
Package ‘CMF’
March 14, 2020

Type Package

Title Collective Matrix Factorization

Version 1.0.2

Date 2020-03-12

Description Collective matrix factorization (CMF) finds joint low-rank
representations for a collection of matrices with shared row or column
entities. This code learns a variational Bayesian approximation for CMF,
supporting multiple likelihood potentials and missing data, while
identifying both factors shared by multiple matrices and factors private
for each matrix. For further details on the method see
Klami et al. (2014) <arXiv:1312.5921>.
The package can also be used to learn Bayesian canonical correlation
analysis (CCA) and group factor analysis (GFA) models, both of which are
special cases of CMF. This is likely to be useful for people looking for
CCA and GFA solutions supporting missing data and non-Gaussian likelihoods.
See Klami et al. (2013) <http://www.jmlr.org/papers/v14/klami13a.html> and
Virtanen et al. (2012) <http://proceedings.mlr.press/v22/virtanen12.html>
for details on Bayesian CCA and GFA, respectively.

License GPL (>= 2)

Imports Rcpp, stats

LinkingTo Rcpp

Encoding UTF-8

NeedsCompilation yes

RoxygenNote 7.1.0

Author Arto Klami [aut],
Lauri Väre [aut],
Felix Held [ctb, cre]

Maintainer Felix Held <felix.held@chalmers.se>

Repository CRAN

Date/Publication 2020-03-13 23:00:15 UTC

1

2 CMF-package

R topics documented:
CMF-package . 2
CMF . 4
getCMFopts . 6
matrix_to_triplets . 7
predictCMF . 8
triplets_to_matrix . 9

Index 11

CMF-package Collective Matrix Factorization (CMF)

Description

Collective matrix factorization (CMF) finds joint low-rank representations for a collection of matri-
ces with shared row or column entities. This package learns a variational Bayesian approximation
for CMF, supporting multiple likelihood potentials and missing data, while identifying both factors
shared by multiple matrices and factors private for each matrix.

Details

This package implements a variational Bayesian approximation for CMF, following the presentation
in "Group-sparse embeddings in collective matrix factorization" (see references below).

The main functionality is provided by the function CMF that is used for learning the model, and by
the function predictCMF that estimates missing entries based on the learned model. These functions
take as input lists of matrices in a specific sparse format that stores only the observed entries but
that explicitly stores zeroes (unlike most sparse matrix representations). For converting between
regular matrices and this sparse format see matrix_to_triplets and triplets_to_matrix.

The package can also be used to learn Bayesian canonical correlation analysis (CCA) and group
factor analysis (GFA) models, both of which are special cases of CMF. This is likely to be useful for
people looking for CCA and GFA solutions supporting missing data and non-Gaussian likelihoods.

Author(s)

Arto Klami <arto.klami@cs.helsinki.fi> and Lauri Väre

Maintainer: Felix Held <felix.held@chalmers.se>

References

Arto Klami, Guillaume Bouchard, and Abhishek Tripathi. Group-sparse embeddings in collective
matrix factorization. arXiv:1312.5921, 2013.

Arto Klami, Seppo Virtanen, and Samuel Kaski. Bayesian canonical correlation analysis. Journal
of Machine Learning Research, 14(1):965–1003, 2013.

Seppo Virtanen, Arto Klami, Suleiman A. Khan, and Samuel Kaski. Bayesian group factor analysis.
In Proceedings of the 15th International Conference on Artificial Intelligence and Statistics, volume
22 of JMLR:W&CP, pages 1269-1277, 2012.

CMF-package 3

Examples

require("CMF")
Create data for a circular setup with three matrices and three
object sets of varying sizes.
X <- list()
D <- c(10,20,30)
inds <- matrix(0,nrow=3,ncol=2)

Matrix 1 is between sets 1 and 2 and has continuous data
inds[1,] <- c(1,2)
X[[1]] <- matrix(rnorm(D[inds[1,1]]*D[inds[1,2]],0,1),nrow=D[inds[1,1]])

Matrix 2 is between sets 1 and 3 and has binary data
inds[2,] <- c(1,3)
X[[2]] <- matrix(round(runif(D[inds[2,1]]*D[inds[2,2]],0,1)),nrow=D[inds[2,1]])

Matrix 3 is between sets 2 and 3 and has count data
inds[3,] <- c(2,3)
X[[3]] <- matrix(round(runif(D[inds[3,1]]*D[inds[3,2]],0,6)),nrow=D[inds[3,1]])

Convert the data into the right format
triplets <- list()
for(m in 1:3) triplets[[m]] <- matrix_to_triplets(X[[m]])

Missing entries correspond to missing rows in the triple representation
so they can be removed from training data by simply taking a subset
of the rows.
train <- list()
test <- list()
keepForTraining <- c(100,200,300)
for(m in 1:3) {
subset <- sample(nrow(triplets[[m]]))[1:keepForTraining[m]]
train[[m]] <- triplets[[m]][subset,]
test[[m]] <- triplets[[m]][setdiff(1:nrow(triplets[[m]]),subset),]

}

Learn the model with the correct likelihoods
K <- 4
likelihood <- c("gaussian","bernoulli","poisson")
opts <- getCMFopts()
opts$iter.max <- 10 # Less iterations for faster computation
model <- CMF(train,inds,K,likelihood,D,test=test,opts=opts)

Check the predictions
Note that the data created here has no low-rank structure,
so we should not expect good accuracy.
print(test[[1]][1:3,])
print(model$out[[1]][1:3,])

predictions for the test set using the previously learned model
out <- predictCMF(test, model)
print(out$out[[1]][1:3,])

4 CMF

print(out$error[[1]])
...this should be the same as the output provided by CMF()
print(model$out[[1]][1:3,])

CMF Collective Matrix Factorization

Description

Learns the CMF model for a given collection of M matrices. The code learns the parameters of a
variational approximation for CMF, and also computes predictions for indices specified in test.

Usage

CMF(X, inds, K, likelihood, D, test = NULL, opts = NULL)

Arguments

X List of input matrices.

inds A length(X) times 2 matrix that links dimensions of the matrices in X to object
sets. inds[m,1] tells which object set corresponds to the rows in matrix X[[m]],
and inds[m,2] tells the same for the columns.

K The number of factors.

likelihood A list of likelihood choices, one for each matrix in X. Each entry should be a
string with possible values of: "gaussian", "bernoulli" or "poisson".

D A vector containing sizes of each object set.

test A list of test matrices. If not NULL, the code will compute predictions for these
elements of the matrices. This duplicates the functionality of predictCMF.

opts A list of options as given by getCMFopts. If set to NULL, the default values will
be used.

Details

The variational approximation is fully factorized over all of the model parameters, including indi-
vidual elements of the projection matrices. The parameters for the projection matrices are updated
jointly by Newton-Raphson method, whereas the rest use closed-form updates.

Note that the input data needs to be given in a specific sparse format. See matrix_to_triplets
for details.

The behavior of the algorithm can be modified via the opts parameter. See getCMFopts for details.
Of particular interest are the elements useBias and method.

For full description of the output parameters, see the referred publication. The notation in the code
follows roughly the notation used in the paper.

CMF 5

Value

A list of

U A list of the mean parameters for the rank-K projection matrices, one for each
object set.

covU A list of the variance parameters for the rank-K projection matrices, one for each
object set.

tau A vector of the precision parameter means.

alpha A vector of the ARD parameter means.

cost A vector of variational lower bound values.

inds The input parameter inds stored for further use.

errors A vector containing root-mean-square errors for each iteration, computed over
the elements indicated by the test parameter.

bias A list (of lists) storing the parameters of the row and column bias terms.

D The sizes of the object sets as given in the parameters.

K The number of components as given in the parameters.

Uall Matrices of U joined into one sum(D) by K matrix, for easier plotting of the
results.

items A list containing the running number for each item among all object sets. This
corresponds to rows of the Uall matrix. Each part of the list contains a vector
that has the numbers for each particular object set.

out If test matrices were provided, returns the reconstructed data sets. Otherwise
returns NULL.

M The number of input matrices.

likelihood The likelihoods of the matrices.

opts The options used for running the code.

Author(s)

Arto Klami and Lauri Väre

References

Arto Klami, Guillaume Bouchard, and Abhishek Tripathi. Group-sparse embeddings in collective
matrix factorization. arXiv:1312.5921, 2014.

Examples

See CMF-package for an example.

6 getCMFopts

getCMFopts Default options for CMF

Description

A helper function that creates a list of options to be passed to CMF. To run the code with other option
values, first run this function and then directly modify the entries before passing the list to CMF.

Usage

getCMFopts()

Details

Most of the parameters are for controlling the optimization, but some will alter the model itself. In
particular, useBias is used for turning the bias terms on and off, and method will change the prior
for U.

The default choice for method is "gCMF", providing the group-wise sparse CMF that identifies both
shared and private factors (see Klami et al. (2013) for details). The value "CMF" turns off the group-
wise sparsity, providing a CMF solution that attempts to learn only factors shared by all matrices.
Finally, method="GFA" implements the group factor analysis (GFA) method, by fixing the variance
of U[[1]] to one and forcing useBias=FALSE. Then U[[1]] can be interpreted as latent variables
with unit variance and zero mean, as assumed by GFA and CCA (special case of GFA with M=2).
Note that as a multi-view learning method "GFA" requires all matrices to share the same rows, the
very first entity set.

Value

Returns a list of:

init.tau Initial value for the noise precisions. Only matters for Gaussian likelihood.

init.alpha Initial value for the automatic relevance determination (ARD) prior precisions.

grad.reg The regularization parameter for the under-relaxed Newton iterations. 0 = no
regularization, larger values provide increasing regularization. The value must
be below 1.

gradIter How many gradient steps for updating the projections are performed during each
iteration of the whole algorithm. Default is 1.

grad.max Maximum absolute change for the elements of the projection matrices during
one gradient step. Small values help to prevent over-shooting, wheres inf results
to no constraints. Default is inf.

iter.max Number of iterations for the whole algorithm.

computeCost Should the cost function values be computed or not. Defaults to TRUE.

verbose 0 = supress all printing, 1 = print current iteration and test RMSE every now and
then, 2 = in addition to level 1 print also the current gradient norm.

useBias Set this to FALSE to exclude the row and column bias terms. The default is TRUE.

matrix_to_triplets 7

method Default value of "gCMF" computes the CMF with group-sparsity. The other
possible values are "CMF" for turning off the group-sparsity prior, and "GFA"
for implementing group factor analysis (and canonical correlation analysis when
M = 2).

prior.alpha_0 Hyperprior values for the gamma prior for ARD.

prior.alpha_0t Hyperprior values for the gamma prior for tau.

Author(s)

Arto Klami and Lauri Väre

References

Arto Klami, Guillaume Bouchard, and Abhishek Tripathi. Group-sparse embeddings in collective
matrix factorization. arXiv:1312.5921, 2014.

Seppo Virtanen, Arto Klami, Suleiman A. Khan, and Samuel Kaski. Bayesian group factor analysis.
In Proceedings of the 15th International Conference on Artificial Intelligence and Statistics, volume
22 of JMLR:W&CP, pages 1269-1277, 2012.

See Also

’CMF’

Examples

CMF_options = getCMFopts()
CMF_options$iter.max = 500 # Change the number of iterations from default

of 200 to 500.
CMF_options$useBias = FALSE # Do not take row and column means into

consideration.
These options will be in effect when CMF_options is passed on to CMF.

matrix_to_triplets Conversion from matrix to coordinate/triplet format

Description

The CMF code requires inputs to be speficied in a specific sparse format. This function converts
regular R matrices into that format.

Usage

matrix_to_triplets(orig)

8 predictCMF

Arguments

orig A matrix of class matrix

Details

The element X[i,j] on the i:th row and j:t column is represented as a triple (i,j,X[i,k]). The input for
CMF is then a matrix where each row specifies one element, and hence the representation is of size
Nx3, where N is the total number of observed entries.

In the original input matrix the missing entries should be marked as NA. In the output they will be
completely omitted.

Even though this format reminds the representation often used for representing sparse matrices, it
is important to notice that observed zeroes are retained in the representation. The elements missing
from this representation are considered unknown, not zero.

Value

The input matrix in triplet/coordinate format.

Author(s)

Arto Klami and Lauri Väre

See Also

triplets_to_matrix

Examples

x <- matrix(c(1,2,NA,NA,5,6),nrow=3)
triplet <- matrix_to_triplets(x)
print(triplet)

predictCMF Predict with CMF

Description

Code for predicting missing elements with an existing CMF model. The predictions are made for
all of the elements specified in the list of input matrices X. The function also returns the root mean
square error (RMSE) between the predicted outputs and the values provided in X.

Usage

predictCMF(X, model)

triplets_to_matrix 9

Arguments

X A list of sparse matrices specifying the indices for which to make the predic-
tions. These matrices must correspond to the structure used for X when learning
the model with CMF.

model A list of model parameter values provided by CMF.

Details

Note that X needs to be provided as a set of triplets instead of as a regular matrix. See matrix_to_triplets.

Value

A list of

out A list of matrices corresponding to predictions for each matrix in X.

error A vector containing the root-mean-square error for each matrix separately.

Author(s)

Arto Klami and Lauri Väre

Examples

See CMF-package for an example.

triplets_to_matrix Conversion from triplet/coordinate format to matrix

Description

This function is the inverse of matrix_to_triplets. It converts a matrix represented as a set of
triplets into an object of the class matrix. The missing entries (the ones not present in the triplet
representation) are filled in as NA.

Usage

triplets_to_matrix(triplets)

Arguments

triplets A matrix in triplet/coordinate format

Details

See matrix_to_triplets for a description of the representation.

10 triplets_to_matrix

Value

The input matrix as a normal matrix of class matrix

Author(s)

Arto Klami and Lauri Väre

See Also

matrix_to_triplets

Examples

x <- matrix(c(1,2,NA,NA,5,6),nrow=3)
triplet <- matrix_to_triplets(x)
print(triplet)
xnew <- triplets_to_matrix(triplet)
print(xnew)

Index

CMF, 2, 4
CMF-package, 2

getCMFopts, 4, 6

matrix_to_triplets, 2, 4, 7, 9, 10

predictCMF, 2, 4, 8

triplets_to_matrix, 2, 8, 9

11

	CMF-package
	CMF
	getCMFopts
	matrix_to_triplets
	predictCMF
	triplets_to_matrix
	Index

