
The CLVTools Package

1 Walkthrough for the CLVTools package

1.1 Setup the R environment

Install the stable version from CRAN:
install.packages("CLVTools")

Install the development version from GitHub (using the devtools (Wickham, Hester, and Chang 2019)
package):
install.packages("devtools")
devtools::install_github("bachmannpatrick/CLVTools", ref = "master")

Load the package
library("CLVTools")

2 Load sample data provided in the package

As Input data CLVTools requires customers’ transaction history. Every transaction record consists of a
purchase date and customer ID. Optionally, the price of the transaction may be included to allow for
prediction of future customer spending using an additional Gamma/Gamma model(Fader, Hardie, and Lee
2005b; Colombo and Jiang 1999). Using the full history of transaction data allows for comprehensive plots
and summary statistics, which allow the identification of possible issues prior to model estimation. Data
may be provided as data.frame or data.table (Dowle and Srinivasan 2019).

It is common practice to split time series data into two parts, an estimation and a holdout period. The
model is estimated based on the data from the estimation period while the data from the holdout period
allows to rigorously assess model performance. Once model performance is checked on known data one can
proceed to predict data without a holdout period. The length of the estimation period is heavily dependent
on the characteristics of the analyzed dataset. We recommend to choose an estimation period that contains
in minimum the length of the average inter-purchase time. Note that all customers in the dataset need to
purchase at least once during the estimation period, i.e. these models do not account for prospects who have
not yet a purchase record.

Some models included in CLVTools allow to model the impact of covariates. These covariates may explain
heterogeneity among the customers and therefore increase the predictive accuracy of the model. At the same
time we may also identify and quantify the effects of these covariates on customer purchase and customer
attrition. CLVTools distinguishes between time-invariant and time-varying covariates. Time-invariant co-
variates include customer characteristics such as demographics that do not change over time. Time-varying
covariates are allowed to change over time. They include for example direct marketing information or
seasonal patterns.

For the following example, we use simulated data comparable to data from a retailer in the apparel industry.
The dataset contains transactional detail records for every customer consisting of customer id, date of

1

purchase and the total monetary value of the transaction.The apparel dataset is available in the CLVTools
package. Use the data(apparelTrans) to load it:
data("apparelTrans")
apparelTrans
#> Id Date Price
#> 1: 1 2005-01-03 26.95
#> 2: 10 2005-01-03 38.95
#> 3: 10 2005-02-25 93.73
#> 4: 10 2005-04-05 224.96
#> 5: 100 2005-01-03 104.95
#> ---
#> 2349: 1221 2006-01-23 62.95
#> 2350: 1221 2006-03-09 89.95
#> 2351: 1221 2006-05-14 52.95
#> 2352: 1222 2005-01-03 5.90
#> 2353: 1222 2005-03-03 13.90

2.1 Initialize the CLV-Object

Before we estimate a model, we are required to initialize a data object using the clvdata() command. The
data object contains the prepared transactional data and is later used as input for model fitting. Make sure
to store the generated object in a variable, e.g. in our example clv.apparel.

Through the argument data.transactions a data.frame or data.table which contains the transaction
records, is specified. In our example this is data.transactions=apparelTrans. The argument date.format
is used to indicate the format of the date variable in the data used. The date format in the apparel dataset
is given as “year-month-day” (i.e., “2005-01-03”), therefore we set date.format="ymd". Other combinations
such as date.format="dmy" are possible. See the documentation of lubridate (Grolemund and Wickham
2011) for all details. time.unit is the scale used to measure time between two dates. For this dataset
and in most other cases The argument time.unit="week" is the preferred choice. Abbreviations may be
used (i.e. “w”). estimation.split indicates the length of the estimation period. Either the length of the
estimation period (in previous specified time units) or the date at which the estimation period ends can be
specified. If no value is provided, the whole dataset is used as estimation period (i.e. no holdout period).
In this example, we use an estimation period of 40 weeks. Finally, the three name arguments indicate
the column names for customer ID, date and price in the supplied dataset. Note that the price column is
optional.
clv.apparel <- clvdata(apparelTrans,

date.format="ymd",
time.unit = "week",
estimation.split = 40,
name.id = "Id",
name.date = "Date",
name.price = "Price")

2.2 Check the clvdata Object

To get details on the clvdata object, print it to the console.
clv.apparel
#> CLV Transaction Data
#>
#> Call:

2

#> clvdata(data.transactions = apparelTrans, date.format = "ymd",
#> time.unit = "week", estimation.split = 40, name.id = "Id",
#> name.date = "Date", name.price = "Price")
#>
#> Total # customers 250
#> Total # transactions 2257
#>
#>
#> Time unit Weeks
#>
#> Estimation start 2005-01-03
#> Estimation end 2005-10-10
#> Estimation length 40.0000 Weeks
#>
#> Holdout start 2005-10-11
#> Holdout end 2006-07-16
#> Holdout length 39.71429 Weeks

Alternatively the summary() command provides full detailed summary statistics for the provided transac-
tional detail. summary() is available at any step in the process of estimating a probabilistic customer attrition
model with CLVTools. The result output is updated accordingly and additional information is added to the
summary statistics.nobs() extracts the number of observations. For the this particular dataset we observe
a total of 250 customers who made in total 2257 repeat purchases. Approximately 26% of the customers are
zero repeaters, which means that the only a minority of the customers do not return to the store after their
first purchase.
summary(clv.apparel)
#> CLV Transaction Data
#>
#> Time unit Weeks
#> Estimation length 40.0000 Weeks
#> Holdout length 39.71429 Weeks
#>
#> Transaction Data Summary
#> Estimation Holdout Total
#> Number of customers - - 250
#> First Transaction in period 2005-01-03 2005-10-11 2005-01-03
#> Last Transaction in period 2005-10-10 2006-07-16 2006-07-16
#> Total # Transactions 1311 946 2257
#> Mean # Transactions per cust 5.244 8.226 9.028
#> (SD) 6.082 8.934 12.603
#> Mean Spending per Transaction 217.751 226.110 221.254
#> (SD) 234.856 247.668 240.290
#> Total Spending 285471.100 213899.970 499371.070
#> Total # zero repeaters 77 135 65
#> Percentage # zero repeaters 0.308 0.540 0.260
#> Mean Interpurchase time 7.361 5.756 9.462
#> (SD) 6.791 6.394 12.266

2.3 Estimate Model Parameters

After initializing the object, we are able to estimate the first probabilistic latent attrition model. We start
with the standard Pareto/NBD model (Schmittlein, Morrison, and Colombo 1987) and therefore use the

3

command pnbd() to fit the model and estimate model parameters. clv.data specifies the initialized object
prepared in the last step. Optionally, starting values for the model parameters and control settings for
the optimization algorithm may be provided: The argument start.params.model allows to assign a vector
(e.g. c(alpha=1, beta=2, s=1, beta=2) in the case of the Pareto/NBD model) of starting values for the
optimization. This is useful if prior knowledge on the parameters of the distributions are available. By
default starting values are set to 1 for all parameters. The argument optimx.args provides an option to
control settings for the optimization routine. It passes a list of arguments to the optimizer. All options
known from the package optimx (Nash and Varadhan 2011; Nash 2014) may be used. This option enables
users to specify specific optimization algorithms, set upper and/or lower limits or enable tracing information
on the progress of the optimization. In the case of the standard Pareto/NBD model, CLVTools uses by
default the optimization method L-BFGS-G (Byrd et al. 1995). If the result of the optimization is in-feasible,
the optimization automatically switches to the more robust but often slower Nelder-Mead method (Nelder
and Mead 1965). verbose shows additional output.
est.pnbd <- pnbd(clv.data = clv.apparel)
#> Starting estimation...
#> Estimation finished!
est.pnbd
#> Pareto NBD Standard Model
#>
#> Call:
#> pnbd(clv.data = clv.apparel)
#>
#> Coefficients:
#> r alpha s beta
#> 0.7867 5.3356 0.3574 11.6316
#> KKT1: TRUE
#> KKT2: TRUE
#>
#> Used Options:
#> Correlation: FALSE

If we assign starting parameters and additional arguments for the optimizer we use:
est.pnbd <- pnbd(clv.data = clv.apparel,

start.params.model = c(r=1, alpha = 2, s = 1, beta = 2),
optimx.args = list(control=list(trace=5),

method="Nelder-Mead"
))

Parameter estimates may be reported by either printing the estimated object (i.e. est.pnbd) directly in
the console or by calling summary(est.pnbd) to get a more detailed report including the likelihood value
as well as AIC and BIC. Alternatively parameters may be directly extracted using coef(est.pnbd). Also
loglik(), confint() and vcov() are available to directly access the Loglikelihood value, confidence intervals
for the parameters and to calculate the Variance-Covariance Matrix for the fitted model. For the standard
Pareto/NBD model, we get 4 parameters 𝑟, 𝛼, 𝑠 and 𝛽. where 𝑟, 𝛼 represent the shape and scale parameter
of the gamma distribution that determines the purchase rate and 𝑠, 𝛽 of the attrition rate across individual
customers. 𝑟/𝛼 can be interpreted as the mean purchase and 𝑠/𝛽 as the mean attrition rate. A significance
level is provided for each parameter estimates. In the case of the apparelTrans dataset we observe a an
average purchase rate of 𝑟/𝛼 = 0.147 transactions and an average attrition rate of 𝑠/𝛽 = 0.031 per customer
per week. KKT 1 and 2 indicate the Karush-Kuhn-Tucker optimality conditions of the first and second order
(Kuhn and Tucker 1951). If those criteria are not met, the optimizer has probably not arrived at an optimal
solution. If this is the case it is usually a good idea to rerun the estimation using alternative starting values.
#Full detailed summary of the parameter estimates
summary(est.pnbd)

4

#> Pareto NBD Standard Model
#>
#> Call:
#> pnbd(clv.data = clv.apparel)
#>
#> Fitting period:
#> Estimation start 2005-01-03
#> Estimation end 2005-10-10
#> Estimation length 40.0000 Weeks
#>
#> Coefficients:
#> Estimate Std. Error z-val Pr(>|z|)
#> r 0.7867 0.1324 5.942 2.82e-09 ***
#> alpha 5.3356 0.9028 5.910 3.42e-09 ***
#> s 0.3574 0.1841 1.941 0.0523 .
#> beta 11.6316 10.6823 1.089 0.2762
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Optimization info:
#> LL -2879.4699
#> AIC 5766.9399
#> BIC 5781.0257
#> KKT 1 TRUE
#> KKT 2 TRUE
#> fevals 20.0000
#> Method L-BFGS-B
#>
#> Used Options:
#> Correlation FALSE

#Extract the coefficients only
coef(est.pnbd)
#> r alpha s beta
#> 0.7866688 5.3355963 0.3573849 11.6316385
#Alternative: oefficients(est.pnbd.obj)

To extract only the coefficients, we can use coef(). To access the confidence intervals for all parameters
confint() is available.
#Extract the coefficients only
coef(est.pnbd)
#> r alpha s beta
#> 0.7866688 5.3355963 0.3573849 11.6316385
#Alternative: oefficients(est.pnbd.obj)

#Extract the confidence intervals
confint(est.pnbd)
#> 2.5 % 97.5 %
#> r 0.527172400 1.0461651
#> alpha 3.566110956 7.1050816
#> s -0.003526077 0.7182959
#> beta -9.305344078 32.5686211

5

In order to get the Likelihood value and the corresponding Variance-Covariance Matrix we use the following
commands:
LogLikelihood at maximum
logLik(est.pnbd)
#> 'log Lik.' -2879.47 (df=4)

Variance-Covariance Matrix at maximum
vcov(est.pnbd)
#> r alpha s beta
#> r 0.017529372 0.1025851 -0.005632316 -0.5554541
#> alpha 0.102585075 0.8150753 -0.023961502 -2.4694235
#> s -0.005632316 -0.0239615 0.033908145 1.8589624
#> beta -0.555454141 -2.4694235 1.858962410 114.1121797

As an alternative to the Pareto/NBD model CLVTools features the BG/NBD model (Fader, Hardie, and Lee
2005a) and the GGomp/NBD (Bemmaor and Glady 2012). To use the alternative models replace pnbd()
by the corresponding model-command. Note that he naming and number of model parameters is dependent
on the model. Consult the manual for more details on the individual models.

Command Model Covariates
pnbd() Pareto/NBD time-invariant & time-varying
bgnbd() BG/NBD time-invariant
ggomnbd() GGom/NBD time-invariant

To estimate the GGom/NBD model we apply the ggomnbd()to the clv.apparel object. The GGom/NBD
model is more flexible than the Pareto/NBD model, however it sometimes is challenging to optimize. Note
that in this particular case providing start parameters is essential to arrive at an optimal solution (i.e. kkt1:
TRUE and kkt2: TRUE).
est.ggomnbd <- ggomnbd(clv.data = clv.apparel,

start.params.model = c(r=0.7, alpha=5, b=0.005, s=0.02, beta=0.001),
optimx.args = list(control=list(trace=5),

method="Nelder-Mead"))

2.4 Predicting Customer Behavior

Once the model parameters are estimated, we are able to predict future customer behavior on an individual
level. To do so, we use predict() on the object with the estimated parameters (i.e. est.pnbd). The
prediction period may be varied by specifying prediction.end. It is possible to provide either an end-date
or a duration using the same time unit as specified when initializing the object (i.e prediction.end =
"2006-05-08" or prediction.end = 30). By default, the prediction is made until the end of the dataset
specified in the clvdata() command. The argument continuous.discount.factor allows to adjust the
discount rate used to estimated the discounted expected transactions (DERT). The default value is 0.1
(=10%). Probabilistic customer attrition model predict in general three expected characteristics for every
customer:

• “conditional expected transactions” (CET), which is the number of transactions to expect form a
customer during the prediction period,

• “probability of a customer being alive” (PAlive) at the end of the estimation period and
• “discounted expected residual transactions” (DERT) for every customer, which is the total number of

transactions for the residual lifetime of a customer discounted to the end of the estimation period.

6

If spending information was provided when initializing the clvdata-object, CLVTools provides prediction
for

• predicted spending estimated by a Gamma/Gamma model (Colombo and Jiang 1999; Fader, Hardie,
and Lee 2005a) and

• the customer lifetime value (CLV).

If a holdout period is available additionally the true numbers of transactions (“actual.x”) and true spending
(“actual.spending”) during the holdout period are reported.

To use the parameter estimates on new data (e.g., an other customer cohort), the argument newdata option-
ally allows to provide a new clvdata object.
results <- predict(est.pnbd)
#> Predicting from 2005-10-11 until (incl.) 2006-07-16 (39.86 Weeks).
print(results)
#> Id period.first period.last period.length actual.x actual.spending
#> 1: 1 2005-10-11 2006-07-16 39.85714 0 0.00
#> 2: 10 2005-10-11 2006-07-16 39.85714 0 0.00
#> 3: 100 2005-10-11 2006-07-16 39.85714 23 5086.44
#> 4: 1000 2005-10-11 2006-07-16 39.85714 23 4077.34
#> 5: 1001 2005-10-11 2006-07-16 39.85714 11 2914.10
#> ---
#> 246: 1219 2005-10-11 2006-07-16 39.85714 14 3233.78
#> 247: 122 2005-10-11 2006-07-16 39.85714 0 0.00
#> 248: 1220 2005-10-11 2006-07-16 39.85714 0 0.00
#> 249: 1221 2005-10-11 2006-07-16 39.85714 9 1322.94
#> 250: 1222 2005-10-11 2006-07-16 39.85714 0 0.00
#> PAlive CET DERT predicted.Spending predicted.CLV
#> 1: 0.3571358 0.2212240 0.05848369 216.7955 12.67900
#> 2: 0.4224409 0.9269543 0.24505345 209.1146 51.24426
#> 3: 0.9155010 13.5430229 3.58028916 188.9758 676.58785
#> 4: 0.9967760 13.1755612 3.48314547 171.0913 595.93576
#> 5: 0.5096716 3.5263202 0.93223249 229.8529 214.27636
#> ---
#> 246: 0.9578990 3.6104399 0.95447073 206.0859 196.70295
#> 247: 0.3571358 0.2212240 0.05848369 216.7955 12.67900
#> 248: 0.3571358 0.2212240 0.05848369 216.7955 12.67900
#> 249: 0.9433972 4.2986317 1.13640393 207.0518 235.29447
#> 250: 0.4135069 0.5817466 0.15379292 208.3194 32.03804

To change the duration of the prediction time, we use the predicton.end argument. We can either provide
a time period (30 weeks in this example):
predict(est.pnbd, prediction.end = 30)

or provide a date indication the end of the prediction period:
predict(est.pnbd, prediction.end = "2006-05-08")

2.5 Model Plotting

clvdata objects may be plotted using the plot() command. Similar to summary(), the output of plot()
adapts to the current modeling step. It provides a descriptive plot of the actual transactional data if the model
has not yet been fitted. Once the model has been estimated, plot() provides an aggregated incremental
tracking plot of the actual data and the model based on the estimated parameters. The time-span for the

7

plot may be altered using the prediction.end argument by providing either a duration or an end date. By
default the plot is generated for the entire time-span of the provided dataset specified in the clvdata()
command. The dashed line indicates the end of the estimation period. Alternatively cumulative actual and
expected transactions can be plotted by setting cumulative to TRUE. The argument transactions disable
for plotting actual transactions (transactions=FALSE). For further plotting options see the documentation

plot(x, prediction.end = NULL, cumulative = FALSE, transactions = TRUE, label = NULL, plot = TRUE,
verbose = TRUE, …)
plot(est.pnbd)
#> Plotting from 2005-01-03 until 2006-07-16.

0

10

20

30

40

50

2005−01 2005−07 2006−01 2006−07

Date

N
um

be
r

of
 R

ep
ea

t T
ra

ns
ac

tio
ns

Legend Actual Number of Repeat Transactions Pareto NBD Standard

Estimation end: 2005−10−10

Weekly tracking plot

To plot the cumulative expected transactions 30 time units (30 weeks in this example) ahead of the end of
the estimation plot, we use:
plot(est.pnbd, prediction.end = 30, cumulative = TRUE)

Alternatively, it is possible to specify a date for the prediction.endargument. Note that dates are rounded
to the next full time unit (i.e. week):
plot(est.pnbd, prediction.end = "2006-05-08", cumulative = TRUE)

2.6 Covariates

CLVTools provides the option to include covariates into probabilistic customer attrition models. Covariates
may affect the purchase or the attrition process, or both. It is also possible to include different covariates
for the two processes. However, support for covariates is dependent on the model. Not all implemented
models provide the option for covariates. In general, CLVTools distinguishes between two types of covariates:
time-invariant and time-varying. The former include factors that do not change over time such as customer
demographics or customer acquisition information. The latter may change over time and include marketing
activities or seasonal patterns.

Data for time-invariant covariates must contain a unique customer ID and a single value for each covariate.
It should be supplied as a data.frame or data.table. In the example of the apparel retailer we use
demographic information “gender” as time-invariant and information on the acquisition channel as covariate
for both, the purchase and the attrition process. Use the data("apparelStaticCov") command to load the

8

time-invariant covariates. In this example gender is coded as a dummy variable with male=0 and female=1
and channel with online=0 and offline=1.
data("apparelStaticCov")
apparelStaticCov
#> Id Gender Channel
#> 1: 1 0 0
#> 2: 10 0 0
#> 3: 100 1 0
#> 4: 1000 1 1
#> 5: 1001 1 0
#> ---
#> 246: 1219 0 1
#> 247: 122 0 0
#> 248: 1220 0 0
#> 249: 1221 1 1
#> 250: 1222 1 0

Data for time-varying covariates requires a time-series of covariate values for every customer. I.e. if the time-
varying covariates are allowed to change every week, a value for every customer for every week is required.
Note that all contextual factors are required to use the same time intervals for the time-series. In the
example of the apparel retailer we use information on direct marketing (Marekting) as time-varying covariate.
Additionally, we add gender as time-invariant contextual factors. Note that the data structure of invariant
covariates needs to be aligned with the structure of time-varying covariate. Use data("apparelDynCov")
command to load
data("apparelDynCov")
apparelDynCov
#> Id Cov.Date Marketing Gender Channel
#> 1: 1 2004-12-26 1 0 0
#> 2: 1 2005-01-02 1 0 0
#> 3: 1 2005-01-09 0 0 0
#> 4: 1 2005-01-16 1 0 0
#> 5: 1 2005-01-23 2 0 0
#> ---
#> 20496: 1222 2006-06-18 0 1 0
#> 20497: 1222 2006-06-25 0 1 0
#> 20498: 1222 2006-07-02 0 1 0
#> 20499: 1222 2006-07-09 0 1 0
#> 20500: 1222 2006-07-16 0 1 0

To add the covariates to an initialized clvdata object the commands SetStaticCovariates() and
SetDynamicCovariates() are available. The two commands are mutually exclusive. The argument
clv.data specifies the initialized object and the argument data.cov.life respectively data.cov.trans
specifies the data source for the covariates for the attrition and the purchase process. Covariates are added
separately for the purchase and the attrition process. Therefore if a covariate should affect both processes it
has to be added in both arguments: data.cov.life and data.cov.trans. The arguments names.cov.life
and names.cov.trans specify the column names of the covariates for the two processes. In our example, we
use the same covariates for both processes. Accordingly, we specify the time-invariant covariates “Gender”
and “Channel” as follows:
clv.static<- SetStaticCovariates(clv.data = clv.apparel,

data.cov.life = apparelStaticCov,
data.cov.trans = apparelStaticCov,
names.cov.life = c("Gender", "Channel"),
names.cov.trans =c("Gender", "Channel"),

9

name.id = "Id")

To specify the time-varying contextual factors for seasonal patterns and direct marketing, we use the follow-
ing:
clv.dyn <- SetDynamicCovariates(clv.data = clv.apparel,

data.cov.life = apparelDynCov,
data.cov.trans = apparelDynCov,
names.cov.life = c("Marketing", "Gender", "Channel"),
names.cov.trans = c("Marketing", "Gender", "Channel"),
name.id = "Id",
name.date = "Cov.Date")

In order to include time-invariant covariates in a time-varying model, they may be recoded as a time-varying
covariate with a constant value in every time period.

Once the covariates are added to the model the estimation process is almost identical to the standard model
without covariates. The only difference is that the provided object now data for contains either time-invariant
or time-varying covariates and the option to define start parameters for the covariates of both processes using
the arguments start.params.life and start.params.trans. If not set, the staring values are set to 1.
To define starting parameters for the covariates, the name of the corresponding factor has to be used. For
example in the case of time-invariant covariates:
est.pnbd.static <- pnbd(clv.static,

start.params.model = c(r=1, alpha = 2, s = 1, beta = 2),
start.params.life = c(Gender=0.6, Channel=0.4),
start.params.trans = c(Gender=0.6, Channel=0.4))

#> Starting estimation...
#> Estimation finished!

Analogously, we can estimate the model containing time-varying covariates. We recommend to enable the
built-in support for multithreading when estimating more complex models like this. See section Multithread-
ing.
est.pnbd.dyn <- pnbd(clv.dyn,

start.params.model = c(r=1, alpha = 2, s = 1, beta = 2),
start.params.life = c(Marketing=0.5, Gender=0.6, Channel=0.4),
start.params.trans = c(Marketing=0.5, Gender=0.6, Channel=0.4))

To inspect the estimated model we use summary(), however all other commands such as print(), coef(),
loglike(), confint() and vcov() are also available. Now, output contains also parameters for the covari-
ates for both processes. Since covariates are added separately for the purchase and the attrition process,
there are also separate model parameters for the two processes. These parameters are directly interpretable
as rate elasticity of the corresponding factors: A 1% change in a contextual factor XP or XL changes the
purchase or the attrition rate by 𝛾𝑝𝑢𝑟𝑐ℎXP or 𝛾𝑙𝑖𝑓𝑒XL percent, respectively (Gupta 1991). In the example of
the apparel retailer, we observe that female customer purchase significantly more (trans.Gender=1.42576).
Note, that female customers are coded as 1, male customers as 0. Also customers acquired offline (coded
as Channel=1), purchase more (trans.Channel=0.40304) and stay longer (life.Channel=0.9343). Make
sure to check the Karush-Kuhn-Tucker optimality conditions of the first and second order (Kuhn and Tucker
1951) (KKT1 and KKT1) before interpreting the parameters. If those criteria are not met, the optimizer
has probably not arrived at an optimal solution. If this is the case it is usually a good idea to rerun the
estimation using alternative starting values.
summary(est.pnbd.static)
#> Pareto NBD with Static Covariates Model
#>
#> Call:

10

#> pnbd(clv.data = clv.static, start.params.model = c(r = 1, alpha = 2,
#> s = 1, beta = 2), start.params.life = c(Gender = 0.6, Channel = 0.4),
#> start.params.trans = c(Gender = 0.6, Channel = 0.4))
#>
#> Fitting period:
#> Estimation start 2005-01-03
#> Estimation end 2005-10-10
#> Estimation length 40.0000 Weeks
#>
#> Coefficients:
#> Estimate Std. Error z-val Pr(>|z|)
#> r 1.41667 0.27716 5.111 3.20e-07 ***
#> alpha 35.68282 8.59835 4.150 3.33e-05 ***
#> s 0.27332 0.09545 2.864 0.00419 **
#> beta 8.86410 11.60033 0.764 0.44479
#> life.Gender 1.55102 1.10550 1.403 0.16061
#> life.Channel -1.69960 0.66072 -2.572 0.01010 *
#> trans.Gender 1.42576 0.19786 7.206 5.76e-13 ***
#> trans.Channel 0.40304 0.15127 2.664 0.00771 **
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Optimization info:
#> LL -2846.1681
#> AIC 5708.3361
#> BIC 5736.5078
#> KKT 1 TRUE
#> KKT 2 TRUE
#> fevals 62.0000
#> Method L-BFGS-B
#>
#> Used Options:
#> Correlation FALSE
#> Regularization FALSE
#> Constraint covs FALSE

To predict future customer behavior we use predict(). Note that dependent on the model, the predicted
metrics may differ. For example, in the case of the Pareto/NBD model with time-varying covariates, in-
stead of DERT, DECT is predicted. DECT only covers a finite time horizon in contrast to DERT. Time-
varying covariates must be provided for the entire prediction period. If the data initially provided in the
SetDynamicCovariates() command does not cover the complete prediction period, the argument new.data
offers the ability to supply new data for the time-varying covariates in the from of a clvdata object.

2.7 Add Correlation to the model

To relax the assumption of independence between the purchase and the attrition process, CLVTools pro-
vides the option to specify the argument use.cor in the command t fit the model (i.e. pnbd). In case of
use.cor=TRUE, a Sarmanov approach is used to correlate the two processes. start.param.cor allows to
optionally specify a starting value for the correlation parameter.
est.pnbd.cor <- pnbd(clv.apparel,

use.cor= TRUE)
summary(est.pnbd.cor)

11

The parameter Cor(life,trans) is added to the parameter estimates that may be directly interpreted as
a correlation. In the example of the apparel retailer the correlation parameter is not significant and the
correlation is very close to zero, indicating that the purchase and the attrition process are independent.

2.8 Advanced Options for Contextual Factors

CLVTools provides two additional estimation options for models containing covariates (time-invariant or
time-varying): regularization and constraints for the parameters of the covariates. Both options are included
in the command to fit the model (i.e., pnbd(). Support for this option is dependent on the model. They
may be used simultaneously.

• The argument reg.lambdas provides the possibility to specify separate \lambda_{reg} for the two
processes (i.e. reg.lambdas = c(trans=100, life=100). The larger the \lambda_{reg} the stronger
the effects of the regularization. Regularization only affects the parameters of the covariates.

• The argument names.cov.constr implements equality constraints for contextual factors with regards
to the two processes. For example the variable “gender” is forced to have the same effect on the
purchase as well as on the attrition process. To do so, the option names.cov.constr is available
(i.e. names.cov.constr=c("Gender")). To provide starting parameters for the constrained variable
use start.params.constr.

To enable regularization for the covariates, we use the following command:
est.pnbd.reg <- pnbd(clv.static,

start.params.model = c(r=1, alpha = 2, s = 1, beta = 2),
reg.lambdas = c(trans=100, life=100))

#> Starting estimation...
#> Estimation finished!
summary(est.pnbd.reg)
#> Pareto NBD with Static Covariates Model
#>
#> Call:
#> pnbd(clv.data = clv.static, start.params.model = c(r = 1, alpha = 2,
#> s = 1, beta = 2), reg.lambdas = c(trans = 100, life = 100))
#>
#> Fitting period:
#> Estimation start 2005-01-03
#> Estimation end 2005-10-10
#> Estimation length 40.0000 Weeks
#>
#> Coefficients:
#> Estimate Std. Error z-val Pr(>|z|)
#> r 7.928e-01 2.117e+00 0.375 0.708
#> alpha 5.393e+00 1.443e+01 0.374 0.709
#> s 3.603e-01 2.946e+00 0.122 0.903
#> beta 1.176e+01 1.711e+02 0.069 0.945
#> life.Gender -2.448e-05 1.712e-02 -0.001 0.999
#> life.Channel -1.163e-04 1.712e-02 -0.007 0.995
#> trans.Gender 5.391e-04 1.712e-02 0.031 0.975
#> trans.Channel 4.498e-04 1.712e-02 0.026 0.979
#>
#> Optimization info:
#> LL -11.5178
#> AIC 39.0357
#> BIC 67.2074

12

#> KKT 1 TRUE
#> KKT 2 TRUE
#> fevals 194.0000
#> Method L-BFGS-B
#>
#> Used Options:
#> Correlation FALSE
#> Regularization TRUE
#> lambda.life 100.0000
#> lambda.trans 100.0000
#> Constraint covs FALSE

To constrain “Gender” to have the same effect on both processes we use the following command. Note,
that the output now only contains one parameter for “Gender” as it is constrained to be the same for both
processes.
est.pnbd.constr <- pnbd(clv.static,

start.params.model = c(r=1, alpha = 2, s = 1, beta = 2),
start.params.constr = c(Gender=0.6),
names.cov.constr=c("Gender"))

#> Starting estimation...
#> Estimation finished!
summary(est.pnbd.constr)
#> Pareto NBD with Static Covariates Model
#>
#> Call:
#> pnbd(clv.data = clv.static, start.params.model = c(r = 1, alpha = 2,
#> s = 1, beta = 2), names.cov.constr = c("Gender"), start.params.constr = c(Gender = 0.6))
#>
#> Fitting period:
#> Estimation start 2005-01-03
#> Estimation end 2005-10-10
#> Estimation length 40.0000 Weeks
#>
#> Coefficients:
#> Estimate Std. Error z-val Pr(>|z|)
#> r 1.42323 0.27536 5.169 2.36e-07 ***
#> alpha 35.45252 8.37875 4.231 2.32e-05 ***
#> s 0.27408 0.09527 2.877 0.00402 **
#> beta 7.87475 7.67175 1.026 0.30467
#> life.Channel -1.68821 0.64231 -2.628 0.00858 **
#> trans.Channel 0.40185 0.15102 2.661 0.00779 **
#> constr.Gender 1.41567 0.18405 7.692 1.44e-14 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Optimization info:
#> LL -2846.1729
#> AIC 5706.3458
#> BIC 5730.9960
#> KKT 1 TRUE
#> KKT 2 TRUE
#> fevals 39.0000
#> Method L-BFGS-B

13

#>
#> Used Options:
#> Correlation FALSE
#> Regularization FALSE
#> Constraint covs TRUE
#> Constraint params Gender

2.9 Multithreading: Enable parallel processing for CLVTools

CLVTools supports parallel processing when estimating models containing time-varying covariates using the
package future (Bengtsson 2020b) and the corresponding foreach (Microsoft and Weston 2019) parallel
adapter doFuture (Bengtsson 2020a). To enable the distribution of the workload across all available cores,
use execute the following commands before estimating the model (i.e. calling ‘pnbd()):
disable multithreading for data.table (to avoid nested parallelism)
setDTthreads(1)

library("doFuture")
registerDoFuture()
plan("multisession")

To limit the number of parallel processes simultaneously executed, we can specify the number of workers
plan(multisession, workers = 2).

Literature

Bemmaor, Albert. C., and Nicolas Glady. 2012. “Modeling Purchasing Behavior with Sudden ”Death”: A
Flexible Customer Lifetime Model.” Management Science 58 (5): 1012–21.

Bengtsson, Henrik. 2020a. DoFuture: A Universal Foreach Parallel Adapter Using the Future Api of the
’Future’ Package. https://CRAN.R-project.org/package=doFuture.

———. 2020b. Future: Unified Parallel and Distributed Processing in R for Everyone. https://CRAN.R-
project.org/package=future.

Byrd, Richard H, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. 1995. “A Limited Memory Algorithm for
Bound Constrained Optimization.” SIAM Journal on Scientific Computing 16 (5): 1190–1208.

Colombo, Richard, and Weina Jiang. 1999. “A stochastic RFM model.” Journal of Interactive Marketing
13 (3): 2–12.

Dowle, Matt, and Arun Srinivasan. 2019. Data.table: Extension of ’Data.frame’. https://CRAN.R-project.
org/package=data.table.

Fader, Peter S., Bruce G. S. Hardie, and KL Lee. 2005a. “’Counting Your Customers’ the Easy Way: An
Alternative to the Pareto/NBD Model.” Marketing Science 24 (2): 275–84.

———. 2005b. “RFM and CLV: Using Iso-Value Curves for Customer Base Analysis.” Journal of Marketing
Research 42 (4): 415–30.

Grolemund, Garrett, and Hadley Wickham. 2011. “Dates and Times Made Easy with lubridate.” Journal
of Statistical Software 40 (3): 1–25. http://www.jstatsoft.org/v40/i03/.

Gupta, Sunil. 1991. “Stochastic Models of Interpurchase Time with Time-Dependent Covariates.” Journal
of Marketing Research 28 (1): 1–15.

14

https://CRAN.R-project.org/package=doFuture
https://CRAN.R-project.org/package=future
https://CRAN.R-project.org/package=future
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=data.table
http://www.jstatsoft.org/v40/i03/

Kuhn, H. W., and A. W. Tucker. 1951. “Nonlinear Programming.” In Second Berkeley Symposium on
Mathematical Statistics and Probability, edited by J. Neyman, 481–92.

Microsoft, and Steve Weston. 2019. Foreach: Provides Foreach Looping Construct. https://CRAN.R-
project.org/package=foreach.

Nash, John C. 2014. “On Best Practice Optimization Methods in R.” Journal of Statistical Software 60 (2):
1–14. http://www.jstatsoft.org/v60/i02/.

Nash, John C., and Ravi Varadhan. 2011. “Unifying Optimization Algorithms to Aid Software System
Users: optimx for R.” Journal of Statistical Software 43 (9): 1–14. http://www.jstatsoft.org/v43/i09/.

Nelder, John A, and Roger Mead. 1965. “A Simplex Method for Function Minimization.” The Computer
Journal 7 (4): 308–13.

Schmittlein, David C., Donald G. Morrison, and Richard Colombo. 1987. “Counting Your Customers:
Who-Are They and What Will They Do Next?” Management Science 33 (1): 1–24.

Wickham, Hadley, Jim Hester, and Winston Chang. 2019. Devtools: Tools to Make Developing R Packages
Easier. https://CRAN.R-project.org/package=devtools.

15

https://CRAN.R-project.org/package=foreach
https://CRAN.R-project.org/package=foreach
http://www.jstatsoft.org/v60/i02/
http://www.jstatsoft.org/v43/i09/
https://CRAN.R-project.org/package=devtools

	Walkthrough for the CLVTools package
	Setup the R environment

	Load sample data provided in the package
	Initialize the CLV-Object
	Check the clvdata Object
	Estimate Model Parameters
	Predicting Customer Behavior
	Model Plotting
	Covariates
	Add Correlation to the model
	Advanced Options for Contextual Factors
	Multithreading: Enable parallel processing for CLVTools
	Literature

