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This document defines the concepts, explains the organization of functions, and provides examples of
calculating equilibrium in CHNOSZ. It also highlights some applications of the methods (i.e. to reproduce
published diagrams) and includes an Appendix on details of the equilibration calculations.

1 Concepts

Species of interest Chemical species for which you want to calculate relative stabilities.

Basis species Species in terms of which you want to write all formation reactions of species of interest.

Formation reactions Stoichiometric chemical reactions showing the mass balance requirements for forma-
tion of 1 mole of each species of interest from the basis species.

Chemical affinity Negative of the differential of Gibbs energy of a system with respect to reaction progress.
For a given reaction, chemical affinity is the negative of Gibbs energy of reaction; A = 2.303RT log(K/Q),
where K is the equilibrium constant and Q is the activity quotient of species in the reaction (log in this
text denotes base-10 logarithms, i.e. log10 in R).

(1) Reference activity User-defined (usually equal) activities of species of interest.

(1) Reference affinity (Aref ) Chemical affinity of formation reaction with a reference activity of the species
of interest.

(1) Maximum affinity method Comparison of reference affinities for given balance coefficients in order to
calculate stability regions on a predominance diagram.

Balance coefficients (nbalance) The number of moles of a basis species present in the formation reaction of
each of the species of interest. Reactions between any two species of interest then are “balanced” on
this basis species. Can be a quantity other than basis species (e.g., balance = 1, or length of amino acid
sequence of protein).

Predominance diagram Diagram showing fields of maximal stability (i.e. greatest activity at equilibrium)
for species of interest as a function of two variables (aka equal activity diagram).

(2) Starred affinity (A
∗) Chemical affinity of formation reaction with unit activity of the species of interest

(aka “starved” affinity because the activity of the species of interest drops out of Q).

(2) Total balance activity The sum of activities of this basis species contributed by each of the species of
interest. (In Appendix: activity of the immobile or conserved component; aic.)

(2) Equilibration method Comparison of starred affinities in order to calculate activities of species of inter-
est for given balance coefficients and total balance activity.

Speciation diagram Diagram showing the activities of species of interest, usually as a function of 1 variable
(aka activity diagram).

Boltzmann distribution Algorithm used for the equilibration method when the balance coefficients are 1.
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Reaction matrix Algorithm used for the equilibration method when the balance coefficients are not all 1.

Normalization Algorithm used for large molecules such as proteins; chemical formulas and affinities are
scaled to a similar molecular size (e.g. a single residue; “residue equivalent” in Appendix), activities
are calculated using balance = 1, and formulas and activities are rescaled to the original size of the
molecule.

Mosaic Calculations of chemical affinities for making diagrams where the speciation of basis species de-
pends on the variables.

The numbered groups above are connected with two distinct approaches to generating diagrams:

1. With the maximum affinity method for creating predominance diagrams, the user sets the reference
activities of the species of interest; the program compares the reference affinities at these conditions to
determine the most stable species (highest activity, i.e. predominant at equilibrium).

2. With the equilibration method for creating predominance or activity diagrams, the user explicitly
sets the total balance activity or the program takes it from the reference activities of the species. The
starred affinities are used to calculate equilibrium activities using one of two techniques (Boltzmann
distribution for balance = 1, reaction matrix for balance 6= 1).

The affinities used in these calculations can be calculated using affinity(), which works with a single
basis set, or with mosaic(), which uses multiple basis sets to account for basis species that themselves may
change as a function of the variables of interest (e.g. ionization of carbonic acid as a function of pH). This
document focuses primarily on the affinity() function; for more information on mosaic diagrams see the
help page (type ?mosaic at the R command line).

Step-by-step examples of some of the calculations, particularly the reaction matrix algorithm, are pro-
vided in the Appendix. For further description of the equilibration method applied to proteins see Dick and
Shock (2013) (also with a derivation of energetic distance from equilibrium using the starred affinity).

2 Organization

The function sequences below assume you have already defined the basis species and species of interest
using basis(...) and species(...) (ellipses here and below indicate system-specific input).

Note that if equilibrate() or diagram() is called without an explicit balance argument, the balance
coefficients will be taken from the first basis species (in the current basis definition) that is present in all
of the species. Depending on the system, this may coincide either with balance = 1 or with balance 6= 1.
In the case of normalize = TRUE or as.residue = TRUE, the balance coefficients (for the purposes of the
equilibration step) are temporarily set to 1.

1. Maximum affinity method, balance = 1

(a) Typical use: simple mineral/aqueous species stability comparisons

(b) Function sequence:
a <- affinity(...)

diagram(a, balance = 1)

(c) Algorithm: max
{

Aref

}

2. Equilibration method, balance = 1

(a) Typical use: simple aqueous species activity comparisons

(b) Function sequence:
a <- affinity(...)

e <- equilibrate(a, balance = 1)

diagram(e)
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(c) Algorithm: Boltzmann distribution

3. Maximum affinity method, balance 6= 1

(a) Typical use: mineral/aqueous species stability comparisons

(b) Function sequence:
a <- affinity(...)

diagram(a, balance = ...)

(c) Algorithm: max
{

Aref /nbalance

}

4. Equilibration method, balance 6= 1

(a) Typical use: aqueous species activity comparisons

(b) Function sequence:
a <- affinity(...)

e <- equilibrate(a, balance = ...)

diagram(e)

(c) Algorithm: Reaction matrix

5. Maximum affinity method, normalize = TRUE

(a) Typical use: protein/polymer stability comparisons

(b) Function sequence:
a <- affinity(...)

diagram(a, normalize = TRUE)

(c) Algorithm: max {A
∗/nbalance − log nbalance}

6. Equilibration method, normalize = TRUE

(a) Typical use: protein/polymer activity comparisons

(b) Function sequence:
a <- affinity(...)

e <- equilibrate(a, normalize = TRUE)

diagram(e)

(c) Algorithm: Scale formulas and affinities to residues; Boltzmann distribution (balance = 1); Scale
activities to proteins

3 Examples

3.1 Amino acids

Basis species: CO2, H2O, NH3, H2S, O2. Species of interest: 20 amino acids. (Only the first few lines of the
data frame of amino acid species are shown.)

library(CHNOSZ)

reset()

## reset: resetting "thermo" object

## obigt: loading default database with 1849 aqueous, 3374 total species

basis("CHNOS")
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## C H N O S ispecies logact state

## CO2 1 0 0 2 0 1480 -3 aq

## H2O 0 2 0 1 0 1 0 liq

## NH3 0 3 1 0 0 64 -4 aq

## H2S 0 2 0 0 1 65 -7 aq

## O2 0 0 0 2 0 3100 -80 gas

species(aminoacids(""))[1:5, ]

## CO2 H2O NH3 H2S O2 ispecies logact state name

## 1 3 2 1 0 -3.0 1522 -3 aq alanine

## 2 3 1 1 1 -2.5 1529 -3 aq cysteine

## 3 4 2 1 0 -3.0 1527 -3 aq aspartic acid

## 4 5 3 1 0 -4.5 1532 -3 aq glutamic acid

## 5 9 4 1 0 -10.0 1543 -3 aq phenylalanine

Code for making the diagrams. Function names refer to the subfigure labels.

res <- 200

aa <- aminoacids()

aaA <- function() {

a <- affinity(O2=c(-90, -70, res), H2O=c(-20, 10, res))

diagram(a, balance=1, names=aa)

}

aaB <- function() {

a <- affinity(O2=c(-90, -70, 80), H2O=c(-20, 10, 80))

e <- equilibrate(a, balance=1)

diagram(e, names=aa)

}

aaC <- function() {

a <- affinity(O2=c(-71, -66, res), H2O=c(-8, 4, res))

diagram(a, balance="CO2", names=aa)

}

aaD <- function() {

a <- affinity(O2=c(-71, -66, 80), H2O=c(-8, 4, 80))

e <- equilibrate(a, balance="CO2")

diagram(e, names=aa)

}

aaE <- function() {

basis("O2", -66)

a <- affinity(H2O=c(-8, 4))

e <- equilibrate(a, balance="CO2")

diagram(e, ylim=c(-5, -1), names=aa)

}

aaF <- function() {

species(1:20, -4)

a <- affinity(H2O=c(-8, 4))

e <- equilibrate(a, balance="CO2")
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diagram(e, ylim=c(-5, -1), names=aa)

}

Note that for the plot we use the 1-letter abbreviations of the amino acids, unlike the full species names
(aminoacids() is a function in CHNOSZ that returns their names or abbreviations).

AA <- aminoacids("")

names(AA) <- aa

AA

## A C D E F

## "alanine" "cysteine" "aspartic acid" "glutamic acid" "phenylalanine"

## G H I K L

## "glycine" "histidine" "isoleucine" "lysine" "leucine"

## M N P Q R

## "methionine" "asparagine" "proline" "glutamine" "arginine"

## S T V W Y

## "serine" "threonine" "valine" "tryptophan" "tyrosine"

The annotated figure is shown next. The actual code used to set up the plots, add labels, etc. is in the
source of this vignette (not shown in the PDF).
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Comments on the plots:

• The equal-activity lines in Figures A and B are identical. For balance = 1, the maximum affinity method
and the equilibration method should produce the same predominance diagrams. (More precisely,
because balance = 1, the conditions of equal activity of any species of interest are independent of the
actual value of that activity.)
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• Figures C and D are different. For balance 6= 1, the maximum affinity method and the equilibration
method will generally produce difference predominance diagrams. (Because balance 6= 1, the condi-
tions of equal activity of any species of interest depend on the actual value of that activity.)

• Both Figures E and F are constructed using the equilibration method, to calculate activities of species
as a function of log aH2O at log fO2

= −66. Figure E shows the results for the default settings (aCO2
is

the sum of activities present in all species, taken from initial species activity of 10−3) and the crossing
lines indicating equal activities are identical to the positions in Figure D at log fO2

= −66.

• Figure F shows the results for a lower total activity of CO2. Consequently, the activities of the predom-
inant species decrease from ca. 10−2 in Figure E to ca. 10−3 in Figure F. Also, the stability region of the
smaller glycine has grown at the expense of the neighboring bigger amino acids, so that the crossing
lines indicating equal activities in Figure F are closer to those shown in Figure C at log fO2

= −66.

• In other words, a lower equal-activity value causes the stability region of the species with the smaller
balance coefficient to invade that of the species with the larger balance coefficient.

• Figures A, B, C, and D are all equal activity diagrams, but have different constraints on the activities:

– Maximum affinity method (Figures A, C): Equal activities of species set to a constant value.

– Equilibration method (Figures B, D): Equal activities of species determined by overall speciation
of the system.

3.2 Proteins

Basis species: CO2, H2O, NH3, H2S, O2, H+. Species of interest: 6 proteins from the set of archaeal and
bacterial surface layer proteins considered by Dick (2008).

basis("CHNOS+")

organisms <- c("METJA", "HALJP", "METVO", "ACEKI", "GEOSE", "BACLI")

proteins <- c(rep("CSG", 3), rep("SLAP", 3))

species(proteins, organisms)

Code for the figures.

prA <- function() {

a <- affinity(O2=c(-90, -70, 80), H2O=c(-20, 0, 80))

e <- equilibrate(a, balance="length", loga.balance=0)

diagram(e, names=organisms)

}

prB <- function() {

a <- affinity(O2=c(-90, -70))

e <- equilibrate(a, balance="length", loga.balance=0)

diagram(e, names=organisms, ylim=c(-5, -1))

}

prC <- function() {

a <- affinity(O2=c(-90, -70, res), H2O=c(-20, 0, res))

e <- equilibrate(a, normalize=TRUE, loga.balance=0)

diagram(e, names=organisms)

}

prD <- function() {

a <- affinity(O2=c(-90, -70))
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e <- equilibrate(a, normalize=TRUE, loga.balance=0)

diagram(e, names=organisms, ylim=c(-5, -1))

}

prE <- function() {

a <- affinity(O2=c(-90, -70, res), H2O=c(-20, 0, res))

e <- equilibrate(a, as.residue=TRUE, loga.balance=0)

diagram(e, names=organisms)

}

prF <- function() {

a <- affinity(O2=c(-90, -70))

e <- equilibrate(a, as.residue=TRUE, loga.balance=0)

diagram(e, names=organisms, ylim=c(-3, 1))

}

The plots follow. As before, the code used to layout the figure and label the plots is not shown in the
PDF.
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Comments on the plots:

• All of the plots shown are calculated using the equilibration method. The balanced species is amino
acid residues (specified by balance = “length” in Figures A and B. In the other figures, normalize =

TRUE and as.residue = TRUE internally reset the balance to 1 after scaling the protein formulas to
single amino acid residue equivalents). Activity of the balanced species (amino acid residues) is set to
1 (log activity = 0).

• Figure B shows that balancing on length produces drastic transitions between activities of the pro-
teins. This either/or type behavior is a consequence of the large sizes of the balancing coefficients,
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which become exponents on the activities in the expression for Q (or coefficients on the logarithms of
activities in log Q).

• Figure D shows that coexistence of proteins with comparable activities can be predicted using normalize

= TRUE. Here, the protein formulas and affinities are scaled down to their “residue equivalents”, then
the equilibrium among the residue equivalents is calculated (with balance = 1), and the activities are
rescaled to the original proteins. For example, a residue activity of 0 corresponds to 10−2 for a 100-
residue protein and to 10−3 for a 1000-residue protein.

• Figures E and F are like normalize = TRUE, except that the rescaling to original protein size is not
performed. Note the higher activities of the residue equivalents (Figure F) compared to the proteins
(Figure D).

• Compare the equilibration plots above with the maximum affinity plots below. Here the equal activi-
ties of the proteins are intentionally set to a very low value: this causes a difference in the plot using
balance = “length”, but the second and third diagrams remain equivalent to those in Figures C and E
above (verified by the stopifnot statements; dA, dC and dE refer to the diagrams above). This behavior
is consistent with that seen in the amino acid example, where the maximum affinity and equilibration
methods give equivalent results for balance = 1 but different results for balance 6= 1.

layout(t(matrix(1:3)))

species(1:6, -111)

a <- affinity(O2=c(-90, -70, res), H2O=c(-20, 0, res))

d1 <- diagram(a, balance="length", names=organisms, main='balance = "length"')

d2 <- diagram(a, normalize=TRUE, names=organisms, main="normalize = TRUE")

d3 <- diagram(a, as.residue=TRUE, names=organisms, main="as.residue = TRUE")
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stopifnot(!identical(d1$predominant, dA$predominant))

stopifnot(identical(d2$predominant, dC$predominant))

stopifnot(identical(d3$predominant, dE$predominant))

With balance = “length”, changing the equal activities to lower values increases the relative stabilities of
the smaller proteins, which is why the stability field of the larger protein from BACLI disappears while that
of the smaller protein from METJA grows. Because of the drastic activity changes at the stability transitions
(see Figure B above), a large change in equal activities (to a minuscule activity = 10−111) is used here to
demonstrate this effect, and even then the visual impact on the predominance diagram is subtle. Therefore,
naturally occurring relative abundances of proteins are better modeled using the normalize or as.residue

approaches.
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4 Applications

Many of the help-page examples and demos in CHNOSZ use these methods to reproduce (or closely emu-
late) published figures. Below is not a comprehensive list, but just some highlights.

4.1 Maximum affinity method

• The “Aqueous Aluminum” example in ?diagram shows predominance fields for aqueous species (bal-
ance = 1, after Tagirov and Schott, 2001)

• The “Fe-S-O” example in ?diagram shows stability fields for minerals (balance 6= 1, after Helgeson,
1970).

• Next is an example of using unequal activities of species (mineral activity = 1; variable aqueous species
activity indicated by the contours (logarithm of activity)) to plot aqueous species – mineral stability
boundaries (balance = 1, after Figure 14 of Pourbaix, 1949).

basis(c("Cu+2", "H2O", "H+", "e-"))

species(c("Cu+2", "copper", "cuprite", "tenorite"))

for(loga in c(-1, 0, -2, -3)) {

species("Cu+2", loga)

a <- affinity(pH=c(1.6, 7.6, 400), Eh=c(-0.2, 1, 400))

if(loga==-1) d <- diagram(a)

else d <- diagram(a, add=TRUE, names=FALSE)

iCu <- which(d$predominant == 1, arr.ind=TRUE)

text(a$vals[[1]][max(iCu[, 1])] - 0.03, a$vals[[2]][min(iCu[, 2])] + 0.2, adj=1, loga)

}

water.lines(d)
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4.2 Equilibration method

• Speciation of reduced and oxidized glutathione, after Schafer and Buettner (2001). Two moles of re-
duced glutathione (GSH) are oxidized to produce one mole of oxidized glutathione containing a disul-
fide bond (GSSG), according to

2GSH ⇋ GSSG + H2
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First, we define a basis set that includes GSH; this becomes the balanced basis species, so we can set
its total activity in the call to equilibrate(). This total activity is the initial concentration of GSH
that will be speciated among GSH and GSSG. If the aqueous species have equal concentrations (or
activities), the fraction of GSH that has been oxidized is actually 2/3, because the formation of one
mole of GSSG consumes two moles of GSH. That is why the blue lines (fraction of starting GSH that is
oxidized) are higher than the black lines (aqueous species distribution). Although the caption to Fig. 3
of Schafer and Buettner (2001) reads “percent GSH that has been oxidized to GSSG”, the lines in their
figure are closer to the black lines in the figure below.

basis(c("GSH", "NH3", "H2S", "H2O", "H+", "e-"))

basis("pH", 7)

species(c("GSH", "GSSG"))

a <- affinity(Eh=c(-0.3, -0.1))

# initial millimoles of GSH

mM <- c(10, 3, 1)

M <- mM * 1e-3

for(i in 1:3) {

e <- equilibrate(a, loga.balance=log10(M[i]))

diagram(e, alpha=TRUE, lty=c(0, i), add = i!=1, legend.x=NULL, ylim=c(0, 1), yline=1.6, lwd=2, ylab="aqueous

fGSH <- 1 - (10^e$loga.equil[[1]] / M[i])

lines(e$vals[[1]], fGSH, col="blue", lty=i)

}

mtext(side=2, "fraction of GSH oxidized to GSSG", las=0, line=2.6, col="blue", cex=0.8)

mtext(side=2, "- - - - - - - - - - - - - - - - - - -", las=0, line=2.1, cex=0.8)

legend("topleft", lty=1:3, legend=paste(mM, "mM GSH"))
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4.3 Mosaic diagrams

The examples using mosaic() mentioned below are based on the maximum affinity method, but equilibra-
tion calculations are also possible. See also the blend argument of mosaic() to equilibrate the basis species
rather than compose the diagram using the predominant basis species.

• See the examples in ?mosaic and demo("mosaic") for calculations of mineral stabilities in the Fe-S-O-
H2O system (after Garrels and Christ, 1965).

• Run demo("mosaic") for a calculation of copper solubility limits and speciation with aqueous glycine
based on Fig. 2b of Aksu and Doyle (2001). This demo uses mosaic() to speciate the basis species
glycine (activity 10−1) as a function of pH. The stability fields are shown for unequal activities of the
minerals (unit activity) and aqueous species (10−4). This is essentially a composite of three diagrams,
with glycinium, glycine and glycinate in the basis at low, mid and high pH. This demo also modifies
the thermodynamic database (with mod.obigt()) to use Gibbs energies taken from Aksu and Doyle
(2001), and bypasses the default plotting of labels by diagram() in order to customize their format and
placement.

Appendix

Two different methods of calculating the equilibrium activities of species in a system are described below.
These are referred to as the reaction-matrix approach and the Boltzmann distribution. Each method is demon-
strated using a specific example that has been described previously (Dick, 2008; Dick and Shock, 2011) (the
“CSG” example). The results shows that two approaches are equivalent when the molar formulas are nor-
malized.

A Standard states, the ideal approximation and sources of data

By chemical activity we mean the quantity ai that appears in the expression

µi = µ◦
i + RT ln ai , (1)

where µi and µ◦
i stand for the chemical potential and the standard chemical potential of the ith species, and

R and T represent the gas constant and the temperature in Kelvin (lnhere stands for the natural logarithm).
Chemical activity is related to molality (mi) by

ai = γimi , (2)

where γi stands for the activity coefficient of the ith species. For this discussion, we take γi = 1 for all
species, so chemical activity is assumed to be numerically equivalent to molality. Since molality is a measure
of concentration, calculating the equilibrium chemical activities can be a theoretical tool to help understand
the relative abundances of species, including proteins.

For the CSG examples below, we would like to reproduce exactly the values appearing in publications.
Because recent versions of CHNOSZ incorporate data updates for the protein backbone and methionine
and glycine sidechain groups, we should therefore revert to the previous values (Dick et al., 2006) before
proceeding.

reset()

## reset: resetting "thermo" object

## obigt: loading default database with 1849 aqueous, 3374 total species

add.obigt("OldAA")

## add.obigt: read 64 rows; made 21 replacements, 43 additions [energy units: cal]

## add.obigt: use obigt() or reset() to restore default database
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B Reaction-matrix approach

B.1 CSG Example: Whole formulas

Let us calculate the equilibrium activities of two proteins in metastable equilibrium. To do this we start by
writing the formation reactions of each protein as

stuff 3 ⇋ CSG_METVO (3)

and
stuff 4 ⇋ CSG_METJA . (4)

The basis species in the reactions are collectively symbolized by stuff ; the subscripts simply refer to the
reaction number in this document. In these examples, stuff consists of CO2, H2O, NH3, O2, H2S and H+ in
different molar proportions. To see what stuff is, try out these commands in CHNOSZ:

basis("CHNOS+")

## C H N O S Z ispecies logact state

## CO2 1 0 0 2 0 0 1480 -3 aq

## H2O 0 2 0 1 0 0 1 0 liq

## NH3 0 3 1 0 0 0 64 -4 aq

## H2S 0 2 0 0 1 0 65 -7 aq

## O2 0 0 0 2 0 0 3100 -80 gas

## H+ 0 1 0 0 0 1 3 -7 aq

species("CSG",c("METVO", "METJA"))

## CO2 H2O NH3 H2S O2 H+ ispecies logact state name

## 1 2575 1070 645 11 -2668 0 3418 -3 aq CSG_METVO

## 2 2555 1042 640 14 -2644 0 3419 -3 aq CSG_METJA

Although the basis species are defined, the temperature is not yet specified, so it is not immediately
possible to calculate the ionization states of the proteins. That is why the coefficient on H+ is zero in the
output above. Let us now calculate the chemical affinities of formation of the ionized proteins at 25 ◦C, 1
bar, and pH = 7 (specified by the logarithm of activity of H+ in the basis species):

a <- affinity()

## affinity: temperature is 25 C

## affinity: pressure is Psat

## subcrt: 8 species at 25 C and 1 bar (wet) [energy units: cal]

## subcrt: 18 species at 25 C and 1 bar (wet) [energy units: cal]

a$values

## $`3418`

## [1] 108

##

## $`3419`

## [1] 317

Since affinity() returns a list with a lot of information (such as the basis species and species defi-
nitions) the last command was written to only print the values part of that list. The values are actually
dimensionless, i.e. A/2.303RT.

The affinities of the formation reactions above were calculated for a reference value of activity of the proteins,
which is not the equilibrium value. Those non-equilibrium activities were 10−3. How do we calculate the
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equilibrium values? Let us write specific statements of the expression for chemical affinity (2.303 is used
here to stand for the natural logarithm of 10),

A = 2.303RT log(K/Q) , (5)

for Reactions 3 and 4 as

A3/2.303RT = log K3 − log Q3

= log K3 + log astuff ,3 − log aCSG_METVO

= A
∗
3/2.303RT − log aCSG_METVO

(6)

and

A4/2.303RT = log K4 − log Q4

= log K4 + log astuff ,4 − log aCSG_METJA

= A
∗
4/2.303RT − log aCSG_METJA .

(7)

The A
∗ denote the affinities of the formation reactions when the activities of the proteins are unity. I like

to call these the “starved” affinities. From the output above it follows that A
∗
3/2.303RT = 104.6774 and

A
∗
4/2.303RT = 314.1877.

Next we must specify how reactions are balanced in this system: what is conserved during transforma-
tions between species (let us call it the immobile component)? For proteins, one possibility is to use the
repeating protein backbone group. Let us use ni to designate the number of residues in the ith protein,
which is equal to the number of backbone groups, which is equal to the length of the sequence. If γi = 1 in
Eq. (2), the relationship between the activity of the ith protein (ai) and the activity of the residue equivalent
of the ith protein (aresidue,i) is

aresidue,i = ni × ai . (8)

We can use this to write a statement of mass balance:

553 × aCSG_METVO + 530 × aCSG_METJA = 1.083 . (9)

At equilibrium, the affinities of the formation reactions, per conserved quantity (in this case protein
backbone groups) are equal. Therefore A = A3/553 = A4/530 is a condition for equilibrium. Combining
this with Eqs. (6) and (7) gives

A/2.303RT = (104.6774 − log aCSG_METVO) /553 (10)

and
A/2.303RT =

(

314.1877 − log aCSG_METJA

)

/530 . (11)

Now we have three equations (9–11) with three unknowns. The solution can be displayed in CHNOSZ as
follows. Because the balancing coefficients differ from unity, the function called by equilibrate() in this
case is equil.reaction(), which implements the equation-solving strategy described in the next section.

e <- equilibrate(a)

## balance: from protein length

## equilibrate: n.balance is 553 530

## equilibrate: loga.balance is 0.0346284566253204

## equilibrate: using reaction method

e$loga.equil

## [[1]]

## [1] -226

##

## [[2]]

## [1] -2.69
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Those are the logarithms of the equilibrium activities of the proteins. Combining these values with either
Eq. (10) or (11) gives us the same value for affinity of the formation reactions per residue (or per protein
backbone group), A/2.303RT = 0.5978817. Equilibrium activities that differ by such great magnitudes
make it appear that the proteins are very unlikely to coexist in metastable equilibrium. Later we explain the
concept of using residue equivalents of the proteins to achieve a different result.

B.2 Implementing the reaction-matrix approach

CHNOSZ implements a method for solving the system of equations that relies on a difference function for
the activity of the immobile component. The steps to obtain this difference function are:

1. Set the total activity of the immobile (conserved) component (aka total balance activity) as aic (e.g., the
1.083 in Eqn. 9).

2. Write a function for the logarithm of activity of each of the species of interest: A = (A
∗
i − 2.303RT log ai) /nic,i,

where nic,i stands for the number of moles of the immobile component that react in the formation of
one mole of the ith species. (e.g., for systems of proteins where the backbone group is conserved, nic,i

is the same as ni in Eq. 8). Calculate values for each of the A
∗
i . Metastable equilibrium is implied by

the equality of A in all of the equations.

3. Write a function for the total activity of the immobile component: a
′

ic = ∑ nic,iai.

4. The difference function is now δaic = a
′

ic − aic.

Now all we have to do is find the value of A where δaic = 0. This is achieved in the code by first looking for
a range of values of A where at one end δaic < 0 and at the other end δaic > 0, then using the uniroot()

function that is part of R to find the solution.
Even if values of δaic on either side of zero can be located, the algorithm does not guarantee an accurate

solution and may give a warning about poor convergence if a certain tolerance is not reached.

B.3 CSG Example: normalized formulas (residue equivalents)

Let us consider the formation reactions of the normalized formulas (residue equivalents) of proteins, for
example

stuff 12 ⇋ CSG_METVO(residue) (12)

and
stuff 13 ⇋ CSG_METJA(residue) . (13)

The formulas of the residue equivalents are those of the proteins divided by the number of residues in each
protein. The protein.basis() function shows the coefficients on the basis species in these reactions:

protein.basis(species()$name, normalize=TRUE)

## subcrt: 18 species at 25 C and 1 bar (wet) [energy units: cal]

## CO2 H2O NH3 H2S O2 H+

## [1,] 4.66 1.93 1.17 0.0199 -4.82 -0.101

## [2,] 4.82 1.97 1.21 0.0264 -4.99 -0.105

Let us denote by A12 and A13 the chemical affinities of Reactions 12 and 13. We can write

A12/2.303RT = log K12 + log astuff ,12 − log aCSG_METVO(residue) (14)

and

A13/2.303RT = log K13 + log astuff ,13 − log aCSG_METJA(residue) . (15)
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For metastable equilibrium we have A12/1 = A13/1. The 1’s in the denominators are there as a reminder
that we are still conserving residues, and that each reaction now is written for the formation of a single
residue equivalent. So, let us write A for A12 = A13 and also define A

∗
12 = A12 + 2.303RT log aCSG_METVO(residue)

and A
∗
13 = A13 + 2.303RT log aCSG_METJA(residue). At the same temperature, pressure and activities of basis

species and proteins as shown in the previous section, we can write A
∗
12 = A

∗
3/553 = 2.303RT × 0.1892901

and A
∗
13 = A

∗
4/530 = 2.303RT × 0.5928069 to give

A/2.303RT = 0.1892901 − log aCSG_METVO(residue) (16)

and
A/2.303RT = 0.5928069 − log aCSG_METJA(residue) , (17)

which are equivalent to Equations 12 and 13 in the paper (Dick, 2008) but with more decimal places shown.
A third equation arises from the conservation of amino acid residues:

aCSG_METVO(residue) + aCSG_METJA(residue) = 1.083 . (18)

The solution to these equations is aCSG_METVO(residue) = 0.3065982, aCSG_METJA(residue) = 0.7764018 and
A/2.303RT = 0.7027204.

The corresponding logarithms of activities of the proteins are log (0.307/553) = −3.256 and log (0.776/530) =
−2.834. These activities of the proteins are much closer to each other than those calculated using formation
reactions for whole protein formulas, so this result seems more compatible with the actual coexistence of
proteins in nature.

The approach just described is not actually used by equilibrate(..., normalize = TRUE). Instead,
because balance = 1, the Boltzmann distribution, which is faster, can be used.

C Boltzmann distribution

C.1 CSG Example: Normalized formulas

An expression for Boltzmann distribution, relating equilibrium activities of species to the affinities of their
formation reactions, can be written as (using the same definitions of the symbols above)

ai

∑ ai
=

eA
∗
i /RT

∑ eA
∗
i /RT

. (19)

Using this equation, we can very quickly (without setting up a system of equations) calculate the equilib-
rium activities of proteins using their residue equivalents. Above, we saw A

∗
12/2.303RT = 0.1892901 and

A
∗
13/2.303RT = 0.5928069. Multiplying by ln 10 = 2.302585 gives A

∗
12/RT = 0.4358565 and A

∗
13/RT =

1.364988. We then have eA
∗
12/RT = 1.546287 and eA13/RT = 3.915678. This gives us ∑ eA∗

i /RT = 5.461965,
a12/ ∑ ai = 0.2831009 and a13/ ∑ ai = 0.7168991. Since ∑ ai = 1.083, we arrive at a12 = 0.3065982 and
a13 = 0.7764018, the same result as above.

D Notes on implementation

D.1 CSG example: another look

All the tedium of writing reactions, calculating affinities, etc., above does help to understand the application
of the reaction-matrix and Boltzmann distribution methods to protein equilibrium calculations. But can we
automate the step-by-step calculation for any system, including more than two proteins? And can we be
sure that higher-level functions in CHNOSZ, particularly equilibrate(), match the output of the step-by-
step calculations? Now we can, with the protein.equil() function introduced in version 0.9-9. Below is
its output when configured for CSG example we have been discussing.
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protein <- pinfo(c("CSG_METVO", "CSG_METJA"))

basis("CHNOS+")

swap.basis("O2", "H2")

## subcrt: 6 species at 25 C and 1 bar (wet) [energy units: cal]

## subcrt: 6 species at 25 C and 1 bar (wet) [energy units: cal]

protein.equil(protein, loga.protein=-3)

## protein.equil: temperature from argument is 25 degrees C

## protein.equil: pH from thermo$basis is 7

## protein.equil: [Met] is from reference DLH06.6

## protein.equil [1]: first protein is CSG_METVO with length 553

## protein.equil [1]: reaction to form nonionized protein from basis species has G0(cal/mol) of -47580000

## protein.equil [1]: ionization reaction of protein has G0(cal/mol) of -95830

## protein.equil [1]: per residue, reaction to form ionized protein from basis species has G0/RT of

-145.5

## protein.equil [1]: per residue, logQstar is 63.01

## protein.equil [1]: per residue, Astar/RT = -G0/RT - 2.303logQstar is 0.4359

## check it! per residue, Astar/RT calculated using affinity() is 0.4359

## protein.equil [all]: lengths of all proteins are 553 530

## protein.equil [all]: Astar/RT of all residue equivalents are 0.4359 1.365

## protein.equil [all]: sum of exp(Astar/RT) of all residue equivalents is 5.462

## protein.equil [all]: equilibrium degrees of formation (alphas) of residue equivalents are 0.2831

0.7169

## check it! alphas of residue equivalents from equilibrate() are 0.2831 0.7169

## protein.equil [all]: for activity of proteins equal to 10^-3, total activity of residues is 10^0.03463

## protein.equil [all]: log10 equilibrium activities of residue equivalents are -0.5134 -0.1099

## protein.equil [all]: log10 equilibrium activities of proteins are -3.256 -2.834

## check it! log10 eq’m activities of proteins from equilibrate() are -3.256 -2.834

The function checks (“check it!”) against the step-by-step calculations the values of A
∗ calculated using

affinity(), and the equilibrium activities of the proteins calculated using equilibrate(). (Note that As-
tar/RT in the second line after the first “check it!” can be multiplied by ln 10 to get the values shown above
in Eqs. 16 and 17.)

D.2 Visualizing the effects of normalization

A comparison of equilibrium calculations that do and do not use normalized formulas for proteins was
presented by Dick (2008). A diagram like Figure 5 in that paper is shown below.

organisms <- c("METSC", "METJA", "METFE", "HALJP", "METVO", "METBU", "ACEKI", "GEOSE", "BACLI", "AERSA")

proteins <- c(rep("CSG", 6), rep("SLAP", 4))

basis("CHNOS+")

species(proteins, organisms)

a <- affinity(O2=c(-100, -65))

layout(matrix(1:2), heights=c(1, 2))

e <- equilibrate(a)

diagram(e, ylim=c(-2.8, -1.6), names=organisms)

water.lines(e)

title(main="Equilibrium activities of proteins, normalize = FALSE")

e <- equilibrate(a, normalize=TRUE)

diagram(e, ylim=c(-4, -2), names=organisms)

water.lines(e)

title(main="Equilibrium activities of proteins, normalize = TRUE")
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Although it is well below the stability limit of H2O (vertical dashed line), there is an interesting con-
vergence of the activities of some proteins at low log fO2

, due most likely to compositional similarity of the
amino acid sequences.

The reaction-matrix approach can also be applied to systems having conservation coefficients that differ
from unity, such as many mineral and inorganic systems, where the immobile component has different
molar coefficients in the formulas. For example, consider a system like one described by Seewald (1996):

basis("CHNOS+")

basis("pH", 5)

species(c("H2S", "S2-2", "S3-2", "S2O3-2", "S2O4-2", "S3O6-2", "S5O6-2", "S2O6-2", "HSO3-", "SO2", "HSO4-"

a <- affinity(O2=c(-50, -15), T=325, P=350)

layout(matrix(c(1, 2, 3, 3), nrow=2), widths=c(4, 1))

col <- rep(c("blue", "black", "red"), each=4)

lty <- 1:4

for(normalize in c(FALSE, TRUE)) {

e <- equilibrate(a, loga.balance=-2, normalize=normalize)

diagram(e, ylim=c(-30, 0), legend.x=NULL, col=col, lty=lty)

water.lines(e)

title(main=paste("Aqueous sulfur speciation, normalize =", normalize))

}

par(mar=c(0, 0, 0, 0))

plot.new()

leg <- lapply(species()$name, expr.species)
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legend("center", lty=lty, col=col, lwd=1.5, bty="n", legend=as.expression(leg), y.intersp=1.3)
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The first diagram is quantitatively similar to the one shown by Seewald (1996), with the addition of color
and the water stability line. If we use the normalized formulas (divide whole formulas by moles of H2S in
their formation reactions), the range of activities of species is smaller at any given log fO2(g)

, as shown in the

second diagram. Although normalize = TRUE was implemented to study the relative stabilities of proteins,
it might also be relevant to other systems where the molecules are in various stages of polymerization.

Document history

• 2009-11-29 Initial version containing CSG example (title: Calculating relative abundances of proteins)

• 2012-09-30 Renamed to “Equilibrium in CHNOSZ”. Remove activity comparisons, add maximum
affinity method.

• 2015-11-08 Add sections on concepts, organization, examples and applications; move most material
from the previous version of the document to the Appendix; now uses the knitr vignette engine.
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