triangles.

brks A vector of the color bar intervals. The length must be one more than the pa-
rameter ’cols’. Use ColorBar() to generate default values.

cols A vector of valid colour identifiers for color bar. The length must be one less
than the parameter ’brks’. Use ColorBar() to generate default values.

toptitle A string of the title of the grid. Set NULL as default.

sig_data logical array with the same dimensions as ’data’ to add layers to the plot. A value
of TRUE at a grid cell will draw a dot/symbol on the corresponding triangle of
the plot. Set NULL as default.

pch_sig symbol to be used to represent sig_data. Takes 18 (diamond) by default. See
’pch’ in par() for additional accepted options.

col_sig colour of the symbol to represent sig_data.

cex_sig parameter to increase/reduce the size of the symbols used to represent sig_data.

xlab A logical value (TRUE) indicating if xlabels should be plotted

ylab A logical value (TRUE) indicating if ylabels should be plotted

68 PlotTriangles4Categories

xlabels A vector of labels of the x-axis The length must be length of the col of parameter
’data’. Set the sequence from 1 to the length of the row of parameter ’data’ as
default.

xtitle A string of title of the x-axis. Set NULL as default.

ylabels A vector of labels of the y-axis The length must be length of the row of parameter
’data’. Set the sequence from 1 to the length of the row of parameter ’data’ as
default.

ytitle A string of title of the y-axis. Set NULL as default.

legend A logical value to decide to draw the color bar legend or not. Set TRUE as
default.

lab_legend A vector of labels indicating what is represented in each category (i.e. triangle).
Set the sequence from 1 to the length of the categories (2 or 4).

cex_leg a number to indicate the increase/reductuion of the lab_legend used to represent
sig_data.

col_leg color of the legend (triangles).

fileout A string of full directory path and file name indicating where to save the plot. If
not specified (default), a graphics device will pop up.

size_units A string indicating the units of the size of the device (file or window) to plot in.
Set ’px’ as default. See ?Devices and the creator function of the corresponding
device.

res A positive number indicating resolution of the device (file or window) to plot in.
See ?Devices and the creator function of the corresponding device.

figure.width a numeric value to control the width of the plot.

... The additional parameters to be passed to function ColorBar() in s2dverification
for color legend creation.

Value

A figure in popup window by default, or saved to the specified path.

Author(s)

History:
1.0 - 2020-10 (V.Torralba, <veronica.torralba@bsc.es>) - Original code

Examples

#Example with random data
arr1<- arr1<- array(runif(n = 12 * 7 * 4, min=-1, max=1),dim = c(12,7,4))
names(dim(arr1)) <- c('dimx','dimy','dimcat')
arr2<- array(TRUE,dim = dim(arr1))
arr2[which(arr1 < 0.3)] = FALSE
PlotTriangles4Categories(data = arr1,

cols = c('white','#fef0d9','#fdd49e','#fdbb84','#fc8d59',
'#e34a33','#b30000', '#7f0000'),

brks = c(-1, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 1),

RainFARM 69

lab_legend = c('NAO+', 'BL','AR','NAO-'),
xtitle = "Target month", ytitle = "Lead time",
xlabels = c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul",

"Aug", "Sep", "Oct", "Nov", "Dec"))

RainFARM RainFARM stochastic precipitation downscaling (reduced version)

Description

This function implements the RainFARM stochastic precipitation downscaling method and accepts
in input an array with named dims ("lon", "lat") and one or more dimension (such as "ftime",
"sdate" or "time") over which to average automatically determined spectral slopes. Adapted for
climate downscaling and including orographic correction. References: Terzago, S. et al. (2018).
NHESS 18(11), 2825-2840. http://doi.org/10.5194/nhess-18-2825-2018, D’Onofrio et al. (2014), J
of Hydrometeorology 15, 830-843; Rebora et. al. (2006), JHM 7, 724.

Usage

RainFARM(
data,
lon,
lat,
nf,
weights = 1,
nens = 1,
slope = 0,
kmin = 1,
fglob = FALSE,
fsmooth = TRUE,
nprocs = 1,
time_dim = NULL,
lon_dim = "lon",
lat_dim = "lat",
drop_realization_dim = FALSE,
verbose = FALSE

)

Arguments

data Precipitation array to downscale. The input array is expected to have at least
two dimensions named "lon" and "lat" by default (these default names can be
changed with the lon_dim and lat_dim parameters) and one or more dimen-
sions over which to average these slopes, which can be specified by parameter
time_dim. The number of longitudes and latitudes in the input data is expected
to be even and the same. If not the function will perform a subsetting to ensure
this condition.

70 RainFARM

lon Vector or array of longitudes.

lat Vector or array of latitudes.

nf Refinement factor for downscaling (the output resolution is increased by this
factor).

weights Matrix with climatological weights which can be obtained using the CST_RFWeights
function. If weights=1. (default) no weights are used. The matrix should
have dimensions (lon, lat) in this order. The names of these dimensions are
not checked.

nens Number of ensemble members to produce (default: nens=1).

slope Prescribed spectral slope. The default is slope=0. meaning that the slope is
determined automatically over the dimensions specified by time_dim.

kmin First wavenumber for spectral slope (default: kmin=1).

fglob Logical to conseve global precipitation over the domain (default: FALSE)

fsmooth Logical to conserve precipitation with a smoothing kernel (default: TRUE)

nprocs The number of parallel processes to spawn for the use for parallel computation
in multiple cores. (default: 1)

time_dim String or character array with name(s) of time dimension(s) (e.g. "ftime", "sdate",
"time" ...) over which to compute spectral slopes. If a character array of dimen-
sion names is provided, the spectral slopes will be computed over all elements
belonging to those dimensions. If omitted one of c("ftime", "sdate", "time") is
searched and the first one with more than one element is chosen.

lon_dim Name of lon dimension ("lon" by default).

lat_dim Name of lat dimension ("lat" by default).
drop_realization_dim

Logical to remove the "realization" stochastic ensemble dimension (default:
FALSE) with the following behaviour if set to TRUE:
1) if nens==1: the dimension is dropped;
2) if nens>1 and a "member" dimension exists: the "realization" and "member"
dimensions are compacted (multiplied) and the resulting dimension is named
"member";
3) if nens>1 and a "member" dimension does not exist: the "realization" dimen-
sion is renamed to "member".

verbose logical for verbose output (default: FALSE).

Value

RainFARM() returns a list containing the fine-scale longitudes, latitudes and the sequence of nens
downscaled fields. If nens>1 an additional dimension named "realization" is added to the out-
put array after the "member" dimension (if it exists and unless drop_realization_dim=TRUE is
specified). The ordering of the remaining dimensions in the exp element of the input object is
maintained.

Author(s)

Jost von Hardenberg - ISAC-CNR, <j.vonhardenberg@isac.cnr.it>

RegimesAssign 71

Examples

Example for the 'reduced' RainFARM function
nf <- 8 # Choose a downscaling by factor 8
nens <- 3 # Number of ensemble members
create a test array with dimension 8x8 and 20 timesteps
or provide your own read from a netcdf file
pr <- rnorm(8 * 8 * 20)
dim(pr) <- c(lon = 8, lat = 8, ftime = 20)
lon_mat <- seq(10, 13.5, 0.5) # could also be a 2d matrix
lat_mat <- seq(40, 43.5, 0.5)
Create a test array of weights
ww <- array(1., dim = c(8 * nf, 8 * nf))
or create proper weights using an external fine-scale climatology file
Specify a weightsfn filename if you wish to save the weights
Not run:
ww <- CST_RFWeights("./worldclim.nc", nf, lon = lon_mat, lat = lat_mat,

fsmooth = TRUE)

End(Not run)
downscale using weights (ww=1. means do not use weights)
res <- RainFARM(pr, lon_mat, lat_mat, nf,

fsmooth = TRUE, fglob = FALSE,
weights = ww, nens = 2, verbose = TRUE)

str(res)
#List of 3
$ data: num [1:3, 1:20, 1:64, 1:64] 0.186 0.212 0.138 3.748 0.679 ...
$ lon : num [1:64] 9.78 9.84 9.91 9.97 10.03 ...
$ lat : num [1:64] 39.8 39.8 39.9 40 40 ...
dim(res$data)
lon lat ftime realization
64 64 20 2

RegimesAssign Function for matching a field of anomalies with a set of maps used as
a reference (e.g. clusters obtained from the WeatherRegime function).

Description

This function performs the matching between a field of anomalies and a set of maps which will be
used as a reference. The anomalies will be assigned to the reference map for which the minimum
Eucledian distance (method=’distance’) or highest spatial correlation (method=‘ACC’) is obtained.

Usage

RegimesAssign(
data,
ref_maps,
lat,

72 RegimesAssign

method = "distance",
composite = FALSE,
memb = FALSE,
ncores = NULL

)

Arguments

data an array containing anomalies with named dimensions: dataset, member, sdate,
ftime, lat and lon.

ref_maps array with 3-dimensions (’lon’, ’lat’, ’cluster’) containing the maps/clusters that
will be used as a reference for the matching.

lat a vector of latitudes corresponding to the positions provided in data and ref_maps.

method whether the matching will be performed in terms of minimum distance (default
= ’distance’) or the maximum spatial correlation (method=’ACC’) between the
maps.

composite a logical parameter indicating if the composite maps are computed or not (de-
fault=FALSE).

memb a logical value indicating whether to compute composites for separate members
(default FALSE) or as unique ensemble (TRUE). This option is only available
for when parameter ’composite’ is set to TRUE and the data object has a dimen-
sion named ’member’.

ncores the number of multicore threads to use for parallel computation.

Value

A list with elements $composite (3-d array (lon, lat, k) containing the composites k=1,..,K for case
(*1) $pvalue (array with the same structure as $composite containing the pvalue of the composites
obtained through a t-test that accounts for the serial dependence of the data with the same structure
as Composite.) (only if composite=’TRUE’), $cluster (array with the same dimensions as data
(except latitude and longitude which are removed) indicating the ref_maps to which each point is
allocated.) , $frequency (A vector of integers (from k = 1, ... k n reference maps) indicating the
percentage of assignations corresponding to each map.),

Author(s)

Verónica Torralba - BSC, <veronica.torralba@bsc.es>

References

Torralba, V. (2019) Seasonal climate prediction for the wind energy sector: methods and tools
for the development of a climate service. Thesis. Available online: https://eprints.ucm.es/
56841/

https://eprints.ucm.es/56841/
https://eprints.ucm.es/56841/

RFSlope 73

Examples

Not run:
regimes <- WeatherRegime(data = lonlat_dataobsdata, lat = lonlat_dataobslat,

EOFs = FALSE, ncenters = 4)$composite
res1 <- RegimesAssign(data = lonlat_dataexpdata, ref_maps = drop(regimes),

lat = lonlat_dataexplat, composite = FALSE)

End(Not run)

RFSlope RainFARM spectral slopes from an array (reduced version)

Description

This function computes spatial spectral slopes from an array, to be used for RainFARM stochastic
precipitation downscaling method.

Usage

RFSlope(data, kmin = 1, time_dim = NULL, lon_dim = "lon", lat_dim = "lat")

Arguments

data Array containing the spatial precipitation fields to downscale. The input array is
expected to have at least two dimensions named "lon" and "lat" by default (these
default names can be changed with the lon_dim and lat_dim parameters) and
one or more dimensions over which to average the slopes, which can be specified
by parameter time_dim.

kmin First wavenumber for spectral slope (default kmin=1).

time_dim String or character array with name(s) of dimension(s) (e.g. "ftime", "sdate",
"member" ...) over which to compute spectral slopes. If a character array of
dimension names is provided, the spectral slopes will be computed as an average
over all elements belonging to those dimensions. If omitted one of c("ftime",
"sdate", "time") is searched and the first one with more than one element is
chosen.

lon_dim Name of lon dimension ("lon" by default).

lat_dim Name of lat dimension ("lat" by default).

Value

RFSlope() returns spectral slopes using the RainFARM convention (the logarithmic slope of k*|A(k)|^2
where A(k) are the spectral amplitudes). The returned array has the same dimensions as the input
array, minus the dimensions specified by lon_dim, lat_dim and time_dim.

Author(s)

Jost von Hardenberg - ISAC-CNR, <j.vonhardenberg@isac.cnr.it>

74 RFTemp

Examples

Example for the 'reduced' RFSlope function
Create a test array with dimension 8x8 and 20 timesteps,
3 starting dates and 20 ensemble members.
pr <- 1:(4*3*8*8*20)
dim(pr) <- c(ensemble = 4, sdate = 3, lon = 8, lat = 8, ftime = 20)

Compute the spectral slopes ignoring the wavenumber
corresponding to the largest scale (the box)
slopes <- RFSlope(pr, kmin=2)
dim(slopes)
ensemble sdate
4 3
slopes
[,1] [,2] [,3]
#[1,] 1.893503 1.893503 1.893503
#[2,] 1.893503 1.893503 1.893503
#[3,] 1.893503 1.893503 1.893503
#[4,] 1.893503 1.893503 1.893503

RFTemp Temperature downscaling of a CSTools object using lapse rate correc-
tion (reduced version)

Description

This function implements a simple lapse rate correction of a temperature field (a multidimensional
array) as input. The input lon grid must be increasing (but can be modulo 360). The input lat grid
can be irregularly spaced (e.g. a Gaussian grid) The output grid can be irregularly spaced in lon
and/or lat.

Usage

RFTemp(
data,
lon,
lat,
oro,
lonoro,
latoro,
xlim = NULL,
ylim = NULL,
lapse = 6.5,
lon_dim = "lon",
lat_dim = "lat",
time_dim = NULL,
nolapse = FALSE,
verbose = FALSE,

RFTemp 75

compute_delta = FALSE,
method = "bilinear",
delta = NULL

)

Arguments

data Temperature array to downscale. The input array is expected to have at least
two dimensions named "lon" and "lat" by default (these default names can be
changed with the lon_dim and lat_dim parameters)

lon Vector or array of longitudes.

lat Vector or array of latitudes.

oro Array containing fine-scale orography (in m) The destination downscaling area
must be contained in the orography field.

lonoro Vector or array of longitudes corresponding to the fine orography.

latoro Vector or array of latitudes corresponding to the fine orography.

xlim vector with longitude bounds for downscaling; the full input field is downscaled
if ‘xlim‘ and ‘ylim‘ are not specified.

ylim vector with latitude bounds for downscaling

lapse float with environmental lapse rate

lon_dim string with name of longitude dimension

lat_dim string with name of latitude dimension

time_dim a vector of character string indicating the name of temporal dimension. By
default, it is set to NULL and it considers "ftime", "sdate" and "time" as temporal
dimensions.

nolapse logical, if true ‘oro‘ is interpreted as a fine-scale climatology and used directly
for bias correction

verbose logical if to print diagnostic output

compute_delta logical if true returns only a delta to be used for out-of-sample forecasts.

method string indicating the method used for interpolation: "nearest" (nearest neigh-
bours followed by smoothing with a circular uniform weights kernel), "bilinear"
(bilinear interpolation) The two methods provide similar results, but nearest is
slightly better provided that the fine-scale grid is correctly centered as a subdi-
vision of the large-scale grid

delta matrix containing a delta to be applied to the downscaled input data. The grid
of this matrix is supposed to be same as that of the required output field

Value

CST_RFTemp() returns a downscaled CSTools object

RFTemp() returns a list containing the fine-scale longitudes, latitudes and the downscaled fields.

Author(s)

Jost von Hardenberg - ISAC-CNR, <j.vonhardenberg@isac.cnr.it>

76 s2dv_cube

References

Method described in ERA4CS MEDSCOPE milestone M3.2: High-quality climate prediction data
available to WP4 [https://www.medscope-project.eu/the-project/deliverables-reports/]([https://www.medscope-
project.eu/the-project/deliverables-reports/) and in H2020 ECOPOTENTIAL Deliverable No. 8.1:
High resolution (1-10 km) climate, land use and ocean change scenarios [https://www.ecopotential-
project.eu/images/ecopotential/documents/D8.1.pdf](https://www.ecopotential-project.eu/images/ecopotential/documents/D8.1.pdf)

Examples

Generate simple synthetic data and downscale by factor 4
t <- rnorm(7 * 6 * 4 * 3) * 10 + 273.15 + 10
dim(t) <- c(sdate = 3, ftime = 4, lat = 6, lon = 7)
lon <- seq(3, 9, 1)
lat <- seq(42, 47, 1)
o <- runif(29 * 29) * 3000
dim(o) <- c(lat = 29, lon = 29)
lono <- seq(3, 10, 0.25)
lato <- seq(41, 48, 0.25)
res <- RFTemp(t, lon, lat, o, lono, lato, xlim = c(4, 8), ylim = c(43, 46),

lapse = 6.5)

s2dv_cube Creation of a ’s2dv_cube’ object

Description

This function allows to create a ’s2dv_cube’ object by passing information through its parameters.
This function will be needed if the data hasn’t been loaded using CST_Load or has been transformed
with other methods. A ’s2dv_cube’ object has many different components including metadata. This
function will allow to create ’s2dv_cube’ objects even if not all elements are defined and for each
expected missed parameter a warning message will be returned.

Usage

s2dv_cube(
data,
lon = NULL,
lat = NULL,
Variable = NULL,
Datasets = NULL,
Dates = NULL,
when = NULL,
source_files = NULL

)

s2dv_cube 77

Arguments

data an array with any number of named dimensions, typically an object output from
CST_Load, with the following dimensions: dataset, member, sdate, ftime, lat
and lon.

lon an array with one dimension containing the longitudes and attributes: dim,
cdo_grid_name, data_across_gw, array_across_gw, first_lon, last_lon and pro-
jection.

lat an array with one dimension containing the latitudes and attributes: dim, cdo_grid_name,
first_lat, last_lat and projection.

Variable a list of two elements: varName a character string indicating the abbreviation of
a variable name and level a character string indicating the level (e.g., "2m"), if
it is not required it could be set as NULL.

Datasets a named list with the dataset model with two elements: InitiatlizationDates,
containing a list of the start dates for each member named with the names of
each member, and Members containing a vector with the member names (e.g.,
"Member_1")

Dates a named list of two elements: start, an array of dimensions (sdate, time) with
the POSIX initial date of each forecast time of each starting date, and end, an
array of dimensions (sdate, time) with the POSIX final date of each forecast time
of each starting date.

when a time stamp of the date issued by the Load() call to obtain the data.

source_files a vector of character strings with complete paths to all the found files involved
in the Load() call.

Value

The function returns an object of class ’s2dv_cube’.

Author(s)

Perez-Zanon Nuria, <nuria.perez@bsc.es>

See Also

Load and CST_Load

Examples

exp_original <- 1:100
dim(exp_original) <- c(lat = 2, time = 10, lon = 5)
exp1 <- s2dv_cube(data = exp_original)
class(exp1)
exp2 <- s2dv_cube(data = exp_original, lon = seq(-10, 10, 5), lat = c(45, 50))
class(exp2)
exp3 <- s2dv_cube(data = exp_original, lon = seq(-10, 10, 5), lat = c(45, 50),

Variable = list(varName = 'tas', level = '2m'))
class(exp3)

78 SaveExp

exp4 <- s2dv_cube(data = exp_original, lon = seq(-10, 10, 5), lat = c(45, 50),
Variable = list(varName = 'tas', level = '2m'),
Dates = list(start = paste0(rep("01", 10), rep("01", 10), 1990:1999),

end = paste0(rep("31", 10), rep("01", 10), 1990:1999)))
class(exp4)
exp5 <- s2dv_cube(data = exp_original, lon = seq(-10, 10, 5), lat = c(45, 50),

Variable = list(varName = 'tas', level = '2m'),
Dates = list(start = paste0(rep("01", 10), rep("01", 10), 1990:1999),

end = paste0(rep("31", 10), rep("01", 10), 1990:1999)),
when = "2019-10-23 19:15:29 CET")

class(exp5)
exp6 <- s2dv_cube(data = exp_original, lon = seq(-10, 10, 5), lat = c(45, 50),

Variable = list(varName = 'tas', level = '2m'),
Dates = list(start = paste0(rep("01", 10), rep("01", 10), 1990:1999),

end = paste0(rep("31", 10), rep("01", 10), 1990:1999)),
when = "2019-10-23 19:15:29 CET",
source_files = c("/path/to/file1.nc", "/path/to/file2.nc"))

class(exp6)
exp7 <- s2dv_cube(data = exp_original, lon = seq(-10, 10, 5), lat = c(45, 50),

Variable = list(varName = 'tas', level = '2m'),
Dates = list(start = paste0(rep("01", 10), rep("01", 10), 1990:1999),

end = paste0(rep("31", 10), rep("01", 10), 1990:1999)),
when = "2019-10-23 19:15:29 CET",
source_files = c("/path/to/file1.nc", "/path/to/file2.nc"),
Datasets = list(

exp1 = list(InitializationsDates = list(Member_1 = "01011990",
Members = "Member_1"))))

class(exp7)
dim(exp_original) <- c(dataset = 1, member = 1, sdate = 2, ftime = 5, lat = 2, lon = 5)
exp8 <- s2dv_cube(data = exp_original, lon = seq(-10, 10, 5), lat = c(45, 50),

Variable = list(varName = 'tas', level = '2m'),
Dates = list(start = paste0(rep("01", 10), rep("01", 10), 1990:1999),

end = paste0(rep("31", 10), rep("01", 10), 1990:1999)))
class(exp8)

SaveExp Save an experiment in a format compatible with CST_Load

Description

This function is created for compatibility with CST_Load/Load for saving post-processed datasets
such as those calibrated of downscaled with CSTools functions

Usage

SaveExp(
data,
lon,
lat,
Dataset,

SaveExp 79

var_name,
units,
startdates,
Dates,
cdo_grid_name,
projection,
destination

)

Arguments

data an multi-dimensional array with named dimensions (longitude, latitude, time,
member, sdate)

lon vector of logitud corresponding to the longitudinal dimension in data

lat vector of latitud corresponding to the latitudinal dimension in data

Dataset a vector of character string indicating the names of the datasets

var_name a character string indicating the name of the variable to be saved

units a character string indicating the units of the variable

startdates a vector of dates indicating the initialization date of each simulations

Dates a matrix of dates with two dimension ’time’ and ’sdate’.

cdo_grid_name a character string indicating the name of the grid e.g.: ’r360x181’

projection a character string indicating the projection name

destination a character string indicating the path where to store the NetCDF files

Value

the function creates as many files as sdates per dataset. Each file could contain multiple members
The path will be created with the name of the variable and each Datasets.

Author(s)

Perez-Zanon Nuria, <nuria.perez@bsc.es>

Examples

Not run:
data <- lonlat_dataexpdata
lon <- lonlat_dataexplon
lat <- lonlat_dataexplat
Dataset <- 'XXX'
var_name <- 'tas'
units <- 'k'
startdates <- lapply(1:length(lonlat_dataexpDatasets),

function(x) {
lonlat_dataexpDatasets[[x]]$InitializationDates[[1]]})[[1]]

Dates <- lonlat_dataexpDates$start
dim(Dates) <- c(time = length(Dates)/length(startdates), sdate = length(startdates))

80 SplitDim

cdo_grid_name = attr(lonlat_dataexplon, 'cdo_grid_name')
projection = attr(lonlat_dataexplon, 'projection')
destination = './path/'
SaveExp(data, lon, lat, Dataset, var_name, units, startdates, Dates,

cdo_grid_name, projection, destination)

End(Not run)

SplitDim Function to Split Dimension

Description

This function split a dimension in two. The user can select the dimension to split and provide
indices indicating how to split that dimension or dates and the frequency expected (monthly or by
day, month and year). The user can also provide a numeric frequency indicating the length of each
division.

Usage

SplitDim(data, split_dim = "time", indices, freq = "monthly")

Arguments

data an n-dimensional array with named dimensions

split_dim a character string indicating the name of the dimension to split

indices a vector of numeric indices or dates

freq a character string indicating the frequency: by ’day’, ’month’ and ’year’ or
’monthly’ (by default). ’month’ identifies months between 1 and 12 indepen-
detly of the year they belong to, while ’monthly’ differenciates months from
different years. Parameter ’freq’ can also be numeric indicating the length in
which to subset the dimension

Author(s)

Nuria Perez-Zanon, <nuria.perez@bsc.es>

Examples

data <- 1 : 20
dim(data) <- c(time = 10, lat = 2)
indices <- c(rep(1,5), rep(2,5))
new_data <- SplitDim(data, indices = indices)
time <- c(seq(ISOdate(1903, 1, 1), ISOdate(1903, 1, 4), "days"),

seq(ISOdate(1903, 2, 1), ISOdate(1903, 2, 4), "days"),
seq(ISOdate(1904, 1, 1), ISOdate(1904, 1, 2), "days"))

new_data <- SplitDim(data, indices = time)

WeatherRegime 81

new_data <- SplitDim(data, indices = time, freq = 'day')
new_data <- SplitDim(data, indices = time, freq = 'month')
new_data <- SplitDim(data, indices = time, freq = 'year')

WeatherRegime Function for Calculating the Cluster analysis

Description

This function computes the weather regimes from a cluster analysis. It can be applied over the
dataset with dimensions c(year/month, month/day, lon, lat), or by using PCs obtained from the
application of the EOFs analysis to filter the dataset. The cluster analysis can be performed with
the traditional k-means or those methods included in the hclust (stats package).

Usage

WeatherRegime(
data,
ncenters = NULL,
EOFs = TRUE,
neofs = 30,
varThreshold = NULL,
lon = NULL,
lat = NULL,
method = "kmeans",
iter.max = 100,
nstart = 30,
ncores = NULL

)

Arguments

data an array containing anomalies with named dimensions with at least start date
’sdate’, forecast time ’ftime’, latitude ’lat’ and longitude ’lon’.

ncenters Number of clusters to be calculated with the clustering function.

EOFs Whether to compute the EOFs (default = ’TRUE’) or not (FALSE) to filter the
data.

neofs number of modes to be kept only if EOFs = TRUE has been selected. (default =
30).

varThreshold Value with the percentage of variance to be explained by the PCs. Only sufficient
PCs to explain this much variance will be used in the clustering.

lon Vector of longitudes.

lat Vector of latitudes.

82 WeatherRegime

method Different options to estimate the clusters. The most traditional approach is the
k-means analysis (default=’kmeans’) but the function also support the different
methods included in the hclust . These methods are: "ward.D", "ward.D2", "sin-
gle", "complete", "average" (= UPGMA), "mcquitty" (= WPGMA), "median" (=
WPGMC) or "centroid" (= UPGMC). For more details about these methods see
the hclust function documentation included in the stats package.

iter.max Parameter to select the maximum number of iterations allowed (Only if method=’kmeans’
is selected).

nstart Parameter for the cluster analysis determining how many random sets to choose
(Only if method=’kmeans’ is selected).

ncores The number of multicore threads to use for parallel computation.

Value

A list with elements $composite (array with at least 3-d (’lat’, ’lon’, ’cluster’) containing the
composites k=1,..,K for case (*1) pvalue (array with at least 3-d (’lat’,’lon’,’cluster’) with the
pvalue of the composites obtained through a t-test that accounts for the serial cluster (A matrix
or vector with integers (from 1:k) indicating the cluster to which each time step is allocated.),
persistence (Percentage of days in a month/season before a cluster is replaced for a new one
(only if method=’kmeans’ has been selected.)), frequency (Percentage of days in a month/season
belonging to each cluster (only if method=’kmeans’ has been selected).),

Author(s)

Verónica Torralba - BSC, <veronica.torralba@bsc.es>

References

Cortesi, N., V., Torralba, N., González-Reviriego, A., Soret, and F.J., Doblas-Reyes (2019). Char-
acterization of European wind speed variability using weather regimes. Climate Dynamics,53,
4961–4976, doi:10.1007/s00382-019-04839-5.

Torralba, V. (2019) Seasonal climate prediction for the wind energy sector: methods and tools
for the development of a climate service. Thesis. Available online: https://eprints.ucm.es/
56841/

Examples

Not run:
res <- WeatherRegime(data = lonlat_dataobsdata, lat = lonlat_dataobslat,

EOFs = FALSE, ncenters = 4)

End(Not run)

https://eprints.ucm.es/56841/
https://eprints.ucm.es/56841/

Index

∗ data
areave_data, 11
lonlat_data, 54
lonlat_prec, 55

Analogs, 3
Ano_CrossValid, 21
areave_data, 11
as.s2dv_cube, 12, 49

BEI_PDFBest, 13
BEI_Weights, 15

Calibration, 17
CDORemap, 20
Clim, 21
Corr, 36
CST_Analogs, 18
CST_Anomaly, 20
CST_BEI_Weighting, 22
CST_BiasCorrection, 24
CST_Calibration, 25
CST_CategoricalEnsCombination, 26
CST_EnsClustering, 29
CST_Load, 12, 18, 20, 21, 26, 31, 36, 37, 49, 77
CST_MergeDims, 33
CST_MultiEOF, 34
CST_MultiMetric, 35
CST_MultivarRMSE, 37
CST_QuantileMapping, 38
CST_RainFARM, 40
CST_RegimesAssign, 43
CST_RFSlope, 44
CST_RFTemp, 45
CST_RFWeights, 47
CST_SaveExp, 49
CST_SplitDim, 50
CST_WeatherRegimes, 51

EnsClustering, 52

Load, 12, 20, 77
lonlat_data, 54
lonlat_prec, 55

MergeDims, 56
MultiEOF, 57

PlotCombinedMap, 58
PlotForecastPDF, 61
PlotMostLikelyQuantileMap, 62
PlotPDFsOLE, 65
PlotTriangles4Categories, 66

RainFARM, 69
RegimesAssign, 71
RFSlope, 73
RFTemp, 74
RMS, 36, 37
RMSSS, 36

s2dv_cube, 12, 49, 76
SaveExp, 78
SplitDim, 80
Start, 12

WeatherRegime, 81

83

	Analogs
	areave_data
	as.s2dv_cube
	BEI_PDFBest
	BEI_Weights
	Calibration
	CST_Analogs
	CST_Anomaly
	CST_BEI_Weighting
	CST_BiasCorrection
	CST_Calibration
	CST_CategoricalEnsCombination
	CST_EnsClustering
	CST_Load
	CST_MergeDims
	CST_MultiEOF
	CST_MultiMetric
	CST_MultivarRMSE
	CST_QuantileMapping
	CST_RainFARM
	CST_RegimesAssign
	CST_RFSlope
	CST_RFTemp
	CST_RFWeights
	CST_SaveExp
	CST_SplitDim
	CST_WeatherRegimes
	EnsClustering
	lonlat_data
	lonlat_prec
	MergeDims
	MultiEOF
	PlotCombinedMap
	PlotForecastPDF
	PlotMostLikelyQuantileMap
	PlotPDFsOLE
	PlotTriangles4Categories
	RainFARM
	RegimesAssign
	RFSlope
	RFTemp
	s2dv_cube
	SaveExp
	SplitDim
	WeatherRegime
	Index

