
Package ‘CHNOSZ’
March 16, 2020

Date 2020-03-16

Version 1.3.6

Title Thermodynamic Calculations and Diagrams for Geochemistry

Author Jeffrey Dick [aut, cre] (<https://orcid.org/0000-0002-0687-5890>),
R Core Team [ctb] (code derived from R's pmax())

Maintainer Jeffrey Dick <j3ffdick@gmail.com>

Depends R (>= 3.1.0)

Suggests limSolve, testthat, knitr, rmarkdown, tufte

Imports grDevices, graphics, stats, utils

Description An integrated set of tools for thermodynamic calculations in
aqueous geochemistry and geobiochemistry. Functions are provided for writing
balanced reactions to form species from user-selected basis species and for
calculating the standard molal properties of species and reactions, including
the standard Gibbs energy and equilibrium constant. Calculations of the
non-equilibrium chemical affinity and equilibrium chemical activity of species
can be portrayed on diagrams as a function of temperature, pressure, or
activity of basis species; in two dimensions, this gives a maximum affinity or
predominance diagram. The diagrams have formatted chemical formulas and axis
labels, and water stability limits can be added to Eh-pH, oxygen fugacity-
temperature, and other diagrams with a redox variable. The package has been
developed to handle common calculations in aqueous geochemistry, such as
solubility due to complexation of metal ions, mineral buffers of redox or pH,
and changing the basis species across a diagram (``mosaic diagrams''). CHNOSZ
also has unique capabilities for comparing the compositional and thermodynamic
properties of different proteins.

Encoding UTF-8

License GPL (>= 2)

BuildResaveData no

VignetteBuilder knitr

URL http://www.chnosz.net/, http://chnosz.r-forge.r-project.org/

NeedsCompilation yes

1

http://www.chnosz.net/
http://chnosz.r-forge.r-project.org/


2 R topics documented:

Repository CRAN

Date/Publication 2020-03-16 17:30:08 UTC

R topics documented:
CHNOSZ-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
add.obigt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
add.protein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
affinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
berman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
DEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
eos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
EOSregress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
eqdata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
equilibrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
extdata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
findit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
IAPWS95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
ionize.aa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
makeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
mosaic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
NaCl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
nonideal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
palply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
protein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
protein.info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
retrieve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
revisit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
solubility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
subcrt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
swap.basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
thermo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
util.array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
util.blast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
util.data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
util.expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
util.fasta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
util.formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
util.legend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123



CHNOSZ-package 3

util.list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
util.matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
util.misc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
util.plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
util.protein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
util.seq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
util.test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
util.units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
util.water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
wjd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Index 147

CHNOSZ-package Thermodynamic Calculations and Diagrams for Geochemistry

Description

CHNOSZ is a package for thermodynamic calculations, primarily with applications in geochemistry
and compositional biology. It can be used to calculate the standard molal thermodynamic proper-
ties and chemical affinities of reactions relevant to geobiochemical processes, and to visualize the
equilibrium activities of species on chemical speciation and predominance diagrams.

Warm Tips

• To view the manual, run help.start() then select ‘Packages’ and ‘CHNOSZ’. Examples in
the function help pages can be run by pasting the code block into the R console.

• Be sure to check out the vignette titled An Introduction to CHNOSZ, which is available by fol-
lowing the link in help.start to ‘User guides, package vignettes and other documentation’.

• Run the command examples() to run all of the examples provided in CHNOSZ. This should
take about a minute.

Getting Help

Each help page (other than this one) has been given one of the following “concept index entries”:

• Main workflow: info, subcrt, basis, species, affinity, equilibrate, diagram

• Extended workflow: swap.basis, buffer, mosaic, objective, revisit, findit, EOSregress,
wjd

• Thermodynamic data: data, extdata, add.obigt, util.data

• Thermodynamic calculations: util.formula, makeup, util.units, eos, berman, nonideal,
util.misc

• Water properties: water, util.water, DEW, IAPWS95

• Protein properties: protein, protein.info, add.protein, util.fasta, util.protein,
util.seq, ionize.aa



4 add.obigt

• Other tools: examples, eqdata, taxonomy, util.blast

• Utility functions: util.expression, util.plot, util.array, util.matrix, util.list,
util.test, palply

These concept entries are visible to help.search (aka ??). For example, help pages related to
thermodynamic data can be listed using ??"thermodynamic data".

Warning

All thermodynamic data and examples are provided on an as-is basis. It is up to you to check not
only the accuracy of the data, but also the suitability of the data AND computational techniques for
your problem. By combining data taken from different sources, it is possible to build an inconsistent
and/or nonsensical calculation. An attempt has been made to provide a default database (OBIGT)
that is internally consistent, but no guarantee can be made. If there is any doubt about the accuracy
or suitability of data for a particular problem, please consult the primary sources (see thermo.refs).

Acknowledgements

This package would not exist without the encouragement and groudbreaking work of the late Pro-
fessor Harold C. Helgeson. The revised Helgeson-Kirkham-Flowers equations of state are used in
this package, together with thermodynamic properties of minerals and aqueous species from many
papers coauthored by Helgeson. CHNOSZ uses Fortran code from H2O92D.f in the SUPCRT92
package (Johnson et al., 1992), with only minor modifications (masking of WRITE and STOP
statements made for compatibility with the R environment and keep valTP flag TRUE to permit
sub-zero ◦C calculations).

Work on this package at U.C. Berkeley from ca. 2003 to 2008 was supported by research grants
to HCH from the U.S. National Science Foundation and Department of Energy. In 2009–2011,
development of this package was based upon work supported by the National Science Foundation
under grant EAR-0847616. The files in extdata/bison are derived from BLAST calculations
made on the Saguaro high performance computer at Arizona State University.

References

Johnson, J. W., Oelkers, E. H. and Helgeson, H. C. (1992) SUPCRT92: A software package for
calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and
reactions from 1 to 5000 bar and 0 to 1000◦C. Comp. Geosci. 18, 899–947. https://doi.org/
10.1016/0098-3004(92)90029-Q

add.obigt Functions to Work with the Thermodynamic Database

Description

Add or modify species in the thermodynamic database.

https://doi.org/10.1016/0098-3004(92)90029-Q
https://doi.org/10.1016/0098-3004(92)90029-Q


add.obigt 5

Usage

add.obigt(file, species = NULL, force = TRUE)
mod.obigt(...)
today()

Arguments

file character, path to a file

species character, names of species to load from file

force logical, force replacement of already existing species?

... character or numeric, properties of species to modify in the thermodynamic
database

Details

add.obigt is used to update the thermodynamic database (thermo$obigt) in the running session.
The format (column names) of the specified file must be the same as the extdata/OBIGT/*.csv
files provided with CHNOSZ. Howvever, for backwards compatibility, the E_units column of the
input can be missing; then, it is assigned a value of ‘cal’.

file is first matched against the names of files in the extdata/OBIGT directory packaged with
CHNOSZ. In this case, the filename suffixes are removed, so ‘DEW_aq’, ‘organic_aq’, and ‘organic_cr’
are valid names. The function also accepts single matches with the state suffix dropped (‘DEW’ but
not ‘organic’). If there are no matches to a system file, then file is interpreted as the path a
user-supplied file.

If species is NULL (default), all species listed in the file are used. If species is given and matches
the name(s) of species in the file, only those species are added to the database.

By default, species in the file replace any existing species having the same combination of name
and state. Set force to FALSE to avoid replacing species that are present in (thermo()$obigt).

When adding (not replacing) species, there is no attempt made to keep the order of physical states
in the database (aq-cr-liq-gas); the function simply adds new rows to the end of thermo$obigt.
As a result, retrieving the properties of an added aqueous species using info requires an explicit
state="aq" argument to that function if a species with the same name is present in one of the cr,
liq or gas states.

mod.obigt changes one or more of the properties of species or adds species to the thermodynamic
database. These changes are lost if you reload the database by calling data(thermo) or if you quit
the R session without saving it. The name of the species to add or change must be supplied as
the first argument of ... or as a named argument (named ‘name’). When adding new species, a
chemical formula should be included along with the values of any of the thermodynamic properties.
The formula is taken from the ‘formula’ argument, or if that is missing, is taken to be the same
as the ‘name’ of the species. An error results if the formula is not valid (i.e. can not be parsed
bymakeup). Additional arguments refer to the name of the property(s) to be updated and are matched
to any part of compound column names in thermo$obigt, such as ‘z’ or ‘T’ in ‘z.T’. Unless
‘state’ is specified as one of the properties, its value is taken from thermo()$opt$state. When
adding species, properties that are not specified become NA, except for ‘state’, which takes a
default value from thermo()$opt$state, and ‘z.T’, which for aqueous species is set to the charge
calculated from the chemical formula (otherwise, NA charge for newly added species would trigger



6 add.obigt

the AkDi model). The values provided should have energy units correponding to the current setting
(E.units), but this can be overridden by giving a value for ‘E_units’ in the new data. The values
provided should also include any order-of-magnitude scaling factors (see thermo).

today returns the current date in the format adopted for thermo()$obigt (inherited from SUPCRT-
format data files) e.g. ‘13.May.12’ for May 13, 2012.

Value

The values returned (invisible-y) are the indices of the added and/or modified species.

References

Apps, J. and Spycher, N. (2004) Data qualification for thermodynamic data used to support THC
calculations. DOC.20041118.0004 ANL-NBS-HS-000043 REV 00. Bechtel SAIC Company,
LLC.

Bazarkina, E. F., Zotov, A. V., and Akinfiev, N. N. (2010) Pressure-dependent stability of cad-
mium chloride complexes: Potentiometric measurements at 1-1000 bar and 25°C. Geology of Ore
Deposits 52, 167–178. https://doi.org/10.1134/S1075701510020054

Kitadai, N. (2014) Thermodynamic prediction of glycine polymerization as a function of tem-
perature and pH consistent with experimentally obtained results. J. Mol. Evol. 78, 171–187.
https://doi.org/10.1007/s00239-014-9616-1

Shock, E. L., Helgeson, H. C. and Sverjensky, D. A. (1989) Calculation of the thermodynamic
and transport properties of aqueous species at high pressures and temperatures: Standard partial
molal properties of inorganic neutral species. Geochim. Cosmochim. Acta 53, 2157–2183. https:
//doi.org/10.1016/0016-7037(89)90341-4

Stefánsson, A. (2001) Dissolution of primary minerals of basalt in natural waters. I. Calculation of
mineral solubilities from 0◦C to 350◦C. Chem. Geol. 172, 225–250. https://doi.org/10.1016/
S0009-2541(00)00263-1

Sverjensky, D. A., Shock, E. L., and Helgeson, H. C. (1997) Prediction of the thermodynamic
properties of aqueous metal complexes to 1000 °C and 5 kbar. Geochim. Cosmochim. Acta 61,
1359–1412. https://doi.org/10.1016/S0016-7037(97)00009-4

See Also

thermo, util.data, mod.buffer

Examples

## modify an existing species (example only)
ialanine <- mod.obigt("alanine", state="cr", G=0, H=0, S=0)
# we have made the values of G, H, and S inconsistent
# with the elemental composition of alanine, so the following
# now produces a message about that
info(ialanine)
## add a species
iCl2O <- mod.obigt("Cl2O", G=20970)
info(iCl2O)

https://doi.org/10.1134/S1075701510020054
https://doi.org/10.1007/s00239-014-9616-1
https://doi.org/10.1016/0016-7037(89)90341-4
https://doi.org/10.1016/0016-7037(89)90341-4
https://doi.org/10.1016/S0009-2541(00)00263-1
https://doi.org/10.1016/S0009-2541(00)00263-1
https://doi.org/10.1016/S0016-7037(97)00009-4


add.obigt 7

# add a species with a name that is different from the formula
mod.obigt("buckminsterfullerene", formula="C60", state="cr", date=today())
# retrieve the species data (thermodynamic properties in this toy example are NA)
info(info("C60"))
# reset database
obigt()

# using add.obigt():
# compare stepwise stability constants of cadmium chloride complexes
# using data from Sverjensky et al., 1997 and Bazarkina et al., 2010
Cdspecies <- c("Cd+2", "CdCl+", "CdCl2", "CdCl3-", "CdCl4-2")
P <- c(1, seq(25, 1000, 25))
SSH97 <- lapply(1:4, function(i) {

subcrt(c(Cdspecies[i], "Cl-", Cdspecies[i+1]),
c(-1, -1, 1), T=25, P=P)$out$logK

})
file <- system.file("extdata/adds/BZA10.csv", package="CHNOSZ")
add.obigt(file)
BZA10 <- lapply(1:4, function(i) {

subcrt(c(Cdspecies[i], "Cl-", Cdspecies[i+1]),
c(-1, -1, 1), T=25, P=P)$out$logK

})
# reset default database
obigt()
matplot(P, do.call(cbind, SSH97), type="l")
matplot(P, do.call(cbind, BZA10), type="l", add=TRUE, lwd=2)
legend("topleft", legend=c("", "", "Sverjensky et al., 1997",

"Bazarkina et al., 2010"), lwd=c(0, 0, 1, 2), bty="n")
# make reaction labels
y <- c(1.8, 0.2, -0.5, -1)
invisible(lapply(1:4, function(i) {

text(800, y[i], describe.reaction(subcrt(c(Cdspecies[i], "Cl-",
Cdspecies[i+1]), c(-1, -1, 1), T=25, P=1)$reaction))

}))

# another use of add.obigt()
# compare Delta G of AABB = UPBB + H2O
# (Figure 9 of Kitadai, 2014)
E.units("J")
# default database has values from Kitadai, 2014
Kit14 <- subcrt(c("[AABB]", "[UPBB]", "H2O"), c(-1, 1, 1), T = seq(0, 300, 10))
# optional file OldAA has superseded values of [UPBB] from Dick et al., 2006
add.obigt("OldAA")
DLH06 <- subcrt(c("[AABB]", "[UPBB]", "H2O"), c(-1, 1, 1), T = seq(0, 300, 10))
xlab <- axis.label("T"); ylab <- axis.label("DG", prefix="k")
plot(Kit14$out$T, Kit14$out$G/1000, type = "l", ylim = c(10, 35),

xlab = xlab, ylab = ylab)
lines(DLH06$out$T, DLH06$out$G/1000, lty = 2)
legend("topleft", c("Dick et al., 2006", "Kitadai, 2014"), lty = c(2, 1))
title(main = "AABB = UPBB + H2O; after Figure 9 of Kitadai, 2014")
# reset database *and* settings (units)
reset()



8 add.protein

# Another use of add.obigt(): calculate Delta G of
# H4SiO4 = SiO2 + 2H2O using different data for SiO2.
# first, get H4SiO4 from Stefansson, 2001
add.obigt("AS04", "H4SiO4")
T <- seq(0, 350, 10)
s1 <- subcrt(c("H4SiO4", "SiO2", "H2O"), c(-1, 1, 2), T = T)
# now, get SiO2 from Apps and Spycher, 2004
add.obigt("AS04", "SiO2")
s2 <- subcrt(c("H4SiO4", "SiO2", "H2O"), c(-1, 1, 2), T = T)
# plot logK from the first and second calculations
plot(T, s1$out$G, type = "l", xlab = axis.label("T"),

ylab = axis.label("DG"), ylim = c(-100, 600))
lines(T, s2$out$G, lty = 2)
# add title and legend
title(main = describe.reaction(s1$reaction))
stxt <- lapply(c("H4SiO4", "SiO2", "SiO2"), expr.species)
legend("top", legend = as.expression(stxt), bty = "n")
legend("topright", c("Stef\u00e1nsson, 2001", "Shock et al., 1989",

"Apps and Spycher, 2004"), lty = c(0, 1, 2), bty = "n")
reset()

add.protein Amino Acid Compositions of Proteins

Description

Functions to get amino acid compositions and add them to protein list for use by other functions.

Usage

add.protein(aa)
seq2aa(protein, sequence)
aasum(aa, abundance = 1, average = FALSE, protein = NULL, organism = NULL)

Arguments

aa data frame, amino acid composition in the format of thermo()$protein

protein character, name of protein; numeric, indices of proteins (rownumbers of thermo$protein)

sequence character, protein sequence

abundance numeric, abundances of proteins

average logical, return the weighted average of amino acid counts?

organism character, name of organism



affinity 9

Details

A ‘protein’ in CHNOSZ is defined by its identifying information and the amino acid composi-
tion, stored in thermo$protein. The names of proteins in CHNOSZ are distinguished from those
of other chemical species by having an underscore character ("_") that separates two identifiers,
referred to as the protein and organism. An example is ‘LYSC_CHICK’. The purpose of the func-
tions described here is to identify proteins and work with their amino acid compositions. From the
amino acid compositions, the thermodynamic properties of the proteins can be estimated by group
additivity.

seq2aa returns a data frame of amino acid composition, in the format of thermo()$protein, corre-
sponding to the provided sequence. Here, the protein argument indicates the name of the protein
with an underscore (e.g. ‘LYSC_CHICK’).

aasum returns a data frame representing the sum of amino acid compositions in the rows of the
input aa data frame. The amino acid compositions are multiplied by the indicated abundance; that
argument is recycled to match the number of rows of aa. If average is TRUE the final sum is
divided by the number of input compositions. The name used in the output is taken from the first
row of aa or from protein and organism if they are specified.

Given amino acid compositions returned by the *aa functions described above, add.protein adds
them to thermo()$protein for use by other functions in CHNOSZ. The amino acid compositions
of proteins in aa with the same name as one in thermo()$protein are replaced. The value returned
by this function is the rownumbers of thermo()$protein that are added and/or replaced.

See Also

read.fasta and uniprot.aa for other ways of getting amino acid compositions.

pinfo for protein-level functions (length, chemical formulas, reaction coefficients of basis species).

protein for examples of affinity calculations and diagrams.

Examples

# manually adding a new protein
# Human Gastric juice peptide 1
aa <- seq2aa("GAJU_HUMAN", "LAAGKVEDSD")
ip <- add.protein(aa)
stopifnot(protein.length(ip)==10)
# the chemical formula of this peptide
as.chemical.formula(protein.formula(ip)) # "C41H69N11O18"
# we can also calculate a formula without using add.protein
aa <- seq2aa("pentapeptide_test", "ANLSG")
as.chemical.formula(protein.formula(aa))

affinity Chemical Affinities of Formation Reactions

Description

Calculate the chemical affinities of formation reactions of species.



10 affinity

Usage

affinity(..., property = NULL, sout = NULL, exceed.Ttr = FALSE,
exceed.rhomin = FALSE, return.buffer = FALSE, return.sout = FALSE,
balance = "PBB", iprotein = NULL, loga.protein = -3, transect = NULL)

Arguments

... numeric, zero or more named arguments, used to identify the variables of in-
terest in the calculations. For argument recall, pass the output from a previous
calculation of affinity as an unnamed first argument.

property character, the property to be calculated. Default is ‘A’, for chemical affinity of
formation reactions of species of interest

sout list, output from subcrt

exceed.Ttr logical, allow subcrt to compute properties for phases beyond their transition
temperature?

exceed.rhomin logical, allow subcrt to compute properties of species in the HKF model below
0.35 g cm−3?

return.buffer logical. If TRUE, and a buffer has been associated with one or more basis
species in the system, return the values of the activities of the basis species
calculated using the buffer. Default is FALSE.

return.sout logical, return only the values calculated with subcrt?

balance character. This argument is used to identify a conserved basis species (or ‘PBB’)
in a chemical activity buffer. Default is ‘PBB’.

iprotein numeric, indices of proteins in thermo$protein for which to calculate proper-
ties

loga.protein numeric, logarithms of activities of proteins identified in iprotein

transect logical, force a transect calculation, even for three or fewer values of the vari-
ables?

Details

affinity calculates the chemical affinities of reactions to form the species of interest from the
basis species. The equation used to calculate chemical affinity (A), written for base-10 (decimal)
logarithms, is A/(2.303RT )=log(K/Q), where K is the equilibrium constant of the reaction, Q is
the activity product of the species in the reaction, and 2.303 is the conversion factor from natural
to decimal logarithms. The calculation of chemical affinities relies on the current definitions of the
basis species and species of interest. Calculations are possible at single values of temperature,
pressure, ionic strength and chemical activities of the basis species, or as a function of one or more
of these variables.

The argument property can be changed to calculate other thermodynamic properties of formation
reactions. Valid properties are ‘A’ or NULL for chemical affinity, ‘logK’ or ‘logQ’ for logarithm of
equilibrium constant and reaction activity product, or any of the properties available in subcrt ex-
cept for ‘rho’. The properties returned are those of the formation reactions of the species of interest
from the basis species. It is also possible to calculate the properties of the species of interest them-
selves (not their formation reactions) by setting the property to ‘G.species’, ‘Cp.species’, etc.



affinity 11

Except for ‘A’, the properties of proteins or their reactions calculated in this manner are restricted
to nonionized proteins.

Zero, one, or more leading arguments to the function identify which of the chemical activities of
basis species, temperature, pressure and/or ionic strength to vary. The names of each of these
arguments may be the formula of any of the basis species of the system, or ‘T’, ‘P’, ‘pe’, ‘pH’,
‘Eh’, or ‘IS’ (but names may not be repeated). The names of charged basis species such as ‘K+’
and ‘SO4-2’ should be quoted when used as arguments. The value of each argument is of the form
c(min,max) or c(min,max,res) where min and max refer to the minimimum and maximum values
of variable identified by the name of the argument, and res is the resolution, or number of points
along which to do the calculations; res is assigned a default value of 128 if it is missing. For any
arguments that refer to basis species, the numerical values are the logarithms of activity (or fugacity
for gases) of that basis species.

If ‘T’, ‘P’, and/or ‘IS’ are not among the vars, their constant values can be supplied in T, P, or IS
(in mol kg−1). The units of ‘T’ and ‘P’ are those set by T.units and P.units (on program start-
up these are ◦C and bar, respectively). sout, if provided, replaces the call to subcrt, which can
greatly speed up the calculations if this intermediate result is stored by other functions. exceed.Ttr
is passed to subcrt so that the properties of mineral phases beyond their transition temperatures
can optionally be calculated.

If one or more buffers are assigned to the definition of basis species, the logarithms of activities of
these basis species are taken from the buffer (see buffer).

The iprotein and loga.protein arguments can be used to compute the chemical affinities of
formation reactions of proteins that are not in the current species definition. iprotein contains
the indices (rownumbers) of desired proteins in thermo$protein. This uses some optimizations to
calculate the properties of many proteins in a fraction of the time it would take to calculate them
individually.

When the length(s) of the variables is(are) greater than 3, the function enters the ‘transect’ mode
of operation. In this mode of operation, instead of performing the calculations on an n-dimensional
grid, the affinities are calculated on a transect of changing T, P, and/or chemical activity of basis
species.

Argument recall is invoked by passing a previous result of affinity as the first argument. The
function then calls itself using the settings from the previous calculation, with additions or modifi-
cations indicated by the remaining arguments in the current function call.

Value

A list, elements of which are fun the name of the function (‘affinity’), args all of the arguments
except for ‘sout’ (these are used for argument recall), sout output from subcrt, property name
of the calculated property (‘A’ for chemical affinity), basis and species definition of basis species
and species of interest in effect at runtime, T and P temperature and pressure, in the system units
of Kelvin and bar, set to numeric() (length=0) if either one is a variable, vars the names of the
variables, vals the values of the variables (a list, one element for each variable), values the result
of the calculation (a list, one element for each species, with names taken from the species index in
thermo$obigt). The elements of the lists in vals and values are arrays of n dimensions, where n
is the number of variables. The values of chemical affinity of formation reactions of the species are
returned in dimensionless units (for use with decimal logarithms, i.e., A/2.303RT ).

Names other than ‘T’ or ‘P’ in vars generally refer to basis species, and the corresponding vals
are the logarithms of activity or fugacity. However, if one or more of pe, Eh or pH is among the



12 basis

variables of interest, vals holds the values of the those variables as indicated.

References

Helgeson, H. C., Richard, L, McKenzie, W. F., Norton, D. L. and Schmitt, A. (2009) A chemical
and thermodynamic model of oil generation in hydrocarbon source rocks. Geochim. Cosmochim.
Acta 73, 594–695. https://doi.org/10.1016/j.gca.2008.03.004

See Also

ionize.aa, activated if proteins are among the species of interest and ‘H+’ is in the basis. equilibrate
for using the results of affinity to calculate equilibrium activities of species, and diagram to plot
the results. demo("saturation") for an example using the argument recall feature.

Examples

## set up a system and calculate
## chemical affinities of formation reactions
basis(c("SiO2", "MgO", "H2O", "O2"), c(-5, -5, 0, 999))
species(c("quartz","enstatite","forsterite"))
# chemical affinities (A/2.303RT) at 25 deg C and 1 bar
affinity()
# at higher temperature and pressure
affinity(T=500, P=2000)
# at 25 temperatures and pressures
affinity(T=c(500, 1000, 5), P=c(1000, 5000, 5))
# equilibrium constants of formation reactions
affinity(property="logK")
# standard molal Gibbs energies of species,
# user units (default: cal/mol)
affinity(property="G.species")
# standard molal Gibbs energies of reactions
affinity(property="G")
# a T,P-transect
# (fluid pressure from Helgeson et al., 2009 Fig. 7)
affinity(T=c(25, 110, 115, 215), P=c(11, 335, 500, 1450))

basis Define Basis Species

Description

Define the basis species of a chemical system.

Usage

basis(species = NULL, state = NULL, logact = NULL, delete = FALSE)

https://doi.org/10.1016/j.gca.2008.03.004


basis 13

Arguments

species character, names or formulas of species, or numeric, indices of species

state character, physical states or names of buffers

logact numeric, logarithms of activities or fugacities

delete logical, delete the current basis species definition?

Details

The basis species represent the possible range of chemical compositions for all the species of in-
terest. Any valid set of basis species used here must meet two conditions: 1) the number of basis
species is the same as the number of chemical elements (including charge) in those species and 2)
the square matrix representing the elemental stoichiometries of the basis species has a real inverse.

To create a basis definition, call basis with the names or formulas of the basis species in the first
argument. Alternatively, the first argument may consist of numeric values indicating the species
indices (rownumbers in thermo$obigt), but a mixture of character and numeric values will generate
an error. The special names ‘pH’, ‘pe’ and ‘Eh’ can be included in the species argument; they get
translated into the names of the proton (‘H+’) and electron (‘e-’) as appropriate.

The physical states or logarithms of activities of species in the basis definition can be changed by
calling basis with the formulas of species that are in the basis set, or their species indices. If
either of the second or third arguments to basis is of type character, it refers to the name of a state
(if present in thermo()$obigt$state) or to the name of a chemical activity buffer (if present
in thermo()$buffers$name). If either of these arguments is numeric it specifies the logarithms
of activities (or fugacities for gases) of the basis species. In case ‘pH’, ‘pe’ or ‘Eh’ is named, the
logarithm of activity of the basis species is converted from these values. For example, a value of 7
for pH is stored as a logarithm of activity of -7.

Whenever basis is called with NULL values of both state and logact, the new set of species,
if they are a valid basis set, completely replaces any existing basis definition. If this occurs, any
existing species definition (created by the species function) is deleted. Call basis with delete
set to TRUE or species set to ‘""’ to clear the basis definition and that of the species, if present.

If the value of basis is one of the keywords in the following table, the corresponding set of basis
species is loaded, and their activities are given preset values. The basis species identified by these
keywords are aqueous except for H2O (liq), O2 (gas) and Fe2O3 (hematite).

CHNOS CO2, H2O, NH3, H2S, O2

CHNOS+ CO2, H2O, NH3, H2S, O2, H+

CHNOSe CO2, H2O, NH3, H2S, e−, H+

CHNOPS+ CO2, H2O, NH3, H3PO4, H2S, O2, H+

CHNOPSe CO2, H2O, NH3, H3PO4, H2S, e−, H+

MgCHNOPS+ Mg+2, CO2, H2O, NH3, H3PO4, H2S, O2, H+

MgCHNOPSe Mg+2, CO2, H2O, NH3, H3PO4, H2S, e−, H+

FeCHNOS Fe2O3, CO2, H2O, NH3, H2S, O2

FeCHNOS+ Fe2O3, CO2, H2O, NH3, H2S, O2, H+

QEC4 cysteine, glutamic acid, glutamine, H2O, O2

QEC cysteine, glutamic acid, glutamine, H2O, O2

QEC+ cysteine, glutamic acid, glutamine, H2O, O2, H+



14 basis

The logarithms of activities of amino acids in the ‘QEC4’ basis are -4 (i.e., basis II in Dick, 2016);
those in ‘QEC’ and ‘QEC+’ are set to approximate concentrations in human plasma (see Dick, 2017).

Value

Returns the value of thermo()$basis after any modifications; or, if delete is TRUE, its value
before deletion (invisibly).

References

Dick, J. M. (2016) Proteomic indicators of oxidation and hydration state in colorectal cancer. PeerJ
4:e2238. https://doi.org/10.7717/peerj.2238

Dick, J. M. (2017) Chemical composition and the potential for proteomic transformation in cancer,
hypoxia, and hyperosmotic stress. PeerJ 5:e3421 https://doi.org/10.7717/peerj.3421

See Also

info to query the thermodynamic database in order to find what species are available. makeup is
used by basis to generate the stoichiometric matrix from chemical formulas. swap.basis is used
to change the chemical compounds (species formulas) used in the basis definition while keeping the
chemical potentials of the elements unaltered. species for setting up the formation reactions from
basis species.

Examples

## define basis species
# one, two and three element examples
basis("O2")
basis(c("H2O", "O2"))
basis(c("H2O", "O2", "H+"))
## clear the basis species
basis("")

## Not run:
## marked dontrun because they produce errors
# fewer species than elements
basis(c("H2O", "H+"))
# more species than elements
basis(c("H2O", "O2", "H2", "H+"))
# non-independent species
basis(c("CO2", "H2O", "HCl", "Cl-", "H+"))
## End(Not run)

## specify activities and states
basis(c("H2O", "O2", "CO2"), c(-2, -78, -3), c("liq", "aq", "aq"))
# change logarithms of activities/fugacities
basis(c("H2O", "O2"), c(0, -80))
# change state of CO2
basis("CO2", "gas")

https://doi.org/10.7717/peerj.2238
https://doi.org/10.7717/peerj.3421


berman 15

berman Thermodynamic Properties of Minerals

Description

Calculate thermodynamic properties of minerals using the equations of Berman (1988).

Usage

berman(name, T = 298.15, P = 1, thisinfo = NULL, check.G = FALSE,
calc.transition = TRUE, calc.disorder = TRUE, units = "cal")

Arguments

name character, name of mineral

T numeric, temperature(s) at which to calculate properties (K)

P numeric, pressure(s) at which to calculate properties (bar)

thisinfo dataframe, row for mineral from thermo()$obigt

check.G logical, check consistency of G, H, and S?
calc.transition

logical, include calculation of polymorphic transition properties?

calc.disorder logical, include calculation of disordering properties?

units character, energy units, ‘cal’ or ‘J’

Details

This function calculates the thermodynamic properties of minerals at high P and T using equations
given by Berman (1988). These minerals should be listed in thermo()$obigt with the state ‘cr’
and chemical formula, and optionally an abbreviation and references, but all other properties set to
NA.

The standard state thermodynamic properties and parameters for the calculations are stored in
data files under extdata/Berman, or can be read from a user-created file (if available) named
‘berman.csv’ in the working directory.

The equation used for heat capacity is CP = k0 + k1*T−0.5 + k2*T−2 + k3*T−3 + k4*T−1 +
k5*T + k6*T 2. This is an extended form Eq. 4 of Berman (1988) as used in the winTWQ program
(Berman, 2007). The equation used for volume is V (P , T ) / V (1 bar, 298.15 K) = 1 + v1 * (T -
298.15) + v2 * (T - 298.15)2 + v3 * (P - 1) + v4 * (P - 1)2 (Berman, 1988, Eq. 5, with terms
reordered to follow winTWQ format). The equations used for lambda transitions follow Eqs. 8-14
of Berman (1988). The equation used for the disorder contribution between Tmin and Tmax is
CP [dis] = d0 + d1*T−0.5 + d2*T−2 + d3*T + d4*T 2 (Berman, 1988, Eq. 15). The parameters
correspond to Tables 2 (GfPrTr, HfPrTr, SPrTr, VPrTr), 3a (k0 to k3), 4 (v1 to v4), 3b (transition
parameters: Tlambda to dTH), and 5 (disorder parameters: Tmax, Tmin, d1 to d4 and Vad) of Berman
(1988). Following the winTWQ data format, multipliers are applied to the volume parameters only
(see below). Note that VPrTr is tabulated in J bar−1 mol−1, which is equal to 10 cm3 mol−1.



16 berman

A value for GfPrTr is not required and is only used for optional checks (see below). Numeric values
(possibly 0) should be assigned for all of HfPrTr, SPrTr, VPrTr, k0 to k6 and v1 to v4. Missing (or
NA) values are permitted for the transition and disorder parameters, for minerals where they are not
used. The data files have the following 30 columns:

name mineral name (must match an entry with a formula but NA properties in thermo()$obigt)
GfPrTr standard Gibbs energy at 298.15 K and 1 bar (J mol−1) (Benson-Helgeson convention)
HfPrTr standard enthalpy at 298.15 K and 1 bar (J mol−1)
SPrTr standard entropy at 298.15 K and 1 bar (J mol−1 K−1)
VPrTr standard volume at 298.15 K and 1 bar (J mol−1)
k0 ... k6 k0 (J mol−1 K−1) to k6
v1 v1 (K−1) * 105

v2 v2 (K−2) * 105

v3 v3 (bar−1) * 105

v4 v4 (bar−2) * 108

Tlambda Tλ (K)
Tref Tref (K)
dTdP dT / dP (K bar−1)
l1 l1 ((J/mol)0.5 K−1)
l2 l2 ((J/mol)0.5 K−2)
DtH ∆tH (J mol−1)
Tmax temperature at which phase is fully disordered (TD in Berman, 1988) (K)
Tmin reference temperature for onset of disordering (t in Berman, 1988) (K)
d0 ... d4 d0 (J mol−1 K−1) to d4
Vad constant that scales the disordering enthalpy to volume of disorder (d5 in Berman, 1988)

The function outputs apparent Gibbs energies according to the Benson-Helgeson convention (∆G =
∆H - T∆S) using the entropies of the elements in the chemical formula of the mineral to calculate
∆S (cf. Anderson, 2005). If check.G is TRUE, the tabulated value of GfTrPr (Benson-Helgeson)
is compared with that calculated from HfPrTr - 298.15*DSPrTr (DSPrTr is the difference between
the entropies of the elements in the formula and SPrTr in the table). A warning is produced if
the absolute value of the difference between tabulated and calculated GfTrPr is greater than 1000
J/mol.

Providing thisinfo avoids searching for the mineral in thermo()$obigt, potentially saving some
running time. If the function is called with missing name, the parameters for all available minerals
are returned.

Value

A data frame with T (K), P (bar), G, H, S, and Cp expressed in the given units (‘cal’ or ‘J’), and V
(cm3 mol−1).

References

Anderson, G. M. (2005) Thermodynamics of Natural Systems, 2nd ed., Cambridge University Press,
648 p. http://www.worldcat.org/oclc/474880901

http://www.worldcat.org/oclc/474880901


berman 17

Berman, R. G. (1988) Internally-consistent thermodynamic data for minerals in the system Na2O-
K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. J. Petrol. 29, 445-522. https://doi.
org/10.1093/petrology/29.2.445

Berman, R. G. and Aranovich, L. Ya. (1996) Optimized standard state and solution properties of
minerals. I. Model calibration for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the
system FeO-MgO-CaO-Al2O3-TiO2-SiO2. Contrib. Mineral. Petrol. 126, 1-24. https://doi.
org/10.1007/s004100050233

Berman, R. G. (2007) winTWQ (version 2.3): A software package for performing internally-
consistent thermobarometric calculations. Open File 5462, Geological Survey of Canada, 41 p.
https://doi.org/10.4095/223425

Helgeson, H. C., Delany, J. M., Nesbitt, H. W. and Bird, D. K. (1978) Summary and critique
of the thermodynamic properties of rock-forming minerals. Am. J. Sci. 278-A, 1–229. http:
//www.worldcat.org/oclc/13594862

Examples

# other than the formula, the parameters aren't stored in
# thermo()$obigt, so this shows NAs
info(info("quartz", "cr"))
# properties of alpha-quartz (aQz) at 298.15 K and 1 bar
berman("quartz")
# Gibbs energies of aQz and coesite at higher T and P
T <- seq(200, 1300, 100)
P <- seq(22870, 31900, length.out=length(T))
G_aQz <- berman("quartz", T=T, P=P)$G
G_Cs <- berman("coesite", T=T, P=P)$G
# that is close to the univariant curve (Ber88 Fig. 4),
# so the difference in G is close to 0
DGrxn <- G_Cs - G_aQz
stopifnot(all(abs(DGrxn) < 100))

### compare mineral stabilities in the Berman and Helgeson datasets
### on a T - log(K+/H+) diagram, after Sverjensky et al., 1991
### (doi:10.1016/0016-7037(91)90157-Z)
## set up the system: basis species
basis(c("K+", "Al+3", "quartz", "H2O", "O2", "H+"))
# use pH = 0 so that aK+ = aK+/aH+
basis("pH", 0)
# load the species
species(c("K-feldspar", "muscovite", "kaolinite",

"pyrophyllite", "andalusite"), "cr")
## start with the data from Helgeson et al., 1978
add.obigt("SUPCRT92")
# calculate affinities in aK+ - temperature space
# exceed.Tr: enable calculations above stated temperature limit of pyrophyllite
res <- 400
a <- affinity(`K+` = c(0, 5, res), T = c(200, 650, res), P = 1000, exceed.Ttr = TRUE)
# make base plot with colors and no lines
diagram(a, xlab = ratlab("K+", molality = TRUE), lty = 0, fill = "terrain")
# add the lines, extending into the low-density region (exceed.rhomin = TRUE)

https://doi.org/10.1093/petrology/29.2.445
https://doi.org/10.1093/petrology/29.2.445
https://doi.org/10.1007/s004100050233
https://doi.org/10.1007/s004100050233
https://doi.org/10.4095/223425
http://www.worldcat.org/oclc/13594862
http://www.worldcat.org/oclc/13594862


18 berman

a <- affinity(`K+` = c(0, 5, res), T = c(200, 650, res), P = 1000,
exceed.Ttr = TRUE, exceed.rhomin = TRUE)

diagram(a, add = TRUE, names = FALSE, col = "red", lwd = 1.5)
# the list of references:
ref1 <- thermo.refs(species()$ispecies)$key
## now use the (default) data from Berman, 1988
# this resets the thermodynamic database
# without affecting the basis and species settings
obigt()
# we can check that we have Berman's quartz
# and not coesite or some other phase of SiO2
iSiO2 <- rownames(basis()) == "SiO2"
stopifnot(info(basis()$ispecies[iSiO2])$name == "quartz")
# Berman's dataset doesn't have the upper temperature limits,
# so we don't need exceed.Ttr here
a <- affinity(`K+` = c(0, 5, res), T = c(200, 650, res), P = 1000, exceed.rhomin = TRUE)
diagram(a, add = TRUE, names = FALSE, col = "blue", lwd = 1.5)
# the list of references:
ref2 <- thermo.refs(species()$ispecies)$key
ref2 <- paste(ref2, collapse = ", ")
# add legend and title
legend("top", "low-density region", text.font = 3, bty = "n")
legend("topleft", describe.property(c("P", "IS"), c(1000, 1)), bty = "n")
legend("left", c(ref1, ref2),

lty = c(1, 1), lwd = 1.5, col = c(2, 4), bty = "n")
title(main = syslab(c("K2O", "Al2O3", "SiO2", "H2O", "HCl")), line = 1.8)
title(main = "Helgeson and Berman minerals, after Sverjensky et al., 1991",

line = 0.3, font.main = 1)
# cleanup for next example
reset()

# make a P-T diagram for SiO2 minerals (Ber88 Fig. 4)
basis(c("SiO2", "O2"), c("cr", "gas"))
species(c("quartz", "quartz,beta", "coesite"), "cr")
a <- affinity(T=c(200, 1700, 200), P=c(0, 50000, 200))
diagram(a)

## Getting data from a user-supplied file
## Ol-Opx exchange equilibrium, after Berman and Aranovich, 1996
E.units("J")
species <- c("fayalite", "enstatite", "ferrosilite", "forsterite")
coeffs <- c(-1, -2, 2, 1)
T <- seq(600, 1500, 50)
Gex_Ber88 <- subcrt(species, coeffs, T=T, P=1)$out$G
# add data from BA96
datadir <- system.file("extdata/Berman/testing", package="CHNOSZ")
add.obigt(file.path(datadir, "BA96_obigt.csv"))
thermo("opt$Berman" = file.path(datadir, "BA96_berman.csv"))
Gex_BA96 <- subcrt(species, coeffs, T=seq(600, 1500, 50), P=1)$out$G
# Ber88 is lower than BA96 at low T
stopifnot((Gex_BA96 - Gex_Ber88)[1] > 0)
# the curves cross at about 725 deg C (BA96 Fig. 8)
# (actually, in our calculation they cross closer to 800 deg C)



buffer 19

stopifnot(T[which.min(abs(Gex_BA96 - Gex_Ber88))] == 800)
# reset the database (thermo()$opt$E.units, thermo()$obigt, and thermo()$opt$Berman)
reset()

buffer Calculating Buffered Chemical Activities

Description

Calculate values of activity or fugacity of basis species buffered by an assemblage of one or more
species.

Usage

mod.buffer(name, species = NULL, state = thermo()$opt$state,
logact = -3)

Arguments

name character, name of buffer to add to or find in thermo()$buffers.

species character, names or formulas of species in a buffer.

state character, physical states of species in buffer.

logact numeric, logarithms of activities of species in buffer.

Details

A buffer is treated here as assemblage of one or more species whose presence constrains values of
the chemical activity (or fugacity) of one or more basis species. To perform calculations for buffers
use basis to associate the name of the buffer with one or more basis species. After this, calls to
affinity will invoke the required calculations. The calculated values of the buffered activites can
be retrieved by setting return.buffer to TRUE (in affinity). The maximum number of buffered
chemical activities possible for any buffer is equal to the number of species in the buffer; however,
the user may then elect to work with the values for only one or some of the basis species calculated
with the buffer.

The identification of a conserved basis species (or other reaction balancing rule) is required in calcu-
lations for buffers of more than one species. For example, in the pyrite-pyrrhotite-magnetite buffer
(FeS2-FeS-Fe3O4) a basis species common to each species is one representing Fe. Therefore,
when writing reactions between the species in this buffer Fe is conserved while H2S and O2 are
the variables of interest. The calculation for buffers attempts to determine which of the available
basis species qualifies as a conserved quantity. This can be overriden with balance. The default
value of balance is ‘PBB’, which instructs the function to use the protein backbone group as the con-
served quantity in buffers consisting of proteins, but has no overriding effect on the computations
for buffers without proteins.

To view the available buffers, print the thermo$buffer object. Buffer definitions can be added to
this dataframe with mod.buffer. It is possible to set the logarithms of activities of the species in the
buffer through the logact argument; if this is missing unit activity is assigned to crystalline species



20 buffer

in buffer, otherwise (for aqueous species) the default value of activity is 10−3. If name identifies an
already defined buffer, this function modifies the logarithms of activities or states of species in that
buffer, optionally restricted to only those species given in species.

It is possible to assign different buffers to different basis species, in which case the order of their
calculation depends on their order in thermo()$buffers. This function is compatible with systems
of proteins, but note that for buffers made of proteins the buffer calculations presently use whole
protein formulas (instead of residue equivalents) and consider nonionized proteins only.

References

Garrels, R. M. (1960) Mineral Equilibria. Harper & Brothers, New York, 254 p. http://www.
worldcat.org/oclc/552690

See Also

protein for an example using a buffer made of proteins.

Examples

## list the buffers
thermo()$buffers
# another way to do it, for a specific buffer
print(mod.buffer("PPM"))

## buffer made of one species
# calculate the activity of CO2 in equilibrium with
# (a buffer made of) acetic acid at a given activity
basis("CHNOS")
basis("CO2","AC")
# what activity of acetic acid are we using?
print(mod.buffer("AC"))
# return the activity of CO2
(logaCO2 <- affinity(return.buffer=TRUE)$CO2)
stopifnot(all.equal(logaCO2, -7.05752136))
# as a function of oxygen fugacity
affinity(O2=c(-85,-70,4),return.buffer=TRUE)
# as a function of logfO2 and temperature
affinity(O2=c(-85,-70,4),T=c(25,100,4),return.buffer=TRUE)
# change the activity of species in the buffer
mod.buffer("AC",logact=-10)
affinity(O2=c(-85,-70,4),T=c(25,100,4),return.buffer=TRUE)
# see below for a different strategy using the
# 'type' argument of diagram

## buffer made of three species
## Pyrite-Pyrrhotite-Magnetite (PPM)
# specify basis species and initial activities
basis(c("FeS2","H2S","O2","H2O"),c(0,-10,-50,0))
# note that the affinity of formation of pyrite,
# which corresponds to FeS2 in the basis, is zero
species(c("pyrite","pyrrhotite","magnetite"))

http://www.worldcat.org/oclc/552690
http://www.worldcat.org/oclc/552690


buffer 21

affinity(T=c(200,400,11),P=2000)$values
# setup H2S and O2 to be buffered by PPM
basis(c("H2S","O2"),c("PPM","PPM"))
# inspect values of H2S activity and O2 fugacity
affinity(T=c(200, 400, 11), P=2000, return.buffer=TRUE, exceed.Ttr=TRUE)
# now, the affinities of formation reactions of
# species in the buffer are all equal to zero
print(a <- affinity(T=c(200, 400, 11), P=2000,

exceed.Ttr=TRUE)$values)
for(i in 1:length(a)) stopifnot(isTRUE(

all.equal(as.numeric(a[[i]]),rep(0,length(a[[i]])))))

## buffer made of one species: show values of logfO2 on an
## Eh-pH diagram; after Garrels, 1960, Figure 6
basis("CHNOSe")
# here we will buffer the activity of the electron by O2
mod.buffer("O2","O2","gas",999)
basis("e-","O2")
# start our plot, then loop over values of logfO2
thermo.plot.new(xlim=c(0,14),ylim=c(-0.8,1.2),

xlab="pH",ylab=axis.label("Eh"))
# the upper and lower lines correspond to the upper
# and lower stability limits of water
logfO2 <- c(0,-20,-40,-60,-83.1)
for(i in 1:5) {

# update the logarithm of fugacity (logact) of O2 in the buffer
mod.buffer("O2","O2","gas",logfO2[i])
# get the values of the logarithm of activity of the electron
a <- affinity(pH=c(0,14,15),return.buffer=TRUE)
# convert values of pe (-logact of the electron) to Eh
Eh <- convert(-as.numeric(a$`e-`),"Eh")
lines(seq(0,14,length.out=15),Eh)
# add some labels
text(seq(0,14,length.out=15)[i*2+2],Eh[i*2+2],

paste("logfO2=",logfO2[i],sep=""))
}
title(main=paste("Relation between logfO2(g), Eh and pH at\n",

"25 degC and 1 bar. After Garrels, 1960"))

## buffer made of two species
# conditions for metastable equilibrium among
# CO2 and acetic acid. note their starting activities:
print(mod.buffer("CO2-AC"))
basis("CHNOS")
basis("O2","CO2-AC")
affinity(return.buffer=TRUE) # logfO2 = -75.94248
basis("CO2",123) # what the buffer reactions are balanced on
affinity(return.buffer=TRUE) # unchanged
# consider more oxidizing conditions
mod.buffer("CO2-AC",logact=c(0,-10))
affinity(return.buffer=TRUE)

# one can solve for the logarithm of activity of a



22 DEW

# basis species using the 'type' argument of diagram
basis("CHNOS")
basis("CO2", 999)
species("acetic acid", -3)
a <- affinity(O2=c(-85, -70, 4), T=c(25, 100, 4))
# write a title with formulas and subscripts
lCO2 <- axis.label("CO2")
main <- substitute(a~~b~~c,list(a=lCO2, b="buffered by",

c="acetic acid"))
d <- diagram(a, type="CO2", main=main)
species(1, -10)
a <- affinity(O2=c(-85, -70, 4), T=c(25, 100, 4))
d <- diagram(a, type="CO2", add=TRUE, lty=2)
# add a legend
lAC <- expr.species("CH3COOH", log=TRUE)
ltext <- c(as.expression(lAC), -3, -10)
lty <- c(NA, 1, 2)
legend("topright", legend=ltext, lty=lty, bg="white")
# do return.buffer and diagram(type=...) give the same results?
and <- as.numeric(d$plotvals[[1]])
basis("CO2", "AC")
mod.buffer("AC", logact=-10)
a.buffer <- affinity(O2=c(-85, -70, 4), T=c(25, 100, 4),

return.buffer=TRUE)
ana <- as.numeric(unlist(a.buffer[[1]]))
stopifnot(all.equal(ana, and))

DEW Deep Earth Water (DEW) Model

Description

Calculate thermodynamic properties of water using the Deep Earth Water (DEW) model.

Usage

calculateDensity(pressure, temperature, error = 0.01)
calculateGibbsOfWater(pressure, temperature)
calculateEpsilon(density, temperature)
calculateQ(density, temperature)

Arguments

pressure numeric, pressure (bar)

temperature numeric, temperature (◦C)

error numeric, residual error for bisection calculation

density numeric, density (g/cm^3)



diagram 23

Details

The Deep Earth Water (DEW) model, described by Sverjensky et al., 2014, extends the applicability
of the revised HKF equations of state to 60 kbar. This implementation of DEW is based on the
VBA macro code in the May, 2017 version of the DEW spreadsheet downloaded from http://
dewcommunity.org. The spreadsheet provides multiple options for some calculations; here the
default equations for density of water (Zhang and Duan, 2005), dielectric constant (Sverjensky et
al., 2014) and Gibbs energy of water (integral of volume, equation created by Brandon Harrison)
are used.

Comments in the original code indicate that calculateGibbsOfWater is valid for 100 ≤ T ≤ 1000
◦C and P ≥ 1000 bar. Likewise, the power function fit of the dielectric constant (epsilon) is valid
for 100 ≤ T ≤ 1200 ◦C and P ≥ 1000 bar (Sverjensky et al., 2014).

Value

The calculated values of density, Gibbs energy, and the Q Born coefficient have units of g/cm^3,
cal/mol, and bar^-1 (epsilon is dimensionless).

References

Sverjensky, D. A., Harrison, B. and Azzolini, D. (2014) Water in the deep Earth: The dielectric
constant and the solubilities of quartz and corundum to 60 kb and 1,200 ◦C. Geochim. Cosmochim.
Acta 129, 125–145. https://doi.org/10.1016/j.gca.2013.12.019

Zhang, Z. and Duan, Z. (2005) Prediction of the PVT properties of water over wide range of tem-
peratures and pressures from molecular dynamics simulation. Phys. Earth Planet. Inter. 149,
335–354. https://doi.org/10.1016/j.pepi.2004.11.003

See Also

water.DEW; use water("DEW") to activate these equations for the main functions in CHNOSZ.

Examples

pressure <- c(1000, 60000)
temperature <- c(100, 1000)
calculateGibbsOfWater(pressure, temperature)
(density <- calculateDensity(pressure, temperature))
calculateEpsilon(density, temperature)
calculateQ(density, temperature)

diagram Chemical Activity Diagrams

Description

Plot equilibrium chemical activity (1-D speciation) or equal-activity (2-D predominance) diagrams
as a function of chemical activities of basis species, temperature and/or pressure.

http://dewcommunity.org
http://dewcommunity.org
https://doi.org/10.1016/j.gca.2013.12.019
https://doi.org/10.1016/j.pepi.2004.11.003


24 diagram

Usage

diagram(
# species affinities or activities
eout,
# type of plot
type = "auto", alpha = FALSE, normalize = FALSE,
as.residue = FALSE, balance = NULL, groups = as.list(1:length(eout$values)),
# figure size and sides for axis tick marks
xrange = NULL, mar = NULL, yline = par("mgp")[1]+0.3, side = 1:4,
# axis limits and labels
ylog = TRUE, xlim = NULL, ylim = NULL, xlab = NULL, ylab = NULL,
# character sizes
cex = par("cex"), cex.names = 1, cex.axis = par("cex"),
# line styles
lty = NULL, lty.cr = NULL, lty.aq = NULL, lwd = par("lwd"), dotted = NULL,
spline.method = NULL, contour.method = "edge", levels = NULL,
# colors
col = par("col"), col.names = par("col"), fill = NULL,
fill.NA = "gray80", limit.water = TRUE,
# field and line labels
names = NULL, format.names = TRUE, bold = FALSE, italic = FALSE,
font = par("font"), family = par("family"), adj = 0.5, dy = 0, srt = 0,
# title and legend
main = NULL, legend.x = NA,
# plotting controls
add = FALSE, plot.it = TRUE, tplot = TRUE, ...)

strip(affinity, ispecies = NULL, col = NULL, ns = NULL,
xticks = NULL, ymin = -0.2, xpad = 1, cex.names = 0.7)

find.tp(x)

Arguments

eout list, object returned by equilibrate or affinity

type character, type of plot, or name of basis species whose activity to plot

alpha logical or character (‘balance’), for speciation diagrams, plot degree of forma-
tion instead of activities?

normalize logical, divide chemical affinities by balance coefficients (rescale to whole for-
mulas)?

as.residue logical, divide chemical affinities by balance coefficients (no rescaling)?

balance character, balancing constraint; see equilibrate

groups list of numeric, groups of species to consider as a single effective species

xrange numeric, range of x-values between which predominance field boundaries are
plotted

mar numeric, margins of plot frame

yline numeric, margin line on which to plot the y-axis name



diagram 25

side numeric, which sides of plot to draw axes

xlim numeric, limits of x-axis

ylim numeric, limits of y-axis

xlab character, label to use for x-axis

ylab character, label to use for y-axis

ylog logical, use a logarithmic y-axis (on 1D degree diagrams)?

cex numeric, character expansion (scaling relative to current)

cex.names numeric, character expansion factor to be used for names of species on plots

cex.axis numeric, character expansion factor for names of axes

lty numeric, line types to be used in plots

lty.cr numeric, line types for cr-cr boundaries (between two minerals)

lty.aq numeric, line types for aq-aq boundaries (between two aqueous species)

lwd numeric, line width

dotted numeric, how often to skip plotting points on predominance field boundaries (to
gain the effect of dotted or dashed boundary lines)

spline.method character, method used in splinefun

contour.method character, labelling method used in contour (use NULL for no labels).

levels numeric, levels at which to draw contour lines

col character, color of activity lines (1D diagram) or predominance field boundaries
(2D diagram), or colors of bars in a strip diagram (strip)

col.names character, colors for labels of species

fill character, colors used to fill predominance fields

fill.NA character, color for grid points with NA values

limit.water logical, set NA values beyond water stability limits?

names character, names of species for activity lines or predominance fields

format.names logical, apply formatting to chemical formulas?

bold logical, use bold formatting for names?

italic logical, use italic formatting for names?

font character, font type for names (has no effect if format.names is TRUE)

family character, font family for names

adj numeric, adjustment for line labels

dy numeric, y offset for line labels

srt numeric, rotation for line labels

main character, a main title for the plot; NULL means to plot no title

legend.x character, description of legend placement passed to legend

add logical, add to current plot?

plot.it logical, make a plot?

tplot logical, set up plot with thermo.plot.new?



26 diagram

affinity list, object returned by affinity

ispecies numeric, which species to consider (default of NULL is to consider all species)

ns numeric, numbers of species, used to make inset plots for strip diagrams

xticks numeric, location of supplemental tick marks on x-axis

ymin numeric, lower limit of y-axis

xpad numeric, amount to extend x-axis on each side

x matrix, value of the predominant list element from diagram

... additional arguments passed to plot or barplot

Details

This function displays diagrams representing either chemical affinities, or equilibrium chemical
activities of species. The first argument is the output from affinity, equilibrate, or solubility.
0-D diagrams, at a single point, are shown as barplots. 1-D diagrams, for a single variable on the
x-axis, are plotted as lines. 2-D diagrams, for two variables, are plotted as predominance fields.
The allowed variables are any that affinity or the other functions accepts: temperature, pressure,
or the chemical activities of the basis species.

The type argument only applies when the output from affinity is being used. For type set to
‘auto’, and 0 or 1 variables, the property computed by affinity for each species is plotted. This
is usually the affinity of the formation reaction, but can be set to some other property, such as the
equilibrium constant (‘logK’). For two variables, equilibrium predominance (maximum affinity)
fields are plotted. This “maximum affinity method” (Dick, 2019) uses balancing coefficients that
are specified by the balance argument. If type is ‘saturation’, the function plots the line for each
species where the affinity of formation equals zero (see demo("saturation") for an example). If
for a given species no saturation line is possible or the range of the diagram does not include the
saturation line, the function prints a message instead. If type is the name of a basis species, then
the equilibrium activity of the selected basis species in each of the formation reactions is plotted
(see the CO2-acetic acid example in buffer). In the case of 2-D diagrams, both of these options
use contour to draw the lines, with the method specified in contour.method.

A new plot is started unless add is TRUE. If plot.it is FALSE, no plot will be generated but all
the intermediate computations will be performed and the results returned.

Line or field labels use the names of the species as provided in eout; formatting is applied to
chemical formulas unless format.names is FALSE. Set names to TRUE or NULL to plot the names,
or FALSE, NA, or "" to prevent plotting the names, or a character argument to replace the default
species names. Alternatively, supply a numeric value to names to indicate a subset of default names
that should or shouldn’t be plotted (positive and negative indices, respectively). Use col.names
and cex.names to change the colors and size of the labels. Use cex and cex.axis to adjust the
overall character expansion factors (see par) and those of the axis labels. The x- and y-axis labels
are automatically generated unless they are supplied in xlab and ylab.

If groups is supplied, the activities of the species identified in each numeric element of this list are
multiplied by the balance coefficients of the species, then summed together. The names of the list
are used to label the lines or fields for the summed activities of the resulting groups.



diagram 27

1-D diagrams

For 1-D diagrams, the default setting for the y-axis is a logarithmic scale (unless alpha is TRUE)
with limits corresponding to the range of logarithms of activities (or 0,1 if alpha is TRUE); these
actions can be overridden by ylog and ylim. If legend.x is NA (the default), the lines are labeled
with the names of the species near the maximum value. Otherwise, a legend is placed at the
location identified by legend.x, or omitted if legend.x is NULL.

If alpha is TRUE, the fractional degrees of formation (ratios of activities to total activity) are
plotted. Or, setting alpha to ‘balance’ allows the activities to be multiplied by the number of the
balancing component; this is useful for making “percent carbon” diagrams where the species differ
in carbon number. The line type and line width can be controlled with lty and lwd, respectively.
Set lty.cr to 0 to disable drawing lines between minerals (to show equal-activity lines for only
aqueous species), or set lty.aq to 0 to disable drawing lines between aqueous species. To connect
the points with splines instead of lines, set spline.method to one of the methods in splinefun.

2-D diagrams

On 2-D diagrams, the fields represent the species with the highest equilibrium activity. fill deter-
mines the color of the predominance fields, col that of the boundary lines. The default of NULL for
fill produces transparent predominance fields. fill can be any colors, or the word ‘rainbow’,
‘heat’, ‘terrain’, ‘topo’, or ‘cm’, indicating a palette from grDevices. Starting with R version
3.6.0, fill can be the name of any available HCL color palette, matched in the same way as the
palette argument of hcl.colors.

fill.NA gives the color for empty fields, i.e. points for which NA values are present, possibly by
using equilibrate at extreme conditions (see test-diagram.Rd). fill.NA is also used to specify
the color outside the water stability limits on Eh-pH or pe-pH diagrams, when limit.water is
TRUE. Note that the default for fill.NA is automatically changed to ‘transparent’ when add is
TRUE.

The default line-drawing algorithm uses contourLines to obtain smooth-looking diagonal and
curved lines, at the expense of not coinciding exactly with the rectangular grid that is used for
drawing colors. lty, col, and lwd can be specified, but limiting the lines via xrange is not currently
supported. To go back to the old behavior for drawing lines, set dotted to ‘0’. The old behavior
does not respect lty; instead, the style of the boundary lines on 2-D diagrams can be altered by
supplying one or more non-zero integers in dotted, which indicates the fraction of line segments
to omit; a value of ‘1’ or NULL for dotted has the effect of not drawing the boundary lines.

normalize and as.residue apply only to the 2-D diagrams, and only when eout is the output
from affinity. With normalize, the activity boundaries are calculated as between the residues of
the species (the species divided by the balance coefficients), then the activities are rescaled to the
whole species formulas. With as.residue, the activity boundaries are calculated as between the
residues of the species, and no rescaling is performed.

Activity Coefficients

The wording in this page and names of variables in functions refer exclusively to ‘activities’
of aqueous species. However, if activity coefficients are calculated (using the IS argument in
affinity), then these variables are effectively transformed to molalities (see tests/testthat/
test-logmolality.R). So that the labels on diagrams are adjusted accordingly, diagram sets the
molality argument of axis.label to TRUE if IS was supplied as an argument to affinity. The



28 diagram

labeling as molality takes effect even if IS is set to 0; this way, by including (or not) the IS = 0
argument to affinity, the user decides whether to label aqueous species variables as molality (or
activity) for calculations at zero ionic strength (where molality = activity).

Other Functions

A different incarnation of 1-D speciation diagrams is provided by strip. This function generates
any number of strip diagrams in a single plot. The diagrams are made up of colors bars whose
heights represent the relative abundances of species; the color bars are arranged in order of abun-
dance and the total height of the stack of colors bars is constant. If ispecies is a list, the number of
strip diagrams is equal to the number of elements of the list, and the elements of this list are numeric
vectors that identify the species to consider for each diagram. The strips are labeled with the names
of ispecies. If col is NULL, the colors of the bars are generated using rainbow. Supplemental
ticks can be added to the x-axis at the locations specified in xtick; they are larger than the standard
ticks and have colors corresponding to those of the color bars. ymin can be decreased in order to
add more space at the bottom of the plot, and xpad can be changed in order to increase or decrease
the size of the x-axis relative to the width of the strips. An inset dot-and-line plot is created below
each strip if ns is given. This argument has the same format as ispecies, and can be used e.g. to
display the relative numbers of species for comparison with the stability calculations.

find.tp finds the locations in a matrix of integers that are surrounded by the greatest number of
different values. The function counts the unique values in a 3x3 grid around each point and returns
a matrix of indices (similar to which(...,arr.ind = TRUE)) for the maximum count (ties result in
more than one pair of indices). It can be used with the output from diagram for calculations in 2
dimensions to approximately locate the triple points on the diagram.

Value

diagram returns an invisible list containing, first, the contents of eout, i.e. the provided output
of affinity or equilibrate. To this are added the name of the plotted variable in plotvar, the
plotted values in plotvals, and the names used for labeling the plot in names. For 1-D diagrams,
plotvals usually corresponds to the chemical activities of the species (i.e. eout$loga.equil), or,
if alpha is TRUE, their mole fractions (degrees of formation). For 2-D diagrams, the output also
contains predominant, giving the numbers (from the species definition) of the predominant (aka
maximum-affinity) species at each grid point. The rows and columns of predominant correspond
to the x- and y-variables, respectively. Finally, the output for 2-D diagrams contains a lines com-
ponent, giving the x- and y-coordinates of the field boundaries computed using contourLines; the
values are padded to equal length with NAs to faciliate exporting the results using write.csv.

References

Aksu, S. and Doyle, F. M. (2001) Electrochemistry of copper in aqueous glycine solutions. J.
Electrochem. Soc. 148, B51–B57. https://doi.org/10.1149/1.1344532

Dick, J. M. (2019) CHNOSZ: Thermodynamic calculations and diagrams for geochemistry. Front.
Earth Sci. 7:180. https://doi.org/10.3389/feart.2019.00180

Helgeson, H. C. (1970) A chemical and thermodynamic model of ore deposition in hydrothermal
systems. Mineral. Soc. Amer. Spec. Pap. 3, 155–186. http://www.worldcat.org/oclc/583263

https://doi.org/10.1149/1.1344532
https://doi.org/10.3389/feart.2019.00180
http://www.worldcat.org/oclc/583263


diagram 29

Helgeson, H. C., Delany, J. M., Nesbitt, H. W. and Bird, D. K. (1978) Summary and critique
of the thermodynamic properties of rock-forming minerals. Am. J. Sci. 278-A, 1–229. http:
//www.worldcat.org/oclc/13594862

LaRowe, D. E. and Helgeson, H. C. (2007) Quantifying the energetics of metabolic reactions in
diverse biogeochemical systems: electron flow and ATP synthesis. Geobiology 5, 153–168. https:
//doi.org/10.1111/j.1472-4669.2007.00099.x

Majzlan, J., Navrotsky, A., McClesky, R. B. and Alpers, C. N. (2006) Thermodynamic properties
and crystal structure refinement of ferricopiapite, coquimbite, rhomboclase, and Fe2(SO4)3(H2O)5.
Eur. J. Mineral. 18, 175–186. https://doi.org/10.1127/0935-1221/2006/0018-0175

Tagirov, B. and Schott, J. (2001) Aluminum speciation in crustal fluids revisited. Geochim. Cos-
mochim. Acta 65, 3965–3992. https://doi.org/10.1016/S0016-7037(01)00705-0

See Also

Other examples are present in the help for protein and buffer, and even more can be found in
demos. See the vignette Hot-spring proteins in CHNOSZ for an example of the strip charts.

Examples

## calculate the equilibrium logarithm of activity of a
## basis species in different reactions
basis("CHNOS")
species(c("ethanol", "lactic acid", "deoxyribose", "ribose"))
a <- affinity(T=c(0, 150))
diagram(a, type="O2", legend.x="topleft", col=rev(rainbow(4)), lwd=2)
title(main="Equilibrium logfO2 for 1e-3 mol/kg of CO2 and ... ")

### 1-D diagrams: logarithms of activities

## Degrees of formation of ionized forms of glycine
## After Fig. 1 of Aksu and Doyle, 2001
basis("CHNOS+")
species(ispecies <- info(c("glycinium", "glycine", "glycinate")))
a <- affinity(pH=c(0, 14))
e <- equilibrate(a)
diagram(e, alpha=TRUE, lwd=1)
title(main=paste("Degrees of formation of aqueous glycine species\n",

"after Aksu and Doyle, 2001"))

## Degrees of formation of ATP species as a function of
## temperature, after LaRowe and Helgeson, 2007, Fig. 10b
# to make a similar diagram, activity of Mg+2 here is set to
# 10^-4, which is different from LH07, who used 10^-3 total molality
basis(c("CO2", "NH3", "H2O", "H3PO4", "O2", "H+", "Mg+2"),

c(999, 999, 999, 999, 999, -5, -4))
species(c("HATP-3", "H2ATP-2", "MgATP-2", "MgHATP-"))
a <- affinity(T=c(0, 120, 25))
e <- equilibrate(a)
diagram(e, alpha=TRUE)
title(main=paste("Degrees of formation of ATP species,\n",

http://www.worldcat.org/oclc/13594862
http://www.worldcat.org/oclc/13594862
https://doi.org/10.1111/j.1472-4669.2007.00099.x
https://doi.org/10.1111/j.1472-4669.2007.00099.x
https://doi.org/10.1127/0935-1221/2006/0018-0175
https://doi.org/10.1016/S0016-7037(01)00705-0


30 diagram

"pH=5, log(aMg+2)=-3. After LaRowe and Helgeson, 2007"),
cex.main=0.9)

### 2-D diagrams: predominance diagrams
### these use the maximum affinity method

## Fe-S-O at 200 deg C, after Helgeson, 1970
basis(c("Fe", "oxygen", "S2"))
species(c("iron", "ferrous-oxide", "magnetite",

"hematite", "pyrite", "pyrrhotite"))
# the calculations include the phase transitions of
# pyrrhotite; no additional step is needed
a <- affinity(S2=c(-50, 0), O2=c(-90, -10), T=200)
diagram(a, fill="heat")
title(main=paste("Fe-S-O, 200 degrees C, 1 bar",

"After Helgeson, 1970", sep="\n"))

## pe-pH diagram for hydrated iron sulfides,
## goethite and pyrite, after Majzlan et al., 2006
basis(c("Fe+2", "SO4-2", "H2O", "H+", "e-"),

c(0, log10(3), log10(0.75), 999, 999))
species(c("rhomboclase", "ferricopiapite", "hydronium jarosite",

"goethite", "melanterite", "pyrite"))
a <- affinity(pH=c(-1, 4, 256), pe=c(-5, 23, 256))
d <- diagram(a, main="Fe-S-O-H, after Majzlan et al., 2006")
# the first four species show up in order near pe=15
stopifnot(all.equal(unique(d$predominant[, 183]), 1:4))
water.lines(d, lwd=2)
text(3, 22, describe.basis(thermo()$basis[2:3,], digits=2, oneline=TRUE))
text(3, 21, describe.property(c("T", "P"), c(25, 1), oneline=TRUE))

## aqueous Al species, after Tagirov and Schott, 2001
basis(c("Al+3", "F-", "H+", "O2", "H2O"))
AlOH <- c("Al(OH)4-", "Al(OH)3", "Al(OH)2+", "AlOH+2")
Al <- "Al+3"
AlF <- c("AlF+2", "AlF2+", "AlF3", "AlF4-")
AlOHF <- c("Al(OH)2F2-", "Al(OH)2F", "AlOHF2")
species(c(AlOH, Al, AlF, AlOHF), "aq")
res <- 300
a <- affinity(pH = c(0.5, 6.5, res), `F-` = c(-2, -9, res), T = 200)
diagram(a, fill = "terrain")
dprop <- describe.property(c("T", "P"), c(200, "Psat"))
legend("topright", legend = dprop, bty = "n")
mtitle(c("Aqueous aluminum species",

"After Tagirov and Schott, 2001 Fig. 4d"), cex = 0.95)

## Temperature-Pressure: kayanite-sillimanite-andalusite
# cf. Fig. 49 of Helgeson et al., 1978
# this is a system of one component (Al2SiO5), however:
# - number of basis species must be the same as of elements
# - avoid using H2O or other aqueous species because of
# T/P limits of the water() calculations;
basis(c("corundum", "quartz", "oxygen"))



eos 31

species(c("kyanite", "sillimanite", "andalusite"))
# database has transition temperatures of kyanite and andalusite
# at 1 bar only, so we permit calculation at higher temperatures
a <- affinity(T=c(200, 900, 99), P=c(0, 9000, 101), exceed.Ttr=TRUE)
d <- diagram(a, fill=NULL)
slab <- syslab(c("Al2O3", "SiO2", "H2O"))
mtitle(c(as.expression(slab), "after Helgeson et al., 1978"))
# find the approximate position of the triple point
tp <- find.tp(d$predominant)
Ttp <- a$vals[[1]][tp[1, 2]]
Ptp <- rev(a$vals[[2]])[tp[1, 1]]
points(Ttp, Ptp, pch=10, cex=5)
# some testing of the overall geometry
stopifnot(species()$name[d$predominant[1, 1]]=="andalusite")
stopifnot(species()$name[d$predominant[1, 101]]=="kyanite")
stopifnot(species()$name[d$predominant[99, 101]]=="sillimanite")

eos Equations of State

Description

Calculate thermodynamic properties using the revised Helgeson-Kirkham-Flowers (HKF) or Akinfiev-
Diamond (AkDi) equations of state for aqueous species, or using a generic heat capacity equation
for crystalline, gas, and liquid species.

Usage

cgl(property = NULL, parameters = NULL, T = 298.15, P = 1)
hkf(property = NULL, parameters = NULL, T = 298.15, P = 1,
contrib = c("n", "s", "o"), H2O.props = "rho")

AkDi(property = NULL, parameters = NULL, T = 298.15, P = 1, isPsat = TRUE)

Arguments

property character, name(s) of properties to calculate

parameters dataframe, species parameters as one or more rows from thermo()$obigt

T numeric, temperature(s) at which to calculate properties (K)

P numeric, pressure(s) at which to calculate properties (bar)

contrib character, which contributions to consider in the revised HKF equations equa-
tions of state: (n)onsolvation, (s)olvation (the ω terms), or (o)rigination contri-
butions (i.e., the property itself at 25 ◦C and 1 bar). Default is c("n","s","o"),
for all contributions

H2O.props character, properties to calculate for water

isPsat logical, is this a calculation along the liquid-vapor saturation curve (Psat)?



32 eos

Details

The equations of state permit the calculation of the standard molal properties of species as a function
of temperature and pressure. The property argument is required and refers to one or more of ‘G’,
‘H’, ‘S’, ‘Cp’ and ‘V’, and for aqueous species only, ‘kT’ and ‘E’. The units of these properties are
the first ones shown in the description for subcrt. The names of the properties are matched without
regard to case.

hkf implements the revised HKF equations of state (Helgeson et al., 1981; Tanger and Helge-
son, 1988; Shock and Helgeson, 1988). The equations-of-state parameters are a1, a2, a3, a4, c1,
c2, omega and Z; the units of these parameters are as indicated for thermo$obigt, without the
order of magnitude multipliers. Note that the equation-of-state parameter Z (appearing in the g-
function for the temperature derivatives of the omega parameter; Shock et al., 1992) is taken from
thermo()$obigt and not from the makeup of the species. H2O.props is an optional argument that
lists the properties of water that should be returned; it is used by subcrt so that the time-consuming
water calculations are only performed once.

The temperature and pressure derivatives of the omega parameter for charged species (where Z != 0,
but not for the aqueous proton, H+) are calculated using the g- and f -functions described by Shock
et al., 1992 and Johnson et al., 1992. If the IAPWS-95 or DEW equations are activated (see water),
only the g-function (applicable to ‘G’), but not its derivatives (needed for ‘H’, ‘S’, ‘Cp’, and ‘V’), is
calculated.

The parameters in the cgl equations of state for crystalline, gas and liquid species (except liquid
water) include V, a, b, c, d, e, f and lambda. The terms denoted by a, b and c correspond to
the Maier-Kelley equation for heat capacity (Maier and Kelley, 1932); the additional terms are
useful for representing heat capacities of minerals (Robie and Hemingway, 1995) and gaseous or
liquid organic species (Helgeson et al., 1998). The standard molal volumes (‘V’) of species in these
calculations are taken to be independent of temperature and pressure.

For both hkf and cgl, if at least one equations-of-state parameter for a species is provided, any NA
values of the other parameters are reset to zero. If all equations-of-state parameters are NA, but
values of ‘Cp’ and/or ‘V’ are available, those values are used in the integration of ‘G’, ‘H’ and ‘S’ as
a function of temperature.

AkDi provides the Akinfiev-Diamond model for aqueous species (Akinfiev and Diamond, 2003).
To run this code, the database must also include the corresponding gasesous species (with the same
name or chemical formula). Currently, only the standard chemical potential (Gibbs energy) is cal-
culated.

Value

A list of length equal to the number of species (i.e., number rows of parameters). Each element of
the list contains a dataframe, each column of which corresponds to one of the specified properties;
the number of rows is equal to the number of pressure-temperature points. Furthermore, in hkf,
the output is a list consisting of the above-described object (named ‘aq’) and a data frame of the
calculated properties of water (named ‘H2O’).

Warning

The range of applicability of the revised HKF equations of state for aqueous species corresponds
to the stability region of liquid water or the supercritical fluid with density greater than 0.35 g/cm3,
and between 0 to 1000 ◦C and 1 to 5000 bar (Tanger and Helgeson, 1988; Shock and Helgeson,



eos 33

1988). The hkf function does not check these limits and will compute properties as long as the
requisite electrostatic properties of water are available. There are conceptually no temperature limits
(other than 0 Kelvin) for the validity of the cgl equations of state. However, the actual working
upper temperature limits correspond to the temperatures of phase transitions of minerals or to those
temperatures beyond which extrapolations from experimental data become highly uncertain. These
temperature limits are stored in the thermodynamic database for some minerals, but cgl ignores
them; however, subcrt warns if they are exceeded.

References

Akinfiev, N. N. and Diamond, L. W. (2003) Thermodynamic description of aqueous nonelectrolytes
at infinite dilution over a wide range of state parameters. Geochim. Cosmochim. Acta 67, 613–629.
https://doi.org/10.1016/S0016-7037(02)01141-9

Helgeson, H. C., Kirkham, D. H. and Flowers, G. C. (1981) Theoretical prediction of the thermo-
dynamic behavior of aqueous electrolytes at high pressures and temperatures. IV. Calculation of
activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial mo-
lal properties to 600◦C and 5 Kb. Am. J. Sci. 281, 1249–1516. https://doi.org/10.2475/ajs.
281.10.1249

Helgeson, H. C., Owens, C. E., Knox, A. M. and Richard, L. (1998) Calculation of the standard
molal thermodynamic properties of crystalline, liquid, and gas organic molecules at high temper-
atures and pressures. Geochim. Cosmochim. Acta 62, 985–1081. https://doi.org/10.1016/
S0016-7037(97)00219-6

Maier, C. G. and Kelley, K. K. (1932) An equation for the representation of high-temperature heat
content data. J. Am. Chem. Soc. 54, 3243–3246. https://doi.org/10.1021/ja01347a029

Robie, R. A. and Hemingway, B. S. (1995) Thermodynamic Properties of Minerals and Related
Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures. U. S. Geol.
Surv., Bull. 2131, 461 p. http://www.worldcat.org/oclc/32590140

Shock, E. L. and Helgeson, H. C. (1988) Calculation of the thermodynamic and transport properties
of aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and
equation of state predictions to 5 kb and 1000◦C. Geochim. Cosmochim. Acta 52, 2009–2036.
https://doi.org/10.1016/0016-7037(88)90181-0

Shock, E. L., Oelkers, E. H., Johnson, J. W., Sverjensky, D. A. and Helgeson, H. C. (1992) Calcula-
tion of the thermodynamic properties of aqueous species at high pressures and temperatures: Effec-
tive electrostatic radii, dissociation constants and standard partial molal properties to 1000 ◦C and
5 kbar. J. Chem. Soc. Faraday Trans. 88, 803–826. https://doi.org/10.1039/FT9928800803

Tanger, J. C. IV and Helgeson, H. C. (1988) Calculation of the thermodynamic and transport
properties of aqueous species at high pressures and temperatures: Revised equations of state for
the standard partial molal properties of ions and electrolytes. Am. J. Sci. 288, 19–98. https:
//doi.org/10.2475/ajs.288.1.19

See Also

info for retrieving equations of state parameters from the thermodynamic database, water for
equations of state of water, subcrt for interactive use of these equations.

https://doi.org/10.1016/S0016-7037(02)01141-9
https://doi.org/10.2475/ajs.281.10.1249
https://doi.org/10.2475/ajs.281.10.1249
https://doi.org/10.1016/S0016-7037(97)00219-6
https://doi.org/10.1016/S0016-7037(97)00219-6
https://doi.org/10.1021/ja01347a029
http://www.worldcat.org/oclc/32590140
https://doi.org/10.1016/0016-7037(88)90181-0
https://doi.org/10.1039/FT9928800803
https://doi.org/10.2475/ajs.288.1.19
https://doi.org/10.2475/ajs.288.1.19


34 EOSregress

Examples

## aqueous species
CH4aq <- info(info("methane", "aq"))
hkf(property = "Cp", parameters = CH4aq)
# the non-solvation heat capacity
hkf(property = "Cp", parameters = CH4aq, contrib = "n")
# at different temperature and pressure
hkf(property = "Cp", parameters = CH4aq, T = c(373.15,473.15), P = 1000)

## crystalline, gas, liquid species
CH4gas <- info(info("methane", "gas"))
cgl(property = "Cp", parameters = CH4gas)
# melting and vaporization of octane
C8H18par <- info(info(rep("octane", 3), c("cr", "liq", "gas")))
myT <- seq(200, 420, 10)
DG0f <- cgl(property = "G", parameters = C8H18par, T = myT, P = 1)
cbind(T = myT, which.pmax(DG0f, pmin = TRUE)) # 1 = cr, 2 = liq, 3 = gas
# compare that result with the tabulated transition temperatures
print(C8H18par)

EOSregress Regress Equations-of-State Parameters for Aqueous Species

Description

Fit experimental volumes and heat capacities using regression equations. Possible models include
the Helgeson-Kirkham-Flowers (HKF) equations of state, or other equations defined using any
combination of terms derived from the temperature, pressure and thermodynamic and electrostatic
properties of water.

Usage

EOSregress(exptdata, var = "", T.max = 9999, ...)
EOSvar(var, T, P, ...)
EOScalc(coefficients, T, P, ...)
EOSplot(exptdata, var = NULL, T.max = 9999, T.plot = NULL,
fun.legend = "topleft", coefficients = NULL, add = FALSE,
lty = par("lty"), col=par("col"), ...)

EOSlab(var, coeff = "")
EOScoeffs(species, property, P=1)
Cp_s_var(T = 298.15, P = 1, omega.PrTr = 0, Z = 0)
V_s_var(T = 298.15, P = 1, omega.PrTr = 0, Z = 0)

Arguments

exptdata dataframe, experimental data

var character, name(s) of variables in the regression equations



EOSregress 35

T.max numeric, maximum temperature for regression, in degrees Kelvin

T numeric, temperature in Kelvin

P numeric, pressure in bars

... arguments specifying additional dependencies of the regression variables

T.plot numeric, upper limit of temperature range to plot

fun.legend character, where to place legend on plot

coefficients dataframe, coefficients to use to make line on plot

add logical, add lines to an existing plot?

lty line style

col color of lines

coeff numeric, value of equation of state parameter for plot legend

species character, name of aqueous species

property character, ‘Cp’ or ‘V’

omega.PrTr numeric, value of omega at reference T and P

Z numeric, charge

Details

EOSregress uses a linear model (lm) to regress the experimental heat capacity or volume data in
exptdata, which is a data frame with columns ‘T’ (temperature in degrees Kelvin), ‘P’ (pressure in
bars), and ‘Cp’ or ‘V’ (heat capacity in cal/mol.K or volume in cm3/mol). The ‘Cp’ or ‘V’ data must
be in the third column. Only data below the temperature of T.max are included in the regression.
The regression formula is specified by a vector of names in var. The names of the variables can
be any combination of the following (listed in the order of search): variables listed in the following
table, any available property of water (e.g. ‘V’, ‘alpha’, ‘QBorn’), or the name of a function that
can be found using get in the default environment. Examples of the latter are Cp_s_var, V_s_var,
or functions defined by the user in the global environment; the arguments of these functions must
include, but are not limited to, T and P.

T T (temperature)
P P (pressure)
TTheta (T − Θ) (Θ = 228 K)
invTTheta 1/(T − Θ)
TTheta2 (T − Θ)2

invTTheta2 1/(T − Θ)2

invPPsi 1/(P + Ψ) (Ψ = 2600 bar)
invPPsiTTheta 1/((P + Ψ)(T − Θ))
TXBorn TX (temperature times X Born function)
drho.dT dρ/dT (temperature derivative of density of water)
V.kT V κT (volume times isothermal compressibility of water)

EOSvar calculates the value of the variable named var (defined as described above) at the specified
T (temperature in degrees Kelvin) and P (pressure in bars). This function is used by EOSregress to
get the values of the variables used in the regression.



36 EOSregress

EOScalc calculates the predicted heat capacities or volumes using coefficients provided by the result
of EOSregress, at the temperatures and pressures specified by T and P.

EOSplot takes a table of data in exptdata, runs EOSregress and EOScalc and plots the results.
The experimental data are plotted as points, and the calculated values as a smooth line. The point
symbols are filled circles where the calculated value is within 10% of the experimental value; open
circles otherwise.

EOSlab produces labels for the variables listed above that can be used as.expressions in plots.
The value of coeff is prefixed to the name of the variable (using substitute, with a multiplication
symbol). For the properties listed in the table above, and selected properties listed in water, the
label is formatted using plotmath expressions (e.g., with italicized symbols and Greek letters). If
var is a user-defined function, the function can be given a ‘label’ attribute to provide plotmath-
style formatting; in this case the appropriate multiplication or division symbol should be specified
(see example below).

EOScoeffs retrieves coefficients in the Helgeson-Kirkham-Flowers equations from the thermody-
namic database (thermo$obigt) for the given aqueous species. If the property is ‘Cp’, the result-
ing data frame has column names of ‘(Intercept)’, ‘invTTheta2’ and ‘TX’, respectively holding
the coefficients c1, c2 and ω in the equation Cp◦ = c1 + c2/(T − Θ)2 + ωTX . If the property is
‘V’, the data frame has column names of ‘(Intercept)’, ‘invTTheta’ and ‘Q’, respectively holding
the coefficients σ, ξ and ω in V ◦ = σ + ξ/(T − Θ) − ωQ. Here, σ and ξ are calculated from a1,
a2, a3 and a4 in thermo()$obigt at the pressure indicated by P (default 1 bar).

The original motivation for writing these functions was to explore alternatives or possible modifi-
cations to the revised Helgeson-Kirkham-Flowers equations applied to aqueous nonelectrolytes. As
pointed out by Schulte et al., 2001, the functional forms of the equations do not permit retrieving
values of the solvation parameter (ω) that closely represent the observed trends in both heat capacity
and volume at high temperatures (above ca. 200 ◦C).

The examples below assume that the ω parameter in the HKF functions is a constant (does not de-
pend on T and P), as is appropriate for nonelectrolytes. For charged species, the variables Cp_s_var
and V_s_var can be used in the regressions. They correspond to the solvation contribution to heat
capacity or volume, respectively, in the HKF EOS, divided by the value of ω at the reference temper-
ature and pressure. Because these variables are themselves a function of omega.PrTr, an iterative
procedure is needed to perform the regression.

Note that variables QBorn and V_s_var are both negated, so that the value of ω has its proper sign
in the corresponding equations.

Value

For EOSregress, an object of class “lm”. EOSvar and EOScalc both return numeric values. EOScoeffs
returns a data frame.

References

Hnědkovský, L. and Wood, R. H. (1997) Apparent molar heat capacities of aqueous solutions of
CH4, CO2, H2S, and NH3 at temperatures from 304 K to 704 K at a pressure of 28 MPa. J. Chem.
Thermodyn. 29, 731–747. https://doi.org/10.1006/jcht.1997.0192

Schulte, M. D., Shock, E. L. and Wood, R. H. (1995) The temperature dependence of the standard-
state thermodynamic properties of aqueous nonelectrolytes. Geochim. Cosmochim. Acta 65, 3919–
3930. https://doi.org/10.1016/S0016-7037(01)00717-7

https://doi.org/10.1006/jcht.1997.0192
https://doi.org/10.1016/S0016-7037(01)00717-7


EOSregress 37

See Also

The vignette Regressing thermodynamic data has more references and examples, including an iter-
ative method to retrieve omega.PrTr.

Examples

## fit experimental heat capacities of CH4
## using revised Helgeson-Kirkham-Flowers equations
# read the data from Hnedkovsky and Wood, 1997
f <- system.file("extdata/cpetc/Cp.CH4.HW97.csv", package="CHNOSZ")
d <- read.csv(f)
# have to convert J to cal and MPa to bar
d$Cp <- convert(d$Cp, "cal")
d$P <- convert(d$P, "bar")
# specify the terms in the HKF equations
var <- c("invTTheta2", "TXBorn")
# perform regression, with a temperature limit
EOSlm <- EOSregress(d, var, T.max=600)
# calculate the Cp at some temperature and pressure
EOScalc(EOSlm$coefficients, 298.15, 1)
# get the database values of c1, c2 and omega for CH4(aq)
CH4coeffs <- EOScoeffs("CH4", "Cp")
## make plots comparing the regressions
## with the accepted EOS parameters of CH4
opar <- par(mfrow=c(2,2))
EOSplot(d, T.max=600)
title("Cp of CH4(aq), fit to 600 K")
legend("bottomleft", pch=1, legend="Hnedkovsky and Wood, 1997")
EOSplot(d, coefficients=CH4coeffs)
title("Cp from EOS parameters in database")
EOSplot(d, T.max=600, T.plot=600)
title("Cp fit to 600 K, plot to 600 K")
EOSplot(d, coefficients=CH4coeffs, T.plot=600)
title("Cp from EOS parameters in database")
par(opar)

# continuing from above, with user-defined variables
Theta <- 228 # K
invTTTheta3 <- function(T, P) (2*T)/(T-T*Theta)^3
invTX <- function(T, P) 1/T*water("XBorn", T=T, P=P)[,1]
# print the calculated values of invTTTheta3
EOSvar("invTTTheta3", d$T, d$P)
# use invTTTheta and invTX in a regression
var <- c("invTTTheta3", "invTX")
EOSregress(d, var)
# give them a "label" attribute for use in the legend
attr(invTTTheta3, "label") <-

quote(phantom()%*%2*italic(T)/(italic(T)-italic(T)*Theta)^3)
attr(invTX, "label") <- quote(phantom()/italic(T*X))
# uncomment the following to make the plot
#EOSplot(d, var)



38 eqdata

## model experimental volumes of CH4
## using HKF equation and an exploratory one
f <- system.file("extdata/cpetc/V.CH4.HWM96.csv", package="CHNOSZ")
d <- read.csv(f)
d$P <- convert(d$P, "bar")
# the HKF equation
varHKF <- c("invTTheta", "QBorn")
# alpha is the expansivity coefficient of water
varal <- c("invTTheta", "alpha")
opar <- par(mfrow=c(2,2))
# for both HKF and the expansivity equation
# we'll fit up to a temperature limit
EOSplot(d, varHKF, T.max=663, T.plot=625)
legend("bottomright", pch=1, legend="Hnedkovsky et al., 1996")
title("V of CH4(aq), HKF equation")
EOSplot(d, varal, T.max=663, T.plot=625)
title("V of CH4(aq), expansivity equation")
EOSplot(d, varHKF, T.max=663)
title("V of CH4(aq), HKF equation")
EOSplot(d, varal, T.max=663)
title("V of CH4(aq), expansivity equation")
par(opar)
# note that the volume regression using the HKF gives
# a result for omega (coefficient on Q) that is
# not consistent with the high-T heat capacities

eqdata Read data from an EQ6 output file

Description

Extract computational results for aqueous species, solid phases, mineral saturation states, or speci-
ation summaries at each step of reaction progress in an EQ6 output file. The results are written to a
comma-separated value file that can be read by other programs. The function has been tested with
output files generated by EQ3/6 version 7.1 running on a Unix platform. Currently there is only
partial support for version 8.0a (reading data from aqueous species blocks).

Usage

eqdata(file, species, property = "log act", outfile = TRUE)

Arguments

file character, path to EQ6 output file

species character, name(s) of species or minerals

property character, property to get

outfile logical or character, file for saving results



eqdata 39

Details

The first argument, file, is the name of the EQ6 (Wolery, 1992; Wolery and Daveler, 1992) output
file. species indicates the aqueous species, solid phases, minerals, or basis species for which you
want values; multiple names can be provided except for basis species, which can be a single value.
property indicates the property to retrieve. Specifying a value other than one listed below will
cause an error.

• Aqueous species: ‘conc’, ‘log conc’, ‘log g’, or ‘log act’

• Solid phases: ‘log moles’, ‘moles’, ‘grams’, or ‘volume,cc’

• Minerals (saturation states): ‘affinity,kcal’

• Basis species (speciation): ‘molal conc’ or ‘per cent’

The result of the function is a data frame (returned invisibly), with columns zi (reaction progress),
T (temperature in ◦C, aH2O (activity of water) and one column for each of the requested species
or, for speciation of basis species, one column for each unique species found in all of the speciation
summary blocks for that basis species. Values are listed as NA (not available) for species or phases
that are not present in the EQ6 output at any of the increments of reaction progress.

If outfile is TRUE, the result is saved in a file named like ‘file’.‘property’.csv, in the same
directory as file. The name of the outfile can be provided to override this naming scheme, or
this argument can be set to FALSE or NULL, to turn off writing the result to a file.

Thanks to Peter Canovas and Everett Shock for helping to test the code and offering ideas for
improvements.

References

Wolery, T. J. (1992) EQ3/6, A Software Package for Geochemical Modeling of Aqueous Sys-
tems: Package Overview and Installation Guide (Version 7.0). Lawrence Livermore National
Laboratory, UCRL-MA-110662 PT I. http://www.wipp.energy.gov/library/cra/2009_cra/
references/Others/Wolery_1992_EQ36_A_Software_Package_for_Geochemical_Modeling_of_
Aqueous_Systems_ERMS241375.pdf

Wolery, T. J. and Daveler, S. A. (1992) EQ6, A Computer Program for Reaction Path Modeling
of Aqueous Geochemical Systems: Theoretical Manual, User’s Guide, and Related Documentation
(Version 7.0). Lawrence Livermore National Laboratory, UCRL-MA-110662 PT IV. http://www.
wipp.energy.gov/library/cra/2009_cra/references/Others/Wolery_Daveler_1992_EQ36_
A_Computer_Program_for_Reaction_Path_Modeling_of_Aqueous_Geochemical_Systems_ERMS241379.
pdf

Examples

## Not run:
# if an EQ6 output file named "rainbow2.6o" is in the current
# working directory, the following command will output values
# of log act (logarithm of activity) for the selected aqueous
# species to a file named rainbow2.6o.log act.csv
eqdata("rainbow2.6o",c("h+","sio2,aq","h2,aq"),"log act")
## End(Not run)

http://www.wipp.energy.gov/library/cra/2009_cra/references/Others/Wolery_1992_EQ36_A_Software_Package_for_Geochemical_Modeling_of_Aqueous_Systems_ERMS241375.pdf
http://www.wipp.energy.gov/library/cra/2009_cra/references/Others/Wolery_1992_EQ36_A_Software_Package_for_Geochemical_Modeling_of_Aqueous_Systems_ERMS241375.pdf
http://www.wipp.energy.gov/library/cra/2009_cra/references/Others/Wolery_1992_EQ36_A_Software_Package_for_Geochemical_Modeling_of_Aqueous_Systems_ERMS241375.pdf
http://www.wipp.energy.gov/library/cra/2009_cra/references/Others/Wolery_Daveler_1992_EQ36_A_Computer_Program_for_Reaction_Path_Modeling_of_Aqueous_Geochemical_Systems_ERMS241379.pdf
http://www.wipp.energy.gov/library/cra/2009_cra/references/Others/Wolery_Daveler_1992_EQ36_A_Computer_Program_for_Reaction_Path_Modeling_of_Aqueous_Geochemical_Systems_ERMS241379.pdf
http://www.wipp.energy.gov/library/cra/2009_cra/references/Others/Wolery_Daveler_1992_EQ36_A_Computer_Program_for_Reaction_Path_Modeling_of_Aqueous_Geochemical_Systems_ERMS241379.pdf
http://www.wipp.energy.gov/library/cra/2009_cra/references/Others/Wolery_Daveler_1992_EQ36_A_Computer_Program_for_Reaction_Path_Modeling_of_Aqueous_Geochemical_Systems_ERMS241379.pdf


40 equilibrate

equilibrate Equilibrium Chemical Activities of Species

Description

Calculate equilibrium chemical activities of species from the affinities of formation of the species
at unit activity.

Usage

equilibrate(aout, balance = NULL, loga.balance = NULL,
ispecies = !grepl("cr", aout$species$state), normalize = FALSE, as.residue = FALSE,
method = c("boltzmann", "reaction"), tol = .Machine$double.eps^0.25)

equil.boltzmann(Astar, n.balance, loga.balance)
equil.reaction(Astar, n.balance, loga.balance, tol = .Machine$double.eps^0.25)
moles(eout)

Arguments

aout list, output from affinityor mosaic

balance character or numeric, how to balance the transformations

ispecies numeric, which species to include

normalize logical, normalize the molar formulas of species by the balancing coefficients?

as.residue logical, report results for the normalized formulas?

Astar numeric, affinities of formation reactions excluding species contribution

n.balance numeric, number of moles of balancing component in the formation reactions of
the species of interest

loga.balance numeric (single value or vector), logarithm of total activity of balanced quantity

method character, equilibration method to use

tol numeric, convergence tolerance for uniroot

eout list, output from equilibrate

Details

equilibrate calculates the chemical activities of species in metastable equilibrium, for constant
temperature, pressure and chemical activities of basis species, using specified balancing constraints
on reactions between species.

It takes as input aout, the output from affinity, giving the chemical affinities of formation reaction
of each species, which may be calculated on a multidimensional grid of conditions. Alternatively,
aout can be the output from mosaic, in which case the equilibrium activities of the formed species
are calculated and combined with those of the changing basis species to make an object that can be
plotted with diagram.

The equilibrium chemical activities of species are calculated using either the equil.reaction or
equil.boltzmann functions, the latter only if the balance is on one mole of species.



equilibrate 41

equilibrate needs to be provided constraints on how to balance the reactions representing trans-
formations between the species. balance indicates the balancing component, according to the
following scheme:

• ‘NULL’: autoselect

• name of basis species: balance on this basis species

• ‘length’: balance on length of proteins

• ‘1’: balance on one mole of species

• numeric vector: user-defined constraints

The default value of NULL for balance indicates to use the coefficients on the basis species that is
present (i.e. with non-zero coefficients) in all formation reactions, or if that fails, to set the balance
to ‘1’. However, if all the species (as listed in code aout$species) are proteins (have an underscore
character in their names), the default value of NULL for balance indicates to use ‘length’ as the
balance.

NOTE: The summation of activities assumes an ideal system, so ‘molality’ is equivalent to ‘activity’
here. loga.balance gives the logarithm of the total activity of balance (which is total activity of
species for ‘1’ or total activity of amino acid residue-equivalents for ‘length’). If loga.balance
is missing, its value is taken from the activities of species listed in aout; this default is usually the
desired operation. The supplied value of loga.balance may also be a vector of values, with length
corresponding to the number of conditions in the calculations of affinity.

normalize if TRUE indicates to normalize the molar formulas of species by the balance coeffi-
cients. This operation is intended for systems of proteins, whose conventional formulas are much
larger than the basis speices. The normalization also applies to the balancing coefficients, which
as a result consist of ‘1’s. After normalization and equilibration, the equilibrium activities are then
re-scaled (for the original formulas of the species), unless as.residue is TRUE.

equil.boltzmann is used to calculate the equilibrium activities if balance is ‘1’ (or when normalize
or as.residue is TRUE), otherwise equil.reaction is called. The default behavior can be over-
riden by specifying either ‘boltzmann’ or ‘reaction’ in method. Using equil.reaction may be
needed for systems with huge (negative or positive) affinities, where equil.boltzmann produces a
NaN result.

ispecies can be supplied to identify a subset of the species to include in the equilibrium calcula-
tion. By default, this is all species except solids (species with ‘cr’ state). However, the stability
regions of solids are still calculated (by a call to diagram without plotting). At all points outside of
their stability region, the logarithms of activities of solids are set to -999. Likewise, where any solid
species is calculated to be stable, the logarithms of activities of all aqueous species are set to -999.

moles simply calculates the total number of moles of elements corresponding to the activities of
formed species in the output from equilibrate.

Value

equil.reaction and equil.boltzmann each return a list with dimensions and length equal to
those of Astar, giving the log10 of the equilibrium activities of the species of interest. equilibrate
returns a list, containing first the values in aout, to which are appended m.balance (the balancing
coefficients if normalize is TRUE, a vector of ‘1’s otherwise), n.balance (the balancing coeffi-
cients if normalize is FALSE, a vector of ‘1’s otherwise), loga.balance, Astar, and loga.equil
(the calculated equilibrium activities of the species).



42 equilibrate

Algorithms

The input values to equil.reaction and equil.boltzmann are in a list, Astar, all elements of
the list having the same dimensions; they can be vectors, matrices, or higher-dimensionsal arrays.
Each list element contains the chemical affinities of the formation reactions of one of the species of
interest (in dimensionless base-10 units, i.e. A/2.303RT), calculated at unit activity of the species
of interest. The equilibrium base-10 logarithm activities of the species of interest returned by either
function satisfy the constraints that 1) the final chemical affinities of the formation reactions of the
species are all equal and 2) the total activity of the balancing component is equal to (loga.balance).
The first constraint does not impose a complete equilibrium, where the affinities of the formation
reactions are all equal to zero, but allows for a metastable equilibrium, where the affinities of the
formation reactions are equal to each other.

In equil.reaction (the algorithm described in Dick, 2008 and the only one available prior to
CHNOSZ_0.8), the calculations of relative abundances of species are based on a solving a system
of equations representing the two constraints stated above. The solution is found using uniroot
with a flexible method for generating initial guesses.

In equil.boltzmann, the chemical activities of species are calculated using the Boltzmann distri-
bution. This calculation is faster than the algorithm of equil.reaction, but is limited to systems
where the transformations are all balanced on one mole of species. If equil.boltzmann is called
with balance other than ‘1’, it stops with an error.

Warning

Despite its name, this function does not generally produce a complete equilibrium. It returns ac-
tivities of species such that the affinities of formation reactions are equal to each other (and trans-
formations between species have zero affinity); this is a type of metastable equilibrium. Although
they are equal to each other, the affinities are not necessarily equal to zero. Use solubility to find
complete equilibrium, where the affinities of the formation reactions become zero.

References

Dick, J. M. (2008) Calculation of the relative metastabilities of proteins using the CHNOSZ soft-
ware package. Geochem. Trans. 9:10. https://doi.org/10.1186/1467-4866-9-10

See Also

diagram has examples of using equilibrate to make equilibrium activity diagrams. revisit
can be used to perform further analysis of the equilibrium activities. palply is used by both
equil.reaction and equil.boltzmann to parallelize intensive parts of the calculations.

Examples

## equilibrium in a simple system:
## ionization of carbonic acid
basis("CHNOS+")
species(c("CO2", "HCO3-", "CO3-2"))
# set unit activity of the species (0 = log10(1))
species(1:3, 0)
# calculate Astar (for unit activity)

https://doi.org/10.1186/1467-4866-9-10


examples 43

res <- 100
Astar <- affinity(pH=c(0, 14, res))$values
# the logarithms of activity for a total activity
# of the balancing component (CO2) equal to 0.001
loga.boltz <- equil.boltzmann(Astar, c(1, 1, 1), 0.001)
# calculated another way
loga.react <- equil.reaction(Astar, c(1, 1, 1), rep(0.001, 100))
# probably close enough for most purposes
stopifnot(all.equal(loga.boltz, loga.react))
# the first ionization constant (pKa)
ipKa <- which.min(abs(loga.boltz[[1]] - loga.boltz[[2]]))
pKa.equil <- seq(0, 14, length.out=res)[ipKa]
# calculate logK directly
logK <- subcrt(c("CO2","H2O","HCO3-","H+"), c(-1, -1, 1, 1), T=25)$out$logK
# we could decrease tolerance here by increasing res
stopifnot(all.equal(pKa.equil, -logK, tolerance=1e-2))

# equilibrate with mosaic: balancing on two elements (N and C)
# thanks to Kirt Robinson for the feature request and test system
loga_N <- -4
loga_C <- -3
basis(c("CO2", "NH3", "O2", "H2O", "H+"))
basis("NH3", loga_N)
species(c("acetamide", "acetic acid", "acetate"))
# this calculates equilibrium activities of NH3 and NH4+ for given loga_N
# and calculates the corresponding affinities of the formed species
m <- mosaic(c("NH3", "NH4+"), pH = c(0, 14))
# this calculates equilibrium activities of the formed species for given loga_C
# and combines them with the activities of the changing basis species (NH3 and NH4+)
eqc <- equilibrate(m, loga.balance = loga_C)
diagram(eqc, ylim = c(-10, -2))
title(main = paste("log(total N in basis species) =", loga_N,

"\nlog(total C in formed species) =", loga_C), font.main = 1)

examples Run Examples from the Documentation

Description

Run the examples contained in each of the documentation topics.

Usage

examples(save.png = FALSE)
demos(which = c("sources", "protein.equil", "affinity", "NaCl",
"density", "ORP", "findit", "ionize", "buffer", "protbuff",
"glycinate", "mosaic", "copper", "arsenic", "solubility", "gold",
"contour", "sphalerite", "wjd", "bugstab", "Shh", "saturation",
"adenine", "DEW", "lambda", "TCA", "aluminum", "bison", "AkDi"),
save.png=FALSE)



44 examples

Arguments

save.png logical, generate PNG image files for the plots?

which character, which example to run

Details

examples runs all the examples in the help pages for the package. example is called for each topic
with ask set to FALSE (so all of the figures are shown without prompting the user).

demos runs all the demos in the package. The demo(s) to run is/are specified by which; the default
is to run them in the order of the list below.

sources Cross-check the reference list with the thermodynamic database
protein.equil Chemical activities of two proteins in metastable equilibrium (Dick and Shock, 2011)
affinity Affinities of metabolic reactions and amino acid synthesis (Amend and Shock, 1998, 2001)
NaCl Equilibrium constant for aqueous NaCl dissociation (Shock et al., 1992)
density Density of H2O, inverted from IAPWS-95 equations (rho.IAPWS95)
ORP Temperature dependence of oxidation-reduction potential for redox standards
findit Minimize the standard deviation of logarithms of activities of sulfur species
ionize ionize.aa(): contour plots of net charge and ionization properties of LYSC_CHICK
buffer Minerals and aqueous species as buffers of hydrogen fugacity (Schulte and Shock, 1995)
protbuff Chemical activities buffered by thiol peroxidases or sigma factors
glycinate Metal-glycinate complexes (Shock and Koretsky, 1995; Azadi et al., 2019)
mosaic Eh-pH diagram with two sets of changing basis species (Garrels and Christ, 1965)
copper Another example of mosaic: complexation of Cu with glycine (Aksu and Doyle, 2001)
arsenic Another example of mosaic: Eh-pH diagram for the system As-O-H-S (Lu and Zhu, 2011)
solubility Solubility of calcite (cf. Manning et al., 2013) and CO2 (cf. Stumm and Morgan, 1996)
gold Solubility of gold (Akinfiev and Zotov; 2001; Stefánsson and Seward, 2004; Williams-Jones et al., 2009)
contour Gold solubility contours on a log fO2 - pH diagram (Williams-Jones et al., 2009)
sphalerite Solubility of sphalerite (Akinfiev and Tagirov, 2014)
wjd G minimization: prebiological atmospheres (Dayhoff et al., 1964) and cell periphery of yeast
dehydration logK of dehydration reactions; SVG file contains tooltips and links
bugstab Formation potential of microbial proteins in colorectal cancer (Dick, 2016)
Shh Affinities of transcription factors relative to Sonic hedgehog (Dick, 2015)
saturation Equilibrium activity diagram showing activity ratios and mineral saturation limits (Bowers et al., 1984)
adenine HKF regression of heat capacity and volume of aqueous adenine (Lowe et al., 2017)
DEW Deep Earth Water (DEW) model for high pressures (Sverjensky et al., 2014a and 2014b)
lambda Effects of lambda transition on thermodynamic properties of quartz (Berman, 1988)
TCA Standard Gibbs energies of the tricarboxylic (citric) acid cycle (Canovas and Shock, 2016)
aluminum Reactions involving Al-bearing minerals (Zimmer et al., 2016; Tutolo et al., 2014)
carboxylase Rank abundance distribution for RuBisCO and acetyl-CoA carboxylase
bison Average oxidation state of carbon in proteins for phyla at Bison Pool (Dick and Shock, 2013)
AkDi Henry’s constant of dissolved gases (Akinfiev and Diamond, 2003)

For either function, if save.png is TRUE, the plots are saved in png files whose names begin with
the names of the help topics or demos.

Two of the demos have external dependencies and are not automatically run by demos. ‘dehydration’



examples 45

creates an interactive SVG file; this demo depends on RSVGTipsDevice, which is not available
for Windows. ‘carboxylase’ creates an animated GIF; this demo requires that the ImageMagick
convert commmand be available on the system (tested on Linux and Windows).

‘carboxylase’ animates diagrams showing rankings of calculated chemical activities along a com-
bined T and log aH2

gradient, or makes a single plot on the default device (without conversion to
animated GIF) if a single temperature (T) is specified in the code. To run this demo, an empty
directory named ‘png’ must be present (as a subdirectory of the R working directory). The pro-
teins in the calculation are 24 carboxylases from a variety of organisms. There are 12 ribulose
phosphate carboxylase and 12 acetyl-coenzyme A carboxylase; 6 of each type are from nomi-
nally mesophilic organisms and 6 from nominally thermophilic organisms, shown as blue and red
symbols on the diagrams. The activities of hydrogen at each temperature are calculated using
log aH2(aq)

= −11 + 3/ (40 × T (◦C)); this equation comes from a model of relative stabilities of
proteins in a hot-spring environment (Dick and Shock, 2011).

Warning

The discontinuities apparent in the plot made by the NaCl demo illustrate limitations of the "g
function" for charged species in the revised HKF model (the 355 ◦C boundary of region II in Figure
6 of Shock et al., 1992). Note that SUPCRT92 (Johnson et al., 1992) gives similar output at 500 bar.
However, SUPCRT does not output thermodynamic properties above 350 ◦C at PSAT; see Warning
in subcrt.

References

Akinfiev, N. N. and Diamond, L. W. (2003) Thermodynamic description of aqueous nonelectrolytes
at infinite dilution over a wide range of state parameters. Geochim. Cosmochim. Acta 67, 613–629.
https://doi.org/10.1016/S0016-7037(02)01141-9

Akinfiev, N. N. and Tagirov, B. R. (2014) Zn in hydrothermal systems: Thermodynamic description
of hydroxide, chloride, and hydrosulfide complexes. Geochem. Int. 52, 197–214. https://doi.
org/10.1134/S0016702914030021

Akinfiev, N. N. and Zotov, A. V. (2001) Thermodynamic description of chloride, hydrosulfide,
and hydroxo complexes of Ag(I), Cu(I), and Au(I) at temperatures of 25-500◦C and pressures of
1-2000 bar. Geochem. Int. 39, 990–1006. http://pleiades.online/cgi-perl/search.pl/
?type=abstract&name=geochem&number=10&year=1&page=990

Aksu, S. and Doyle, F. M. (2001) Electrochemistry of copper in aqueous glycine solutions. J.
Electrochem. Soc. 148, B51–B57. https://doi.org/10.1149/1.1344532

Amend, J. P. and Shock, E. L. (1998) Energetics of amino acid synthesis in hydrothermal ecosys-
tems. Science 281, 1659–1662. https://doi.org/10.1126/science.281.5383.1659

Amend, J. P. and Shock, E. L. (2001) Energetics of overall metabolic reactions of thermophilic and
hyperthermophilic Archaea and Bacteria. FEMS Microbiol. Rev. 25, 175–243. https://doi.org/
10.1016/S0168-6445(00)00062-0

Azadi, M. R., Karrech, A., Attar, M. and Elchalakani, M. (2019) Data analysis and estimation of
thermodynamic properties of aqueous monovalent metal-glycinate complexes. Fluid Phase Equilib.
480, 25-40. https://doi.org/10.1016/j.fluid.2018.10.002

Berman, R. G. (1988) Internally-consistent thermodynamic data for minerals in the system Na2O-
K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. J. Petrol. 29, 445-522. https://doi.
org/10.1093/petrology/29.2.445

https://CRAN.R-project.org/package=RSVGTipsDevice
https://doi.org/10.1016/S0016-7037(02)01141-9
https://doi.org/10.1134/S0016702914030021
https://doi.org/10.1134/S0016702914030021
http://pleiades.online/cgi-perl/search.pl/?type=abstract&name=geochem&number=10&year=1&page=990
http://pleiades.online/cgi-perl/search.pl/?type=abstract&name=geochem&number=10&year=1&page=990
https://doi.org/10.1149/1.1344532
https://doi.org/10.1126/science.281.5383.1659
https://doi.org/10.1016/S0168-6445(00)00062-0
https://doi.org/10.1016/S0168-6445(00)00062-0
https://doi.org/10.1016/j.fluid.2018.10.002
https://doi.org/10.1093/petrology/29.2.445
https://doi.org/10.1093/petrology/29.2.445


46 examples

Bowers, T. S., Jackson, K. J. and Helgeson, H. C. (1984) Equilibrium Activity Diagrams for Coex-
isting Minerals and Aqueous Solutions at Pressures and Temperatures to 5 kb and 600◦C, Springer-
Verlag, Berlin, 397 p. http://www.worldcat.org/oclc/11133620

Canovas, P. A., III and Shock, E. L. (2016) Geobiochemistry of metabolism: Standard state ther-
modynamic properties of the citric acid cycle. Geochim. Cosmochim. Acta 195, 293–322. https:
//doi.org/10.1016/j.gca.2016.08.028

Dayhoff, M. O. and Lippincott, E. R. and Eck, R. V. (1964) Thermodynamic Equilibria In Prebio-
logical Atmospheres. Science 146, 1461–1464. https://doi.org/10.1126/science.146.3650.
1461

Dick, J. M. and Shock, E. L. (2011) Calculation of the relative chemical stabilities of proteins as
a function of temperature and redox chemistry in a hot spring. PLoS ONE 6, e22782. https:
//doi.org/10.1371/journal.pone.0022782

Dick, J. M. and Shock, E. L. (2013) A metastable equilibrium model for the relative abundance
of microbial phyla in a hot spring. PLoS ONE 8, e72395. https://doi.org/10.1371/journal.
pone.0072395

Dick, J. M. (2015) Chemical integration of proteins in signaling and development. bioRxiv. https:
//doi.org/10.1101/015826

Dick, J. M. (2016) Proteomic indicators of oxidation and hydration state in colorectal cancer. PeerJ
4:e2238. https://doi.org/10.7717/peerj.2238

Garrels, R. M. and Christ, C. L. (1965) Solutions, Minerals, and Equilibria, Harper & Row, New
York, 450 p. http://www.worldcat.org/oclc/517586

Johnson, J. W., Oelkers, E. H. and Helgeson, H. C. (1992) SUPCRT92: A software package for
calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and
reactions from 1 to 5000 bar and 0 to 1000◦C. Comp. Geosci. 18, 899–947. https://doi.org/
10.1016/0098-3004(92)90029-Q

Lowe, A. R., Cox, J. S. and Tremaine, P. R. (2017) Thermodynamics of aqueous adenine: Standard
partial molar volumes and heat capacities of adenine, adeninium chloride, and sodium adeninate
from T = 278.15 K to 393.15 K. J. Chem. Thermodyn. 112, 129–145. https://doi.org/10.
1016/j.jct.2017.04.005

Lu, P. and Zhu, C. (2011) Arsenic Eh–pH diagrams at 25◦C and 1 bar. Environ. Earth Sci. 62,
1673–1683. https://doi.org/10.1007/s12665-010-0652-x

Manning, C. E., Shock, E. L. and Sverjensky, D. A. (2013) The chemistry of carbon in aqueous flu-
ids at crustal and upper-mantle conditions: Experimental and theoretical constraints. Rev. Mineral.
Geochem. 75, 109–148. https://doi.org/10.2138/rmg.2013.75.5

Schulte, M. D. and Shock, E. L. (1995) Thermodynamics of Strecker synthesis in hydrothermal
systems. Orig. Life Evol. Biosph. 25, 161–173. https://doi.org/10.1007/BF01581580

Shock, E. L. and Koretsky, C. M. (1995) Metal-organic complexes in geochemical processes: Es-
timation of standard partial molal thermodynamic properties of aqueous complexes between metal
cations and monovalent organic acid ligands at high pressures and temperatures. Geochim. Cos-
mochim. Acta 59, 1497–1532. https://doi.org/10.1016/0016-7037(95)00058-8

Shock, E. L., Oelkers, E. H., Johnson, J. W., Sverjensky, D. A. and Helgeson, H. C. (1992) Calcula-
tion of the thermodynamic properties of aqueous species at high pressures and temperatures: Effec-
tive electrostatic radii, dissociation constants and standard partial molal properties to 1000 ◦C and
5 kbar. J. Chem. Soc. Faraday Trans. 88, 803–826. https://doi.org/10.1039/FT9928800803

http://www.worldcat.org/oclc/11133620
https://doi.org/10.1016/j.gca.2016.08.028
https://doi.org/10.1016/j.gca.2016.08.028
https://doi.org/10.1126/science.146.3650.1461
https://doi.org/10.1126/science.146.3650.1461
https://doi.org/10.1371/journal.pone.0022782
https://doi.org/10.1371/journal.pone.0022782
https://doi.org/10.1371/journal.pone.0072395
https://doi.org/10.1371/journal.pone.0072395
https://doi.org/10.1101/015826
https://doi.org/10.1101/015826
https://doi.org/10.7717/peerj.2238
http://www.worldcat.org/oclc/517586
https://doi.org/10.1016/0098-3004(92)90029-Q
https://doi.org/10.1016/0098-3004(92)90029-Q
https://doi.org/10.1016/j.jct.2017.04.005
https://doi.org/10.1016/j.jct.2017.04.005
https://doi.org/10.1007/s12665-010-0652-x
https://doi.org/10.2138/rmg.2013.75.5
https://doi.org/10.1007/BF01581580
https://doi.org/10.1016/0016-7037(95)00058-8
https://doi.org/10.1039/FT9928800803


extdata 47

Stefánsson, A. and Seward, T. M. (2004) Gold(I) complexing in aqueous sulphide solutions to
500◦C at 500 bar. Geochim. Cosmochim. Acta 68, 4121–4143. https://doi.org/10.1016/j.
gca.2004.04.006

Stumm, W. and Morgan, J. J. (1996) Aquatic Chemistry: Chemical Equilibria and Rates in Natural
Waters, John Wiley & Sons, New York, 1040 p. http://www.worldcat.org/oclc/31754493

Sverjensky, D. A., Harrison, B. and Azzolini, D. (2014a) Water in the deep Earth: The dielectric
constant and the solubilities of quartz and corundum to 60 kb and 1,200 ◦C. Geochim. Cosmochim.
Acta 129, 125–145. https://doi.org/10.1016/j.gca.2013.12.019

Sverjensky, D. A., Hemley, J. J. and D’Angelo, W. M. (1991) Thermodynamic assessment of hy-
drothermal alkali feldspar-mica-aluminosilicate equilibria. Geochim. Cosmochim. Acta 55, 989-
1004. https://doi.org/10.1016/0016-7037(91)90157-Z

Sverjensky, D. A., Stagno, V. and Huang, F. (2014b) Important role for organic carbon in subduction-
zone fluids in the deep carbon cycle. Nat. Geosci. 7, 909–913. https://doi.org/10.1038/
ngeo2291

Tutolo, B. M., Kong, X.-Z., Seyfried, W. E., Jr. and Saar, M. O. (2014) Internal consistency in
aqueous geochemical data revisited: Applications to the aluminum system. Geochim. Cosmochim.
Acta 133, 216–234. https://doi.org/10.1016/j.gca.2014.02.036

Williams-Jones, A. E., Bowell, R. J. and Migdisov, A. A. (2009) Gold in solution. Elements 5,
281–287. https://doi.org/10.2113/gselements.5.5.281

Zimmer, K., Zhang, Y., Lu, P., Chen, Y., Zhang, G., Dalkilic, M. and Zhu, C. (2016) SUPCRTBL: A
revised and extended thermodynamic dataset and software package of SUPCRT92. Comp. Geosci.
90, 97–111. https://doi.org/10.1016/j.cageo.2016.02.013

Examples

demos(c("ORP", "NaCl"))

extdata Extra Data

Description

The files in the subdirectories of extdata provide additional thermodynamic data and other data to
support the examples in the package documentation and vignettes. See thermo for a description of
the files in extdata/OBIGT, which are used to generate the thermodynamic database.

Details

Files in Berman contain thermodynamic data for minerals using the Berman formulation:

• Ber88_1988.csv contains thermodynamic data for minerals taken from Berman (1988).

https://doi.org/10.1016/j.gca.2004.04.006
https://doi.org/10.1016/j.gca.2004.04.006
http://www.worldcat.org/oclc/31754493
https://doi.org/10.1016/j.gca.2013.12.019
https://doi.org/10.1016/0016-7037(91)90157-Z
https://doi.org/10.1038/ngeo2291
https://doi.org/10.1038/ngeo2291
https://doi.org/10.1016/j.gca.2014.02.036
https://doi.org/10.2113/gselements.5.5.281
https://doi.org/10.1016/j.cageo.2016.02.013


48 extdata

• Other files with names like xxx_yyyy.csv contain thermodynamic data from other sources;
xxx in the filename corresponds to the reference in thermo$obigt and yyyy gives the year
of publication. berman uses these data for the calculation of thermodynamic properties at
specified P and T , which are then available for use in subcrt. If there are any duplicated
mineral names in the files, only the most recent data are used, as determined by the year in the
file name. Following conventions used in other data files, the names of sanidine and microcline
were changed to K-feldspar,high and K-feldspar,low.

• sympy.R is an R script that uses rSymPy to symbolically integrate Bermans’s equations for
heat capacity and volume to write experessions for enthalpy, entropy and Gibbs energy.

• The testing directory contains data files based on Berman and Aranovich (1996). These are
used to demonstrate the addition of data from a user-supplied file (see berman).

Files in abundance contain protein abundance and microbial occurrence data:

• microbes.csv has data for microbial occurrence (i.e. relative enrichement) in colorectal can-
cer and normal tissue. The file is from the Supporting Information of Dick (2016). This file is
used by demo("bugstab").

Files in bison contain BLAST results and taxonomic information for an environmental metagenome
from the Bison Pool hot spring in Yellowstone National Park:

• bisonN_vs_refseq57.blast.xz, bisonS..., bisonR..., bisonQ..., bisonP... are par-
tial tabular BLAST results for proteins in the Bison Pool Environmental Genome. Protein
sequences predicted in the metagenome were downloaded from the Joint Genome Institute’s
IMG/M system on 2009-05-13. The target database for the searches was constructed from
microbial protein sequences in National Center for Biotechnology Information (NCBI) Ref-
Seq database version 57, representing 7415 microbial genomes. The ‘blastall’ command was
used with the default setting for E value cuttoff (10.0) and options to make a tabular output
file consisting of the top 20 hits for each query sequence. The function read.blast was used
to extract only those hits with E values less than or equal to 1e-5 and with sequence similarity
(percent identity) at least 30 percent, and to keep only the first hit for each query sequence.
The function write.blast was used to save partial BLAST files (only selected columns). The
files provided with CHNOSZ contain the first 5,000 hits for each sampling site at Bison Pool,
representing between about 7 to 15 percent of the first BLAST hits after similarity and E value
filtering.

• gi.taxid.txt.xz is a table that lists the sequence identifiers (gi numbers) that appear in
the example BLAST files (see above), together with the corresponding taxon ids used in the
NCBI databases. This file is not a subset of the complete ‘gi_taxid_prot.dmp.gz’ available at
ftp://ftp.ncbi.nih.gov/pub/taxonomy/ but instead is a subset of ‘gi.taxid.txt’ generated
from the RefSeq release catalog using ‘gencat.sh’ in the refseq directory. See id.blast for
an example that uses this file and the BLAST files described above.

Files in cpetc contain experimental and calculated thermodynamic and environmental data:

• PM90.csv Heat capacities of four unfolded aqueous proteins taken from Privalov and Makhatadze,
1990. Temperature in ◦C is in the first column, and heat capacities of the proteins in J mol−1

K−1 in the remaining columns. See ionize.aa and the vignette anintro.Rmd for examples
that use this file.

https://CRAN.R-project.org/package=rSymPy
ftp://ftp.ncbi.nih.gov/pub/taxonomy/


extdata 49

• RH95.csv Heat capacity data for iron taken from Robie and Hemingway, 1995. Temperature
in Kelvin is in the first column, heat capacity in J K−1 mol−1 in the second. See subcrt for
an example that uses this file.

• SOJSH.csv Experimental equilibrium constants for the reaction NaCl(aq) = Na+ + Cl- as a
function of temperature and pressure taken from Fig. 1 of Shock et al., 1992. See demo("NaCl")
for an example that uses this file.

• Cp.CH4.HW97.csv, V.CH4.HWM96.csv Apparent molar heat capacities and volumes of CH4
in dilute aqueous solutions reported by Hnědkovský and Wood, 1997 and Hnědkovský et al.,
1996. See EOSregress and the vignette eos-regress.Rmd for examples that use these files.

• SC10_Rainbow.csv Values of temperature (◦C, pH and logarithms of activity of CO2, H2,
NH+

4 , H2S and CH4 for mixing of seawater and hydrothermal fluid at Rainbow field (Mid-
Atlantic Ridge), taken from Shock and Canovas, 2010. See the vignette anintro.Rmd for an
example that uses this file.

• SS98_Fig5a.csv, SS98_Fig5b.csv Values of logarithm of fugacity of O2 and pH as a func-
tion of temperature for mixing of seawater and hydrothermal fluid, digitized from Figs. 5a and
b of Shock and Schulte, 1998. See the vignette anintro.Rmd for an example that uses this
file.

• rubisco.csv UniProt IDs for Rubisco, ranges of optimal growth temperature of organisms,
domain and name of organisms, and URL of reference for growth temperature, from Dick,
2014. See the vignette anintro.Rmd for an example that uses this file.

• bluered.txt Blue - light grey - red color palette, computed using colorspace::diverge_hcl(1000,
c = 100,l = c(50,90),power = 1). This is used by ZC.col.

• AD03_Fig1?.csv Experimental data points digitized from Figure 1 of Akinfiev and Diamond,
2003, used in demos("AkDi").

• TKSS14_Fig2.csv Experimental data points digitized from Figure 2 of Tutolo et al., 2014,
used in demos("aluminum").

• Mer75_Table4.csv Values of log(aK+/aH+) and log(aNa+/aH+) from Table 4 of Merino,
1975, used in demos("aluminum").

Files in fasta contain protein sequences:

• EF-Tu.aln consists of aligned sequences (394 amino acids) of elongation factor Tu (EF-Tu).
The sequences correspond to those taken from UniProtKB for ECOLI (Escherichia coli),
THETH (Thermus thermophilus) and THEMA (Thermotoga maritima), and reconstructed an-
cestral sequences taken from Gaucher et al., 2003 (maximum likelihood bacterial stem and
mesophilic bacterial stem, and alternative bacterial stem). See read.fasta for an example
that uses this file.

• rubisco.fasta Sequences of Rubisco obtained from UniProt (see Dick, 2014). See the vi-
gnette anintro.Rmd for an example that uses this file.

Files in protein contain amino acid compositions for proteins.

• DS11.csv, DS13.csv These two files contain amino acid compositions of metagenomically
encoded proteins, averaged together according to functional annotation (DS11) or taxonomic
affiliation (DS13). The data are from Dick and Shock, 2011 and 2013. They are used in the
vignette Hot-spring proteins in CHNOSZ.

https://CRAN.R-project.org/package=colorspace


50 extdata

• microbial.aa.csv Overall protein compositions of microbial species reported to be posi-
tively or negatively enriched in colorectal cancer. This file is taken from Dick, 2016. It is used
by demo("bugstab").

Files in refseq contain code and results of processing NCBI Reference Sequences (RefSeq) for
microbial proteins, using RefSeq release 61 of 2013-09-09:

• README.txt Instructions for producing the data files.

• gencat.sh Bash script to extract microbial protein records from the RefSeq catalog.

• gi.taxid.txt Output from above. The complete file is too large to distribute with CHNOSZ,
but a portion is included in extdata/bison to support processing example BLAST files for
the Bison Pool metagenome (based on RefSeq 57, 2013-01-08).

• mkfaa.sh Combine the contents of .faa.gz files into a single FASTA file (to use e.g. for making
a BLAST database).

• protein.refseq.R Calculate average amino acid composition of all proteins for each organ-
ism identified by a taxonomic ID.

• trim_refseq.R Keep only selected organism names (reduces number of taxa from 6758 to
779, helps to control package size).

• protein_refseq.csv.xz Output from above. NOTE: This file has been moved to protein_refseq61.csv.xz
(https://github.com/jedick/JMDplots).

• taxid.names.R Generate a table of scientific names for the provided taxids. Requires the
complete names.dmp and nodes.dmp from NCBI taxonomy files.

• taxid_names.csv.xz Output from above. NOTE: For backward compatibility with the ex-
ample BLAST files for the Bison Pool metagenome, the packaged file merges records for
taxids found in either RefSeq 57 or 61. NOTE 2: To save space for the package, the file has
been trimmed to hold only those taxids listed in extdata/bison/gi.taxid.txt. Certain taxids in re-
lease 57 were not located in the current RefSeq catalog, probably related to the transition to the
“WP” multispecies accessions (ftp://ftp.ncbi.nlm.nih.gov/refseq/release/announcements/
WP-proteins-06.10.2013.pdf). See example for id.blast.

Files in supcrt contain scripts for reading and comparing SUPCRT files (including slop98.dat and
newer slop files from GEOPIG (http://geopig.asu.edu)) with the database in CHNOSZ:

• read.supcrt.R defines the function read.supcrt that can be used to read SUPCRT files.

• compare.R uses read.supcrt to compare data in the SUPCRT file with that in thermo()$obigt.

• newnames.csv maps names generated by read.supcrt, based on names present in the source
SUPCRT files, to names used in thermo()$obigt.

Files in taxonomy contain taxonomic data files:

• names.dmp and nodes.dmp are excerpts of the taxonomy files available on the NCBI ftp site
(ftp://ftp.ncbi.nih.gov/pub/taxonomy/taxdump.tar.gz, accessed 2010-02-15). These
files contain only the entries for Escherichia coli K-12, Saccharomyces cerevisiae, Homo sapi-
ens, Pyrococcus furisosus and Methanocaldococcus jannaschii (taxids 83333, 4932, 9606,
186497, 243232) and the higher-ranking nodes (genus, family, etc.) in the respective lineages.
See taxonomy for examples that use these files.

Files in adds contain additional thermodynamic data and group additivity definitions:

https://github.com/jedick/JMDplots
ftp://ftp.ncbi.nlm.nih.gov/refseq/release/announcements/WP-proteins-06.10.2013.pdf
ftp://ftp.ncbi.nlm.nih.gov/refseq/release/announcements/WP-proteins-06.10.2013.pdf
ftp://ftp.ncbi.nih.gov/pub/taxonomy/taxdump.tar.gz


extdata 51

• BZA10.csv contains supplementary thermodynamic data taken from Bazarkina et al. (2010).
The data can be added to the database in the current session using add.obigt. See add.obigt
for an example that uses this file.

• obigt_check.csv contains the results of running check.obigt to check the internal consis-
tency of entries in the default and optional datafiles.

• RH98_Table15.csv Group stoichiometries for high molecular weight crystalline and liquid
organic compounds taken from Table 15 of Richard and Helgeson, 1998. The first three
columns have the compound name, formula and physical state (‘cr’ or ‘liq’). The re-
maining columns have the numbers of each group in the compound; the names of the groups
(columns) correspond to species in thermo$obigt. The compound named ‘5a(H),14a(H)-cholestane’
in the paper has been changed to ‘5a(H),14b(H)-cholestane’ here to match the group stoi-
chiometry given in the table. See RH2obigt for a function that uses this file.

• DLEN67.csv Standard Gibbs energies of formation, in kcal/mol, from Dayhoff et al., 1967, for
nitrogen (N2) plus 17 compounds shown in Fig. 2 of Dayhoff et al., 1964, at 300, 500, 700
and 1000 K. See demo("wjd") and the vignette wjd.Rmd for examples that use this file.

• SK95.csv contains thermodynamic data for alanate, glycinate, and their complexes with met-
als, taken from Shock and Koretsky (1995) as corrected in slop98.dat. The data are used
in the package tests (test-recalculate.R) to check the recalculated values of G, H, and
S in thermo()$obigt using properties for alanate and glycinate from Amend and Helgeson
(1997).

• LA19_test.csv contains thermodynamic data for dimethylamine and trimethylamine from
LaRowe and Amend (2019) in energy units of both J and cal. This file is used in test-util.data.R)
to check the messages produced by checkGHS and checkEOS.

References

Akinfiev, N. N. and Diamond, L. W. (2003) Thermodynamic description of aqueous nonelectrolytes
at infinite dilution over a wide range of state parameters. Geochim. Cosmochim. Acta 67, 613–629.
https://doi.org/10.1016/S0016-7037(02)01141-9

Amend, J. P. and Helgeson, H. C. (1997) Calculation of the standard molal thermodynamic proper-
ties of aqueous biomolecules at elevated temperatures and pressures. Part 1. L-α-amino acids. J.
Chem. Soc., Faraday Trans. 93, 1927–1941. https://doi.org/10.1039/A608126F

Bazarkina, E. F., Zotov, A. V. and Akinfiev, N. N. (2010) Pressure-dependent stability of cadmium
chloride complexes: Potentiometric measurements at 1–1000 bar and 25°C. Geol. Ore Deposits 52,
167–178. https://doi.org/10.1134/S1075701510020054

Berman, R. G. (1988) Internally-consistent thermodynamic data for minerals in the system Na2O-
K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. J. Petrol. 29, 445-522. https://doi.
org/10.1093/petrology/29.2.445

Berman, R. G. and Aranovich, L. Ya. (1996) Optimized standard state and solution properties of
minerals. I. Model calibration for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the
system FeO-MgO-CaO-Al2O3-TiO2-SiO2. Contrib. Mineral. Petrol. 126, 1-24. https://doi.
org/10.1007/s004100050233

Dayhoff, M. O. and Lippincott, E. R. and Eck, R. V. (1964) Thermodynamic Equilibria In Prebio-
logical Atmospheres. Science 146, 1461–1464. https://doi.org/10.1126/science.146.3650.
1461

https://doi.org/10.1016/S0016-7037(02)01141-9
https://doi.org/10.1039/A608126F
https://doi.org/10.1134/S1075701510020054
https://doi.org/10.1093/petrology/29.2.445
https://doi.org/10.1093/petrology/29.2.445
https://doi.org/10.1007/s004100050233
https://doi.org/10.1007/s004100050233
https://doi.org/10.1126/science.146.3650.1461
https://doi.org/10.1126/science.146.3650.1461


52 extdata

Dayhoff, M. O. and Lippincott, E. R., Eck, R. V. and Nagarajan (1967) Thermodynamic Equilibrium
In Prebiological Atmospheres of C, H, O, N, P, S, and Cl. Report SP-3040, National Aeronautics
and Space Administration.

Dick, J. M. (2014) Average oxidation state of carbon in proteins. J. R. Soc. Interface 11, 20131095.
https://doi.org/10.1098/rsif.2013.1095

Dick, J. M. (2016) Proteomic indicators of oxidation and hydration state in colorectal cancer. PeerJ
4:e2238. https://doi.org/10.7717/peerj.2238

Dick, J. M. and Shock, E. L. (2011) Calculation of the relative chemical stabilities of proteins as
a function of temperature and redox chemistry in a hot spring. PLoS ONE 6, e22782. https:
//doi.org/10.1371/journal.pone.0022782

Dick, J. M. and Shock, E. L. (2013) A metastable equilibrium model for the relative abundance
of microbial phyla in a hot spring. PLoS ONE 8, e72395. https://doi.org/10.1371/journal.
pone.0072395

Gattiker, A., Michoud, K., Rivoire, C., Auchincloss, A. H., Coudert, E., Lima, T., Kersey, P.,
Pagni, M., Sigrist, C. J. A., Lachaize, C., Veuthey, A.-L., Gasteiger, E. and Bairoch, A. (2003)
Automatic annotation of microbial proteomes in Swiss-Prot. Comput. Biol. Chem. 27, 49–58.
https://doi.org/10.1016/S1476-9271(02)00094-4

Gaucher, E. A., Thomson, J. M., Burgan, M. F. and Benner, S. A (2003) Inferring the palaeoen-
vironment of ancient bacteria on the basis of resurrected proteins. Nature 425(6955), 285–288.
https://doi.org/10.1038/nature01977

Ghaemmaghami, S., Huh, W., Bower, K., Howson, R. W., Belle, A., Dephoure, N., O’Shea, E.
K. and Weissman, J. S. (2003) Global analysis of protein expression in yeast. Nature 425(6959),
737–741. https://doi.org/10.1038/nature02046

Huh, W. K., Falvo, J. V., Gerke, L. C., Carroll, A. S., Howson, R. W., Weissman, J. S. and O’Shea,
E. K. (2003) Global analysis of protein localization in budding yeast. Nature 425(6959), 686–691.
https://doi.org/10.1038/nature02026

Hnědkovský, L., Wood, R. H. and Majer, V. (1996) Volumes of aqueous solutions of CH4, CO2,
H2S, and NH3 at temperatures from 298.15 K to 705 K and pressures to 35 MPa. J. Chem. Ther-
modyn. 28, 125–142. https://doi.org/10.1006/jcht.1996.0011

Hnědkovský, L. and Wood, R. H. (1997) Apparent molar heat capacities of aqueous solutions of
CH4, CO2, H2S, and NH3 at temperatures from 304 K to 704 K at a pressure of 28 MPa. J. Chem.
Thermodyn. 29, 731–747. https://doi.org/10.1006/jcht.1997.0192

Joint Genome Institute (2007) Bison Pool Environmental Genome. Protein sequence files down-
loaded from IMG/M (https://img.jgi.doe.gov/)

LaRowe, D. E. and Amend, J. P. (2019) The energetics of fermentation in natural settings. Geomi-
crobiol. J. 36, 492–505. https://doi.org/10.1080/01490451.2019.1573278

Merino, E. (1975) Diagenesis in teriary sandstones from Kettleman North Dome, California. II.
Interstitial solutions: distribution of aqueous species at 100&deg;C and chemical relation to dia-
genetic mineralogy. Geochim. Cosmochim. Acta 39, 1629–1645. https://doi.org/10.1016/
0016-7037(75)90085-X

Privalov, P. L. and Makhatadze, G. I. (1990) Heat capacity of proteins. II. Partial molar heat capacity
of the unfolded polypeptide chain of proteins: Protein unfolding effects. J. Mol. Biol. 213, 385–
391. https://doi.org/10.1016/S0022-2836(05)80198-6

https://doi.org/10.1098/rsif.2013.1095
https://doi.org/10.7717/peerj.2238
https://doi.org/10.1371/journal.pone.0022782
https://doi.org/10.1371/journal.pone.0022782
https://doi.org/10.1371/journal.pone.0072395
https://doi.org/10.1371/journal.pone.0072395
https://doi.org/10.1016/S1476-9271(02)00094-4
https://doi.org/10.1038/nature01977
https://doi.org/10.1038/nature02046
https://doi.org/10.1038/nature02026
https://doi.org/10.1006/jcht.1996.0011
https://doi.org/10.1006/jcht.1997.0192
https://img.jgi.doe.gov/
https://doi.org/10.1080/01490451.2019.1573278
https://doi.org/10.1016/0016-7037(75)90085-X
https://doi.org/10.1016/0016-7037(75)90085-X
https://doi.org/10.1016/S0022-2836(05)80198-6


findit 53

Richard, L. and Helgeson, H. C. (1998) Calculation of the thermodynamic properties at elevated
temperatures and pressures of saturated and aromatic high molecular weight solid and liquid hy-
drocarbons in kerogen, bitumen, petroleum, and other organic matter of biogeochemical inter-
est. Geochim. Cosmochim. Acta 62, 3591–3636. https://doi.org/10.1016/S0016-7037(97)
00345-1

Robie, R. A. and Hemingway, B. S. (1995) Thermodynamic Properties of Minerals and Related
Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures. U. S. Geol.
Surv., Bull. 2131, 461 p. http://www.worldcat.org/oclc/32590140

Shock, E. and Canovas, P. (2010) The potential for abiotic organic synthesis and biosynthesis at
seafloor hydrothermal systems. Geofluids 10, 161–192. https://doi.org/10.1111/j.1468-8123.
2010.00277.x

Shock, E. L. and Koretsky, C. M. (1995) Metal-organic complexes in geochemical processes: Es-
timation of standard partial molal thermodynamic properties of aqueous complexes between metal
cations and monovalent organic acid ligands at high pressures and temperatures. Geochim. Cos-
mochim. Acta 59, 1497–1532. https://doi.org/10.1016/0016-7037(95)00058-8

Shock, E. L., Oelkers, E. H., Johnson, J. W., Sverjensky, D. A. and Helgeson, H. C. (1992) Calcula-
tion of the thermodynamic properties of aqueous species at high pressures and temperatures: Effec-
tive electrostatic radii, dissociation constants and standard partial molal properties to 1000 ◦C and
5 kbar. J. Chem. Soc. Faraday Trans. 88, 803–826. https://doi.org/10.1039/FT9928800803

Shock, E. L. and Schulte, M. D. (1998) Organic synthesis during fluid mixing in hydrothermal
systems. J. Geophys. Res. 103, 28513–28527. https://doi.org/10.1029/98JE02142

Tutolo, B. M., Kong, X.-Z., Seyfried, W. E., Jr. and Saar, M. O. (2014) Internal consistency in
aqueous geochemical data revisited: Applications to the aluminum system. Geochim. Cosmochim.
Acta 133, 216–234. https://doi.org/10.1016/j.gca.2014.02.036

findit Gridded Search to Optimize Objective Functions

Description

Use a gridded search to find a combination of one or more of chemical activities of basis species,
temperature and/or pressure that maximize or minimize a objective function of the metastable equi-
librium chemical activities of the species of interest.

Usage

findit (lims = list(), objective = "CV", niter = NULL, iprotein = NULL,
plot.it = TRUE, T = 25, P = "Psat", res = NULL, labcex = 0.6,
loga2 = NULL, loga.balance = 0, rat = NULL,
balance = NULL, normalize = FALSE)

plot_findit(x, which=NULL, mar=c(3.5,5,2,2), xlab="iteration", ...)

https://doi.org/10.1016/S0016-7037(97)00345-1
https://doi.org/10.1016/S0016-7037(97)00345-1
http://www.worldcat.org/oclc/32590140
https://doi.org/10.1111/j.1468-8123.2010.00277.x
https://doi.org/10.1111/j.1468-8123.2010.00277.x
https://doi.org/10.1016/0016-7037(95)00058-8
https://doi.org/10.1039/FT9928800803
https://doi.org/10.1029/98JE02142
https://doi.org/10.1016/j.gca.2014.02.036


54 findit

Arguments

lims list, specification of search limits

objective character, name of objective function to optimize

niter numeric, number of iterations

res numeric, grid resolution (number of points on one edge)

iprotein numeric, indices of proteins

plot.it logical, make a plot?

T numeric, temperature

P numeric, pressure; or character, "Psat"

labcex numeric, character expansion for plot labels

loga2 numeric, reference logarithms of activity of species

loga.balance numeric, logarithm of total activity of balanced quantity (passed to diagram)

rat numeric, ratio of edge length in successive iterations

balance character or numeric, balanced quantity (passed to diagram)

normalize logical, normalize chemical formulas by the balance vector? (passed to diagram)

x list, object of class findit

which numeric, which of the parameters to plot

mar numeric, plot margin specification

xlab character, x-axis label

... additional arguments passed to plot

Details

findit implements a gridded optimization to find the minimum or maximum value of an objective
function. The variables are one or more of the chemical activities, temperature and/or pressure
whose ranges are listed in lims. Generally, the system (basis species and species of interest)
must be set up before calling this function. If iprotein is supplied, indicating a set of proteins to
use in the calculation, the definition of the species is not required. lims is a list, each element of
which is vector having a name that is the formula of one of the basis species, ‘T’ or ‘P’ and a pair
of values indicating the range of the named parameter. The values are the logarithms of activities
of the basis species, or temperature or pressure (in the user’s units; see util.units). If either ‘T’
or ‘P’ is missing from the list in lims, the calculations are performed at isothermal and/or isobaric
conditions indicated by T and P arguments.

Taking nd as the number of dimensions (number of variables in lims), default values of niter and
res come from the following table. These settings have been selected to be able to run the function
quickly in the higher dimensions. Detailed studies of a system might have to use more iterations
and/or higher resolutions.

nd niter res grid points (res^nd) rat
1 4 128 128 0.7
2 6 64 4096 0.7
3 6 16 4096 0.8



IAPWS95 55

4 8 8 4096 0.9
5 12 6 7776 0.9
6 12 4 4096 0.95
7 12 4 16384 0.95

The function performs niter iterations. At first, the limits of the parameters given in lims define the
extent of a nd-dimensional box around the space of interest. The value of objective is calculated
at each of the resnd grid points and and optimum value located (see revisit). In the next iteration
the new search box is centered on the location of the optimum value, and the edges are shrunk so
their length is rat * the length in the previous step. If the limits of any of the parameters extend
beyond those in lims, they are pushed in to fit (preserving the difference between them).

plot_findit plots the values of the parameters and the objective function as a function of the
number of iterations.

Value

findit returns a list having class findit with elements value (values of the parameters, and value
of the objective function, at each iteration), lolim (lower limits of the parameters) and hilim (upper
limits of the parameters).

See Also

demo("findit") and test-findit.R for examples.

IAPWS95 Properties of Water from IAPWS-95

Description

Calculate thermodynamic properties of water following the IAPWS-95 formulation.

Usage

IAPWS95(property, T = 298.15, rho = 1000)

Arguments

property character, name(s) of property(s) to calculate

T numeric, temperature (K)

rho numeric, density (kg m−3)



56 info

Details

IAPWS95 provides an implementation of the IAPWS-95 formulation for properties (including pres-
sure) calculated as a function of temperature and density.

The IAPWS95 function returns values of thermodynamic properties in specific units (per gram). The
IAPWS-95 formulation follows the triple point convention used in engineering (values of internal
energy and entropy are taken to be zero at the triple point).

For IAPWS95 the upper temperature limit of validity is 1000 ◦C, but extrapolation to much higher
temperatures is possible (Wagner and Pruss, 2002). Valid pressures are from the greater of zero bar
or the melting pressure at temperature to 10000 bar (with the provision for extrapolation to more
extreme conditions). The function does not check these limits and will attempt calculations for
any range of input parameters, but may return NA for properties that fail to be calculated at given
temperatures and pressures and/or produce warnings or even errors when problems are encountered.

Value

A data frame the number of rows of which corresponds to the number of input temperature, pressure
and/or density values.

References

Wagner, W. and Pruss, A. (2002) The IAPWS formulation 1995 for the thermodynamic properties
of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31, 387–535.
https://doi.org/10.1063/1.1461829

See Also

util.water for properties along the saturation curve (WP02.auxiliary) and calculation of density
from pressure and temperature (rho.IAPWS92). water.IAPWS95 is a wrapper around IAPWS95 and
the utility functions, which converts the specific units to molar quantities, and is used in higher-level
functions (water).

Examples

## calculate pressure for given temperature, density
IAPWS95("P", T=500, rho=838.0235)

info Search the Thermodynamic Database

Description

Search for species by name or formula, retrieve their thermodynamic properties and parameters,
and add proteins to the thermodynamic database.

Usage

info(species = NULL, state = NULL, check.it=TRUE)

https://doi.org/10.1063/1.1461829


info 57

Arguments

species character, names or formulas of species, or (for info only) numeric with same
meaning as ispecies

state character, physical states of the species

check.it logical, check GHS and EOS parameters for self-consistency?

Details

info is the primary function used for querying the thermodynamic database (thermo$obigt). It is
often called recursively; first with a character value (or values) for species indicating the name(s)
or formula(s) of the species of interest. The result of this call is a numeric value, which can be pro-
vided as an argument in a second call to info in order to retrieve a data frame of the thermodynamic
properties of the species.

The searches of the indicated species are made among the names, chemical formulas, and ab-
breviations (in the ‘abbrv’ column) in the thermodynamic database. If the text of the species is
matched the index of that species is returned. If there are multiple matches for the species, and
state is NULL, the index of first match is returned. The order of entries in thermo()$obigt is
grouped by states in the order ‘aq’, ‘cr’, ‘gas’, ‘liq’, so for species in both aqueous and gaseous
states the index of the aqueous species is returned, unless state is set to ‘gas’.

Names of species including an underscore character are indicative of proteins, e.g. ‘LYSC_CHICK’.
If the name of a protein is provided to info and the composition of the protein can be found using
protein, the thermodyamic properties and parameters of the nonionized protein (calculated using
amino acid group additivity) are added to the thermodynamic database. Included in the return value,
as for other species, is the index of the protein in the thermodynamic database or NA if the protein
is not found. Names of proteins and other species can be mixed.

If no exact matches are found, info searches the database for similar names or formulas using
agrep. If any of these are found, the results are summarized on the screen, but the function always
returns NA in this case.

With a numeric argument, the rows of thermo()$obigt indicated by ispecies are returned, after
removing any order-of-magnitude scaling factors. If these species are all aqueous or are all not
aqueous, the compounded column names used in thermo()$obigt are replaced with names ap-
propriate for the corresponding equations of state. A missing value of one of the standard molal
Gibbs energy (G) or enthalpy (H) of formation from the elements or entropy (S) is calculated from
the other two, if available. If check.it is TRUE, several checks of self consistency among the
thermodynamic properties and parameters are performed using checkGHS and checkEOS.

See Also

thermo, check.obigt

Examples

## summary of available data
info()

## species information



58 ionize.aa

# search for something named (or whose formula is) "Fe"
si <- info("Fe")
# use the number to get the full record
info(si)
# it is possible to get a range of records
info(si:(si+3))

## dealing with states
# default order of preference for names: aq > gas > cr,liq
info(c("methane","ethanol","glycinate")) # aq, aq, aq
info(c("adenosine","alanine","hydroxyapatite")) # aq, aq, cr
# state argument overrides the default
info(c("ethanol","adenosine"),state=c("gas","cr"))
# formulas default to aqueous species, if available
info(c("CH4","CO2","CS2","MgO")) # aq, aq, gas, cr
# state argument overrides the default
info(c("CH4","CO2","MgO"),"gas") # gas, gas, NA
# exceptions to the aqueous default is O2
info("O2") # gas

## partial name or formula searches
info("ATP")
info("thiol")
info("MgC")
# add an extra character to refine a search
# or to search using terms that have exact matches
info("MgC ")
info("acetate ")
info(" H2O")

ionize.aa Properties of Ionization of Proteins

Description

Calculate the charges of proteins and contributions of ionization to the thermodynamic properties
of proteins.

Usage

ionize.aa(aa, property = "Z", T = 25, P = "Psat", pH = 7,
ret.val = NULL, suppress.Cys = FALSE)

Arguments

aa data frame, amino acid composition in the format of thermo()$protein

property character, property to calculate

T numeric, temperature in ◦C

P numeric, pressure in bar, or ‘Psat’ for vapor pressure of H2O above 100 ◦C



ionize.aa 59

pH numeric, pH

ret.val character, return the indicated value from intermediate calculations

suppress.Cys logical, suppress (ignore) the ionization of the cysteine groups?

Details

The properties of ionization of proteins calculated by this function take account of the standard mo-
lal thermodynamic properties of ionizable amino acid sidechain groups and the terminal groups in
proteins ([AABB]) and their equations of state parameters taken from Dick et al., 2006. The values
of the ionization constants (pK) are calculated as a function of temperature, and the charges and the
ionization contributions of other thermodynamic properties to the proteins are calculated additively,
without consideration of electrostatic interactions, so they are best applied to the unfolded protein
reference state.

For each amino acid composition in aa, the additive value of the property is calculated as a function
of T, P and pH. property can be NULL to denote net charge, or if not NULL is one of the properties
available in subcrt, or is ‘A’ to calculate the dimensionless chemical affinity (A/2.303RT) of the
ionization reaction for the protein. If ret.val is one of ‘pK’, ‘alpha’, or ‘aavals’ it indicates to
return the value of the ionization constant, degree of formation, or the values of the property for
each ionizable group rather than taking their sums for the amino acid compositions in aa.

Value

The function returns a matrix (possibly with only one row or column) with number of rows corre-
sponding to the longest of T, P or pH (values of any of these with shorter length are recycled) and a
column for each of the amino acid compositions in aa.

References

Dick, J. M., LaRowe, D. E. and Helgeson, H. C. (2006) Temperature, pressure, and electrochem-
ical constraints on protein speciation: Group additivity calculation of the standard molal ther-
modynamic properties of ionized unfolded proteins. Biogeosciences 3, 311–336. http://www.
biogeosciences.net/3/311/2006/bg-3-311-2006.html

Makhatadze, G. I. and Privalov, P. L. (1990) Heat capacity of proteins. 1. Partial molar heat capacity
of individual amino acid residues in aqueous solution: Hydration effect. J. Mol. Biol. 213, 375–384.
https://doi.org/10.1016/S0022-2836(05)80197-4

Privalov, P. L. and Makhatadze, G. I. (1990) Heat capacity of proteins. II. Partial molar heat capacity
of the unfolded polypeptide chain of proteins: Protein unfolding effects. J. Mol. Biol. 213, 385–
391. https://doi.org/10.1016/S0022-2836(05)80198-6

See Also

pinfo, affinity

Examples

## Heat capacity of LYSC_CHICK as a function of T
pH <- c(5, 9, 3)

http://www.biogeosciences.net/3/311/2006/bg-3-311-2006.html
http://www.biogeosciences.net/3/311/2006/bg-3-311-2006.html
https://doi.org/10.1016/S0022-2836(05)80197-4
https://doi.org/10.1016/S0022-2836(05)80198-6


60 makeup

T <- seq(0, 100)
# Cp of non-ionized protein
Cp.nonion <- subcrt("LYSC_CHICK", T=T)$out[[1]]$Cp
plot(T, Cp.nonion, xlab=axis.label("T"), type="l",

ylab=axis.label("Cp"), ylim=c(5000, 8000))
# Cp of ionization and ionized protein
aa <- pinfo(pinfo("LYSC_CHICK"))
for(pH in c(5, 9, 3)) {

Cp.ionized <- Cp.nonion + ionize.aa(aa, "Cp", T=T, pH=pH)[, 1]
lines(T, Cp.ionized, lty=2)
text(80, Cp.ionized[70], paste("pH =",pH) )

}
# Makhatadze and Privalov's group contributions
T <- c(5, 25, 50, 75, 100, 125)
points(T, convert(MP90.cp("LYSC_CHICK", T), "cal"))
# Privalov and Makhatadze's experimental values
e <- read.csv(system.file("extdata/cpetc/PM90.csv", package="CHNOSZ"))
points(e$T, convert(e$LYSC_CHICK, "cal"), pch=16)
legend("bottomright", pch=c(16, 1, NA, NA), lty=c(NA, NA, 1, 2),

legend=c("PM90 experiment", "MP90 groups",
"DLH06 groups no ion", "DLH06 groups ionized"))

title("Heat capacity of unfolded LYSC_CHICK")

makeup Parse Chemical Formulas

Description

Count the elements and charges in a chemical formula.

Usage

makeup(formula, multiplier = 1, sum = FALSE, count.zero = FALSE)
count.elements(formula)

Arguments

formula character, a chemical formula

multiplier numeric, multiplier for the elemental counts in each formula

sum logical, add together the elemental counts in all formulas?

count.zero logical, include zero counts for elements?

Details

makeup parses a chemical formula expressed in string notation, returning the numbers of each ele-
ment in the formula. The formula may carry a charge, indicated by a + or - sign, possibly followed
by a magnitude, after the uncharged part of the formula. The formula may have multiple subformu-
las enclosed in parentheses (but the parentheses may not be nested), each one optionally followed



makeup 61

by a numeric coefficient. The formula may have one suffixed subformula, separated by ‘*’ or ‘:’,
optionally preceded by a numeric coefficient. All numbers may contain a decimal point.

Each subformula (or the entire formula without subformulas) should be a simple formula. A sim-
ple formula, processed by count.elements, must adhere to the following pattern: it starts with
an elemental symbol; all elemental symbols start with an uppercase letter, and are followed by
another elemental symbol, a number (possibly fractional, possibly signed), or nothing (the end of
the formula). Any sequence of one uppercase letter followed by zero or more lowercase letters is
recognized as an elemental symbol. makeup will issue a warning for elemental symbols that are not
present in thermo$element.

makeup can handle numeric and length > 1 values for the formula argument. If the argument
is numeric, it identifies row number(s) in thermo()$obigt from which to take the formulas of
species. If formula has length > 1, the function returns a list containing the elemental counts in
each of the formulas. If count.zero is TRUE, the elemental counts for each formula include zeros
to indicate elements that are only present in any of the other formulas.

The multiplier argument must have either length = 1 or length equal to the number of formulas.
The elemental count in each formula is multiplied by the respective value. If sum is true, the el-
emental counts in all formulas (after any multiplying) are summed together to yield a single bulk
formula.

Value

A numeric vector with names refering to each of the elemental symbols in the formula. If more than
one formula is provided, a list of numeric vectors is returned, unless sum is TRUE.

See Also

mass, entropy, basis, i2A

Examples

# the composition of a simple compound
makeup("CO2") # 1 carbon, 2 oxygen
# the formula of lawsonite, with a parenthetical part and a suffix
makeup("CaAl2Si2O7(OH)2*H2O")
# fractional coefficients are ok
redfield <- c(106, 16, 1)
reddiv10 <- makeup("C10.6N1.6P0.1")
stopifnot(10*reddiv10 == redfield)

# the coefficient for charge is a number with a *preceding* sign
# e.g., ferric iron, with a charge of +3 is expressed as
makeup("Fe+3")
# transcribing the formula the way it appears in many
# publications produces a likely unintended result:
# 3 iron atoms and a charge of +1
makeup("Fe3+")

# these all represent a single negative charge, i.e., electron
makeup("-1")



62 mosaic

makeup("Z-1+0")
makeup("Z0-1") # the "old" formula for the electron in thermo()$obigt
makeup("(Z-1)") # the current formula in thermo()$obigt

# hypothetical compounds with negative numbers of elements
makeup("C-4(O-2)") # -4 carbon, -2 oxygen
makeup("C-4O-2") # -4 carbon, 1 oxygen, -2 charge
makeup("C-4O-2-2") # -4 carbon, -2 oxygen, -2 charge

# the 'sum' argument can be used to check mass and charge
# balance in a chemical reaction
formula <- c("H2O", "H+", "(Z-1)", "O2")
(mf <- makeup(formula, c(-1, 2, 2, 0.5), sum=TRUE))
stopifnot(all(mf==0))

mosaic Chemical Affinities with Changing Basis Species

Description

Calculate chemical affinities of formation reactions of species using basis species that change with
the conditions.

Usage

mosaic(bases, bases2 = NULL, blend = TRUE, ...)

Arguments

bases character, basis species to be changed in the calculation, or list, containing vec-
tors for each group of changing basis species

bases2 character, second set of changing basis species

blend logical, use relative abundances of basis species?

... additional arguments to be passed to affinity

Details

mosaic can be used to calculate the affinities of formation of species when the relative abundances
of the basis species listed in bases change over the range of conditions, due to e.g. ionization,
complexation or redox reactions. This is a way to “speciate the basis species”. For example, the
speciation of sulfur (‘SO4-2’, ‘HSO4-’, ‘HS-’ and ‘H2S’) as a function of Eh and pH affects the
formation affinities, and therefore relative stabilities of iron oxide and sulfide minerals. Chemical
activity diagrams constructed by assembling sub-diagrams corresponding to the predominant basis
species can described as “mosaic diagrams”.

The function calculates the affinities using all combination of basis species given as vector argu-
ments to bases and bases2. The first species listed in each group should be in the current basis
definition, and all the basis species in each group should be related to the first basis species there



mosaic 63

(i.e. all share the same element). A second, independent set of basis species can be provided in
bases2 (for example ‘CO3-2’, ‘HCO3-’, ‘CO2’, if the first set of basis species are the sulfur-bearing
ones listed above). The arguments in ... are passed to affinity to specify the variable conditions,
such as temperature, pressure, and activities of other basis species.

If blend is TRUE (the default), the relative abundances of the basis species in each group are
calculated using equilibrate, with the total activity taken from the corresponding basis species
in the incoming basis definition. Then, the function calculates overall affinities of the formation
reactions of each species by combining reactions written using individual basis species in proportion
to the relative abundances of the basis species. If blend is FALSE, the function returns the affinities
calculated using the single predominant basis species in bases at each condition.

A more flexible method of specifying multiple sets of basis species is now available. Instead of
using bases and bases2, supply a list for just the bases argument. The list should contain any
number of vectors specifying the groups of basis species. All combinations of basis species in
these groups are used for the calculations. This overcomes the prior limitation of only having two
changing groups of basis species.

Value

A list containing A.species (affinities of formation of the species with changing basis species)
and A.bases (affinities of formation of the basis species in terms of the first basis species), each
having same structure as the list returned by affinity. If blend is TRUE, the output also contains
E.bases (the output of equilibrate for each group of basis species) If bases2 is provided, the list
also contains A.bases2 (affinities of formation of the second group of basis species).

References

Garrels, R. M. and Christ, C. L. (1965) Solutions, Minerals, and Equilibria, Harper & Row, New
York, 450 p. http://www.worldcat.org/oclc/517586

See Also

demo("mosaic"), extending the example below by addition of carbonate species in bases2, and
using thermodynamic data from Garrels and Christ, 1965. The help page of solubility has an
example combining mosaic with solubility calculations.

Examples

# Fe-minerals and aqueous species in Fe-S-O-H system
# speciate SO4-2, HSO4-, HS-, H2S as a function of Eh and pH
# after Garrels and Christ, 1965 Figure 7.20
pH <- c(0, 14, 250)
Eh <- c(-1, 1, 250)
T <- 25
basis(c("FeO", "SO4-2", "H2O", "H+", "e-"))
basis("SO4-2", -6)
species(c("Fe+2", "Fe+3"), -6)
species(c("pyrrhotite", "pyrite", "hematite", "magnetite"))
# the basis species we'll swap through
bases <- c("SO4-2", "HSO4-", "HS-", "H2S")
# calculate affinities using the relative abundances of the basis species

http://www.worldcat.org/oclc/517586


64 NaCl

# NOTE: set blend = FALSE for sharp transitions between the basis species
# (looks more like the diagram in GC65)
m1 <- mosaic(bases, pH = pH, Eh = Eh, T = T)
# make a diagram and add water stability lines
d <- diagram(m1$A.species, lwd = 2)
water.lines(d, col = "seagreen", lwd = 1.5)
# show lines for Fe(aq) = 10^-4 M
species(c("Fe+2", "Fe+3"), -4)
m2 <- mosaic(bases, pH = pH, Eh = Eh, T = T)
diagram(m2$A.species, add = TRUE, names = FALSE)
title(main=paste("Iron oxides and sulfides in water, log(total S) = -6",

"After Garrels and Christ, 1965", sep="\n"))
legend("bottomleft", c("log(act_Fe) = -4", "log(act_Fe) = -6"), lwd = c(2, 1), bty = "n")
# we could overlay the basis species predominance fields
#diagram(m1$A.bases, add=TRUE, col="blue", col.names="blue", lty=3)

NaCl Simple NaCl-Water Solution

Description

Calculate speciation and ionic strength of aqueous solutions with a given molality of NaCl.

Usage

NaCl(T = seq(100, 500, 100), P = 1000, m_tot = 2, ...)

Arguments

T numeric, temperature in ◦C

P numeric, pressure in bar (single value)

m_tot numeric, total molality of NaCl (single value)

... additional arguments for subcrt

Details

This function calculates speciation (ion activities) and ionic strength in aqueous solutions given
a total amount (m_tot, in mol/kg) of NaCl. The function is written for quick calculations along
a temperature range (T) at constant pressure (P). The only reaction considered is Na+ + Cl− =
NaCl(aq). The algorithm starts by calculating the equilibrium constant (K) of the reaction and
assuming complete dissociation of NaCl(aq). This also permits calculating the ionic strength from
the molalities of Na+ and Cl−. Then, uniroot is used to find the equilibrium molality of Cl−; that
is, where the affinity of the reaction (log(K/Q)) becomes zero. The activity quotient (Q) is evaluated
taking account of activity coefficients of Na+, Cl−, and NaCl(aq) calculated for the nominal ionic
strength (see nonideal). The calculated molality of Cl− yields a new estimate of the ionic strength
of the system. The calculations are iterated until the deviation in ionic strength at all temperatures
is less than 0.01.



NaCl 65

Value

A list with components ‘IS’ (“true” ionic strength from concentrations of unpaired ions), ‘m_Cl’
(molality of Cl−), ‘gam_Na’, and ‘gam_Cl’ (activity coefficients of Na+ and Cl−).

Warning

This function provides only a first-order estimate of the solution composition, and is intended for
solubility calculations of relatively insoluble metals in NaCl-dominated solutions. The formation
of other species such as HCl or NaOH is not accounted for.

References

Shvarov, Y. and Bastrakov, E. (1999) HCh: A software package for geochemical equilibrium
modelling. User’s Guide. Australian Geological Survey Organisation 1999/25. http://pid.
geoscience.gov.au/dataset/ga/25473

See Also

demo("gold") for an application of this function.

Examples

# ionic strength of solution and activity coefficient of Cl-
# from HCh version 3.7 (Shvarov and Bastrakov, 1999) at 1000 bar,
# 100, 200, and 300 degress C, and 1 to 6 molal NaCl
m.HCh <- 1:6
IS.HCh <- list(`100`=c(0.992, 1.969, 2.926, 3.858, 4.758, 5.619),

`300`=c(0.807, 1.499, 2.136, 2.739, 3.317, 3.875),
`500`=c(0.311, 0.590, 0.861, 1.125, 1.385, 1.642))

gam_Cl.HCh <- list(`100`=c(0.565, 0.545, 0.551, 0.567, 0.589, 0.615),
`300`=c(0.366, 0.307, 0.275, 0.254, 0.238, 0.224),
`500`=c(0.19, 0.137, 0.111, 0.096, 0.085, 0.077))

# total molality in the calculation with NaCl()
m_tot <- seq(1, 6, 0.5)
N <- length(m_tot)
# where we'll put the calculated values
IS.calc <- data.frame(`100`=numeric(N), `300`=numeric(N), `500`=numeric(N))
gam_Cl.calc <- data.frame(`100`=numeric(N), `300`=numeric(N), `500`=numeric(N))
# NaCl() is *not* vectorized over m_tot, so we use a loop here
for(i in 1:length(m_tot)) {

NaCl.out <- NaCl(c(100, 300, 500), P=1000, m_tot=m_tot[i])
IS.calc[i, ] <- NaCl.out$IS
gam_Cl.calc[i, ] <- NaCl.out$gam_Cl

}
# plot ionic strength from HCh and NaCl() as points and lines
opar <- par(mfrow=c(2, 1))
col <- c("black", "red", "orange")
plot(c(1,6), c(0,6), xlab="NaCl (mol/kg)", ylab=axis.label("IS"), type="n")
for(i in 1:3) {

# NOTE: the differences are probably mostly due to different models

http://pid.geoscience.gov.au/dataset/ga/25473
http://pid.geoscience.gov.au/dataset/ga/25473


66 nonideal

# for the properties of NaCl(aq) (HCh: B.Ryhzenko model;
# CHONSZ: revised HKF with parameters from Shock et al., 1997)
points(m.HCh, IS.HCh[[i]], col=col[i])
lines(m_tot, IS.calc[, i], col=col[i])

}
# add 1:1 line, legend, and title
abline(0, 1, lty=3)
dprop <- describe.property(rep("T", 3), c(100, 300, 500))
legend("topleft", dprop, lty=1, pch=1, col=col)
title(main="H2O + NaCl; HCh (points) and 'NaCl()' (lines)")
plot(c(1,6), c(0,0.8), xlab="NaCl (mol/kg)", ylab=expression(gamma[Cl^"-"]), type="n")
# plot activity coefficient (gamma)
for(i in 1:3) {

points(m.HCh, gam_Cl.HCh[[i]], col=col[i])
lines(m_tot, gam_Cl.calc[, i], col=col[i])

}
# we should be fairly close
stopifnot(maxdiff(unlist(gam_Cl.calc[seq(1,11,2), ]), unlist(gam_Cl.HCh)) < 0.033)
par(opar)

nonideal Activity Coefficients of Aqueous Species

Description

Calculate activity coefficients and adjusted molal properties of aqueous species.

Usage

nonideal(species, speciesprops, IS, T, P, A_DH, B_DH,
m_star=NULL, method=thermo()$opt$nonideal)

bgamma(TC, P, showsplines = "")

Arguments

species name of method to use, or names or indices of species for which to calculate
nonideal properties

speciesprops list of dataframes of species properties

IS numeric, ionic strength(s) used in nonideal calculations, mol kg−1

T numeric, temperature (K)

P numeric, pressure (bar); required for B-dot or b_gamma equation

A_DH numeric, A Debye-Huckel coefficient; required for B-dot or b_gamma equation

B_DH numeric, B Debye-Huckel coefficient; required for B-dot or b_gamma equation

m_star numeric, total molality of all dissolved species

method character, ‘Bdot’, ‘Bdot0’, ‘bgamma’, ‘bgamma0’, or ‘Alberty’

TC numeric, temperature (◦C)

showsplines character, show isobaric (‘T’) or isothermal (‘P’) splines



nonideal 67

Details

nonideal calculates activity coefficients and adjusted thermodynamic properties for charged and
neutral aqueous species. At the user level, the main use of this function is to set the method for
activity coefficient calculations that gets used by other functions in CHNOSZ. See the “Charged
Species” section for a description of the available methods. Activity coefficient calculations are
activated by setting the IS argument of subcrt or affinity. Those functions then call nonideal
with all the arguments needed to perform the calculations.

Charged Species

The default is to not apply calculations for the proton (H+) and electron (e−); this makes sense if
you are setting the pH, i.e. activity of H+, to some value. To apply the calculations to H+ and/or e-,
change thermo$opt$ideal.H or ideal.e to FALSE (see examples).

For the ‘Alberty’ method, the values of IS are combined with Alberty’s (2003) equation 3.6-1
(extended Debye-Hückel equation with an empirical term valid up to 0.25 M ionic strength) and its
derivatives (Alberty, 2001), to calculate adjusted molal properties at the specified ionic strength(s)
and temperature(s). The calculations use the equation for the Debye-Hückel constant given by
Clarke and Glew, 1980, which is valid between 0 and 150 °C at saturated water vapor pressure
(PSAT).

For the ‘Bdot’ method (the default), the “B-dot” form of the extended Debye-Hückel equation is
used. This equation is valid at ionic strengths up to approximately 3 mol / kg (Hörbrand et al.,
2018). The distance of closest approach for different ions (the “ion size parameter”) is taken from
the UT_SIZES.REF file of the HCh package (Shvarov and Bastrakov, 1992), which is based on
Table 2.7 of Garrels and Christ, 1965. The extended term parameter for NaCl-dominated solutions,
known as “B-dot”, is calculated as a function only of temperature (Helgeson, 1969). To set the
extended term parameter to zero, use the ‘Bdot0’ method.

For the ‘bgamma’ method, the “b_gamma” equation is used. The distance of closest approach is set
to a constant (3.72e-8 cm) (e.g., Manning et al., 2013). The extended term parameter is calculated by
calling the bgamma function. Alternatively, set the extended term parameter to zero with ‘bgamma0’.

Neutral Species

For neutral species, the Setchénow equation is used, as described in Shvarov and Bastrakov, 1999. If
thermo$opt$Setchenow is ‘bgamma0’ (the default), the extended term parameter is set to zero and
the only non-zero term is the mole fraction to molality conversion factor (using the value of m_star).
If thermo()$opt$Setchenow is ‘bgamma’, the extended term paramter is taken from the setting for
the charged species (which can be either ‘Bdot’ or ‘bgamma’). Set thermo()$opt$Setchenow to
any other value to disable the calculations for neutral species.

Additional Details

This information, about the arguments and return values used to perform the calculations, is not
normally needed by the user (but the usage is shown in the last example).

For nonideal, the species can be identified by name or species index in species. speciesprops
is a list of dataframes containing the input standard molal properties; normally, at least one column
is ‘G’ for Gibbs energy. The function calculates the *adjusted* properties for given ionic strength
(IS); they are equal to the *standard* values only at IS=0. The adjusted molal properties that can be



68 nonideal

calculated include ‘G’, and (currently only with the Alberty method) ‘H’, ‘S’ and ‘Cp’; values of any
columns with other names are left untouched. The lengths of IS and T supplied in the arguments
should be equal to the number of rows of each dataframe in speciesprops, or length one to use
single values throughout.

In addition to IS and T, the ‘Bdot’ and ‘bgamma’ methods depend on values of P, A_DH, B_DH,
and m_star given in the arguments. m_star, the total molality of all dissolved species, is used
to compute the mole fraction to molality conversion factor. If m_star is NULL, it is taken to
be equal to IS, which is an underestimate. For these methods, ‘G’ is currently the only adjusted
molal property that is calculated (but this can be used by subcrt to calculate adjusted equilibrium
constants).

The return value is the same as the input in speciesprops, except the input standard thermo-
dynamic properties (at IS=0) are replaced by adjusted properties (at higher IS). For all affected
species, a column named loggam (common (base-10) logarithm of gamma, the activity coefficient)
is appended to the output dataframe of species properties.

bgamma calculates the extended term parameter (written as b_gamma; Helgeson et al., 1981) for ac-
tivity coefficients in NaCl-dominated solutions at high temperature and pressure. Data at PSAT and
0.5 to 5 kb are taken from Helgeson (1969, Table 2 and Figure 3) and Helgeson et al. (1981, Table
27) and extrapolated values at 10 to 30 kb from Manning et al. (2013, Figure 11). Furthermore, the
10 to 30 kb data were used to generate super-extrapolated values at 40, 50, and 60 kb, which may
be encountered using the water.DEW calculations. If all P correspond to one of the isobaric condi-
tions, the values of Bdot at T are calculated by spline fits to the isobaric data. Otherwise, particular
(dependent on the T) isobaric spline fits are themselves used to construct isothermal splines for the
given values of T; the isothermal splines are then used to generate the values of Bdot for the given P.
To see the splines, set showsplines to ‘T’ to make the first set (isobaric splines) along with the data
points, or ‘P’ for examples of isothermal splines at even temperature intervals (here, the symbols
are not data, but values generated from the isobaric splines). This is a basic method of interpolating
the data without adding any external dependencies.

References

Alberty, R. A. (2001) Effect of temperature on standard transformed Gibbs energies of formation
of reactants at specified pH and ionic strength and apparent equilibrium constants of biochemical
reactions. J. Phys. Chem. B 105, 7865–7870. https://doi.org/10.1021/jp011308v

Alberty, R. A. (2003) Thermodynamics of Biochemical Reactions, John Wiley & Sons, Hoboken,
New Jersey, 397 p. http://www.worldcat.org/oclc/51242181

Clarke, E. C. W. and Glew, D. N. (1980) Evaluation of Debye-Hückel limiting slopes for water
between 0 and 150 °C. J. Chem. Soc. Faraday Trans. 76, 1911–1916. https://doi.org/10.
1039/f19807601911

Garrels, R. M. and Christ, C. L. (1965) Solutions, Minerals, and Equilibria, Harper & Row, New
York, 450 p. http://www.worldcat.org/oclc/517586

Helgeson, H. C. (1969) Thermodynamics of hydrothermal systems at elevated temperatures and
pressures. Am. J. Sci. 267, 729–804. https://doi.org/10.2475/ajs.267.7.729

Helgeson, H. C., Kirkham, D. H. and Flowers, G. C. (1981) Theoretical prediction of the thermo-
dynamic behavior of aqueous electrolytes at high pressures and temperatures. IV. Calculation of
activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial mo-
lal properties to 600◦C and 5 Kb. Am. J. Sci. 281, 1249–1516. https://doi.org/10.2475/ajs.
281.10.1249

https://doi.org/10.1021/jp011308v
http://www.worldcat.org/oclc/51242181
https://doi.org/10.1039/f19807601911
https://doi.org/10.1039/f19807601911
http://www.worldcat.org/oclc/517586
https://doi.org/10.2475/ajs.267.7.729
https://doi.org/10.2475/ajs.281.10.1249
https://doi.org/10.2475/ajs.281.10.1249


nonideal 69

Hörbrand, T., Baumann, T. and Moog, H. C. (2018) Validation of hydrogeochemical databases
for problems in deep geothermal energy. Geotherm. Energy 6, 20. https://doi.org/10.1186/
s40517-018-0106-3

Manning, C. E. (2013) Thermodynamic modeling of fluid-rock interaction at mid-crustal to upper-
mantle conditions. Rev. Mineral. Geochem. 76, 135–164. https://doi.org/10.2138/rmg.
2013.76.5

Manning, C. E., Shock, E. L. and Sverjensky, D. A. (2013) The chemistry of carbon in aqueous flu-
ids at crustal and upper-mantle conditions: Experimental and theoretical constraints. Rev. Mineral.
Geochem. 75, 109–148. https://doi.org/10.2138/rmg.2013.75.5

Shvarov, Y. and Bastrakov, E. (1999) HCh: A software package for geochemical equilibrium
modelling. User’s Guide. Australian Geological Survey Organisation 1999/25. http://pid.
geoscience.gov.au/dataset/ga/25473

Examples

## each of the available methods
nonideal("Alberty")
nonideal("bgamma0")
nonideal("bgamma")
nonideal("Bdot0")
nonideal("Bdot") # the default

## what's the activity coefficient of Na+ at
## 25 degC and 1 bar and an ionic strength of 0.7?
sres <- subcrt("Na+", T = 25, IS = 0.7)
# exponentiate to convert log10(gamma) to gamma
10^sres$out[[1]]$loggam
# now use a different method
nonideal("bgamma")
sres <- subcrt("Na+", T = 25, IS = 0.7)
10^sres$out[[1]]$loggam

## what are activity coefficients of -3, -2, -1, 0, +1, +2, +3 charged species
## as a function of ionic strength and temperature?
# first choose the method
nonideal("Bdot")
# define the ionic strength and temperature increments
IS <- c(0.001, 0.01, 0.1, 0.7)
T <- seq(0, 100, 25)
# use species charged -3, -2, -1, 0, +1, +2, +3
species <- c("PO4-3", "HPO4-2", "H2PO4-", "H3PO4", "Na+", "Ca+2", "Al+3")
# initialize empty output table for T (rows) and charge (columns)
gamtab <- matrix(nrow = length(T), ncol = length(species))
rownames(gamtab) <- T
colnames(gamtab) <- -3:3
# make a list of tables to hold the activity coefficients, one for each IS
gamma <- rep(list(gamtab), length(IS))
names(gamma) <- IS
# loop over the values of ionic strength
for(i in seq_along(IS)) {

https://doi.org/10.1186/s40517-018-0106-3
https://doi.org/10.1186/s40517-018-0106-3
https://doi.org/10.2138/rmg.2013.76.5
https://doi.org/10.2138/rmg.2013.76.5
https://doi.org/10.2138/rmg.2013.75.5
http://pid.geoscience.gov.au/dataset/ga/25473
http://pid.geoscience.gov.au/dataset/ga/25473


70 nonideal

# calculate properties of species, including logarithm of activity coefficient
sres <- subcrt(species, T = T, IS = IS[i])
# exponentiate to convert log10(gamma) to gamma, and put the values into the tables
for(j in seq_along(species)) gamma[[i]][, j] <- 10^sres$out[[j]]$loggam

}
# print the output and make a plot
print(gamma)
matplot(T, gamma$`0.001`, type = "l")
title(main = "activity coefficients of -3, -2, -1, 0, +1, +2, +3 charged species")

## Alberty, 2003 p. 16 Table 1.3: adjusted pKa of acetic acid
## we use the 'IS' argument in subcrt() to calculate adjusted thermodynamic properties
# set ideal.H to FALSE to calculate activity coefficients for the proton
# (needed for replication of the values in Alberty's book)
nonideal("Alberty")
thermo("opt$ideal.H" = FALSE)
(sres <- subcrt(c("acetate", "H+", "acetic acid"), c(-1, -1, 1),

IS=c(0, 0.1, 0.25), T=25, property="logK"))
# we're within 0.01 log of Alberty's pK values
Alberty_logK <- c(4.75, 4.54, 4.47)
stopifnot(maxdiff(sres$out$logK, Alberty_logK) < 0.01)
# reset option to default
thermo("opt$ideal.H" = TRUE)

## An example using IS with affinity():
## speciation of phosphate as a function of ionic strength
opar <- par(mfrow = c(2, 1))
basis("CHNOPS+")
Ts <- c(25, 100)
species(c("PO4-3", "HPO4-2", "H2PO4-"))
for(T in Ts) {

a <- affinity(IS = c(0, 0.14), T = T)
e <- equilibrate(a)
if(T==25) diagram(e, ylim = c(-3.0, -2.6), legend.x = NULL)
else diagram(e, add = TRUE, names = FALSE, col = "red")

}
title(main="Non-ideality model for phosphate species")
dp <- describe.property(c("pH", "T", "T"), c(7, Ts))
legend("topright", lty = c(NA, 1, 1), col = c(NA, "black", "red"), legend = dp)
text(0.07, -2.76, expr.species("HPO4-2"))
text(0.07, -2.90, expr.species("H2PO4-"))
## phosphate predominance f(IS,pH)
a <- affinity(IS = c(0, 0.14), pH = c(6, 13), T = Ts[1])
d <- diagram(a, fill = NULL)
a <- affinity(IS = c(0, 0.14), pH = c(6, 13), T = Ts[2])
d <- diagram(a, add = TRUE, names = FALSE, col = "red")
par(opar)

## activity coefficients for monovalent ions at 700 degC, 10 kbar
# after Manning, 2013, Fig. 7
# here we use the b_gamma equation
nonideal("bgamma")
IS <- c(0.001, 0.01, 0.1, 1, 2, 2.79)



objective 71

# we're above 5000 bar, so need to use IAPWS-95 or DEW
oldwat <- water("DEW")
sres <- subcrt("Na+", T = 700, P = 10000, IS = IS)
water(oldwat)
# compare the calculated activity coefficient to values from Manning's figure
Manning_gamma <- c(0.93, 0.82, 0.65, 0.76, 1.28, 2)
gamma <- 10^sres$out[[1]]$loggam
# the error is larger at higher IS
stopifnot(maxdiff(gamma[1], Manning_gamma[1]) < 0.01)
stopifnot(maxdiff(gamma, Manning_gamma) < 0.2)

## Plot the data and splines used for calculating b_gamma
## (extended term parameter)
bgamma(showsplines = "T")
bgamma(showsplines = "P")

## a longer example, using nonideal() directly
# Alberty, 2003 p. 273-276: activity coefficient (gamma)
# as a function of ionic strength and temperature
nonideal("Alberty")
IS <- seq(0, 0.25, 0.005)
T <- c(0, 25, 40)
lty <- 1:3
species <- c("H2PO4-", "HADP-2", "HATP-3", "ATP-4")
col <- rainbow(4)
thermo.plot.new(xlim = range(IS), ylim = c(0, 1),

xlab = axis.label("IS"), ylab = "gamma")
for(j in 1:3) {

# use subcrt to generate speciesprops
speciesprops <- subcrt(species, T = rep(T[j], length(IS)))$out
# use nonideal to calculate loggamma; this also adjusts G, H, S, Cp,
# but we don't use them here
nonidealprops <- nonideal(species, speciesprops, IS = IS, T = convert(T[j], "K"))
for(i in 1:4) lines(IS, 10^(nonidealprops[[i]]$loggam), lty=lty[j], col=col[i])

}
t1 <- "Activity coefficient (gamma) of -1,-2,-3,-4 charged species"
t2 <- quote("at 0, 25, and 40 "*degree*"C, after Alberty, 2003")
mtitle(as.expression(c(t1, t2)))
legend("topright", lty=c(NA, 1:3), bty="n",

legend=c(as.expression(axis.label("T")), 0, 25, 40))
legend("top", lty=1, col=col, bty="n",

legend = as.expression(lapply(species, expr.species)))

## reset method to default
nonideal("Bdot") # or reset()

objective Objective Functions



72 objective

Description

Calculate statistical and thermodynamic quantities for activities of species. These functions can be
specified as objectives in revisit and findit in order to identify optimal chemical conditions.

Usage

SD(a1)
CV(a1)
shannon(a1)
DGmix(loga1)
qqr(loga1)
logact(loga1, loga2)
spearman(loga1, loga2)
pearson(loga1, loga2)
RMSD(loga1, loga2)
CVRMSD(loga1, loga2)
DDGmix(loga1, loga2)
DGinf(a1, a2)
DGtr(loga1, loga2, Astar)

Arguments

a1 numeric matrix, chemical activities of species

loga1 numeric matrix, logarithms of activity

loga2 numeric, reference values of logarithms of activity

a2 numeric, reference values of activity

Astar numeric, reference values of chemical affinity

Details

The value in a1 or loga1 is a matrix of chemical activities or logarithms of activity with a column
for each species, and a row for each chemical condition. Except for calculations of the Shannon
entropy, all logarithmic bases (including in the equations below) are decimal.

SD, CV and shannon calculate the standard deviation, coefficient of variation, and Shannon entropy
for the values in each row of a1. The Shannon entropy is calculated from the fractional abundances:
H = sum(-p * log(p)) (natural logarithm), where p=a1/sum(a1).

DGmix calculates the Gibbs energy/2.303RT of ideal mixing from pure components corresponding to
one molal (unit activity) solutions: DGmix/2.303RT = sum(a1 * loga1) (cf. Eq. 7.20 of Anderson,
2005).

qqr calculates the correlation coefficient on a quantile-quantile (Q-Q) plot (see qqnorm) for each
row of loga1, giving some indication of the resemblance of the chemical activities to a log-normal
distribution.

logact returns the logarithm of activity of a single species identified by index in loga2 (which of
the species in the system).

spearman, pearson, RMSD and CVRMSD calculate Spearman’s rank correlation coefficient, the Pear-
son correlation coefficient, the root mean sqaured deviation (RMSD) and the coefficient of variation



objective 73

of the RMSD between each row of loga1 and the values in loga2. The CVRMSD is computed as
the RMSD divided by the mean of the values in loga1.

DDGmix calculates the difference in Gibbs energy/2.303RT of ideal mixing between the assemblages
with logarithms of activity loga1 and loga2.

DGinf calculates the difference in Gibbs energy/2.303RT attributed to relative informatic entropy
between an initial assemblage with activities a2 and final assemblage(s) with activities with activ-
ities in each row of a1. The equation used is DGinf/2.303RT = sum(p2 * (logp2 - logp1)), where
p1 and p2 are the proportions, i.e. p1 = a1 / sum(a1) and p2 = a2 / sum(a2). This equation has the
form of the Kullback-Leibler divergence, sometimes known as relative entropy (Ludovisi and Tat-
icchi, 2006). In specific cases (systems where formulas of species are normalized by the balancing
coefficients), the values of DGinf and DGtr are equal.

DGtr calculates the change in Gibbs energy/2.303RT of a system in which species with initial log-
arithms of activitiy (loga1) are transformed to the same species with different final logarithms of
activity (loga2) at constant temperature, pressure and chemical potentials of basis species. It is cal-
culated as the sum over species of (G2-G1) where G1/RT = -a1*Astar + a1*loga1 - a1 + a constant
(where a1 is 10^loga1), likewise for G2, and where Astar is the starved affinity, that is the affinity
of the reaction to form one mole of the species at unit activity from the basis species in their defined
activities. The equation used arises from integrating dG = -A/dxi = -A/dn where xi is the reaction
progress variable, dn/dxi = 1 is the reaction coefficient on the species, and A = Astar - 2.303RTloga
is the chemical affinity (Dick and Shock, 2013).

Each objective function has an attribute (see attributes and structure) named ‘optimum’ that
takes the value of ‘minimal’ (SD, CV, RMSD, CVRMSD, DGmix, DDGmix, DGtr) or ‘maximal’ (logact,
shannon, qqr, spearman, pearson).

References

Anderson, G. M. (2005) Thermodynamics of Natural Systems, 2nd ed., Cambridge University Press,
648 p. http://www.worldcat.org/oclc/474880901

Dick, J. M. and Shock, E. L. (2013) A metastable equilibrium model for the relative abundance
of microbial phyla in a hot spring. PLoS ONE 8, e72395. https://doi.org/10.1371/journal.
pone.0072395

Ludovisi, A. and Taticchi, M. I. (2006) Investigating beta diversity by Kullback-Leibler informa-
tion measures. Ecological Modelling 192, 299–313. https://doi.org/10.1016/j.ecolmodel.
2005.05.022

See Also

revisit, findit

Examples

## a made-up system: 4 species, 1 condition
loga1 <- t(-4:-1)
loga2 <- loga1 + 1
stopifnot(qqr(loga1) < 1)
stopifnot(RMSD(loga1, loga1) == 0)
stopifnot(RMSD(loga1, loga2) == 1)

http://www.worldcat.org/oclc/474880901
https://doi.org/10.1371/journal.pone.0072395
https://doi.org/10.1371/journal.pone.0072395
https://doi.org/10.1016/j.ecolmodel.2005.05.022
https://doi.org/10.1016/j.ecolmodel.2005.05.022


74 palply

stopifnot(CVRMSD(loga1, loga2) == -0.4) # 1 / mean(-4:-1)
stopifnot(spearman(loga1, loga2) == 1)
stopifnot(spearman(loga1, rev(loga2)) == -1)
# less statistical, more thermodynamical...
stopifnot(all.equal(DGmix(loga1), -0.1234)) # as expected for decimal logarithms
stopifnot(all.equal(DDGmix(loga1, loga2), 0.0004))

## transforming an equilibrium assemblage of n-alkanes
basis(c("CH4", "H2"), c("gas", "gas"))
species(c("methane", "ethane", "propane", "butane"), "liq")
# calculate equilibrium assemblages over a range of logaH2
a <- affinity(H2=c(-10, -5, 101), exceed.Ttr=TRUE)
e <- equilibrate(a)
# take a reference equilibrium distribution at logfH2 = -7.5
loga1 <- list2array(e$loga.equil)[51, ]
Astar <- list2array(e$Astar)[51, ]
# equilibrium at any other logfH2 is not equilibrium at logfH2 = -7.5
DGtr.out <- DDGmix.out <- numeric()
for(i in 1:length(a$vals[[1]])) {

loga2 <- list2array(e$loga.equil)[i, ]
DGtr.out <- c(DGtr.out, DGtr(t(loga1), loga2, t(Astar)))
DDGmix.out <- c(DDGmix.out, DDGmix(t(loga1), loga2))

}
# all(DGtr >= 0) is TRUE
stopifnot(all(DGtr.out >= 0))
# all(DDGmix >= 0) is FALSE
stopifnot(!all(DDGmix.out >= 0))
# a plot is also nice
thermo.plot.new(xlim=range(a$vals[[1]]), xlab=axis.label("H2"),

ylim=range(DDGmix.out, DGtr.out), ylab="energy")
abline(h=0, lty=2)
abline(v=-7.5, lty=2)
text(-7.6, 2, "reference condition", srt=90)
lines(a$vals[[1]], DDGmix.out)
lines(a$vals[[1]], DGtr.out)
text(-6, 5.5, expr.property("DDGmix/2.303RT"))
text(-6, 2.3, expr.property("DGtr/2.303RT"))
title(main=paste("Transformation between metastable equilibrium\n",

"assemblages of n-alkanes"))
# take-home message: use DGtr to measure distance from equilibrium in
# open-system transformations (constant T, P, chemical potentials of basis species)

palply Conditional Parallel Processing

Description

Use multiple processors for large calculations.



protein 75

Usage

palply(varlist, X, FUN, ...)

Arguments

... equivalent to the same argument in parLapply

varlist character, names of variables to export using clusterExport

X vector, argument for lapply or parLapply

FUN function, argument for lapply or parLapply

Details

palply is a wrapper function to run parLapply if length of X > thermo$opt$paramin and multiple
cores are available, otherwise it runs lapply. Note that parLapply is called with methods set
to FALSE. If lots of package startup messages are created when running makeCluster (which is
called by palply), it can probably be stopped by adding a test for interactive sessions around
any library commands in the Rprofile.

See Also

read.fasta, count.aa, affinity, equil.boltzmann and equil.reaction for functions that use
palply. Tests are in ‘tests/test-util.program.R’, and a “real world” example is in ‘demos/density.R’.

protein Examples of Calculations for Proteins

Description

This page contains some examples of using the functions in CHNOSZ to calculate thermodynamic
properties of and make diagrams for proteins.

Examples

## Standard molal entropy of a protein reaction
basis("CHNOS")
# here we provide the reaction coefficients of the
# proteins (per protein backbone); subcrt() calculates
# the coefficients of the basis species in the reaction
s <- subcrt(c("CSG_METTL", "CSG_METJA"), c(-1/530, 1/530),

T=seq(0, 350, length.out=50))
# note: this uses the properties of the nonionized proteins

## logfO2-pH potential diagram
# with a charged basis, we calculate properties of ionized proteins
basis("CHNOS+")
file <- system.file("extdata/protein/DS11.csv", package = "CHNOSZ")



76 protein

aa <- read.csv(file, as.is=TRUE)
aa <- aa[grep("transferase", aa$protein), ]
ip <- add.protein(aa)
a <- affinity(pH=c(0, 14), O2=c(-64, -61), T=75, iprotein=ip)
diagram(a)
title(main="Sequences for transferase at Bison Pool")

## surface-layer proteins from Methanococcus and others
## as a function of oxygen fugacity, after Dick, 2008, Fig. 5b
# to reproduce the calculations in the paper,
# use superseded data for [Met], [Gly] and [UPBB]
reset()
add.obigt("OldAA")
# make our protein list
organisms <- c("METSC", "METJA", "METFE", "HALJP", "METVO",

"METBU", "ACEKI", "GEOSE", "BACLI", "AERSA")
proteins <- c(rep("CSG", 6), rep("SLAP", 4))
proteins <- paste(proteins, organisms, sep="_")
# load the basis species and proteins
basis("CHNOS+")
species(proteins)
# calculate affinities; we go to lower logfO2 than Dick, 2008
# and find an interesting convergence of stabilities there
a <- affinity(O2=c(-100, -65))
# try normalize=FALSE to make Fig. 5a in the paper
e <- equilibrate(a, normalize=TRUE)
d <- diagram(e, ylim=c(-5, -1), names=organisms, format.names=FALSE)
# add water stability line
abline(v=-83.1, lty=2)
title(main="Surface-layer proteins, after Dick, 2008")
# checking the geometry of the diagram
# most preominant along the x-axis
stopifnot(organisms[unique(which.pmax(e$loga.equil))] ==

c("METFE", "METJA", "METVO", "HALJP"))
# stability order close to logfO2=-83.1
stopifnot(order(as.data.frame(e$loga.equil)[62,],

decreasing=TRUE)==c(2, 6, 7, 5, 3, 1, 9, 8, 10, 4))
# reset thermodynamic database
reset()

## relative stabilities of bovine proteins
## as a function of temperature along a glutathione redox buffer
mod.buffer("GSH-GSSG", c("GSH","GSSG"), logact=c(-3, -7))
basis(c("CO2", "H2O", "NH4+", "SO4-2", "H2", "H+"),

c(-1, 0, -4, -4, 999, -7))
basis("H2", "GSH-GSSG")
basis("CO2", "gas")
prot <- c("CYC", "RNAS1", "BPT1", "ALBU", "INS", "PRIO")
species(prot, "BOVIN")
a <- affinity(T=c(0, 200))
# set line colors according to oxidation state of carbon
ZC <- ZC(species()$ispecies)
col <- ZC.col(ZC)



protein.info 77

e <- equilibrate(a, normalize=TRUE)
d <- diagram(e, col=col, lwd=3)
title(main="Bovine proteins, GSH/GSSG redox buffer")

protein.info Summaries of Thermodynamic Properties of Proteins

Description

Protein information, length, chemical formula, thermodynamic properties by group additivity, reac-
tion coefficients of basis species, and metastable equilibrium example calculation.

Usage

pinfo(protein, organism=NULL, residue=FALSE, regexp=FALSE)
protein.length(protein, organism = NULL)
protein.formula(protein, organism = NULL, residue = FALSE)
protein.obigt(protein, organism = NULL, state=thermo()$opt$state)
protein.basis(protein, T = 25, normalize = FALSE)
protein.equil(protein, T=25, loga.protein = 0, digits = 4)

Arguments

protein character, names of proteins; numeric, species index of proteins; data frame;
amino acid composition of proteins

organism character, names of organisms

residue logical, return per-residue values (those of the proteins divided by their lengths)?

regexp logical, find matches using regular expressions?

normalize logical, return per-residue values (those of the proteins divided by their lengths)?

state character, physical state

T numeric, temperature in ◦C

loga.protein numeric, decimal logarithms of reference activities of proteins

digits integer, number of significant digits (see signif)

Details

For character protein, pinfo returns the rownumber(s) of thermo()$protein that match the pro-
tein names. The names can be supplied in the single protein argument (with an underscore, denot-
ing protein_organism) or as pairs of proteins and organisms. NA is returned for any unmatched
proteins, including those for which no organism is given or that do not have an underscore in
protein.

Alternatively, if regexp is TRUE, the protein argument is used as a pattern (regular expression);
rownumbers of all matches of thermo()$protein$protein to this pattern are returned. When
using regexp, the organism can optionally be provided to return only those entries that also match
thermo()$protein$organism.



78 protein.info

For numeric protein, pinfo returns the corresponding row(s) of thermo()$protein. Set residue
to TRUE to return the per-residue composition (i.e. amino acid composition of the protein divided
by total number of residues).

For dataframe protein, pinfo returns it unchanged, except for possibly the per-residue calculation.

The following functions accept any specification of protein(s) described above for pinfo:

protein.length returns the lengths (number of amino acids) of the proteins.

protein.formula returns a stoichiometrix matrix representing the chemical formulas of the pro-
teins that can be pased to e.g. mass or ZC. The amino acid compositions are multiplied by the output
of group.formulas to generate the result.

protein.obigt calculates the thermodynamic properties and equations-of-state parameters for the
completely nonionized proteins using group additivity with parameters taken from Dick et al., 2006
(aqueous proteins) and LaRowe and Dick, 2012 (crystalline proteins and revised aqueous methio-
nine sidechain group). The return value is a data frame in the same format as thermo()$obigt.
state indicates the physical state for the parameters used in the calculation (‘aq’ or ‘cr’).

The following functions also depend on an existing definition of the basis species:

protein.basis calculates the numbers of the basis species (i.e. opposite of the coefficients in
the formation reactions) that can be combined to form the composition of each of the proteins.
The basis species must be present in thermo()$basis, and if ‘H+’ is among the basis species, the
ionization states of the proteins are included. The ionization state of the protein is calculated at the
pH defined in thermo()$basis and at the temperature specified by the T argument. If normalize
is TRUE, the coefficients on the basis species are divided by the lengths of the proteins.

protein.equil produces a series of messages showing step-by-step a calculation of the chem-
ical activities of proteins in metastable equilibrium. For the first protein, it shows the standard
Gibbs energies of the reaction to form the nonionized protein from the basis species and of the
ionization reaction of the protein (if ‘H+’ is in the basis), then the standard Gibbs energy/RT of the
reaction to form the (possibly ionized) protein per residue. The per-residue values of ‘logQstar’
and ‘Astar/RT’ are also shown for the first protein. Equilibrium calculations are then performed,
only if more than one protein is specified. This calculation applies the Boltzmann distribution to
the calculation of the equilibrium degrees of formation of the residue equivalents of the proteins,
then converts them to activities of proteins taking account of loga.protein and protein length. If
the protein argument is numeric (indicating rownumbers in thermo()$protein), the values of
‘Astar/RT’ are compared with the output of affinity, and those of the equilibrium degrees of
formation of the residues and the chemical activities of the proteins with the output of diagram. If
the values in any of these tests are are not all.equal an error is produced indicating a bug.

References

Dick, J. M., LaRowe, D. E. and Helgeson, H. C. (2006) Temperature, pressure, and electrochemical
constraints on protein speciation: Group additivity calculation of the standard molal thermodynamic
properties of ionized unfolded proteins. Biogeosciences 3, 311–336. https://doi.org/10.5194/
bg-3-311-2006

LaRowe, D. E. and Dick, J. M. (2012) Calculation of the standard molal thermodynamic properties
of crystalline peptides. Geochim. Cosmochim. Acta 80, 70–91. https://doi.org/10.1016/j.
gca.2011.11.041

Dick, J. M. (2014) Average oxidation state of carbon in proteins. J. R. Soc. Interface 11, 20131095.
https://doi.org/10.1098/rsif.2013.1095

https://doi.org/10.5194/bg-3-311-2006
https://doi.org/10.5194/bg-3-311-2006
https://doi.org/10.1016/j.gca.2011.11.041
https://doi.org/10.1016/j.gca.2011.11.041
https://doi.org/10.1098/rsif.2013.1095


protein.info 79

Examples

# search by name in thermo()$protein
ip1 <- pinfo("LYSC_CHICK")
ip2 <- pinfo("LYSC", "CHICK")
# these are the same
stopifnot(all.equal(ip1, ip2))
# two organisms with the same protein name
ip3 <- pinfo("MYG", c("HORSE", "PHYCA"))
# their amino acid compositions
pinfo(ip3)
# their thermodynamic properties by group additivity
protein.obigt(ip3)

# an example of an unrecognized protein name
ip4 <- pinfo("MYGPHYCA")
stopifnot(is.na(ip4))

## example for chicken lysozyme C
# index in thermo()$protein
ip <- pinfo("LYSC_CHICK")
# amino acid composition
pinfo(ip)
# length and chemical formula
protein.length(ip)
protein.formula(ip)
# group additivity for thermodynamic properties and HKF equation-of-state
# parameters of non-ionized protein
protein.obigt(ip)
# calculation of standard thermodynamic properties
# (subcrt uses the species name, not ip)
subcrt("LYSC_CHICK")
# affinity calculation, protein identified by ip
basis("CHNOS+")
affinity(iprotein=ip)
# affinity calculation, protein loaded as a species
species("LYSC_CHICK")
affinity()
# NB: subcrt() only shows the properties of the non-ionized
# protein, but affinity() uses the properties of the ionized
# protein if the basis species have H+

## these are all the same
protein.formula("P53_PIG")
protein.formula(pinfo("P53_PIG"))
protein.formula(pinfo(pinfo("P53_PIG")))

# using pinfo() with regexp=TRUE:
# plot ZC and nH2O/residue of HOX proteins
# basis species: glutamine-glutamic acid-cysteine-O2-H2O
basis("QEC")



80 retrieve

# device setup
par(mfrow=c(2, 2))
# a red-blue scale from 1-13
col <- ZC.col(1:13)
# axis labels
ZClab <- axis.label("ZC")
nH2Olab <- expression(bar(italic(n))[H[2]*O])
# loop over HOX gene clusters
for(cluster in c("A", "B", "C", "D")) {

# get protein indices
pattern <- paste0("^HX", cluster)
ip <- pinfo(pattern, "HUMAN", regexp=TRUE)
# calculate ZC and nH2O/residue
thisZC <- ZC(protein.formula(ip))
thisH2O <- protein.basis(ip)[, "H2O"] / protein.length(ip)
# plot lines
plot(thisZC, thisH2O, type="l", xlab=ZClab, ylab=nH2Olab)
# the number of the HOX gene
pname <- pinfo(ip)$protein
nHOX <- as.numeric(gsub("[A-Za-z]*", "", pname))
# plot colored points
points(thisZC, thisH2O, pch=19, col=col[nHOX], cex=3.5)
points(thisZC, thisH2O, pch=19, col="white", cex=2.5)
# plot the number of the HOX gene
text(thisZC, thisH2O, nHOX)
# add title
title(main=paste0("HOX", cluster))

}

retrieve Retrieve Species by Element

Description

Retrieve species in the database containing one or more chemical elements.

Usage

retrieve(elements = NULL, ligands = NULL, state = NULL,
add.charge = TRUE, hide.groups = TRUE)

Arguments

elements character, combination of elements, or list, elements in a chemical system

ligands character, elements present in any ligands

state character, filter the result on these state(s).

add.charge logical, add charge to the system?

hide.groups logical, exclude groups from the result?



retrieve 81

Details

This function retrieves the species in the thermodynamic database (see thermo) that have the in-
dicated elements. A character value of elements is interpreted as a combination of one or more
elements that must be present in each species. A list value of elements is used to specify a chemi-
cal system – the species must contain one or more of the indicated elements, but no other elements.
ligands, if present, gives the elements that may be present in any ligands; this can be used to
retrieve all species in a system bearing the elements (usually a single metal).

The result includes charged species if add.charge is TRUE (the default) or the user supplies the
“element” of charge (‘Z’). Results can be filtered on physical state by setting the state argument.
Groups used in group-additivity calculations, which have names with square brackets (e.g. [-CH2-
]), are excluded unless hide.groups is FALSE. A special argument value ‘all’ can be used to
retrieve all species in the thermodynamic database, including filtering on state and hiding of the
groups.

The return value is a named integer vector giving the species index (i.e. rownumber(s) of thermo()$obigt)
with names corresponding to the chemical formulas of the species. If the electron is in the result,
its name (‘e-’) is used instead of its chemical formula (‘(Z-1)’). An empty (length 0) integer value
is returned if no elements are specified or no species are retrieved.

To speed up operation, the function uses a precalculated stoichiometric matrix for the default
database, which is loaded with the package (see thermo). If the function detects a change to any
chemical formulas in the database, it updates the stoichiometric matrix using i2A.

See Also

info

Examples

# species index of Ti-bearing minerals
retrieve("Ti")
# thermodynamic data for those minerals
info(retrieve("Ti"))

# all species that have Au
retrieve("Au")
# all species that have both Au and Cl
retrieve(c("Au", "Cl"))
# Au-Cl system: species that have Au and/or Cl,
# including charged species, but no other elements
retrieve(list("Au", "Cl"))
# all Au-bearing species in the Au-Cl system
retrieve("Au", "Cl")
# all uncharged Au-bearing species in the Au-Cl system
retrieve("Au", "Cl", add.charge = FALSE)

# minerals in the system SiO2-MgO-CaO-CO2
retrieve(list("Si", "Mg", "Ca", "C", "O"), state="cr")

# an Eh-pH diagram for Mn-bearing aqueous species
basis(c("Mn+2", "H2O", "H+", "e-"))



82 revisit

iMn <- retrieve("Mn", c("O", "H"), "aq")
species(iMn)
a <- affinity(pH = c(6, 14), Eh = c(-1, 1))
diagram(a, fill = "terrain")

revisit Plots and Optima of Objective Functions

Description

Calculate values of an objective function from logarithms of activities of chemical species and (for
some objectives) reference logarithms of activity. Make line or contour plots showing the values of
the objective function and the positions of the optima (minimum or maximum).

Usage

revisit(eout, objective = "CV", loga2 = NULL, loga0 = NULL,
ispecies = NULL, col = par("fg"), yline = 2, ylim = NULL,
cex = par("cex"), lwd = par("lwd"), mar = NULL, side = 1:4,
xlim = NULL, labcex = 0.6, pch = 1, main = NULL, plot.it = NULL,
add = FALSE, plot.optval = TRUE, style.2D = "contour", bg = par("bg"))

Arguments

eout list, output from equilibrate, containing logarithms of activities of species

objective character, name of objective function

loga2 numeric vector, reference values of logarithm of activities

loga0 numeric vector, logarithm of activities to calculate activity ratios

ispecies numeric, which species to consider

col character, color to use for points or lines

yline numeric, margin line for y-axis label

ylim numeric, limits of y axis

cex numeric, character expansion factor

lwd numeric, line width

mar numeric, plot margin specifications

side numeric, which sides of plot to draw axes

xlim numeric, limits of x axis

labcex numeric, character expansion factor for species labels

pch numeric, plotting symbol(s) to use for points

main character, main title for plot

plot.it logical, make a plot?



revisit 83

add logical, add to an existing plot?
plot.optval logical, show the location of the optimal value(s)?
style.2D character, type of 2-D plot
bg character, background for points

Details

revisit is used to calculate the variation in the equilibrium logarithms of chemical activity (sup-
plied in eout) or to compare the calculated values with reference (e.g. measured) values (loga2).
Usually, the output of equilibrate is used as the value for eout. The type of calculation is indi-
cated by objective, giving the name of an objective function. Generally, loga2 is expressed in
base-10 logarithms. However, if loga0 (base 10) is supplied, it is used to calculate the base-2 log
ratio (log2(a1/a0)); these calculated values are then compared with values in loga2 interpreted as
base-2 logarithms.

Internally, the list of logarithms of chemical activities in eout$loga.equil is passed as loga1 to
the objective function. If the objective function has an argument a1 instead of loga1, the activities
instead of their logarithms are passed to the function. Generally, loga2 must be a numeric vector
with length equal to that of loga1 (i.e., number of species). However, if a single numeric value is
supplied for loga2, it is recycled to the length of loga1.

For calculations at a single condition (0-D, no variation), with the ‘qqr’ objective, a quantile-
quantile plot (qqnorm) is shown. For ‘rmsd’ and other objective functions having reference values
(loga2), a scatter plot is shown with a smooth line calculated using loess.smooth. The line can be
suppressed using lwd=NULL. Otherwise, no plot is made for 0-D calculations for the other objective
functions.

If plot.it is TRUE, and eout is the output from equilibrate, and the number of variables is 1
or 2, the results are plotted — a line diagram in 1 dimension or a contour plot in 2 dimensions.
style.2D can be set to image to fill the plot with colors instead of the contour plot that is the
default.

If plot.optval is TRUE, the location of the optimum (or optima) is indicated by a dashed vertical
line(s) on a 1-D plot or a point(s) marked by an asterisk on a 2-D plot. Also, on 2-D plots, the
locations of the optima at each grid line perpendicular to the x and y axes are plotted. These points
follow major ridges or valleys, and are plotted as dashed lines colored green for the x and blue for
the y values.

An alternative source for the eout argument is any list of numeric values, each element of which
corresponds to a different observation (such as a single species), all having the same dimensions (as
vectors, matrices or higher-dimensional arrays) In this case, plotting is disabled, since the names of
the variables are not in the input.

‘revisit’ is a partial anagram of ‘diversity’, which was the provisional name of the function
but was changed in CHNOSZ-0.9. While the diversity function (in vegan) operates on a matrix
with (biological) species on the columns, revisit operates on a list with (chemical) species as the
elements of the list. The name of the ‘H’ output value is the conventional symbol for the Shannon
diversity index, which was the first target statistic to be implemented in revisit.

Value

revisit returns a list containing at least an element named ‘H’, giving the calculated values of
the objective function. For 1 or 2 dimensions of varibility of chemical conditions, the output also

https://CRAN.R-project.org/package=vegan


84 revisit

contains the elements ixopt and iyopt (1-D and 2-D) and iyopt and yopt (2-D) indicating the
positions and values of the optimum. The ‘optimum’ attribute of the objective function indicates
whether minimal or maximal values are used. For calculations in more than two dimensions, the
output contains iopt, a matrix.

See Also

demo("revisit") shows calculations for a system of proteins. findit is a related function im-
plementing a gridded search of chemical activities, temperature and/or pressure that optimize the
objective function.

Examples

## example of defining a new objective function
# count the species with logarithms of activity greater than loga2
count <- function(loga1, loga2) rowSums(loga1 > loga2)
# set the attribute indicating the type of optimum
attr(count, "optimum") <- "maximal"
# equilibrate a system of amino acids
basis("CHNOS")
species(aminoacids(""))
a <- affinity(O2=c(-80, -60))
e <- equilibrate(a)
# make a plot
r <- revisit(e, "count", -5)
title(main="Amino acids with metastable log activities > -5")

# can also make a 2-D plot
a <- affinity(O2=c(-74, -60, 25), H2O=c(-3, 3, 25))
e <- equilibrate(a)
r <- revisit(e, "count", -5, style.2D="image", plot.optval=FALSE)
title(main="Amino acids with metastable log activities > -5")

## 'revisit' calculations for amino acids
opar <- par(mfrow=c(2, 2))
basis("CHNOS+")
species(aminoacids(""))
# chemical affinities as a function of logarithm of oxygen fugacity
a <- affinity(O2=c(-85, -60))
# shows the equilibrium abundances of the amino acids
e <- equilibrate(a)
diagram(e)
mtitle(c("20 amino acids", "balanced on CO2"))
# show a legend with input constraints
db <- describe.basis(ibasis=3)
dp <- describe.property("T", 25)
legend("bottomright", c(dp, db))
# default is to plot coefficient of variation
r <- revisit(e)
# show a title with the optimal conditions
mincv <- format(r$optimum, digits=3)



solubility 85

t1 <- paste("minimum coeff of variation,", mincv, "at:")
# the logfO2 that minimized the C.V.
basis("O2", r$x)
t2 <- describe.basis(ibasis=5)
mtitle(c(t1, as.expression(t2)))
# chemical affinities as a function of two other variables
a <- affinity(NH3=c(-10, 10, 40), T=c(0, 80, 40))
diagram(a, fill="heat")
# show a legend with input constraints
db <- describe.basis(ibasis=5)
legend("bottomright", as.expression(db))
# contour plot of the CV
e <- equilibrate(a)
r <- revisit(e)
# show a title with the optimal conditions
mincv <- format(r$optimum, digits=3)
t1 <- paste("minimum coeff of variation,", mincv, "at:")
# the logaNH3 and T that minimized the C.V.
basis("NH3", r$x)
db <- describe.basis(ibasis=3)
dp <- describe.property("T", r$y)
t2 <- substitute(list(dp, db), list(dp=dp[[1]], db=db[[1]]))
mtitle(c(t1, as.expression(t2)))
par(opar)

solubility Equilibrium Chemical Activities of Species

Description

Calculate chemical activities of species in equilibrium with a soluble basis species.

Usage

solubility(aout, dissociation = NULL, find.IS = FALSE, in.terms.of = NULL,
codeanal = FALSE)

Arguments

aout list, output from affinity

dissociation logical, does the mineral undergo a dissociation reaction?

find.IS logical, find the equilibrium ionic strength by iteration?

in.terms.of character, express the total solubility in terms of moles of this species

codeanal logical, print diagnostic messages and values of internal variables for code anal-
ysis



86 solubility

Details

This function performs a simple task: from the values of affinity of formation reactions of species
at given activity, it works backward to find the activities of species that make the affinities zero. This
corresponds to complete equilibrium with all of the basis species. Usually, the basis species should
be set up so that the first basis species represents the substance being dissolved (a mineral such as
CaCO3 or gas such as CO2). Internally, this is treated as the conserved basis species, so it must be
present in all of the formation reactions of the species. It is also possible to set the conserved basis
species as other than the first one (see demo(gold)), but this implies that dissociation reactions are
not occurring (see below).

The species should be defined to represent one set of ions (anions or cations or their complexes)
formed in solution, all involving the conserved basis species. For a dissociation reaction, the second
basis species should be used to represent the counterion (cation or anion).

The function perfoms some additional steps to calculate the solubility of something that dissociates
(not just dissolves). For example, the dissolution of calcite (CaCO3), involves the release of both
calcium ions and different forms of carbonate in solution, depending on the pH. The equilibrium
calculation must take account of the total activity of the shared ion (Ca+2), which is unknown at
the start of the calculation. The solution is accomplished by recalculating the affinities, essentially
working backward from the assumption that the dissociation didn’t occur. The resulting activities
correspond to equilibrium considering the system-wide activity of Ca+2.

The function attempts to automatically detect whether dissociation reactions are involved. If the for-
mation reactions of all species includes both the first and second basis species, the dissociation
flag is set to TRUE. An example reaction of this type can be found in demo(solubility): CaCO3 (first
basis species) = Ca+2 (second basis species) + CO3-2 (first species). Note that if the conserved ba-
sis species is not the first basis species, then the automatic detection of dissociation will always
return FALSE. Therefore, a reaction corresponding to Au (fourth basis species) + ... = ... gives
dissociation = FALSE (see demo(gold)). This algorithm for determining whether dissociation
occurs is prone to error, so dissociation can be explicitly set in the arguments. A not recom-
mended alternative is to set dissociation to a numeric value corresponding to the stoichiometry
of released species (i.e. 2 for a 1:1 electrolyte). This setting indicates to calculate activities on a per-
reaction basis, where each reaction has its own (independent) activity of Ca+2. That does not give
a complete equilibrium in the system, but may be required to reproduce some published diagrams.

Note that other variables (pH, ionic strength, activities of other basis species) should be defined in
the preceding call to affinity. However, for dissolving a substance in pure water, find.IS can
be set to TRUE to determine the final ionic strength. This works by calculating the ionic strength
from the equilibrium solubility calculation, then re-running affinity with those values. Note that
for dissociation reactions, the ionic strength is calculated from both the ions present in the species
definition and the counter ion, which should be the second basis species. The calculation is iterated
until the ionic strength deviation at every point is lower than a preset tolerance (1e-4). Alternatively,
speciation of counterions (e.g. ionized forms of carbonate or sulfate) can also be accomplished by
using the mosaic function instead of affinity. See the second example for this method.

The output of solubility has the same format as that of equilibrate, and can be used by diagram
with type = "loga.balance" to plot the solubilities, or with type = NULL to plot the activities
of species. The value of loga.balance reflects the activity (or molality) of the conserved basis
species, i.e. the thing being dissolved. Use in.terms.of to express this value in terms of another
species. For example, the solubility of corundum (Al2O3) can be expressed in terms of the moles
of Al+3 in solution (see the vignette anintro.Rmd).



solubility 87

Warning

This function has not been tested for systems that may form dimers or higher-order complexes
(such as Au2S2

2−). Except for relatively simple systems, even after careful refinement, the results
from CHNOSZ, which considers chemical activities as the independent variables, will not match
the results from speciation-solubility (or Gibbs energy minimization) codes, where the system is
defined by its bulk composition.

References

Manning, C. E., Shock, E. L. and Sverjensky, D. A. (2013) The chemistry of carbon in aqueous flu-
ids at crustal and upper-mantle conditions: Experimental and theoretical constraints. Rev. Mineral.
Geochem. 75, 109–148. https://doi.org/10.2138/rmg.2013.75.5

Stumm, W. and Morgan, J. J. (1996) Aquatic Chemistry: Chemical Equilibria and Rates in Natural
Waters, John Wiley & Sons, New York, 1040 p. http://www.worldcat.org/oclc/31754493

See Also

demo("solubility") adds T -pH diagrams to the CO2 and calcite example here. demo("gold")
shows solubility calculations for Au in aqueous solutions with hydroxide, chloride, and hydrosulfide
complexes. equilibrate calculates equilibrium chemical activities of species given a constant
value of loga.balance (the logarithm of total activity of the conserved basis species).

Examples

## solubility of CO2 and calcite as a function of pH
opar <- par(mfrow = c(1, 2))
## set pH range and resolution, constant temperature and ionic strength
pH <- c(0, 14)
res <- 100
T <- 25
IS <- 0
## start with CO2 (not a dissociation reaction)
basis(c("carbon dioxide", "H2O", "O2", "H+"))
# ca. atmospheric PCO2
basis("CO2", -3.5)
species(c("CO2", "HCO3-", "CO3-2"))
a <- affinity(pH = c(pH, res), T = T, IS = IS)
s <- solubility(a)
# first plot total activity line
diagram(s, ylim = c(-10, 4), type = "loga.balance", lwd = 4, col = "green2")
# add activities of species
diagram(s, ylim=c(-10, 4), add = TRUE, dy = 1)
# add legend
lexpr <- as.expression(c("total", expr.species("CO2", state = "aq"),

expr.species("HCO3-"), expr.species("CO3-2")))
legend("topleft", lty = c(1, 1:3), lwd = c(4, 2, 2, 2),

col = c("green2", rep("black", 3)), legend = lexpr)
title(main = substitute("Solubility of"~what~"at"~T~degree*"C",

list(what = expr.species("CO2"), T = T)), line = 1.5)

https://doi.org/10.2138/rmg.2013.75.5
http://www.worldcat.org/oclc/31754493


88 species

mtext("cf. Fig. 4.5 of Stumm and Morgan, 1996")
## now do calcite (a dissociation reaction)
basis(c("calcite", "Ca+2", "H2O", "O2", "H+"))
species(c("CO2", "HCO3-", "CO3-2"))
a <- affinity(pH = c(pH, res), T = T, IS = IS)
s <- solubility(a)
diagram(s, ylim = c(-10, 4), type = "loga.balance", lwd = 4, col = "green2")
diagram(s, add = TRUE, dy = 1)
legend("topright", lty = c(1, 1:3), lwd = c(4, 2, 2, 2),

col = c("green2", rep("black", 3)), legend = lexpr)
title(main = substitute("Solubility of"~what~"at"~T~degree*"C",

list(what = "calcite", T = T)))
mtext("cf. Fig. 4A of Manning et al., 2013")
par(opar)

## two ways to calculate pH-dependent solubility of calcite
## with ionic strength determination
## method 1: CO2 and carbonate species as formed species
basis(c("calcite", "Ca+2", "H2O", "O2", "H+"))
species(c("CO2", "HCO3-", "CO3-2"))
# ionic strength calculations don't converge below around pH=3
a <- affinity(pH = c(3, 14))
sa0 <- solubility(a)
saI <- solubility(a, find.IS = TRUE)
## method 2: CO2 and carbonate species as basis species
basis(c("calcite", "CO2", "H2O", "O2", "H+"))
species(c("Ca+2"))
m <- mosaic(c("CO2", "HCO3-", "CO3-2"), pH = c(3, 14))
sm0 <- solubility(m)
smI <- solubility(m, find.IS = TRUE)
## plot the results
plot(0, 0, xlab="pH", ylab="solubility, log mol", xlim = c(3, 14), ylim = c(-5, 2))
# method 1 with/without ionic strength
lines(a$vals[[1]], saI$loga.balance, lwd=5, col="lightblue")
lines(a$vals[[1]], sa0$loga.balance, lwd=5, col="pink")
# method 2 with/without ionic strength
lines(a$vals[[1]], smI$loga.balance, lty=2)
lines(a$vals[[1]], sm0$loga.balance, lty=2)
legend("topright", c("I = 0", "I = calculated", "mosaic method"),

col = c("pink", "lightblue", "black"), lwd = c(5, 5, 1), lty = c(1, 1, 2))
title(main = "Solubility of calcite: Ionic strength and mosaic method")
# the two methods give nearly equivalent results
stopifnot(all.equal(sa0$loga.balance, sm0$loga.balance))
stopifnot(all.equal(saI$loga.balance, smI$loga.balance, tolerance = 0.003))
## NOTE: the second method (using mosaic) takes longer, but is
## more flexible; e.g. complexes with Ca+2 could be included

species Species of Interest



species 89

Description

Define the species of interest in a system; modify their physical states and logarithms of activities.

Usage

species(species = NULL, state = NULL, delete = FALSE, index.return = FALSE)

Arguments

species character, names or formulas of species to add to the species definition; numeric,
rownumbers of species to modify or delete

state character, physical states; numeric, logarithms of activities or fugacities

delete logical, delete the species identified by numeric values of species (all species
if that argument is missing)?

index.return logical, return the affected rownumbers of thermo()$species instead of its
contents?

Details

After defining the basis species of your system you can use species to identify the species of
interest. A species is operationally a combination of a name and state, which are columns of the
thermodynamic database in thermo$obigt. The function operates on one or more character values
of species. For each first match of species (optionally restricted to a state among ‘aq’, ‘cr’,
‘gas’, ‘liq’) to the name of a species or a formula or abbreviation in the thermodynamic database,
a row is added to thermo()$species.

The data frame in thermo()$species holds the identifying characteristics of the species as well
as the stoichiometric reaction coefficients for the formation of each of the species from the basis
species, the logarithms of activities or fugacities that are used by affinity. The default values for
logarithms of activities are -3 for aqueous (‘aq’) species and 0 for others.

If state is NULL (the default), species in any state can be matched in the thermodynamic database.
If there are multiple matches for a species, the one that is in the state given by thermo()$opt$state
is chosen, otherwise the matching (or n’th matching duplicate) species is used. Note that the states
of species representing phases of minerals that undergo phase transitions are coded as ‘cr’ (lowest-
T phase), ‘cr2’, ‘cr3’, ... (phases with increasing temperature). If state is ‘cr’ when one of
these minerals is matched, all the phase species are added.

To modify the logarithms of activities of species (logarithms of fugacities for gases) provide one or
more numeric values of species referring to the rownumbers of the species dataframe, or species
NULL, to modify all currently defined species. The values in state, if numeric, are interpreted as
the logarithms of activities, or if character are interpreted as states to which the species should be
changed. If species is numeric and delete is TRUE, the rows representing these species are deleted
from the dataframe; if the only argument is delete and it is TRUE, all the species are removed.

Value

With no arguments or when adding species, species returns the value of thermo()$species,
unless index.return is TRUE, when the function returns the rownumbers of thermo()$species
having the new species. With ‘delete=TRUE’, the value is the definition that existed prior the



90 subcrt

deletion; with ‘delete=TRUE’ and ‘species’ not NULL, the number of species remaining after the
selected ones have been deleted, or NULL if no species remain.

See Also

Use info to search the thermodynamic database without adding species to the system. basis is a
prerequisite for species.

Examples

# set up the basis species
basis("CHNOS")
# add, modify, delete species
species(c("CO2","NH3")) # aqueous species
species(c("CO2","NH3"),"gas") # gases
# delete the first couple of species
species(1:2,delete=TRUE)
# modify the logarithms of activities (actually
# fugacities) of the remaining species
species(1:2,c(-2,-5))
# set the species to aqueous
species(1:2,"aq")
# delete all the species (returns the existing species
# definition, then deletes the species)
sd <- species(delete=TRUE)

# changing the elements in the basis definition
# causes species to be deleted
basis(c("CaO", "CO2", "H2O", "SiO2", "MgO", "O2"))
species(c("dolomite", "quartz", "calcite", "forsterite"))
basis(c("CO2", "H2O", "O2"))
species() # NULL

subcrt Properties of Species and Reactions

Description

Calculate the standard molal thermodynamic properties of one or more species or a reaction between
species as a function of temperature and pressure.

Usage

subcrt(species, coeff = 1, state = NULL,
property = c("logK","G","H","S","V","Cp"),
T = seq(273.15,623.15,25), P = "Psat", grid = NULL,
convert = TRUE, exceed.Ttr = FALSE, exceed.rhomin = FALSE,
logact = NULL, action.unbalanced = "warn", IS = 0)



subcrt 91

Arguments

species character, name or formula of species, or numeric, rownumber of species in
thermo()$obigt

coeff numeric, reaction coefficients on species

state character, state(s) of species

property character, property(s) to calculate

T numeric, temperature(s) of the calculation

P numeric, pressure(s) of the calculation, or character, ‘Psat’

grid character, type of P×T grid to produce (NULL, the default, means no gridding)

exceed.Ttr logical, calculate Gibbs energies of mineral phases and other species beyond
their transition temperatures?

exceed.rhomin logical, return properties of species in the HKF model below 0.35 g cm−3?

logact numeric, logarithms of activities of species in reaction

convert logical, are input and output units of T and P those of the user (TRUE) (see
T.units), or are they Kelvin and bar (FALSE)?

action.unbalanced

character ‘warn’ or NULL, what action to take if unbalanced reaction is provided

IS numeric, ionic strength(s) at which to calculate adjusted molal properties, mol
kg−1

Details

subcrt calculates the standard molal thermodynamic properties of species and reactions as a func-
tion of temperature and pressure. For each of the species (a formula or name), optionally identified
in a given state, the standard molal thermodynamic properties and equations-of-state parameters
are retrieved via info (except for H2O liquid). The standard molal properties of the species are
computed using equations-of-state functions for aqueous species (hkf), crystalline, gas, and liquid
species (cgl) and liquid or supercritical H2O (water).

T and P denote the temperature and pressure conditions for the calculations and should generally be
of the same length, unless P is ‘Psat’ (the default; see water). Argument grid if present can be
one of T or P to perform the computation of a T×P or P×T grid. The propertys to be calculated
can be one or more of those shown below:

rho Density of water g cm−3

logK Logarithm of equilibrium constant dimensionless
G Gibbs energy (cal | J) mol−1

H Enthalpy (cal | J) mol−1

S Entropy (cal | J) K−1 mol−1

V Volume cm3 mol−1

Cp Heat capacity (cal | J) K−1 mol−1

E Exapansibility cm3 K−1

kT Isothermal compressibility cm3 bar−1



92 subcrt

Note that E and kT can only be calculated for aqueous species and only if the option (thermo$opt$water)
for calculations of properties using water is set to IAPWS. On the other hand, if the water option is
‘SUPCRT’ (the default), E and kT can be calculated for water but not for aqueous species. (This is
not an inherent limitation in either formulation, but it is just a matter of implementation.)

Depending on the units currently defined (E.units) the values of G, H, S and Cp are returned using
calories or Joules as the unit of energy, but only if convert is TRUE. Likewise, the input values of T
and P are interpreted to have the units specified through T.units and P.units, but setting convert
to FALSE forces subcrt to treat them as Kelvin and bar, respectively.

A chemical reaction is defined if coeff is given. In this mode the standard molal properties of
species are summed according to the stoichiometric coefficients, where negative values denote
reactants. Reactions that do not conserve elements are permitted; subcrt prints the missing com-
position needed to balance the reaction and produces a warning but computes anyway. Alternatively,
if the basis species of a system were previously defined, and if the species being considered are
within the compositional range of the basis species, an unbalanced reaction given in the arguments
to subcrt will be balanced automatically, without altering the coefficients on the species identi-
fied in the arguments (unless perhaps they correspond to basis species), and without a warning.
However, if a reaction is unbalanced and action.unbalanced is set to NULL, no warnings are
generated and no attempt is made to balance the reaction.

Minerals with polymorphic transitions (denoted by having states ‘cr’ (lowest T phase), ‘cr2’, ‘cr3’
etc.) can be defined generically by ‘cr’ in the state argument with a character value for species.
subcrt in this case simultaneously calculates the requested properties of all the phases of each
such mineral (phase species) and, using the values of the transition temperatures calculated from
those at P = 1 bar given in the thermodynamic database together with functions of the entropies
and volumes of transitions (see dPdTtr), determines the stable phase of the mineral at any grid
point and substitutes the properties of this phase at that point for further calculations. If individual
phase species of minerals are specified (by ‘cr’, ‘cr2’ etc. in state), and exceed.Ttr is FALSE
(the default), the Gibbs energies of these minerals are assigned values of NA at conditions beyond
their transition temperature, where another of the phases is stable. If you set exceed.Ttr to TRUE
to calculate the properties of mineral polymorphs (i.e., using ‘cr’) the function will identify the
stable polymorph using the calculated Gibbs energies of the phase species instead of the tabulated
transition temperatures. This is not generally advised, since the computed standard molal properties
of a phase species lose their physical meaning beyond the transition temperatures of the phase.

If logact is provided, the chemical affinities of reactions are calculated. logact indicates the log-
arithms of activities (fugacities for gases) of species in the reaction; if there are fewer values of
logact than number of species those values are repeated as necessary. If the reaction was unbal-
anced to start, the logarithms of activities of any basis species added to the reaction are taken from
the current definition of the basis species. Columns appended to the output are logQ for the log10
of the activity product of the reaction, and A for the chemical affinity, in the units set by E.units.
Note that affinity provides related functionality but is geared toward the properties of formation
reactions of species from the basis species and can be performed in more dimensions. Calculations
of chemical affinity in subcrt can be performed for any reaction of interest; however, they are cur-
rently limited to constant values of the logarithms of activities of species in the reactions, and hence
of logQ, across the computational range.

If IS is set to a single value other than zero, nonideal is used to calculate the adjusted properties
(G, H, S and Cp) of charged aqueous species at the given ionic strength. To perform calculations at a
single P and T and for multiple values of ionic strength, supply these values in IS. Calculations can
also be performed on a P-IS, T-IS or P,T-IS grid. Values of logK of reactions calculated for IS not



subcrt 93

equal to zero are consistent with the adjusted Gibbs energies of the charged aqueous species.

subcrt is modeled after the functionality of the SUPCRT92 package (Johnson et al., 1992). Certain
features of SUPCRT92 are not available here, for example, calculations as a function of density of
H2O instead of pressure, or calculations of temperatures of univariant curves (i.e. for which logK
is zero).

For calculations below 273.16 K, the pressure should be set to 1, as PSAT is not defined in these
conditions.

If thermo()$opt$varP is TRUE, standard Gibbs energies of gases will be converted from a standard
state at 1 bar (as used in SUPCRT) to a variable pressure standard state (see chapter 12 in Anderson
and Crerar, 1993). This is useful for constructing e.g. boiling curves for organic compounds.

Value

For subcrt, a list of length two or three. If the properties of a reaction were calculated, the first
element of the list (named ‘reaction’) contains a dataframe with the reaction parameters; the
second element, named ‘out’, is a dataframe containing the calculated properties. Otherwise, the
properties of species (not reactions) are returned: the first element, named ‘species’, contains a
dataframe with the species identification; the second element, named ‘out’, is itself a list, each
element of which is a dataframe of properties for a given species. If minerals with phase transitions
are present, a third element (a dataframe) in the list indicates for all such minerals the stable phase
at each grid point.

Warning

Although SUPCRT92 prohibits calculations above 350 ◦C at PSAT (“beyond range of applicability
of aqueous species equations”), CHNOSZ does not impose this limitation, and allows calculations
up to the critical temperature (373.917 ◦C) at PSAT. Interpret calculations between 350 ◦C and the
critical temperature at PSAT at your own risk. The discontinuity in the value of logK at PSAT that
is apparent in demos("NaCl") demonstrates one unexpected result.

NAs are produced for calculations at ‘Psat’ when the temperature exceeds the critical temperature
of H2O. In addition, properties of species using the revised HKF equations are set to NA wherever
the density of H2O < 0.35 g/cm3 (threshold just above the critical isochore; Johnson et al., 1992).
Both of these situations produce warnings, which are stored in the ‘warnings’ element of the return
value.

NAs are also output if the T, P conditions are otherwise beyond the capabilities of the water equa-
tions of state derived from SUPCRT92 (H2O92D.f), but the messages about this are produced by
water.SUPCRT92 rather than subcrt.

References

Anderson, G. M. and Crerar, D. A. (1993) Thermodynamics in Geochemistry: The Equilibrium
Model, Oxford University Press. http://www.worldcat.org/oclc/803272549

Johnson, J. W., Oelkers, E. H. and Helgeson, H. C. (1992) SUPCRT92: A software package for
calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and
reactions from 1 to 5000 bar and 0 to 1000◦C. Comp. Geosci. 18, 899–947. https://doi.org/
10.1016/0098-3004(92)90029-Q

http://www.worldcat.org/oclc/803272549
https://doi.org/10.1016/0098-3004(92)90029-Q
https://doi.org/10.1016/0098-3004(92)90029-Q


94 subcrt

Helgeson, H. C., Owens, C. E., Knox, A. M. and Richard, L. (1998) Calculation of the standard
molal thermodynamic properties of crystalline, liquid, and gas organic molecules at high temper-
atures and pressures. Geochim. Cosmochim. Acta 62, 985–1081. https://doi.org/10.1016/
S0016-7037(97)00219-6

LaRowe, D. E. and Helgeson, H. C. (2007) Quantifying the energetics of metabolic reactions in
diverse biogeochemical systems: electron flow and ATP synthesis. Geobiology 5, 153–168. https:
//doi.org/10.1111/j.1472-4669.2007.00099.x

Schulte, M. D. and Shock, E. L. (1995) Thermodynamics of Strecker synthesis in hydrothermal
systems. Orig. Life Evol. Biosph. 25, 161–173. https://doi.org/10.1007/BF01581580

Shock, E. L., Oelkers, E. H., Johnson, J. W., Sverjensky, D. A. and Helgeson, H. C. (1992) Calcula-
tion of the thermodynamic properties of aqueous species at high pressures and temperatures: Effec-
tive electrostatic radii, dissociation constants and standard partial molal properties to 1000 ◦C and
5 kbar. J. Chem. Soc. Faraday Trans. 88, 803–826. https://doi.org/10.1039/FT9928800803

See Also

info can be used to find species in the thermodynamic database. makeup is used by subcrt for
parsing formulas to check mass balance of reactions. demo("ORP") and nonideal for examples
using the IS argument.

Examples

## properties of species
subcrt("water")
# calculating at different temperatures
subcrt("water", T=seq(0, 100, 10))
# calculating at even increments
subcrt("water", T=seq(500, 1000, length.out=10),

P=seq(5000, 10000, length.out=10))
# calculating on a temperature-pressure grid
subcrt("water", T=c(500, 1000), P=c(5000, 10000), grid="P")
# to calculate only selected properties
subcrt("water", property=c("G", "E"))
# the properties of multiple species
subcrt(c("glucose", "ethanol", "CO2"))

## properties of reactions
subcrt(c("H2O", "H+", "K-feldspar", "kaolinite", "K+", "SiO2"),

c(-1, -2, -2, 1, 2, 4))
subcrt(c("glucose", "ethanol", "CO2"), c(-1, 2, 2))
# to specify the states
subcrt(c("glucose", "ethanol", "CO2"), c(-1, 2, 2), c("aq", "aq", "gas"))

## auto balancing reactions
# the basis species must first be defined
basis(c("CO2", "H2O", "NH3", "H2S", "O2"))
subcrt(c("glucose", "ethanol"), c(-1, 3))
# a bug in CHNOSZ <0.9 caused the following
# to initiate an infinite loop

https://doi.org/10.1016/S0016-7037(97)00219-6
https://doi.org/10.1016/S0016-7037(97)00219-6
https://doi.org/10.1111/j.1472-4669.2007.00099.x
https://doi.org/10.1111/j.1472-4669.2007.00099.x
https://doi.org/10.1007/BF01581580
https://doi.org/10.1039/FT9928800803


subcrt 95

basis(c("H2O", "H2S", "O2", "H+"))
subcrt(c("HS-", "SO4-2"), c(-1, 1))
# because O2,aq is in the basis, this is a non-reaction
# (O2,aq to O2,aq)
subcrt("O2", 1, "aq")
# but this one auto-balances into a reaction
# (O2,aq to O2,gas)
subcrt("O2", 1, "gas")
# properties of a species and a formation
# reaction for that species
subcrt("C2H5OH") # species
basis("CHNOS")
subcrt("C2H5OH", 1) # reaction

## mineral polymorphs
# properties of the stable polymorph
subcrt("pyrrhotite")
# properties of just the high-T phase
subcrt(c("pyrrhotite"), state="cr2")
# polymorphic transitions in a reaction
subcrt(c("pyrite", "pyrrhotite", "H2O", "H2S", "O2"), c(-1, 1, -1, 1, 0.5))

## these produce messages about problems with the calculation
# above the T, P limits for the H2O equations of state
subcrt("alanine", T=c(2250, 2251), P=c(30000, 30001), grid="T")
# Psat is not defined above the critical point
## Not run:
## (also gives a warning)
subcrt("alanine", T=seq(0, 5000, by=1000))

## End(Not run)

## minerals with phase transitions
# compare calculated values of heat capacity of iron with
# values from Robie and Hemingway, 1995
T.units("K")
E.units("J")
# we set pressure here otherwise subcrt uses Psat (saturation
# vapor pressure of H2O above 100 degrees C) which can not be
# calculated above the critical point of H2O (~647 K)
s <- subcrt("Fe", T=seq(300, 1800, 20), P=1)
plot(s$out[[1]]$T, s$out[[1]]$Cp, type="l",

xlab=axis.label("T"), ylab=axis.label("Cp"))
# add points from RH95
RH95 <- read.csv(system.file("extdata/cpetc/RH95.csv", package="CHNOSZ"))
points(RH95[,1], RH95[,2])
title(main=paste("Heat capacity of Fe(cr)\n",

"(points - Robie and Hemingway, 1995)"))
# reset the units to default values
T.units("C")
E.units("cal")

## Skarn example after Johnson et al., 1992



96 subcrt

P <- seq(500, 5000, 500)
# this is like the temperature specification used
# in the example by Johnson et al., 1992
# T <- seq(0, 1000, 100)
# we use this one to avoid warnings at 0 deg C, 5000 bar
T <- c(2, seq(100, 1000, 100))
s <- subcrt(c("andradite", "carbon dioxide", "H2S", "Cu+", "quartz",

"calcite", "chalcopyrite", "H+", "H2O"),
coeff=c(-1, -3, -4, -2, 3, 3, 2, 2, 3),
state=c("cr", "g", "aq", "aq", "cr", "cr", "cr", "aq", "liq"),
P=P, T=T, grid="P")

# The results are not identical to SUPCRT92, as CHNOSZ has updated
# parameters for species e.g. Cu+ from Shock et al., 1997.
# Check the calculated phase transitions for chalcopyrite
stopifnot(all.equal(s$polymorphs$chalcopyrite[1:11],

c(1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 3)))

## Standard Gibbs energy of reactions with HCN and
## formaldehyde, after Schulte and Shock, 1995 Fig. 1
rxn1 <- subcrt(c("formaldehyde","HCN","H2O","glycolic acid","NH3"),

c(-1,-1,-2,1,1),P=300)
rxn2 <- subcrt(c("formaldehyde","HCN","H2O","glycine"),

c(-1,-1,-1,1),P=300)
plot(x=rxn1$out$T,rxn1$out$G/1000,type="l",ylim=c(-40,-10),

xlab=axis.label("T"),ylab=axis.label("DG0r","k"))
lines(rxn1$out$T,rxn2$out$G/1000)
# write the reactions on the plot
text(150, -14, describe.reaction(rxn1$reaction, iname=c(1,2,4)))
text(200, -35, describe.reaction(rxn2$reaction, iname=c(1,2)))
title(main=paste("Standard Gibbs energy of reactions",

"after Schulte and Shock, 1995",sep="\n"))

## Calculation of chemical affinities
# after LaRowe and Helgeson, 2007, Fig. 3 (a): reduction of nicotinamide
# adenine dinucleotide (NAD) coupled to oxidation of glucose
# list the available NAD species
info("NAD ")
T <- seq(0, 120, 10)
# oxidation of glucose (C6H12O6)
basis(c("glucose", "H2O", "NH3", "CO2", "H+"), c(-3, 0, 999, -3, -7))
s <- subcrt(c("NAD(ox)-", "NAD(red)-2"), c(-12, 12), logact=c(0, 0), T=T)
# LH07's diagrams are shown per mole of electron (24 e- per 12 NAD)
A <- s$out$A/24/1000
plot(x=T, y=A, xlim=range(T), ylim=c(1.4, 5.4),

xlab=axis.label("T"), ylab=axis.label("A", prefix="k"), type="l")
text("NAD(ox)-/NAD(red)-2 = 1", x=53, y=median(A), srt=21)
# different activity ratio
s <- subcrt(c("NAD(ox)-","NAD(red)-2"), c(-12, 12), logact=c(1, 0), T=T)
A <- s$out$A/24/1000
lines(x=T, y=A)
text("NAD(ox)-/NAD(red)-2 = 10", x=55, y=median(A), srt=24)
# different activity ratio
s <- subcrt(c("NAD(ox)-","NAD(red)-2"), c(-12, 12), logact=c(0, 1), T=T)



subcrt 97

A <- s$out$A/24/1000
lines(x=T, y=A)
text("NAD(ox)-/NAD(red)-2 = 0.1", x=52, y=median(A), srt=18)
# print the reaction and chemical conditions on the plot
text(0, 5.3, describe.reaction(s$reaction, iname=c(1, 2)), adj=0)
text(0, 5.1, describe.basis(oneline=TRUE, ibasis=c(1, 2, 4, 5)), adj=0)
# label the plot
title(main=paste("Reduction of NAD coupled to oxidation of glucose",
"after LaRowe and Helgeson, 2007", sep="\n"))

## Subzero (degrees C) calculations
# uncomment the following to try IAPWS95 instead of SUPCRT92
#water("IAPWS95")
# the limit for H2O92D.f (from SUPCRT92) is currently -20 deg C
# but we go to -30 knowing properties will become NA
sb <- subcrt(c("H2O", "Na+"), T=seq(-30, 10), P=1)$out
# start plot with extra room on right
opar <- par(mar=c(5, 4, 4, 4))
# plot G
plot(sb$water$T, sb$water$G, ylim=c(-63000, -56000), xlab=axis.label("T"),

ylab=axis.label("DG0"))
points(sb$`Na+`$T, sb$`Na+`$G, pch=2)
# add Cp
# change y-axis
par("usr"=c(par("usr")[1:2], -100, 25))
axis(4)
mtext(axis.label("Cp0"), side=4, line=3)
points(sb$water$T, sb$water$Cp, pch=16)
points(sb$`Na+`$T, sb$`Na+`$Cp, pch=17)
legend("topleft", pch=c(16, 1, 17, 2), legend=c("H2O Cp", "H2O G", "Na+ Cp", "Na+ G"))
H2O <- expr.species("H2O")
Na <- expr.species("Na+")
degC <- expr.units("T")
title(main=substitute(H2O~and~Na~to~-20~degC, list(H2O=H2O, Na=Na, degC=degC)))
par(opar)

## Calculations using a variable-pressure standard state
thermo("opt$varP" = TRUE)
# Calculate the boiling point of octane at 2 and 20 bar
# We need exceed.Ttr=TRUE because the liquid is metastable
# at high temperatures (also, the gas is metastable at low
# temperatures, but that doesn't produce NA in the output)
sout2 <- subcrt(rep("octane", 2), c("liq", "gas"),

c(-1, 1), T=seq(-50, 300, 0.1), P=2, exceed.Ttr=TRUE)$out
sout20 <- subcrt(rep("octane", 2), c("liq", "gas"),

c(-1, 1), T=seq(-50, 300, 0.1), P=20, exceed.Ttr=TRUE)$out
# find T with the Gibbs energy of reaction that is closest to zero
Tvap2 <- sout2$T[which.min(abs(sout2$G))]
Tvap20 <- sout20$T[which.min(abs(sout20$G))]
# the boiling point increases with pressure
stopifnot(Tvap20 > Tvap2)
# more precisely, the calculated boiling points should be near the
# empirical values (digitized from Fig. 1 of Helgeson et al., 1998)



98 swap.basis

Tvap_2bar <- 156
Tvap_20bar <- 276
stopifnot(abs(Tvap2 - Tvap_2bar) < 6)
stopifnot(abs(Tvap20 - Tvap_20bar) < 25)
# those comparisons would fail if varP were FALSE (the default)
thermo("opt$varP" = FALSE)

swap.basis Swap Basis Species

Description

Swap the basis species defining a chemical system. One basis species is replaced by a new one with
a different chemical formula.

Usage

swap.basis(species, species2, T = 25)
basis.elements(basis = thermo()$basis)
element.mu(basis = thermo()$basis, T = 25)
basis.logact(emu, basis = thermo()$basis, T = 25)
ibasis(species)

Arguments

basis dataframe, a basis definition

T numeric, temperature in Kelvin

emu numeric, chemical potentials of elements

species character, names or formulas of species, or numeric, indices of species

species2 character or numeric, a species to swap in to the basis definition

Details

swap.basis allows to change the basis definition by swapping out a basis species for a new one.
Specify the names or formulas of the old and replacement basis species in the first argument. When
the basis definition is changed, any species of interest that were present are deleted, unless the new
basis definition has exactly the same elements as before. In that case, the species are kept; also,
the activities of the new basis species are set in order to maintain the chemical potentials of the
elements at T ◦C and 1 bar.

The other functions are supporting functions: basis.elements returns the stoichiometric matrix
for the current basis definition, element.mu calculates the chemical potentials of elements corre-
sponding to the activities of the basis species, basis.logact does the inverse operation, and ibasis
returns the index in the basis set for a given species index (in thermo$obigt), name or formula.

See Also

basis, and mosaic



swap.basis 99

Examples

## swapping basis species
# start with a preset basis definition
b1 <- basis("CHNOS+")
# swap H2(aq) for O2(gas)
(b2 <- swap.basis("O2", "H2"))
# the logarithm of activity calculated for H2
# is equal to the one calculated from the equilibrium constant
# for H2O = H2 + 0.5O2
logK <- subcrt(c("oxygen","H2","H2O"), c(-0.5,-1,1), T=25)$out$logK
# the equilibrium value of logaH2
# (for logaH2O = 0 and logfO2 = -80)
(logaH2 <- -logK + 40)
stopifnot(all.equal(logaH2, b2$logact[5]))
# put O2 back in
b3 <- swap.basis("H2", "oxygen")
# we have returned to starting point
stopifnot(all.equal(b1$logact, b3$logact))

## demonstrating the interconvertibility between
## chemical potentials of elements and logarithms
## of activities of basis species at high temperature
#basis("CHNOS+")
#bl1 <- basis()$logact
#emu <- element.mu(T=100)
#bl2 <- basis.logact(emu, T=100)
## note that basis.logact produces a named array
#stopifnot(all.equal(bl1, as.numeric(bl2)))

## swapping basis species while species are defined
## and using numeric species indices
basis("MgCHNOPS+")
# load some Mg-ATP species
species(c("MgATP-2", "MgHATP-", "MgH2ATP", "Mg2ATP"))
# swap in CO2(g) for CO2(aq)
iCO2g <- info("CO2", "gas")
swap.basis("CO2", iCO2g)
a1 <- affinity()
# swap in CH4(g) for CO2(g)
iCH4g <- info("CH4", "gas")
swap.basis(iCO2g, iCH4g)
a2 <- affinity()
# the equilibrium fugacity of CH4 is *very* low
# swap in CO2(aq) for CH4(g)
iCO2a <- info("CO2", "aq")
swap.basis(iCH4g, iCO2a)
a3 <- affinity()
# swapping the basis species didn't affect the affinities
# of the formation reactions of the species, since
# the chemical potentials of the elements were unchanged
stopifnot(all.equal(a1$values, a2$values))



100 taxonomy

stopifnot(all.equal(a1$values, a3$values))

taxonomy Extract Data from NCBI Taxonomy Files

Description

Read data from NCBI taxonomy files, traverse taxonomic ranks, get scientific names of taxonomic
nodes.

Usage

getnodes(taxdir)
getrank(id, taxdir, nodes=NULL)
parent(id, taxdir, rank=NULL, nodes=NULL)
allparents(id, taxdir, nodes=NULL)
getnames(taxdir)
sciname(id, taxdir, names=NULL)

Arguments

taxdir character, directory where the taxonomy files are kept.

id numeric, taxonomic ID(s) of the nodes of interest.

nodes dataframe, output from getnodes (optional).

rank character, name of the taxonomic rank of interest.

names dataframe, output from getnames (optional).

Details

These functions provide a convenient way to read data from NCBI taxonomy files (i.e., the contents
of taxdump.tar.gz, which can be downloaded from ftp://ftp.ncbi.nih.gov/pub/taxonomy/).

The taxdir argument is used to specify the directory where the nodes.dmp and names.dmp files
are located. getnodes and getnames read these files into data frames. getrank returns the rank
(species, genus, etc) of the node with the given taxonomic id. parent returns the taxonomic ID
of the next-lowest node below that specified by the id in the argument, unless rank is supplied, in
which case the function descends the tree until a node with that rank is found. allparents returns
all the taxonomic IDs of all nodes between that specified by id and the root of the tree, inclusive.
sciname returns the scientific name of the node with the given id.

The id argument can be of length greater than 1 except for allparents. If getrank, parent,
allparents or sciname need to be called repeatedly, the operation can be hastened by supply-
ing the output of getnodes in the nodes argument and/or the output of getnames in the names
argument.

ftp://ftp.ncbi.nih.gov/pub/taxonomy/


taxonomy 101

Examples

## get information about Homo sapiens from the
## packaged taxonomy files
taxdir <- system.file("extdata/taxonomy",package="CHNOSZ")
# H. sapiens' taxonomic id
id1 <- 9606
# that is a species
getrank(id1,taxdir)
# the next step up the taxonomy
id2 <- parent(id1,taxdir)
print(id2)
# that is a genus
getrank(id2,taxdir)
# that genus is "Homo"
sciname(id2,taxdir)
# we can ask what phylum is it part of?
id3 <- parent(id1,taxdir,"phylum")
# answer: "Chordata"
sciname(id3,taxdir)
# H. sapiens' complete taxonomy
id4 <- allparents(id1,taxdir)
sciname(id4,taxdir)

## the names of the organisms in the supplied taxonomy files
taxdir <- system.file("extdata/taxonomy",package="CHNOSZ")
id5 <- c(83333,4932,9606,186497,243232)
sciname(id5,taxdir)
# these are not all species, though
# (those with "no rank" are something like strains,
# e.g. Escherichia coli K-12)
getrank(id5,taxdir)
# find the species for each of these
id6 <- sapply(id5,function(x) parent(x,taxdir=taxdir,rank="species"))
stopifnot(unique(getrank(id6,taxdir))=="species")
# note that the K-12 is dropped
sciname(id6,taxdir)

## the complete nodes.dmp and names.dmp files are quite large,
## so it helps to store them in memory when performing multiple queries
## (this doesn't have a noticeable speed-up for the small files
## we use in this example)
taxdir <- system.file("extdata/taxonomy",package="CHNOSZ")
nodes <- getnodes(taxdir=taxdir)
# all of the node ids in this file
id7 <- nodes$id
# all of the non-leaf nodes
id8 <- unique(parent(id7,nodes=nodes))
names <- getnames(taxdir=taxdir)
sciname(id8,names=names)



102 thermo

thermo Thermodynamic Database and System Settings

Description

Run reset() to reset all of the data used in CHNOSZ to default values. This includes the compu-
tational settings, thermodynamic database, and system settings (chemical species).

The system settings are changed using basis and species. To clear the system settings (the default,
i.e. no species loaded), run basis(""); to clear only the formed species, run species(delete =
TRUE)

The thermodynamic database is changed using add.obigt and mod.obigt. To restore the default
database without altering the species settings, run obigt().

The computational settings are changed using water, P.units, T.units, E.units, and some other
commands (e.g. mod.buffer).

All the data are stored in the thermo data object in an environment named CHNOSZ. thermo() is
a convenience function to access or modify parts of this object, in particular some computational
settings, for example, thermo("opt$ideal.H" = FALSE) (see nonideal).

The main data files provided with CHNOSZ, as *.csv files in the extdata/thermo and extdata/OBIGT
directories of the package, are used to build the thermo object, which is described below.

Usage

reset()
obigt()
thermo(...)

Arguments

... list, one or more arguments whose names correspond to the component() to
modify

Format

• thermo()$opt List of computational settings. Square brackets indicate default values. Note
that the units of G.tol and Cp.tol depend on the E_units for each species in thermo()$obigt.
Therefore, species with E_units of ‘J’ have a lower absolute tolerance for producing mes-
sages (because Joules are smaller than calories).

cutoff numeric Cutoff below which values are taken to be zero [1e-10] (see makeup)
E.units character The user’s units of energy ([‘cal’] or ‘J’) (see subcrt)
T.units character The user’s units of temperature ([‘C’] or ‘K’)
P.units character The user’s units of pressure ([‘bar’] or ‘MPa’)
state character The default physical state for searching species [‘aq’] (see info)
water character Computational option for properties of water ([‘SUPCRT’] or ‘IAPWS’; see water)
G.tol numeric Difference in G above which checkGHS produces a message (cal mol−1) [100]
Cp.tol numeric Difference in Cp above which checkEOS produces a message (cal K−1 mol−1) [1]



thermo 103

V.tol numeric Difference in V above which checkEOS produces a message (cm3 mol−1) [1]
varP logical Use variable-pressure standard state for gases? [FALSE] (see subcrt)
IAPWS.sat character State of water for saturation properties [‘liquid’] (see util.water)
paramin integer Minimum number of calculations to launch parallel processes [1000] (see palply)
ideal.H logical Should nonideal ignore the proton? [TRUE]
ideal.e logical Should nonideal ignore the electron? [TRUE]
nonideal character Option for charged species in nonideal [Bdot]
Setchenow character Option for neutral species in nonideal [bgamma0]
Berman character User data file for mineral parameters in the Berman equations [NA]
maxcores numeric Maximum number of cores for parallel calculations with palply [2]

• thermo()$element Dataframe containing the thermodynamic properties of elements taken
from Cox et al., 1989 and Wagman et al., 1982. The standard molal entropy (S(Z)) at 25 ◦C
and 1 bar for the “element” of charge (Z) was calculated from S(H2,g) + 2S(Z) = 2S(H+),
where the standard molal entropies of H2,g and H+ were taken from Cox et al., 1989. The
mass of Z is taken to be zero. Accessing this data frame using mass or entropy will select
the first entry found for a given element; i.e., values from Wagman et al., 1982 will only be
retrieved if the properties of the element are not found from Cox et al., 1989.

element character Symbol of element
state character Stable state of element at 25 ◦C and 1 bar
source character Source of data
mass numeric Mass of element (in natural isotopic distribution;

referenced to a mass of 12 for 12C)
s numeric Entropy of the compound of the element in its stable

state at 25 ◦C and 1 bar (cal K−1 mol−1)
n numeric Number of atoms of the element in its stable

compound at 25 ◦C and 1 bar

• thermo()$obigt

This dataframe is a thermodynamic database of standard molal thermodynamic properties and
equations of state parameters of species. Note the following database conventions:

– The combination of name and state defines a species in thermo()$obigt. A species can
not be duplicated (this is checked when running reset()).

– English names of inorganic gases are used only for the gas state. The dissolved species
is named with the chemical formula. Therefore, info("oxygen") refers to the gas, and
info("O2") refers to the aqueous species.

– Properties of most aqueous species (state = ‘aq’) are calculated using the revised Helgeson-
Kirkham-Flowers (HKF) model (see hkf).

– Properties of aqueous species with an NA value of Z (the final column of thermo()$obigt)
are calculated using the Akinfiev-Diamond model (see AkDi).

– Properties of most non-aqueous species (liquids, gases, and minerals) are calculated using
a heat capacity polynomial expression with up to six terms (see cgl).

– Properties of minerals with NA values of all heat capacity parameters are calculated using
the Berman model (see berman).

‘OrganoBioGeoTherm’ is the name of a GUI program to use SUPCRT in Windows, produced
in Harold C. Helgeson’s Laboratory of Theoretical Geochemistry and Biogeochemistry at the



104 thermo

University of California, Berkeley. The OBIGT database was originally developed for that
program, and was the original basis for the database in CHNOSZ. There may be an additional
meaning for the acronym: “One BIG Table” of thermodynamic data.
Each entry is referenced to one or two literature sources listed in thermo()$refs. Use
thermo.refs to look up the citation information for the references. See the vignette Ther-
modynamic data in CHNOSZ for a complete description of the sources of data. The original
OBIGT database was influenced by the SUPCRT92 (Johnson et al., 1992) and SLOP98.DAT
data files (Shock et al., 1998), and the references in those files are included here.
In order to represent thermodynamic data for minerals with phase transitions, the higher-
temperature phases of these minerals are represented as phase species that have states denoted
by ‘cr2’, ‘cr3’, etc. The standard molar thermodynamic properties at 25 ◦C and 1 bar (Tr
and Pr) of the ‘cr2’ phase species of minerals were generated by first calculating those of
the ‘cr’ (lowest-T) phase species at the transition temperature (Ttr) and 1 bar then taking
account of the volume and entropy of transition (the latter can be retrieved by combining the
former with the Clausius-Clapeyron equation and values of (dP/dT ) of transitions taken from
the SUPCRT92 data file) to calculate the standard molar entropy of the ‘cr2’ phase species
at Ttr, and taking account of the enthalpy of transition (∆H◦, taken from the SUPCRT92
data file) to calculate the standard molar enthalpy of the ‘cr2’ phase species at Ttr. The
standard molar properties of the ‘cr2’ phase species at Ttr and 1 bar calculated in this manner
were combined with the equations-of-state parameters of the species to generate values of
the standard molar properties at 25 ◦C and 1 bar. This process was repeated as necessary
to generate the standard molar properties of phase species represented by ‘cr3’ and ‘cr4’,
referencing at each iteration the previously calculated values of the standard molar properties
of the lower-temperature phase species (i.e., ‘cr2’ and ‘cr3’). A consequence of tabulating the
standard molar thermodynamic properties of the phase species is that the values of (dP/dT )
and ∆H◦ of phase transitions can be calculated using the equations of state and therefore do
not need to be stored in the thermodynamic database. However, the transition temperatures
(Ttr) generally can not be assessed by comparing the Gibbs energies of phase species and are
tabulated in the database.
The identification of species and their standard molal thermodynamic properties at 25 ◦C and
1 bar are located in the first 13 columns of thermo()$obigt:

name character Species name
abbrv character Species abbreviation
formula character Species formula
state character Physical state
ref1 character Primary source
ref2 character Secondary source
date character Date of data entry (formatted as in SUPCRT92)
E_units character Units of energy: cal or J
G numeric Standard molal Gibbs energy of formation

from the elements (cal mol−1)
H numeric Standard molal enthalpy of formation

from the elements (cal mol−1)
S numeric Standard molal entropy (cal mol−1 K−1)
Cp numeric Standard molal isobaric heat capacity (cal mol−1 K−1)
V numeric Standard molal volume (cm3 mol−1)



thermo 105

The meanings of the remaining columns depend on the model used for a particular species
(see database conventions above). The names of these columns are compounded from those
of the parameters in the HKF equations of state and general heat capacity polynomial; for
example, column 13 is named a1.a. Scaling of the values by orders of magnitude is adopted
for some of the parameters, following common usage in the literature.
Columns 14-21 for aqueous species (parameters in the revised HKF equations of state):

a1 numeric a1 × 10 (cal mol−1 bar−1)
a2 numeric a2 × 10−2 (cal mol−1)
a3 numeric a3 (cal K mol−1 bar−1)
a4 numeric a4 × 10−4 (cal mol−1 K)
c1 numeric c1 (cal mol−1 K−1)
c2 numeric c2 × 10−4 (cal mol−1 K)
omega numeric ω × 10−5 (cal mol−1)
Z numeric Charge

Columns 14-21 for crystalline, gas and liquid species (Cp = a + bT + cT−2 + dT−0.5 +
eT 2 + fTλ).

a numeric a (cal K−1 mol−1)
b numeric b× 103 (cal K−2 mol−1)
c numeric c× 10−5 (cal K mol−1)
d numeric d (cal K−0.5 mol−1)
e numeric e× 105 (cal K−3 mol−1)
f numeric f (cal K−λ−1 mol−1)
lambda numeric λ (exponent on the f term)
T numeric Temperature of phase transition or upper

temperature limit of validity of extrapolation (K)

Columns 14-21 for aqueous species using the Akinfiev-Diamond model. Note that the c col-
umn is used to store the ξ parameter, and that Z must be NA to activate the code for this model.
The remaining columns are not used.

a numeric a (cm3 g−1)
b numeric b (cm3 K0.5 g−1)
c numeric ξ
d numeric XX1 NA
e numeric XX2 NA
f numeric XX3 NA
lambda numeric XX4 NA
Z numeric Z NA

• thermo()$refs Dataframe of references to sources of thermodynamic data.

key character Source key
author character Author(s)
year character Year



106 thermo

citation character Citation (journal title, volume, and article number or pages; or book or report title)
note character Short description of the compounds or species in this data source
URL character URL

• thermo()$buffers

Dataframe which contains definitions of buffers of chemical activity. Each named buffer can
be composed of one or more species, which may include any species in the thermodynamic
database and/or any protein. The calculations provided by buffer do not take into account
phase transitions of minerals, so individual phase species of such minerals must be specified
in the buffers.

name character Name of buffer
species character Name of species
state character Physical state of species
logact numeric Logarithm of activity (fugacity for gases)

• thermo()$protein Data frame of amino acid compositions of selected proteins. Most of
the compositions were taken from the SWISS-PROT/UniProt online database (Boeckmann et
al., 2003) and the protein and organism names usually follow the conventions adopted there.
In some cases different isoforms of proteins are identified using modifications of the protein
names; for example, ‘MOD5.M’ and MOD5.N proteins of ‘YEAST’ denote the mitochondrial and
nuclear isoforms of this protein. See pinfo to search this data frame by protein name, and
other functions to work with the amino acid compositions.

protein character Identification of protein
organism character Identification of organism
ref character Reference key for source of compositional data
abbrv character Abbreviation or other ID for protein
chains numeric Number of polypeptide chains in the protein
Ala. . .Tyr numeric Number of each amino acid in the protein

• thermo()$groups This is a dataframe with 22 columns for the amino acid sidechain, back-
bone and protein backbone groups ([Ala]..[Tyr],[AABB],[UPBB]) whose rows correspond to
the elements C, H, N, O, S. It is used to quickly calculate the chemical formulas of proteins
that are selected using the iprotein argument in affinity.

• thermo()$basis Initially NULL, reserved for a dataframe written by basis upon definition of
the basis species. The number of rows of this dataframe is equal to the number of columns in
“...” (one for each element).

... numeric One or more columns of stoichiometric
coefficients of elements in the basis species

ispecies numeric Rownumber of basis species in thermo()$obigt
logact numeric Logarithm of activity or fugacity of basis species
state character Physical state of basis species



thermo 107

• thermo()$species Initially NULL, reserved for a dataframe generated by species to define
the species of interest. The number of columns in “...” is equal to the number of basis species
(i.e., rows of thermo()$basis).

... numeric One or more columns of stoichiometric
coefficients of basis species in the species of interest

ispecies numeric Rownumber of species in thermo()$obigt
logact numeric Logarithm of activity or fugacity of species
state character Physical state of species
name character Name of species

• thermo()$stoich A precalculated stoichiometric matrix for the default database. This is a
matrix, not a data frame, and as such can accept duplicated row names, corresponding to chem-
ical formulas of the species. See retrieve, and the first test in testthat/test-retrieve.R
for how to update this.

rownames character Chemical formulas from thermo()$obigt
... numeric Stoichiometry, one column for each element present in any species

References

Cox, J. D., Wagman, D. D. and Medvedev, V. A., eds. (1989) CODATA Key Values for Thermo-
dynamics. Hemisphere Publishing Corporation, New York, 271 p. http://www.worldcat.org/
oclc/18559968

Johnson, J. W., Oelkers, E. H. and Helgeson, H. C. (1992) SUPCRT92: A software package for
calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and
reactions from 1 to 5000 bar and 0 to 1000◦C. Comp. Geosci. 18, 899–947. https://doi.org/
10.1016/0098-3004(92)90029-Q

Shock, E. L. et al. 1998 SLOP98.dat (computer data file). http://geopig.asu.edu/supcrt92_data/slop98.dat,
accessed on 2005-11-05; moved to http://geopig.asu.edu/?q=tools.

Wagman, D. D., Evans, W. H., Parker, V. B., Schumm, R. H., Halow, I., Bailey, S. M., Churney,
K. L. and Nuttall, R. L. (1982) The NBS tables of chemical thermodynamic properties. Selected
values for inorganic and C1 and C2 organic substances in SI units. J. Phys. Chem. Ref. Data 11
(supp. 2), 1–392. https://srd.nist.gov/JPCRD/jpcrdS2Vol11.pdf

See Also

Other data files, including those supporting the examples and vignettes, are documented separately
at extdata.

Examples

## where are the data files in CHNOSZ?
system.file("extdata", package="CHNOSZ")
# what files make up OBIGT?
# nb. the .csv.xz files are loaded by default,
# and the .csv files have optional data that can be loaded with add.obigt()

http://www.worldcat.org/oclc/18559968
http://www.worldcat.org/oclc/18559968
https://doi.org/10.1016/0098-3004(92)90029-Q
https://doi.org/10.1016/0098-3004(92)90029-Q
https://srd.nist.gov/JPCRD/jpcrdS2Vol11.pdf


108 util.array

dir(system.file("extdata/OBIGT", package = "CHNOSZ"))

## exploring thermo()$obigt
# what physical states there are
unique(thermo()$obigt$state)
# formulas of ten random species
n <- nrow(thermo()$obigt)
thermo()$obigt$formula[runif(10)*n]

util.array Functions to Work with Multidimensional Arrays

Description

These functions can be used to turn a list into an array and extract or replace values or take the sum
along a certain dimension of an array.

Usage

list2array(l)
slice(arr, d = NULL, i = 1, value = NULL)
dimSums(arr, d = 1, i = NULL)
slice.affinity(affinity, d = 1, i = 1)

Arguments

l a list.

arr an array.

d numeric, what dimension to use.

i numeric, what slice to use.

value values to assign to the portion of an array specified by d and i.

affinity list, output from affinity function.

Details

list2array turns a list of arrays, each with the same dimensions, into a new array having one
more dimension whose size is equal to the number of initial arrays.

slice extracts or assigns values from/to the ith slice(s) in the dth dimension of an array. Values
are assigned to an array if value is not NULL. This function works by building an expression
containing the extraction operator ([).

slice.affinity performs a slice operation on the ‘values’ element of the ‘affinity’ variable
(which should be the output of affinity).

dimSums sums an array along the dth dimension using only the ith slices in that dimension. If i is
NULL, all slices in that dimension are summed together. For matrices, dimSums(x,1) has the same
result as colSums(x) and dimSums(x,2) has the same result as rowSums(x).



util.array 109

Examples

# start with a matrix
x <- matrix(1:12,ncol=3)
# pay attention to the following when
# writing examples that test for identity!
identical(1*x,x) # FALSE
# create two matrices that are multiples of the first
a <- 1*x
b <- 2*a
# these both have two dimensions of lengths 4 and 3
dim(a) # 4 3
# combine them to make an array with three dimensions
c <- list2array(list(a,b))
# the third dimension has length 2
dim(c) # 4 3 2
# the first slice of the third dimension == a
stopifnot(identical( slice(c,3), a ))
# the second slice of the third dimension == b
stopifnot(identical( slice(c,3,2), b ))
# 'slice' works just like the bracket operator
c11 <- slice(c,1)
c12 <- slice(c,1,2)
c21 <- slice(c,2,1)
c212 <- slice(c,2,1:2)
stopifnot(identical( c11, c[1,,] ))
stopifnot(identical( c12, c[2,,] ))
stopifnot(identical( c21, c[,1,] ))
stopifnot(identical( c212, c[,1:2,] ))
# let us replace part of the array
d <- slice(c,3,2,value=a)
# now the second slice of the third dimension == a
stopifnot(identical( slice(d,3,2), a ))
# and the sum across the third dimension == b
stopifnot(identical( dimSums(d,3), b ))
# taking the sum removes that dimension
dim(d) # 4 3 2
dim(dimSums(d,1)) # 3 2
dim(dimSums(d,2)) # 4 2
dim(dimSums(d,3)) # 4 3

# working with an 'affinity' object

basis("CHNOS+")
species("alanine")
a1 <- affinity(O2=c(-80,-60)) # at pH=7
a2 <- affinity(O2=c(-80,-60),pH=c(0,14,7))
# in the 2nd dimension (pH) get the 4th slice (pH=7)
a3 <- slice.affinity(a2,2,4)
stopifnot(all.equal(a1$values,a3$values))



110 util.blast

util.blast Functions to Work with BLAST Output Files

Description

Read and filter BLAST tabular output files, make taxonomic identifications of the BLAST hits using
gi numbers, write trimmed-down BLAST files.

Usage

read.blast(file, similarity = 30, evalue = 1e-5, max.hits = 1,
min.length = NA, quiet = FALSE)

id.blast(blast, gi.taxid, taxid.names, min.taxon = 0,
min.query = 0, min.phylum = 0, take.first = TRUE)

write.blast(blast, outfile)
def2gi(def)

Arguments

file character, name of BLAST tabular output file

similarity numeric, hits above this similarity score are kept

evalue character, hits below this E value are kept

max.hits numeric, up to this many hits are kept for each query sequence

min.length numeric, hits with at least this alignment length are kept

quiet logical, produce fewer messages?

blast dataframe, BLAST table

gi.taxid list, first component is sequence identifiers (gi numbers), second is taxon ids
(taxids)

taxid.names dataframe, with at least columns ‘taxid’ (taxon id), ‘phylum’ (name of phy-
lum), ‘species’ (name of species)

min.taxon numeric, this taxon is kept if it makes up at least this fraction of total

min.query numeric, query sequence is counted if a single phylum makes up this fraction of
its hits

min.phylum numeric, this phylum is kept if it makes up at least this fraction of total

take.first logical, keep only first hit after all other filtering steps?

outfile character, name of output file

def character, FASTA defline(s)



util.blast 111

Details

read.blast reads a BLAST (Altschul et al., 1997) tabular output file (such as generated using
the -m 8 switch to the ‘blastall’ command), keeping only those hits with greater than or equal to
similarity and less than or equal to evalue (expectation value). Furthermore, for each query
sequence, only the top number of hits specified by max.hits are kept, and only hits with an align-
ment length of at least min.length are kept. One or more of these filters can be disabled by setting
similarity, evalue and/or max.hits to NA.

id.blast takes a BLAST table (i.e., the output of read.blast) and finds the taxonomic ID, phylum
and species name for each hit (subject sequence). The BLAST results are tied to taxids using
gi.taxid, which is a list consisting of ‘gi’ and ‘taxid’ numeric vectors. Any subject sequence
identifiers appearing in the BLAST file that do not match gi numbers in the gi.taxid list are
dropped. The taxid.names dataframe lists the phylum and species names for each taxid.

id.blast furthermore performs three possible filtering steps, which are all disabled by default. If
one or more of the arguments is set to a non-zero value, its operation is performed, in this order.
Any taxon that does not initially make up at least the fraction of total hits given by min.taxon is
removed. Any query sequence that does not have a single phylum making up at least the fraction of
hits (for each query sequence) given by min.query is removed. Finally, any phylum that does not
make up at least the fraction of total hits given by min.phylum is removed.

By default, for take.first equal to TRUE, id.blast performs a final filtering step (but min.query
must be disabled). Only the first hit for each query sequence is kept.

write.blast takes a BLAST table (the output of read.blast) and writes to outfile a stripped-
down BLAST file with empty values in the columns except for columns 1 (query sequence ID),
2 (hit sequence ID), 3 (similarity), 11 (E value). In the process, def2gi is used to extract the
GI numbers for the hit sequences that are then kept in the second column. This function is used
to reduce the size of the example BLAST files that are packaged with CHNOSZ (see the ‘bison’
section in extdata).

def2gi extracts the GI number from a FASTA defline.

Value

read.blast returns a dataframe with as many columns (12) as the BLAST file. id.blast returns
a dataframe with columns query, subject (i.e., sequence id or gi number), similarity, evalue,
taxid, phylum and species. write.blast invisible-y returns the results (that are also written
to outfile).

References

Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J. H., Zhang, Z., Miller, W. and Lipman, D.
J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Nucleic Acids Res. 25, 3389–3402. https://doi.org/doi:10.1093/nar/25.17.3389

Examples

## using def2gi
def <- "gi|218295810|ref|ZP_03496590.1|"
stopifnot(all.equal(def2gi(def), "218295810"))

https://doi.org/doi:10.1093/nar/25.17.3389


112 util.data

## process some of the BLAST output for proteins
## from Bison Pool metagenome (JGI, 2007)
# read the file that connects taxids with the sequence identifier
tfile <- system.file("extdata/bison/gi.taxid.txt.xz", package="CHNOSZ")
gi.taxid <- scan(tfile, what=as.list(character(2)), flush=TRUE)
# read the file that connects names with the taxids
nfile <- system.file("extdata/refseq/taxid_names.csv.xz", package="CHNOSZ")
taxid.names <- read.csv(nfile)
# the BLAST files
sites <- c("N","S","R","Q","P")
bfile <- paste("extdata/bison/bison", sites, "_vs_refseq57.blastp.xz", sep="")
for(i in 1:5) {

file <- system.file(bfile[i], package="CHNOSZ")
# read the blast file, with default filtering settings
bl <- read.blast(file)
# process the blast file -- get taxon names
ib <- id.blast(bl, gi.taxid, taxid.names, min.taxon=2^-7)
# count each of the phyla
bd <- as.matrix(sapply(unique(ib$phylum), function(x) (sum(x==ib$phylum))))
colnames(bd) <- sites[i]
# make a matrix -- each column for a different file
if(i==1) bardata <- bd else {
bardata <- merge(bardata, bd, all=TRUE, by="row.names")
rownames(bardata) <- bardata$Row.names
bardata <- bardata[,-1]

}
}
# normalize the counts
bardata[is.na(bardata)] <- 0
bardata <- t(t(bardata)/colSums(bardata))
# make a bar chart
bp <- barplot(as.matrix(bardata), col=rainbow(nrow(bardata)),

xlab="location", ylab="fractional abundance")
# add labels to the bars
names <- substr(row.names(bardata), 1, 3)
for(i in 1:5) {

bd <- bardata[,i]
ib <- bd!=0
y <- (cumsum(bd) - bd/2)[ib]
text(bp[i], y, names[ib])

}
title(main=paste("Phylum Classification of Protein Sequences",

"in Part of the Bison Pool Metagenome", sep="\n"))

util.data Functions for Checking Thermodynamic Data

Description

Show table of references in a web browser or get individual references for species. Check internal
consistency of individual entries in database.



util.data 113

Usage

thermo.refs(key=NULL, keep.duplicates=FALSE)
checkEOS(eos, state, prop, ret.diff = FALSE)
checkGHS(ghs, ret.diff = FALSE)
check.obigt()
dumpdata(file)
RH2obigt(compound = NULL, state = "cr",
file = system.file("extdata/adds/RH98_Table15.csv", package = "CHNOSZ"))

Arguments

key character, numeric, or list; bibliographic reference key(s)
keep.duplicates

logical, keep duplicated references?

eos dataframe, equations-of-state parameters in the format of thermo()$obigt

state character, physical state of species

prop character, property of interest (‘Cp’ or ‘V’)

ret.diff logical, return the difference between calculated and tabulated values?

ghs dataframe, containing G, H and S, in the format of thermo()$obigt

file character, path to a file

compound character, name of compound(s) in group additivity calculation

Details

thermo.refs with default arguments uses browseURL to display the sources of thermodynamic data
in thermo()$refs, with the URLs in that table showing as hyperlinks in the browser. Otherwise,
if key is character, the citation information for those reference keys (including URLs) are returned.
If key is numeric, the values refer to the species in those rows of thermo()$obigt, and the citation
information for each listed reference (thermo()$obigt$ref1, thermo()$obigt$ref2) is returned.
If key is a list, it is interpreted as the result of a call to subcrt, and the citation information for
each species involved in the calculation is returned. Only unique references are returned, unless
keep.duplicates is TRUE. In that case, a single reference for each species is returned, ignoring
anything in thermo()$obigt$ref2.

checkEOS compares heat capacity and volume calculated from equation-of-state parameters with
reference (tabulated) values at 25 ◦C and 1 bar and prints a message and returns the calculated value
if tolerance is exceeded. The Helgeson-Kirkham-Flowers equations of state parameters are in eos,
which is a data frame with columns (and column names) in the same format as thermo$obigt. The
property can be one of ‘Cp’ or V. The code only distinguishes between states of ‘aq’ and all others.
The default tolerances, given in thermo()$opt$Cp.tol and thermo()$opt$V.tol, are 1 cal/K.mol
for Cp and 1 cm3/mol for V. If ret.diff is TRUE, the differences are returned irrespective of their
values, and no messages are printed.

checkGHS compares G (standard molal Gibbs energy of formation from the elements) calculated
from H (standard molal enthalpy of formation) and S (standard molal entropy) with reference (tab-
ulated) values of G at 25 ◦C and 1 bar. A message is printed and the calculated difference is returned
if it exceeds the value given in thermo()$opt$G.tol, which has a default value of 100 cal/mol. The
calculation requires that G, H and S, and the chemical formula of the species all be present.



114 util.data

check.obigt is a function to check self-consistency of each entry in the thermodynamic database,
using checkEOS and checkGHS. The output is a table listing only species that exceed at least one of
the tolerance limits, giving the species index (rownumber in ‘thermo()$obigt‘), species name and
state, and DCp, DV and DG, for the calculated differences (only those above the tolerances are
given). Values of DCp and DG are given in the units present in the data files. This function is used
to generate the file found at extdata/thermo/obigt_check.csv.

dumpdata returns all of the available data, from both the default and optional data files, or writes it to
a file if file is not NULL. The format is the same as thermo$obigt, except for a single prepended
column named ‘source’, giving the source of the data (‘OBIGT’ refers to the default database, and
‘DEW’, ‘SLOP98’, and ‘SUPCRT92’ are the optional data files).

RH2obigt implements a group additivity algorithm for standard molal thermodynamic properties
and equations of state parameters of crystalline and liquid organic molecules from Richard and
Helgeson, 1998. The names of the compounds and their physical state are searched for in the
indicated file, that also contains chemical formulas and group stoichiometries; the names of the
groups are stored in the column names of this file, and must be present in thermo$obigt. The
default file (extdata/thermo/RH98_Table15.csv) includes data taken from Table 15 of Richard
and Helgeson, 1998 for high molecular weight compounds in ‘cr’ystalline and ‘liq’uid states. An
error is produced if any of the compound-state combinations is not found in the file, if any of the
group names for a given compound-state combination is not found in thermo()$obigt, or if the
chemical formula calculated from group additivity (with the aid of i2A and as.chemical.formula)
is not identical to that listed in the file.

Value

The values returned (invisible-y) by mod.obigt are the rownumbers of the affected species.

References

Richard, L. and Helgeson, H. C. (1998) Calculation of the thermodynamic properties at elevated
temperatures and pressures of saturated and aromatic high molecular weight solid and liquid hy-
drocarbons in kerogen, bitumen, petroleum, and other organic matter of biogeochemical inter-
est. Geochim. Cosmochim. Acta 62, 3591–3636. https://doi.org/10.1016/S0016-7037(97)
00345-1

See Also

thermo, add.obigt, mod.buffer

Examples

# citation information for Helgeson et al., 1998
thermo.refs("HOK+98")
# two references for alanine
thermo.refs(info("alanine"))
# three references for species in the reaction
s <- subcrt(c("O2","O2"),c("gas","aq"),c(-1,1))
thermo.refs(s)
## Not run:
## marked dontrun because it opens a browser

https://doi.org/10.1016/S0016-7037(97)00345-1
https://doi.org/10.1016/S0016-7037(97)00345-1


util.expression 115

# show the contents of thermo()$refs
thermo.refs()

## End(Not run)

## calculate thermodynamic properties of organic compounds
## using group additivity, after Richard and Helgeson, 1998
RH2obigt()

util.expression Functions to Express Chemical Formulas and Properties

Description

Generate expressions suitable for axis labels and plot legends describing chemical species, proper-
ties and reactions.

Usage

expr.species(species, state = "aq", value=NULL, log=FALSE, molality=FALSE,
use.state=FALSE, use.makeup=FALSE)

expr.property(property, molality = FALSE)
expr.units(property, prefix = "", per = "mol")
axis.label(label, units = NULL, basis = thermo()$basis, prefix = "",
molality = FALSE)

describe.basis(basis = thermo()$basis, ibasis = 1:nrow(basis),
digits = 1, oneline = FALSE, molality = FALSE, use.pH = TRUE)

describe.property(property, value, digits = 0, oneline = FALSE,
ret.val = FALSE)

describe.reaction(reaction, iname = numeric(), states = NULL)
syslab(system = c("K2O", "Al2O3", "SiO2", "H2O"), dash="-")
ratlab(ion = "K+", molality = FALSE)

Arguments

species character, formula of a chemical species

state character, designation of physical state

value numeric, logarithm of activity or fugacity of species, or value of other property

log logical, write logarithm of activity/fugacity/molality?

molality logical, use molality (m) instead of activity (a) for aqueous species?

use.state logical, include state in expression?

use.makeup logical, use makeup to count the elements?

use.pH logical, use pH instead of log activity of H+?

property character, description of chemical property

prefix character, prefix for units



116 util.expression

per character, denominator in units

label character, description of species, condition or property

units character, description of units

basis data frame, definition of basis species

ibasis numeric, which basis species to include

digits numeric, number of digits to show after decimal point

oneline logical, make descriptions occupy a single line?

ret.val logical, return only the value with the units?

reaction data frame, definition of reaction

iname numeric, show names instead of formulas for these species

states character, if ‘all’, show states for all species; numeric, which species to show
states for

system character, thermodynamic components

dash character to use for dash between components

ion character, an ion

Details

The expr.* functions create expressions using the plotmath syntax to describe the names and
states and logarithms of activity or fugacity of chemical species, conditions including temperature
and pressure and chemical properties such as Gibbs energy and volume.

expr.species constructs a formatted expression using the formula or name of a single chemical
species. With no other arguments, the formula is just formatted with the appropriate subscripts and
superscripts. Providing the physical state adds a variable to the expression (a for aqueous species
and pure phases, except f for gases). Set molality to TRUE to write m instead of a for aqueous
species. The state itself is written in the expression if use.state is TRUE. If log is TRUE, the
expression includes a ‘log’ prefix. Finally, provide a value in value to write an equation (something
like logfO2 = -70), or set it to NA to only write the variable itself (e.g. logfO2). Set use.makeup
to TRUE to use makeup to parse the chemical formula. This was an older default action that had
the undesirable effect of reordering and grouping all the elements, and has been replaced with a
different splitting algorithm so that coefficients and charges are sub/superscripted without affecting
the intervening text.

expr.property accepts a description in property that indicates the chemical property of interest.
Uppercase letters are italicized, and lowercase letters are italicized and subscripted. Other specific
characters are parsed as follows (case-sensitive):

‘D’ Delta
‘A’ bold A (chemical affinity)
‘p’ subscript italic P (for isobaric heat capacity)
‘0’ degree sign (for a standard-state property)
‘l’ subscript lambda
‘’’ prime symbol



util.expression 117

A ‘0’ gets interpreted as a degree sign only if it does not immediately follow a number (so that e.g.
‘2.303’ can be included in an expression).

Every other character that is one of the letters or LETTERS in the description of the property is
italicized in the expression; other characters such as numerals or mathematical operators are shown
without any special formatting. Special cases for the property argument (‘logK’, ‘Eh’, ‘pH’, ‘pe’,
‘IS’ and ‘ZC’) are interpreted as simple expressions, and are not parsed according to the above rules.

expr.units returns an expression for the units, based on one or more characters appearing in the
property:

‘A’, ‘G’, ‘H’ energy
‘Cp’, ‘S’ energy per Kelvin
‘V’ volume
‘E’ volume per Kelvin
‘P’ pressure
‘T’ temperature
‘Eh’ electrical potential
‘IS’ ionic strength

If none of those characters appears in the property, the expression is an empty character (no units).
If a prefix is given, it is added to the expression. The denominator of the units (default ‘mol’) is
taken from the per argument; it is applied to all units except for ‘P’, ‘T’, ‘Eh’, and ‘IS’.

axis.label accepts a generic description of a label. If this matches the chemical formula of
one of the basis species in the basis argument, the expression for the label is generated using
expr.species with log set to the physical state of the basis species. Otherwise, the expression is
built by combining the output of expr.property with expr.units (or the value in units, if it is
supplied), placing a comma between the two. This function is used extensively in diagram and also
appears in many of the examples. Note that diagram sets molality to TRUE if IS was supplied as
an argument to affinity.

describe.basis makes an expression summarizing the basis species definition (logarithms of ac-
tivity or fugacity of the basis species) provided in basis; only the basis species identified by ibasis
are included.

describe.property makes an expression summarizing the properties supplied in property, along
with their values. The expressions returned by both functions consist of a property, an equals sign,
and a value (with units where appropriate); the expressions have a length equal to the number of
property/value pairs. If oneline is TRUE, the property/value pairs are combined into a single
line, separated by commas. The number of digits shown after the decimal point in the values is
controlled by digits. If ret.val is TRUE, only the values and their units are returned; this is
useful for labeling plots with values of temperature.

describe.reaction makes an expression summarizing a chemical reaction. The reaction data
frame can be generated using subcrt. Based on the sign of their reaction coefficients, species are
placed on the reactant (left) or product (right) side of the reaction, where the species with their
coefficients are separated by plus signs; the two sides of the reaction are separated by a reaction
double arrow (Unicode U+21CC). Coefficients equal to 1 are not shown. Chemical formulas of
species include the physical state if states is ‘all’, or a numeric value indicating which species
to label with the state. Names of species (as provided in reaction) are shown instead of chemical
formulas for the species identified by iname.



118 util.expression

syslab formats the given thermodynamic components (using expr.species) and adds intervening
en dashes.

ratlab produces a expression for the activity ratio, viz. (activity of the ion) / [(activity of H+) ^
(charge of the ion)].

See Also

util.legend; demo("saturation") for examples of syslab and ratlab.

Examples

## show descriptions of species and properties on a plot
plot(0, 0, xlim=c(1,5), ylim=c(1,5), xlab="function", ylab="example")
text0 <- function(...) text(..., adj=0)
# species
text0(1, 1, expr.species("CO2"))
text0(1, 2, expr.species("CO2", use.state=TRUE))
text0(1, 3, expr.species("CO2", log=TRUE, use.state=TRUE))
text0(1, 4, expr.species("CO2", log=TRUE))
text0(1, 5, expr.species("CO2", log=TRUE, value=-3))
# properties
text0(2, 1, expr.property("A"))
text0(2, 2, expr.property("DV"))
text0(2, 3, expr.property("DG0f"))
text0(2, 4, expr.property("DCp0,r"))
text0(2, 5, expr.property("T"))
# units
text0(3, 1, expr.units("A", prefix="k"))
text0(3, 2, expr.units("DV"))
text0(3, 3, expr.units("DG0f", prefix="k"))
text0(3, 4, expr.units("DCp0,r"))
text0(3, 5, expr.units("T"))
# axis.label
text0(4, 1, axis.label("DG0f"))
text0(4, 2, axis.label("T"))
text0(4, 3, axis.label("pH"))
text0(4, 4, axis.label("Eh"))
text0(4, 5, axis.label("IS"))
# describe.basis
basis("CHNOS+")
dbasis <- describe.basis(oneline=TRUE, digits=0)
property <- c("P", "T", "Eh", "pH", "IS")
value <- c(1, 42.42, -1, 7, 0.1)
dprop <- describe.property(property, value, oneline=TRUE)
text(3, 1.5, dbasis)
text(3, 2.5, dprop)
dbasis <- describe.basis(ibasis=c(1, 5))
dprop <- describe.property(property[1:2], value[1:2])
legend(2.4, 3.9, legend=c(dbasis, dprop), bty="n")
# describe.reaction
# reaction is automatically balanced since basis species are defined



util.fasta 119

reaction <- subcrt("glucose", -1)$reaction
text(3, 4.25, describe.reaction(reaction))
text(3, 4.5, describe.reaction(reaction, states="all"))
text(3, 4.75, describe.reaction(reaction, iname=1:4))
title(main="Plot labels for chemical species and thermodynamic properties")

util.fasta Functions for Reading FASTA Files and Downloading from UniProt

Description

Search the header lines of a FASTA file, read protein sequences from a file, count numbers of amino
acids in each sequence, and download sequences from UniProt.

Usage

read.fasta(file, iseq = NULL, ret = "count", lines = NULL,
ihead = NULL, start=NULL, stop=NULL, type="protein", id = NULL)

count.aa(seq, start=NULL, stop=NULL, type="protein")
uniprot.aa(protein, start=NULL, stop=NULL)

Arguments

file character, path to FASTA file

iseq numeric, which sequences to read from the file

ret character, specification for type of return (count, sequence, or FASTA format)

lines list of character, supply the lines here instead of reading them from file

ihead numeric, which lines are headers

start numeric, position in sequence to start counting

stop numeric, position in sequence to stop counting

type character, sequence type (protein or DNA)

id character, value to be used for protein in output table

seq character, amino acid sequence of a protein

protein character, entry name for protein in UniProt

Details

read.fasta is used to retrieve entries from a FASTA file. Use iseq to select the sequences to
read (the default is all sequences). The function returns various formats depending on the value of
ret. The default ‘count’ returns a data frame of amino acid counts (the data frame can be given
to add.protein in order to add the proteins to thermo$protein), ‘seq’ returns a list of sequences,
and ‘fas’ returns a list of lines extracted from the FASTA file, including the headers (this can be
used e.g. to generate a new FASTA file with only the selected sequences). If the line numbers of
the header lines were previously determined, they can be supplied in ihead. Optionally, the lines of
a previously read file may be supplied in lines (in this case no file is needed so file should be set



120 util.fasta

to ""). When ret is ‘count’, the names of the proteins in the resulting data frame are parsed from
the header lines of the file, unless id is provided. If id is not given, and a UniProt FASTA header is
detected (regular expression "\|......\|.*_"), information there (accession, name, organism) is
split into the protein, abbrv, and organism columns of the resulting data frame.

count.aa counts the occurrences of each amino acid or nucleic-acid base in a sequence (seq). For
amino acids, the columns in the returned data frame are in the same order as thermo()$protein.
The matching of letters is case-insensitive. A warning is generated if any character in seq, excluding
spaces, is not one of the single-letter amino acid or nucleobase abbreviations. start and/or stop
can be provided to count a fragment of the sequence (extracted using substr). If only one of start
or stop is present, the other defaults to 1 (start) or the length of the sequence (stop).

uniprot.aa returns a data frame of amino acid composition, in the format of thermo()$protein,
retrieved from the protein sequence if it is available from UniProt (http://uniprot.org). The
protein argument corresponds to the ‘Entry name’ on the UniProt search pages.

Value

read.fasta returns a list of sequences or lines (for ret equal to ‘seq’ or ‘fas’, respectively), or
a data frame with amino acid compositions of proteins (for ret equal to ‘count’) with columns
corresponding to those in thermo$protein.

See Also

seq2aa, like count.aa, counts amino acids in a user-input sequence, but returns a data frame in
the format of thermo()$protein. nucleic.formula for an example of counting nucleobases in a
DNA sequence.

Examples

## reading a protein FASTA file
# the path to the file
file <- system.file("extdata/fasta/EF-Tu.aln", package="CHNOSZ")
# read the sequences, and print the first one
read.fasta(file, ret="seq")[[1]]
# count the amino acids in the sequences
aa <- read.fasta(file)
# compute lengths (number of amino acids)
protein.length(aa)

## Not run:
# download amino acid composition of a protein
# start at position 2 to remove the initiator methionine
aa <- uniprot.aa("ALAT1_HUMAN", start=2)
# add it to thermo()$protein
ip <- add.protein(aa)
# now it's possible to calculate some properties
protein.length(ip)
protein.formula(ip)
subcrt("ALAT1_HUMAN", c("cr", "aq"), c(-1, 1))
# the amino acid composition can be saved for future use

http://uniprot.org


util.formula 121

write.csv(aa, "saved.aa.csv", row.names=FALSE)
# in another R session, the protein can be loaded without using uniprot.aa()
aa <- read.csv("saved.aa.csv", as.is=TRUE)
add.protein(aa)

## count amino acids in a sequence
count.aa("GGSGG")
# warnings are issued for unrecognized characters
atest <- count.aa("WhatAmIMadeOf?")
# there are 3 "A" (alanine)
stopifnot(atest[, "A"]==3)

## End(Not run)

util.formula Functions to Work with Chemical Formulas

Description

Calculate the standard molal entropy of elements in a compound; calculate the standard molal Gibbs
energy or enthalpy of formation, or standard molal entropy, from the other two; list coefficients of
selected elements in a chemical formula; calculate the average oxidation state of carbon. Create a
stoichiometric matrix for selected species.

Usage

as.chemical.formula(makeup, drop.zero = TRUE)
mass(formula)
entropy(formula)
GHS(formula, G = NA, H = NA, S = NA, T = 298.15, E_units = "cal")
ZC(formula)
i2A(formula)

Arguments

makeup numeric, object returned by makeup

drop.zero logical, drop elements with a coefficient of zero?

formula character, chemical formulas, or numeric, rownumbers in thermo()$obigt

G numeric, standard molal Gibbs energy of formation from the elements

H numeric, standard molal enthalpy of formation from the elements

S numeric, standard molal molal entropy

T numeric, temperature in Kelvin

E_units character, energy units (cal or J)



122 util.formula

Details

i2A returns a stoichiometric matrix representing the elemental composition of the formulas. Each
column corresponds to an element that is present in at least one of the formulas; some element
counts will be zero if not all formula have the same elements. If a matrix is passed to i2A it is
returned unchanged.

as.chemical.formula makes a character string representing a chemical formula from a vector
of coefficients with names corresponding to the elements (e.g., the output of makeup) or from a
stoichiometric matrix (output of i2A). Each elemental symbol is written followed by its coefficient;
negative coefficients are signed. Any coefficients equal to 1 are not explicitly written, and any
charge (indicated by makeup as ‘Z’) is shown as a signed number at the end of the formula. If the
formula is uncharged, and the last element has a negative coefficient, +0 is shown at the end of the
formula to indicate a charge of zero.

The remaining functions documented here accept vectors of chemical formulas, species indices, or
a mixture of both, or stoichiometric matrices with elements on the columns.

mass and entropy return the sums of masses or entropies of elements in each of the formulas.
The masses are calculated using the masses of the elements in their natural isotopic distribution,
and the entropies, in cal K−1 mol−1, are calculated using the entropies of the compounds of the
pure elements in their stable states at 25 ◦C and 1 bar. The properties of the elements used by this
function are taken from thermo$element.

GHS computes one of the standard molal Gibbs energy or enthalpy of formation from the elements,
or standard molal entropy, from values of the other two. The formula, G, H and S arguments must
all have the same length. The entropies of the elements (Se) in each formula are calculated using
entropy, which gives values in calories. If E_units is ‘J’, the values are converted to Joules. The
equation in effect can be written as ∆G◦ = ∆H◦ − T∆S◦, where ∆S◦ = S − Se and T is
the temperature given in T (defaults to 298.15 K) (note that G and H in the arguments correspond
respectively to ∆G◦ and ∆H◦ in the equation). For each formula, if one of G, H, or S is NA, its
value is calculated from the other two. Otherwise, the values are returned unchanged.

ZC returns the average oxidation state of carbon (ZC) calculated from ratios of the elements in the
chemical formulas. The equation used is ZC = Z−nH+2(nO+nS)+3nN

nC
, where the n refer to the

number of the indicated element in the formula and Z is the charge (Dick and Shock, 2011). The
result is NaN for any formula that does not contain carbon. Elements other than those shown in the
equation are not included in the calculation, and produce a warning.

Value

mass, entropy, and ZC return numeric values. as.chemical.formula returns a character object.
GHS returns a matrix with column names ‘G’, ‘H’ and ‘S’, and i2A returns a matrix with column
names corresponding to the elements in the formulas.

References

Dick, J. M. and Shock, E. L. (2011) Calculation of the relative chemical stabilities of proteins as
a function of temperature and redox chemistry in a hot spring. PLoS ONE 6, e22782. https:
//doi.org/10.1371/journal.pone.0022782

https://doi.org/10.1371/journal.pone.0022782
https://doi.org/10.1371/journal.pone.0022782


util.legend 123

See Also

makeup, used by mass and entropy, and ZC and i2A for counting the elements in a formula (the
latter two make use of the count.zero argument). run.wjd uses the stoichiometric matrices created
by i2A. protein.formula has an example of computing ZC for proteins compiled from the RefSeq
database.

Examples

## mass and entropy from chemical formulas
mass("H2O")
entropy("H2O")
mass("-1") # electron
entropy("-1")

## different ways to get the formula of alanine
iA <- info("alanine")
info(iA)$formula
as.chemical.formula(makeup(iA))

## converting among Gibbs energy, enthalpy, entropy
# calculate the value of G from H and S
GHS("H2O", H=water("H"), S=water("S"))[1, ]
# that not quite equal to the value from water("G");
# probably using different entropies of the elements

## average oxidation states of carbon
stopifnot(ZC("CO2") == 4)
stopifnot(ZC("CH4") == -4)
stopifnot(ZC("CHNOSZ") == 7)
si <- info(info("LYSC_CHICK"))
stopifnot(si$formula == "C613H959N193O185S10")
stopifnot(all.equal(ZC(si$formula), 0.0163132137031))

## calculate the chemical formulas, then
## ZC of all of the proteins in CHNOSZ' database
pf <- protein.formula(thermo()$protein)
range(mass(pf))
# use na.rm=TRUE because we have a "protein" with a formula of H2O
range(ZC(pf), na.rm=TRUE)

util.legend Functions to Make Legend Text

Description

Generate expressions suitable plot legends describing system conditions.



124 util.list

Usage

lNaCl(x, digits = 2)
lS(x, digits = 3)
lT(x, digits = 0)
lP(x, digits = 0)
lTP(x, y, digits = 0)
lex(...)

Arguments

x numeric, value of the property

digits numeric, digits for rounding

y numeric, value of pressure

... language, objects to combine in an expression

Details

These functions are used to make expressions for common chemical system variables that can be
used in plot legends. lNaCl describe the molality of NaCl, and lS the total molality of sulfur. lT
and lP describe the temperature and pressure. lTP describe the temperature and pressure together,
separated by a comma.

The above functions return language objects, which can be combined with lex to make an expres-
sion that when used in legend appears on multiple lines.

See Also

util.expression

Examples

plot.new()
l <- lex(lTP(100, "Psat"), lNaCl(1), lS(1e-3))
legend("center", l)

util.list Functions to Work with Lists

Description

Combine lists or perform arithmetic operations on elements of lists.

Usage

which.pmax(elts, na.rm = FALSE, pmin = FALSE)



util.matrix 125

Arguments

elts list, numeric vectors for which to find maximum values (in parallel) (which.pmax).

na.rm logical, remove missing values?

pmin logical, find minimum values instead of maximum ones?

Details

which.pmax takes a list of equal-length numeric vectors (or objects that can be coerced to numeric)
in elts and returns the index of the vector holding the maximum value at each position. If na.rm is
TRUE, values of NA are removed; if pmin is TRUE the function finds locations of the minimum values
instead.

util.matrix Functions for Various Matrix Operations

Description

Find rows of a matrix that form invertible (linearly independent) combinations.

Usage

invertible.combs(A, nmax=20)

Arguments

A A matrix, with at least as many rows as columns.

nmax The maximum number of rows to consider.

Details

Given a matrix A, with number of rows equal to or greater than the number of columns, return the
combinations of row numbers that constitute invertible square matrices. Consider only the first nmax
rows of the original matrix (to save time for large systems).

Examples

## what combinations of the 20 common amino acids have
## a linearly independent stoichiometry with five elements?
# the names of the amino acids
aanames <- aminoacids("")
# their species indices
iaa <- suppressMessages(info(aanames))
# the full stoichiometric matrix
A <- i2A(iaa)
# the invertible combinations
icA <- invertible.combs(A)



126 util.misc

stopifnot(nrow(icA)==6067)
# that's a bit less than 40% of all possible combinations
nrow(icA) / ncol(combn(20, 5))
# count the occurrences of each amino acid
counts <- table(icA)
names(counts) <- aminoacids(1)
(sc <- sort(counts))
# the two sulfur-containing ones show up most frequently
stopifnot(tail(names(sc), 2)==c("C", "M"))

util.misc Functions for Miscellaneous Tasks

Description

Calculate dP/dT and temperature of phase transitions; scale logarithms of activity to a desired total
activity.

Usage

dPdTtr(ispecies, ispecies2 = NULL)
Ttr(ispecies, ispecies2 = NULL, P = 1, dPdT = NULL)
GHS_Tr(ispecies, Htr)
unitize(logact = NULL, length = NULL, logact.tot = 0)

Arguments

ispecies numeric, species index of a mineral phase

ispecies2 numeric, species index of next mineral phase (the default is ispecies + 1)

P numeric, pressure (bar)

dPdT numeric, values of (dP/dT ) of phase transitions (Ttr)

Htr numeric, enthalpy(ies) of transition (cal/mol)

logact numeric, logarithms of activity

length numeric, numbers of residues

logact.tot numeric, logarithm of total activity

Details

dPdTtr returns values of (dP/dT )Ttr, where Ttr represents the transition temperature, of the phase
transition at the high-T stability limit of the ispecies in thermo()$obigt (other than checking that
the names match, the function does not check that the species in fact represent different phases of the
same mineral). dPdTtr takes account of the Clapeyron equation, (dP/dT )Ttr=∆S/∆V , where ∆S
and ∆V represent the changes in entropy and volume of phase transition, and are calculated using
subcrt at Ttr from the standard molal entropies and volumes of the two phases involved. Using
values of dPdT calculated using dPdTtr or supplied in the arguments, Ttr returns as a function of P
values of the upper transition temperature of the mineral phase represented by ispecies.



util.misc 127

GHS_Tr can be used to calculate values of G, H, and S at Tr for the cr2, cr3, and cr4 phases in the
database. It combines the given Htr (enthalpies of transition) with the database values of GHS @
Tr only for the phase that is stable at 298.15 K (cr) and the transition temperatures and Cp coeffi-
cients for higher-temperature phases, to calculate the GHS @ Tr (i.e. low-temperature metastable
conditions) of the phases that are stable at higher temperatures.

unitize scales the logarithms of activities given in logact so that the logarithm of total activity
of residues is equal to zero (i.e. total activity of residues is one), or to some other value set in
logact.tot. length indicates the number of residues in each species. If logact is NULL, the
function takes the logarithms of activities from the current species definition. If any of those species
are proteins, the function gets their lengths using protein.length.

Examples

# we need the Helgeson et al., 1978 minerals for this example
add.obigt("SUPCRT92")
# that replaces the existing enstatite with the first phase;
# the other phases are appended to the end of thermo()$obigt
i1 <- info("enstatite")
i2 <- info("enstatite", "cr2")
i3 <- info("enstatite", "cr3")
# (dP/dT) of transitions
dPdTtr(i1, i2) # first transition
dPdTtr(i2, i3) # second transition
# temperature of transitions (Ttr) as a function of P
Ttr(i1, i2, P=c(1,10,100,1000))
Ttr(i2, i3, P=c(1,10,100,1000))
# restore default database
obigt()

# calculate the GHS at Tr for the high-temperature phases of iron
# using transition enthalpies from the SUPCRT92 database (sprons92.dat)
Htr <- c(326.0, 215.0, 165.0)
iiron <- info("iron")
GHS_Tr(iiron, Htr)
# the results calculated above are stored in the database ...
info(1:3 + iiron)[, c("G", "H", "S")]
# ... meaning that we can recalculate the transition enthalpies using subcrt()
sapply(info(0:2 + iiron)$T, function(T) {

# a very small T increment around the transition temperature
T <- convert(c(T-0.01, T), "C")
# use suppressMessages to make the output less crowded
substuff <- suppressMessages(subcrt("iron", T=T, P=1))
diff(substuff$out$iron$H)

})

## scale logarithms of activity
# suppose we have two proteins whose lengths are 100 and
# 200; what are the logarithms of activity of the proteins
# that are equal to each other and that give a total
# activity of residues equal to unity?
logact <- c(-3,-3) # could be any two equal numbers



128 util.plot

length <- c(100,200)
logact.tot <- 0
loga <- unitize(logact,length,logact.tot)
# the proteins have equal activity
stopifnot(identical(loga[1],loga[2]))
# the sum of activity of the residues is unity
stopifnot(isTRUE(all.equal(sum(10^loga * length),1)))
## now, what if the activity of protein 2 is ten
## times that of protein 1?
logact <- c(-3,-2)
loga <- unitize(logact,length,logact.tot)
# the proteins have unequal activity
stopifnot(isTRUE(all.equal(loga[2]-loga[1],1)))
# but the activities of residues still add up to one
stopifnot(isTRUE(all.equal(sum(10^loga * length),1)))

util.plot Functions to Create and Modify Plots

Description

Initialize a new plot window using preset parameters, add an axis or title to a plot, generate labels
for axes and subplots, add stability lines for water, get colors for a set of numeric values.

Usage

thermo.plot.new(xlim, ylim, xlab, ylab, cex = par("cex"),
mar = NULL, lwd = par("lwd"), side = c(1,2,3,4),
mgp = c(1.7, 0.3, 0), cex.axis = par("cex"), col = par("col"),
yline = NULL, axs = "i", plot.box = TRUE, las = 1,
xline = NULL, grid = "", col.grid = "gray", ...)

thermo.axis(lab = NULL, side = 1:4, line = 1.5, cex = par("cex"),
lwd = par("lwd"), col = par("col"), grid = "", col.grid = "gray",
plot.line = FALSE)

label.plot(x, xfrac = 0.05, yfrac = 0.95, paren = FALSE,
italic = FALSE, ...)

usrfig()
label.figure(x, xfrac = 0.05, yfrac = 0.95, paren = FALSE,
italic = FALSE, ...)

water.lines(eout, which = c("oxidation","reduction"),
lty = 2, lwd=1, col = par("fg"), plot.it = TRUE)

mtitle(main, line=0, spacing=1, ...)
ZC.col(z)

Arguments

xlim numeric, limits of the x-axis

ylim numeric, limits of the y-axis



util.plot 129

xlab character, x-axis label

ylab character, y-axis label

cex numeric, character expansion factor for labels

mar numeric, width (number of lines) of margins on each side of plot

lwd numeric, line width

side numeric, which sides of plot to draw axes

mgp numeric, sizes of margins of plot

cex.axis numeric, character expansion factor for names of axes

col character, line color

yline numeric, margin line on which to plot y-axis name

axs character, setting for axis limit calculation

plot.box logical, draw a box around the plot?

las numeric, style for axis labels

xline numeric, margin line on which to plot x-axis name

grid character, type of grid (‘major’, ‘minor’, or ‘both’)

col.grid character, color of the grid lines

plot.line logical, draw axis lines?

... further arguments passed to par or mtext

lab character, axis label

line numeric, margin line on which to place axis label or plot title

x character, label to place on plot

xfrac numeric, fractional location on x-axis for placement of label

yfrac numeric, fractional location on y-axis for placement of label

paren logical, add parentheses around label text?

italic logical, italicize label text?

eout data frame, output of affinity, equilibrate, or diagram

which character, which of oxidation/reduction lines to plot

lty numeric, line type

plot.it logical, plot the lines?

main character, text for plot title

spacing numeric, spacing between multiple lines

z numeric, set of values



130 util.plot

Details

thermo.plot.new sets parameters for a new plot, creates a new plot using plot.new, and adds
the axes tick marks to the plot. Plot parameters (see par) including cex, mar, lwd, mgp and axs
can be given, as well as a numeric vector in side identifying which sides of the plot receive tick
marks. yline, if present, denotes the margin line (default par('mgp')[1]) where the y-axis name
is plotted. thermo.axis is the function that actually adds the axes, including inward-pointing major
and minor tick marks (often used for thermodynamic property diagrams).

Use grid to add a grid to the plot, corresponding to either the major ticks (solid lines), minor ticks
(dashed lines), or both. The grid can be made by adding grid argument to diagram, or by calling
thermo.axis after diagram (see example).

water.lines plots lines representing the oxidation and reduction stability limits of water on Eh/pe/log fO2 /log fH2

vs pH/T /P diagrams. The x- and y-variables and their ranges are taken from eout. Values of T ,
P , pH, and log aH2O, not corresponding to either axis, are also taken from eout. which controls
which lines are drawn (‘oxidation’, ‘reduction’, or both (the default)). The value of swapped
in the output reflects whether pH, T , or P is on the x-axis (TRUE) or y-axis (FALSE). NA is re-
turned for any diagram for variables that can not be processed (including diagrams with more than
2 variables).

label.plot and label.figure add identifying text within the plot region and figure region. The
value given for x is made into a label, optionally italicized and with parentheses (like (a)). The
location of the label is controlled by xfrac and yfrac (the fractional coordinates of either the plot
or figure region), and ... can include other parameters such as cex and adj that are passed to text.

usrfig returns the limits of the figure region in “user” coordinates (i.e. the limits of the plot
region, from par("usr")). It is a supporting function for label.figure but is also useful for other
circumstances where information must be added at a particular location in a figure.

mtitle can be used to add a multi-line title to a plot. It loops over each element of main and places
it on a separate margin line using mtext. The spacing of the last (bottom) line from the edge of
the plot is specified by line. This function exists to facilitate using expressions in multiline titles
(see revisit for an example.)

ZC.col uses colorspace) to generate colors from a diverging palette (red - light grey - blue) corre-
sponding to the values in z. Red is associated with lower values of z. This function is intended to
generate colors for distinguishing average oxidation state of carbon ZC, but any numeric values can
be supplied.

See Also

diagram uses thermo.plot.new to set up a new plot, unless the argument tplot is set to FALSE
in diagram.

Examples

basis(c("H2S", "H2O", "H+", "e-"))
species(c("HS-", "H2S", "HSO4-", "SO4-2"))
a <- affinity(pH = c(0, 12), Eh = c(-1, 1), T = 200)
opar <- par(mfrow=c(2, 2))
diagram(a, grid = "both")
title(main = 'diagram(a, grid = "both")')
diagram(a, grid = "major")

https://CRAN.R-project.org/package=colorspace


util.protein 131

title(main = 'diagram(a, grid = "major")')
diagram(a, grid = "minor")
title(main = 'diagram(a, grid = "minor")')
diagram(a, fill = "terrain")
thermo.axis(grid = "major", col.grid = "slategray")
title(main = 'thermo.axis(grid = "major")')
par(thermo()$opar)
par(opar)

util.protein Functions for Proteins (Other Calculations)

Description

Return chemical formulas of groups in proteins, and calculate heat capacity using an additivity
model from the literature.

Usage

MP90.cp(protein, T)
group.formulas()

Arguments

protein proteins specified in any format usable by pinfo

T numeric, temperature in ◦C

Details

group.formulas returns the chemical formulas of each of the 20 common amino acid residues in
proteins, as well as the terminal -H and -H (treated as the [H2O] group).

MP90.cp takes protein (name of protein) and T (one or more temperatures in ◦C and returns the
additive heat capacity (J mol −1) of the unfolded protein using values of heat capacities of the
residues taken from Makhatadze and Privalov, 1990. Those authors provided values of heat capacity
at six points between 5 and 125 ◦C; this function interpolates (using splinefun) values at other
temperatures.

References

Makhatadze, G. I. and Privalov, P. L. (1990) Heat capacity of proteins. 1. Partial molar heat capacity
of individual amino acid residues in aqueous solution: Hydration effect J. Mol. Biol. 213, 375–384.
https://doi.org/10.1016/S0022-2836(05)80197-4

See Also

ionize.aa for an example that compares MP90.cp with heat capacities calculated in CHNOSZ at
different temperatures and pHs.

https://doi.org/10.1016/S0022-2836(05)80197-4


132 util.seq

util.seq Functions to Work with Sequence Data

Description

Return one- or three-letter abbreviations of amino acids; count nucleotides in nucleic acid se-
quences, calculate DNA and RNA complements of nucleic acid sequences.

Usage

aminoacids(nchar=1, which=NULL)
nucleic.formula(nucleic = NULL)
nucleic.complement(nucleic = NULL, type="DNA")

Arguments

nchar numeric, 1 to return one-letter, 3 to return three-letter abbreviations for amino
acids

which character, which amino acids to name

nucleic data frame, counts of nucleic-acid bases

type character, target type of nucleic acid (DNA or RNA)

Details

aminoacids returns the one-letter abbreviations (nchar=‘1’) or the three-letter abbreviations (nchar=‘3’)
or the names of the neutral amino acids (nchar=‘""’) or the names of the amino acids with ionized
side chains (nchar=‘"Z"’). The output includes 20 amino acids in alphabetic order by 1-letter ab-
breviation (the order used in thermo()$protein), unless which is provided, indicating the desired
amino acids (either as 1- or 3-letter abbreviations or names of the neutral amino acids).

nucleic.formula returns a string representation of the chemical formula for each nucleic-acid
composition contained in nucleic. The names of the bases are indicated by the column names of
nucleic. At present, the formula is computed as the sum of the chemical formulas of the bases
themselves, with no contribution from polymerization (dehydration) or phosphorylation.

nucleic.complement calculates the complement of the base composition given in nucleic. type
specifies the type of nucleic acid of the complement - ‘DNA’ (A, G, C, T) or ‘RNA’ (A, G, C, U).

See Also

count.aa for counting amino acids or nucleic-acid bases in a sequence; protein.formula for
calculating the chemical formulas of proteins.



util.test 133

Examples

## count nucleobases in a sequence
bases <- count.aa("ACCGGGTTT", type="DNA")
# the DNA complement of that sequence
DNA.comp <- nucleic.complement(bases)
# the RNA complement of the DNA complement
RNA.comp <- nucleic.complement(DNA.comp, type="RNA")
# the formula of the RNA complement (bases only)
nucleic.formula(RNA.comp) # C40H42N32O11

util.test Functions for Writing Tests

Description

Functions modelled after the expect_ functions in testthat.

Usage

maxdiff(x, y)
expect_maxdiff(object, expected, maxdiff = 0)

Arguments

x numeric object

y numeric object

object numeric, object to test

expected numeric, expected value

maxdiff numeric, maximum pairwise difference between object and expected value

Details

maxdiff computes the maximum (absolute) pairwise difference between x and y, i.e. max(abs(y
-x)).

expect_maxdiff tests that the maximum of the pairwise differences between two objects is less
than the value of the argument maxdiff. The function uses expect to generate an expectation in
the testthat framework.

https://CRAN.R-project.org/package=testthat
https://CRAN.R-project.org/package=testthat


134 util.units

util.units Functions to Convert Units

Description

These functions convert values between units and set the user’s preferred units.

Usage

P.units(units = NULL)
T.units(units = NULL)
E.units(units = NULL)
convert(value, units, T = 298.15, P = 1, pH = 7, logaH2O = 0)

Arguments

units character, name of units to set or convert to/from

value numeric, value(s) to be converted

T numeric, temperature (Kelvin), used in ‘G’-‘logK’, ‘pe’-‘Eh’ and ‘logfO2’-‘E0’
conversions

P numeric, pressure (bar), used in ‘logfO2’-‘E0’ conversions

pH numeric, pH, used in ‘logfO2’-‘E0’ conversions

logaH2O numeric, logarithm of activity of water, used in ‘logfO2’-‘E0’ conversions

Details

The units settings are used by subcrt, affinity, and diagram to accept input in or convert output
to the units desired by the user. The settings, which can be queried or changed with T.units,
E.units and P.units, refer to the units of temperature (C or K), energy (cal or J), and pressure
(bar, MPa). (The first value in each of those pairs refers to the default units).

The actual units conversions are handled by convert, through which values are transformed into
destination units (names not case sensitive). The possible conversions and settings for the units
argument are shown in the following table. Note that ‘Eh’ and ‘E0’ both stand for the value of Eh
(oxidation-reduction potential in volts); they have different names so that one can choose to convert
between Eh and either ‘pe’ or ‘logfO2’.

property units setting of units argument
temperature ◦C, K C, K
pressure bar, MPa bar, MPa
energy cal, J cal, J
energy cal, cm3 bar calories, cm3bar
energy cal, [none] G, logK
oxidation potential volt, [none] Eh, pe
oxidation potential volt, [none] E0, logfO2



util.water 135

Another use of the function is to convert the results from solubility into parts per billion, million,
or thousand. These destination units are specified by ‘ppb’, ‘ppm’, or ‘ppt’. Additionally, the
logarithms can be chosen with ‘logppb’, ‘logppm’, and ‘logppt’. See demo("contour") and
demo("sphalerite") for examples.

Examples

### direct usage of convert
# temperature (Kelvin) to degrees C
convert(273.15, "C")
# temperature (degrees C) to Kelvin
convert(100, "K")
# Gibbs energy (cal mol-1) to/from logK
convert(1000, "logK")
convert(1000, "logK", T=373.15)
convert(1, "G")
# Eh (volt) to pe
convert(-1, "pe")
convert(-1, "pe", T=373.15)
# logfO2 to E0 (volt)
convert(-80, "E0")
convert(-80, "E0", pH=5)
convert(-80, "E0", pH=5, logaH2O=-5)
# calorie to/from joule
convert(10, "J")
convert(10, "cal")
# cm3bar to calories
convert(10, "calories")

### setting the units
# make K the units for temperature arguments to subcrt() and affinity()
T.units("K")
# return to default - degrees C
T.units("C")

util.water Functions for Properties of Water and Steam

Description

Utility functions for properties of water and steam.

Usage

WP02.auxiliary(property, T = 298.15)
rho.IAPWS95(T = 298.15, P = 1, state="", trace=0)
water.AW90(T = 298.15, rho = 1000, P = 0.1)



136 util.water

Arguments

property character, property to calculate

T numeric, temperature (K)

P numeric, pressure (units of bar, except MPa for water.AW90)

state character, state or phase of H2O

trace integer number

rho numeric, density (kg m−3)

Details

Auxiliary equations to the IAPWS-95 formulation (Wagner and Pruß, 2002) are provided in WP02.auxiliary.
The property for this function can be one of ‘P.sigma’ (saturation vapor pressure in MPa), ‘dP.sigma.dT’
(derivative of saturation vapor pressure with respect to temperature), or ‘rho.liquid’ or ‘rho.vapor’
(density of liquid or vapor in kg m−3).

rho.IAPWS95 implements a root-finding technique (using uniroot) to determine the values of den-
sity for the stable phase of H2O at the given temperature and pressure. The state option is used
internally in order to determine the stable phase at conditions close to saturation (0.9999*PSAT <=
P <= 1.00005*PSAT, where PSAT is the saturation pressure calculated by WP02.auxiliary). Al-
ternatively, the user can specify a state of ‘liquid’ or ‘vapor’ to force the calculation of density
for the corresponding phase, even if it is metastable (e.g. superheated water, supercooled steam;
this option has no effect in the supercritical region). The state is set in calls by water.IAPWS95
to the value in thermo()$opt$IAPWS.sat (default ‘liquid’) so that higher-level functions (water,
subcrt) take properties for that state along the saturation curve. Diagnostic messages are printed if
trace is positive (it is also included in the call to uniroot).

water.AW90 provides values of the static dielectric constant (epsilon) calculated using equations
given by Archer and Wang, 1990.

References

Archer, D. G. and Wang, P. M. (1990) The dielectric constant of water and Debye-Hückel limiting
law slopes. J. Phys. Chem. Ref. Data 19, 371–411. https://srd.nist.gov/JPCRD/jpcrd383.
pdf

Wagner, W. and Pruß, A. (2002) The IAPWS formulation 1995 for the thermodynamic properties
of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31, 387–535.
https://doi.org/10.1063/1.1461829

Examples

# calculate density of stable phase at 500 K, 500 bar
rho <- rho.IAPWS95(T=500, P=500)
# calculate pressure (= 50 MPa) at this density
IAPWS95("P", T=500, rho=rho)
# calculate dielectric constant
water.AW90(T=500, rho=rho, P=50)

# density along saturation curve

https://srd.nist.gov/JPCRD/jpcrd383.pdf
https://srd.nist.gov/JPCRD/jpcrd383.pdf
https://doi.org/10.1063/1.1461829


water 137

T <- seq(273.15, 623.15, 25)
WP02.auxiliary(T=T) # liquid from WP02
WP02.auxiliary("rho.vapor", T) # vapor from WP02

# WP02.auxiliary gives a close estimate of saturation pressure...
T <- 445:455
P.sigma <- WP02.auxiliary("P.sigma", T)
# ... but alternates between being just on the liquid or vapor side
# (low rho: steam; high rho: water)
rho.IAPWS95(T, convert(P.sigma, "bar"))
# thermo()$opt$IAPWS.sat allows for choosing liquid or vapor or ""
thermo("opt$IAPWS.sat" = "")
# shows artifactual vapor-liquid transition
water.IAPWS95("V", T, "Psat")
# the calculated Psat, while not exact, should be close enough for most
# geochemical calculations to select liquid or vapor
oldwat <- water("IAPWS95")
thermo("opt$IAPWS.sat" = "vapor")
V.vapor <- subcrt("water", T=convert(445:455, "C"))$out[[1]]$V
thermo("opt$IAPWS.sat" = "liquid") # the default
V.liquid <- subcrt("water", T=convert(445:455, "C"))$out[[1]]$V
stopifnot(all(V.vapor > V.liquid))
water(oldwat)

water Properties of Water

Description

Calculate thermodynamic and electrostatic properties of water.

Usage

water(property = NULL, T = 298.15, P = "Psat", P1 = TRUE)
water.SUPCRT92(property=NULL, T = 298.15, P = 1, P1 = TRUE)
water.IAPWS95(property=NULL, T = 298.15, P = 1)
water.DEW(property=NULL, T = 373.15, P = 1000)

Arguments

property character, computational setting or property(s) to calculate

T numeric, temperature (K)

P numeric, pressure (bar), or ‘Psat’ for vapor-liquid saturation

P1 logical, output pressure of 1 bar below 100 ◦C instead of calculated values of
‘Psat’?



138 water

Details

These functions compute the thermodynamic (Gibbs energy and it derivatives) and electrostatic
(dielectric constant and its derivatives) properties of liquid or supercritical H2O as a function of
temperature and pressure using equations of state taken from the literature. The high-level function
water performs different computations, depending on the setting of thermo$opt$water:

‘SUPCRT92’ (default) or ‘SUPCRT’ Thermodynamic and electrostatic properties are calculated us-
ing a FORTRAN subroutine taken from the SUPCRT92 software package (Johnson et al.,
1992). See more information below.

‘IAPWS95’ or ‘IAPWS’ Thermodynamic properties are calculated using an implementation in R
code of the IAPWS-95 formulation (Wagner and Pruss, 2002), and electrostatic properties are
calculated using the equations of Archer and Wang, 1990. See IAPWS95 and more information
below.

‘DEW’ Thermodynamic and electrostatic properties are calculated using the Deep Earth Water (DEW)
model (Sverjensky et al., 2014). The defaults for T and P reflect the minimum values for ap-
plicability of the model; calculations at lower T and/or P points fall back to using ‘SUPCRT92’.
See DEW.

Calling the function with no arguments returns the current computational setting. Use e.g. water("DEW")
to make the setting; the previous setting (at the time of the function call) is returned invisibly. Sub-
sequent calculations with water, or other functions such as subcrt and affinity, will use that
setting.

The allowed propertys for water are one or more of those given below, depending on the com-
putational setting; availability is shown by an asterisk. Note that some of the properties that can
actually be calculated using the different formulations are not implemented here. Except for rho,
the units are those used by Johnson and Norton, 1991.

Property Description Units IAPWS95 SUPCRT92 DEW
A Helmholtz energy cal mol−1 * * NA
G Gibbs energy cal mol−1 * * *
S Entropy cal K−1 mol−1 * * NA
U Internal energy cal mol−1 * * NA
H Enthalpy cal mol−1 * * NA
Cv Isochoric heat capacity cal K−1 mol−1 * * NA
Cp Isobaric heat capacity cal K−1 mol−1 * * NA
Speed Speed of sound cm s−1 NA * NA
alpha Coefficient of isobaric expansivity K−1 NA * NA
beta Coefficient of isothermal compressibility bar−1 NA * NA
epsilon Dielectric constant dimensionless NA * *
visc Dynamic viscosity g cm−1 s−1 NA * NA
tcond Thermal conductivity cal cm−1 s−1 K−1 NA * NA
tdiff Thermal diffusivity cm2 s−1 NA * NA
Prndtl Prandtl number dimensionless NA * NA
visck Kinematic viscosity cm2 s−1 NA * NA
albe Isochoric expansivity bar K−1 NA * NA

-compressibility
ZBorn Z Born function dimensionless NA * NA
YBorn Y Born function K−1 * * NA



water 139

QBorn Q Born function bar−1 * * *
daldT Isobaric temperature derivative K−2 NA * NA

of expansibility
XBorn X Born function K−2 * * NA
NBorn N Born function bar−2 * NA NA
UBorn U Born function bar−1 K−1 * NA NA
V Volume cm3 mol−1 * * *
rho Density kg m3 * * *
Psat Saturation vapor pressure bar * * NA
E Isobaric expansivity cm3 K−1 NA * NA
kT Isothermal compressibility cm3 bar−1 NA * NA
de.dT Temperature derivative K−1 * NA NA

of dielectric constant
de.dP Pressure derivative bar−1 * NA NA

of dielectric constant
P Pressure bar * NA NA
A_DH A Debye-Huckel parameter kg0.5 mol−0.5 * * *
B_DH B Debye-Huckel parameter kg0.5 mol−0.5 cm−1 * * *

Call water.SUPCRT92, water.IAPWS95, or water.DEW with no arguments to list the available prop-
erties.

water.SUPCRT92 interfaces to the FORTRAN subroutine taken from the SUPCRT92 package (H2O92D.F)
for calculating properties of water. These calculations are based on data and equations of Levelt-
Sengers et al., 1983, Haar et al., 1984, and Johnson and Norton, 1991, among others (see Johnson et
al., 1992). A value of P set to ‘Psat’ refers to one bar below 100 ◦C, otherwise to the vapor-liquid
saturation pressure at temperatures below the critical point (‘Psat’ is not available at temperatures
above the critical point). water.SUPCRT92 provides a limited interface to the FORTRAN subrou-
tine; some functions provided there are not made available here (e.g., using variable density instead
of pressure, or calculating the properties of steam).

The stated temperature limits of validity of calculations in water.SUPCRT92 are from the greater
of 0 ◦C or the melting temperature at pressure, to 2250 ◦C (Johnson et al., 1992). Valid pressures
are from the greater of zero bar or the melting pressure at temperature to 30000 bar. The present
functions do not check these limits and will attempt calculations for any range of input parameters,
but may return NA for properties that fail to be calculated at given temperatures and pressures and/or
produce warnings or even errors when problems are encountered.

Starting with version 0.9-9.4, a check for minimum pressure (in valTP function in H2O92D.f) has
been bypassed so that properties of H2O can be calculated using water.SUPCRT92 at temperatures
below the 0.01 ◦C triple point. A primary check is still enforced (Tbtm), giving a minimum valid
temperature of 253.15 K.

water.IAPWS95 is a wrapper around IAPWS95, rho.IAPWS95 and water.AW90. water.IAPWS95
provides for calculations at specific temperature and pressure; density, needed for IAPWS95, is in-
verted from pressure using rho.IAPWS95. The function also contains routines for calculating the
Born functions as numerical derivatives of the static dielectric constant (from water.AW90). For
compatibility with geochemical modeling conventions, the values of Gibbs energy, enthalpy and en-
tropy output by IAPWS95 are converted by water.IAPWS95 to the triple point reference state adopted



140 water

in SUPCRT92 (Johnson and Norton, 1991; Helgeson and Kirkham, 1974). water.IAPWS95 also ac-
cepts setting P to ‘Psat’, with the saturation pressure calculated from WP02.auxiliary; by default
the returned properties are for the liquid, but this can be changed to the vapor in thermo$opt$IAPWS.sat.

A_DH and B_DH are solvent parameters in the “B-dot” (extended Debye-Huckel) equation (Helgeson,
1969; Manning, 2013).

Value

A data frame, the number of rows of which corresponds to the number of input temperature-pressure
pairs.

References

Archer, D. G. and Wang, P. M. (1990) The dielectric constant of water and Debye-Hückel limiting
law slopes. J. Phys. Chem. Ref. Data 19, 371–411. https://doi.org/10.1063/1.555853

Haar, L., Gallagher, J. S. and Kell, G. S. (1984) NBS/NRC Steam Tables. Hemisphere, Washington,
D. C., 320 p. http://www.worldcat.org/oclc/301304139

Helgeson, H. C. and Kirkham, D. H. (1974) Theoretical prediction of the thermodynamic be-
havior of aqueous electrolytes at high pressures and temperatures. I. Summary of the thermody-
namic/electrostatic properties of the solvent. Am. J. Sci. 274, 1089–1098. https://doi.org/10.
2475/ajs.274.10.1089

Helgeson, H. C. (1969) Thermodynamics of hydrothermal systems at elevated temperatures and
pressures. Am. J. Sci. 267, 729–804. https://doi.org/10.2475/ajs.267.7.729

Johnson, J. W. and Norton, D. (1991) Critical phenomena in hydrothermal systems: state, ther-
modynamic, electrostatic, and transport properties of H2O in the critical region. Am. J. Sci. 291,
541–648. https://doi.org/10.2475/ajs.291.6.541

Johnson, J. W., Oelkers, E. H. and Helgeson, H. C. (1992) SUPCRT92: A software package for
calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and
reactions from 1 to 5000 bar and 0 to 1000◦C. Comp. Geosci. 18, 899–947. https://doi.org/
10.1016/0098-3004(92)90029-Q

Levelt-Sengers, J. M. H., Kamgarparsi, B., Balfour, F. W. and Sengers, J. V. (1983) Thermodynamic
properties of steam in the critical region. J. Phys. Chem. Ref. Data 12, 1–28. https://doi.org/
10.1063/1.555676

Manning, C. E. (2013) Thermodynamic modeling of fluid-rock interaction at mid-crustal to upper-
mantle conditions. Rev. Mineral. Geochem. 76, 135–164. https://doi.org/10.2138/rmg.
2013.76.5

Sverjensky, D. A., Harrison, B. and Azzolini, D. (2014) Water in the deep Earth: The dielectric
constant and the solubilities of quartz and corundum to 60 kb and 1,200 ◦C. Geochim. Cosmochim.
Acta 129, 125–145. https://doi.org/10.1016/j.gca.2013.12.019

Wagner, W. and Pruss, A. (2002) The IAPWS formulation 1995 for the thermodynamic properties
of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31, 387–535.
https://doi.org/10.1063/1.1461829

See Also

For calculating properties of reactions, subcrt coordinates the calculation of properties among
water and hkf and cgl for other species.

https://doi.org/10.1063/1.555853
http://www.worldcat.org/oclc/301304139
https://doi.org/10.2475/ajs.274.10.1089
https://doi.org/10.2475/ajs.274.10.1089
https://doi.org/10.2475/ajs.267.7.729
https://doi.org/10.2475/ajs.291.6.541
https://doi.org/10.1016/0098-3004(92)90029-Q
https://doi.org/10.1016/0098-3004(92)90029-Q
https://doi.org/10.1063/1.555676
https://doi.org/10.1063/1.555676
https://doi.org/10.2138/rmg.2013.76.5
https://doi.org/10.2138/rmg.2013.76.5
https://doi.org/10.1016/j.gca.2013.12.019
https://doi.org/10.1063/1.1461829


wjd 141

Examples

## calculations along saturation curve
T <- seq(273.15, 623.15, 25)
# liquid density, from SUPCRT92
water("rho", T=T, P="Psat")
# values of the saturation pressure, Gibbs energy
water(c("Psat", "G"), T=T, P="Psat")
# derivatives of the dielectric constant (Born functions)
water(c("QBorn", "YBorn", "XBorn"), T=T, P="Psat")
# now at constant pressure
water(c("QBorn", "YBorn", "XBorn"), T=T, P=2000)

## comparing the formulations
T <- convert(c(25, 100, 200, 300), "K")
# IAPWS-95
oldwat <- water("IAPWS95")
water(water.IAPWS95(), T=T)
# Deep Earth Water (DEW)
water("DEW")
water(water.DEW(), T=T, P=1000)
# SUPCRT92 (the default)
water(oldwat)
water(water.SUPCRT92(), T=T)

## calculating Q Born function
# after Table 22 of Johnson and Norton, 1991
T <- rep(c(375, 400, 425, 450, 475), each=5)
P <- rep(c(250, 300, 350, 400, 450), 5)
w <- water("QBorn", T=convert(T, "K"), P=P)
# the rest is to make a neat table
w <- as.data.frame(matrix(w[[1]], nrow=5))
colnames(w) <- T[1:5*5]
rownames(w) <- P[1:5]
print(w)

wjd Gibbs Energy Minimization by Steepest Descent

Description

Find the quantities of chemical species, subject to constant elemental bulk composition of the sys-
tem, that minimize the Gibbs energy of the system.

Usage

wjd(
A = matrix(c(
1,2,2,0,0,1,0,0,0,1,



142 wjd

0,0,0,1,2,1,1,0,0,0,
0,0,1,0,0,0,1,1,2,1),ncol=3,
dimnames=list(NULL,c("H","N","O"))),

G0.RT = c(
-10.021,-21.096,-37.986,-9.846,-28.653,
-18.918,-28.032,-14.640,-30.594,-26.111),

Y = c(0.1,0.35,0.5,0.1,0.35,0.1,0.1,0.1,0.1,0.1),
P = 51,
nlambda = 101,
imax = 10,
Gfrac = 1e-7

)
element.potentials(w, plot.it=FALSE, iplot=1:ncol(w$A))
is.near.equil(w, tol=0.01, quiet=FALSE)
guess(
A = matrix(c(
1,2,2,0,0,1,0,0,0,1,
0,0,0,1,2,1,1,0,0,0,
0,0,1,0,0,0,1,1,2,1),ncol=3,
dimnames=list(NULL,c("H","N","O"))),

B = c(2,1,1), method="stoich", minX = 0.001, iguess = 1, ic = NULL
)
run.wjd(ispecies, B = NULL, method = "stoich",
Y = run.guess(ispecies, B, method), P=1, T=25, nlambda=101, imax = 10,
Gfrac = 1e-7, tol = 0.01)

run.guess(ispecies, B = NULL, method = "stoich", iguess = NULL)
equil.potentials(w, tol=0.01, T=25)

Arguments

A matrix, chemical formulas of the species (elements on columns)

G0.RT numeric, the Gibbs energies / RT, at a single temperature (length equal to number
of species)

Y numeric, initial solution, a positive set of values (numbers of moles, length equal
to number of species)

P numeric, pressure in atmospheres

nlambda numeric, number of values of fractional distance change (λ) tested at each step.

imax numeric, maximum number of iterations

Gfrac numeric, Gibbs energy change of system, as a fraction of total system energy in
previous step, below which iterations will stop

w list, output from wjd

plot.it logical, make a plot?

iplot numeric, which elements for which to make plots

tol numeric, maximum difference in chemical potentials that counts as equilibrium

quiet logical, don’t output messages?



wjd 143

B numeric, numbers of moles of the elements

method character, method used for generating an initial solution

minX numeric, minimum mole number for ’central’ method

iguess numeric, which guess to return

ic numeric, which combination(s) of variable species to use (NULL for all)

ispecies numeric, species indices (rownumbers of thermo$obigt)

T numeric, temperature in ◦C

Details

wjd implements the steepest descent algorithm for Gibbs energy minimization in a closed system
described by White et al., 1958. “Gibbs energy” (G) referred to here is the same as the “free
energy” (F) used by White et al., 1958. wjd itself is independent of other functions or datasets in
CHNOSZ, but run.wjd and run.guess are provided to make access to the thermodynamic database
in CHNOSZ easier.

The default values of A, G0.RT, Y and P correspond to the example problem described by White et
al., 1958 for gases in the H, N, O system at 3500 K. Note that for this, and for any other equilibrium
problem that can be simulated using this function, the mole quantities in Y must all be positive num-
bers. Operationally, this vector defines not only the “initial solution” but also the bulk composition
of the system; it is not possible to define the bulk composition using mole numbers of elements
alone. The dimnames attribute in the default value for A gives the names of the elements; this at-
tribute is not necessary for the function to operate, but is used in the examples below to help label
the plots.

White et al., 1958 describe in detail the computation of the direction of steepest descent by means
of Lagrange multipliers. They propose an iterative solution to the energy minimization problem,
where at each step the mole numbers of species are recomputed and a new steepest descent direction
calculated from there. However, the authors only give general guidelines for computing the value
of λ, that is, the fraction of the total distance the system actually moves in the direction of steepest
descent from the current point at each iteration. The two constraints given for determining the
value of λ are that all mole numbers of species are positive, and the Gibbs energy of the system
actually decreases (the minimum point is not passed). In the code described here, at each iteration
the minimum value of lambda, not exceeding unity, that violates the first condition is computed
directly (a value of one is assigned if the mole numbers remain positive through the entire range).
With the default setting of nlambda, 101 values of λ at even intervals from 0 to this maximum
permissible value are tested for the second condition at each iteration, and the highest conforming
value is selected. If a value of 0 occurs, it means that the algorithm has reached an endpoint
independently of the iteration and convergence tests (rho and Gfrac; see below). If this occurs, the
value of nlambda might have to be increased depending on the user’s needs.

The number of iterations is controlled by imax and Gfrac. The maximum number of iterations
is set by imax; it can even be zero, though such a setting might only be useful in combination
with element.potentials to characterize the initial state of a minimization problem. Within the
limit of imax, the iterations continue until the magnitutde of the change in total Gibbs energy of
the system, as a fraction of the system’s energy in the previous iteration, is lower than the value
specified in Gfrac. For the first example below, the default setting of Gfrac causes the algorithm to
stop after six iterations.



144 wjd

Using the output of wjd, provided in the argument w, element.potentials calculates the chemical
potentials of the elements in the system. It does so by combining the values of G0.RT of species with
the inverses of stoichiometric matrices of combinations of species whose elemental compositions
are linearly independent from each other. These possible combinations are constructed using the
function invertible.combs. The value returned by element.potentials is a matrix, with each
column corresponding to a different element and each row to a different combination of species.
The entries in the matrix are the chemical potentials of the elements divided by RT . If plot.it is
set to TRUE, the chemical potentials of the elements are plotted as a function of species combination
number, with as many plots as elements, unless iplot is set to another value (e.g. ‘c(1,3)’ for only
elements 1 and 3). In the first example below, the number of unique combinations of species is 120,
but only 76 of these combinations provide stoichiometric independence.

There is no guarantee that the algorithm will converge on a global (or even be close to a local)
minimum. However, some tests are available to help assess the likelihood that a solution is close
to equilibrium. A necessary condition of equilibrium is that the chemical potentials of the elements
be independent of the particular combination of species used to compute them. is.near.equil
compares the chemical potentials for each element, computed using element.potentials, with
the value of tol. If, for each element, the range of potentials/RT (difference between minimum and
maximum) is less than tol, the result is TRUE, otherwise the function returns FALSE, and prints a
message unless quiet is TRUE. The default value of tol corresponds to an energy of 0.01 * 1.9872
* 298.15 = ca. 6 cal/mol at 25 ◦C.

One of the constraints of the algorithm coded in wjd is that the initial solution, and all iterations,
require positive (non-zero) numbers of moles of every species. Often, when investigating an equi-
librium problem, the stoichiometric constraints are expressed most readily in terms of bulk compo-
sition – numbers of moles of each element. guess is a function to make initial guesses about the
numbers of moles of all species in the system subject to the positivity constraints. Its system-specific
arguments are the stoichiometric matrix A (as defined above for wjd) and the bulk composition vec-
tor B, giving the number of moles of each element, in the same order that the elements appear in A.
The first method available in guess generates the ‘central’ solution of the system of linear equations
using the xranges function from limSolve. The central solution is the mean of ranges of unknowns.
The inequality constraint, or minimum number of moles of any species, is given by minX.

The second method for guess ‘stoich’ (and the default for run.guess and run.wjd) is to test
successive combinations of species whose elemental compositions are linearly independent. The
linearly independent combinations tested are all those from invertible.combs if ic is NULL, or
only those identified by ic. Each combination is referred to as the ‘variable’ species; the moles
of all ‘other’ species are set to a single value. This value is determined by the constraint that
the greatest proportion, relative to the bulk composition in B, of any element contributed by all the
‘other’ species is equal to a value in max.frac (see code). The function tests nine hard-coded values
of max.frac from 0.01 to 0.99, at each one solving for the moles of the ‘variable’ species that make
up the difference in numbers of moles of elements. If the numbers of moles of all the ‘variable’
species is positive, the guess is accepted. The first accepted guess is returned if iguess is 1 (the
default); other values of iguess indicate which guess to return. If iguess is NULL, all results are
returned in a list, with non-successful guesses indicated by NA. In the first example below, of the 76
combinations of species whose elemental compositions are linearly independent, 32 yield guesses
following this method.

run.wjd is a wrapper function to run wjd, provided the ispecies in the thermodynamic database
(thermo$obigt), the chemical composition of the system in B, and the pressure P and temperature
T; the latter are passed to subcrt (with exceed.Ttr = TRUE) to generate the values of G0.RT for

https://CRAN.R-project.org/package=limSolve


wjd 145

wjd. Alternatively to B, the initial guess of numbers of moles of species can be provided in Y;
otherwise as many combinations of Y as returned from run.guess are tested until one is found that
is.near.equil. The function gives an error if none of the guesses in Y is near equilibrium, within
the tolerance set by tol.

run.guess is a wrapper function to call guess using the stoichiometric matrix A built from the
ispecies indices in the thermodynamic database.

equil.potentials returns the average (colMeans) of element.potentials(w), or NULL if is.near.equil(w,tol=tol)
is FALSE. The output of this function can be used as the emu argument for basis.logact to calcu-
late the corresponding activities of the basis species.

Value

wjd returns a list with the problem definition and results: elements A, G0.RT, Y, and P are as supplied
in the arguments; the results are in X (final mole numbers of species), F.Y (Gibbs energy of the
system at initial conditions and after each iteration), lambda (value used for λ at each iteration),
and elements (matrix of moles of elements at initial conditions and after each iteration; iterations
on the columns and elements on the rows).

References

White, W. B., Johnson, S. M. and Dantzig, G. B. (1958) Chemical equilibrium in complex mixtures.
J. Chem. Phys. 28, 751–755. https://doi.org/10.1063/1.1744264

See Also

demo("wjd") for a longer example, and invertible.combs, used by element.potentials to find
combinations of species that are compositionally independent.

Examples

## run the function with default settings to reproduce
## the example problem in White et al., 1958
w <- wjd()
# the mole fractions are very close to those shown in the
# last column of Table III in the paper
print(w$X)
# the Gibbs energy of the system decreased,
# and by a smaller amount, at each iteration
print(diff(w$F.Y))
# there are 76 unique combinations of species that can be
# used to calculate the chemical potentials of the elements
stopifnot(nrow(invertible.combs(w$A))==76)
# what the scatter in those chemical potentials looks like

ep <- element.potentials(w, plot.it=TRUE)
# the differences in chemical potentials / RT are all less than 0.01
is.near.equil(w) # TRUE

## run the algorithm for only one iteration

https://doi.org/10.1063/1.1744264


146 wjd

w <- wjd(imax=1)
# the scatter in chemical potentials is much greater
ep <- element.potentials(w, plot.it=TRUE)
# and we're pretty far from equilibrium
is.near.equil(w) # FALSE

## test all of the guesses of inititial mole quantities
## provided by guess() using default bulk composition (H2NO)
# 9 of them are not is.near.equil with the tolerance lowered to 0.0001
sapply( 1:32, function(i)

is.near.equil(wjd(Y=guess(method = "stoich", iguess=i)), tol=0.0001) )

## using run.wjd(): 20 crystalline amino acids
iaa <- info(aminoacids(""), "cr")
# starting with one mole of each amino acid
w <- run.wjd(iaa, Y=rep(1, 20), imax=20)
# the following is TRUE (FALSE if tol is left at default)
is.near.equil(w, tol=0.012)
# in this assemblage, what are the amino acids
# in order of increasing abundance?
aminoacids()[order(w$X)]
# because the elements are redistributed among the species,
# the total number of moles of species does not remain constant
sum(w$X) # <20



Index

∗Topic package
CHNOSZ-package, 3

[, 108

aasum (add.protein), 8
add.obigt, 3, 4, 5, 51, 102, 114
add.protein, 3, 8, 119
affinity, 3, 9, 19, 24, 26–28, 40, 41, 59, 62,

63, 67, 75, 78, 85, 86, 89, 92, 106,
108, 117, 129, 134

agrep, 57
AkDi, 6, 103
AkDi (eos), 31
all.equal, 78
allparents (taxonomy), 100
aminoacids (util.seq), 132
array, 108
as.chemical.formula, 114
as.chemical.formula (util.formula), 121
as.expression, 36
attributes, 73
axis.label, 27
axis.label (util.expression), 115

barplot, 26
basis, 3, 10, 11, 12, 19, 54, 61, 63, 89, 90, 92,

98, 102, 106
basis.elements (swap.basis), 98
basis.logact, 145
basis.logact (swap.basis), 98
berman, 3, 15, 48, 103
bgamma (nonideal), 66
browseURL, 113
buffer, 3, 10, 11, 13, 19, 26, 29, 106

calculateDensity (DEW), 22
calculateEpsilon (DEW), 22
calculateGibbsOfWater (DEW), 22
calculateQ (DEW), 22
cgl, 91, 103, 140

cgl (eos), 31
check.obigt, 51, 57
check.obigt (util.data), 112
checkEOS, 51, 57, 102, 103
checkEOS (util.data), 112
checkGHS, 51, 57, 102
checkGHS (util.data), 112
CHNOSZ (thermo), 102
CHNOSZ-package, 3
clusterExport, 75
colMeans, 145
colors, 27
colSums, 108
contour, 25, 26, 83
contourLines, 27, 28
convert (util.units), 134
count.aa, 75, 132
count.aa (util.fasta), 119
count.elements (makeup), 60
Cp_s_var (EOSregress), 34
CV (objective), 71
CVRMSD (objective), 71

data, 3, 5
DDGmix (objective), 71
def2gi, 111
def2gi (util.blast), 110
demo, 12, 44, 135
demos, 29, 49, 93
demos (examples), 43
describe.basis (util.expression), 115
describe.property (util.expression), 115
describe.reaction (util.expression), 115
DEW, 3, 22, 138
DGinf (objective), 71
DGmix (objective), 71
DGtr (objective), 71
diagram, 3, 12, 23, 27, 40–42, 54, 78, 86, 117,

129, 130, 134
dimSums (util.array), 108

147



148 INDEX

dPdTtr, 92
dPdTtr (util.misc), 126
dumpdata (util.data), 112

E.units, 6, 92, 102
E.units (util.units), 134
element.mu (swap.basis), 98
element.potentials (wjd), 141
entropy, 61, 103, 122
entropy (util.formula), 121
eos, 3, 31
EOScalc (EOSregress), 34
EOScoeffs (EOSregress), 34
EOSlab (EOSregress), 34
EOSplot (EOSregress), 34
EOSregress, 3, 34, 49
EOSvar (EOSregress), 34
eqdata, 4, 38
equil.boltzmann, 75
equil.boltzmann (equilibrate), 40
equil.potentials (wjd), 141
equil.reaction, 75
equil.reaction (equilibrate), 40
equilibrate, 3, 12, 24, 26–28, 40, 40, 63, 82,

83, 87, 129
example, 44
examples, 3, 4, 43
expect, 133
expect_maxdiff (util.test), 133
expr.property (util.expression), 115
expr.species (util.expression), 115
expr.units (util.expression), 115
expression, 116, 130
extdata, 3, 47, 107, 111, 114

find.tp (diagram), 23
findit, 3, 53, 72, 73, 84

get, 35
getnames (taxonomy), 100
getnodes (taxonomy), 100
getrank (taxonomy), 100
GHS (util.formula), 121
GHS_Tr (util.misc), 126
grid, 91
group.formulas, 78
group.formulas (util.protein), 131
guess (wjd), 141

help.search, 4

hkf, 91, 103, 140
hkf (eos), 31

i2A, 61, 81, 114
i2A (util.formula), 121
IAPWS95, 3, 55, 138, 139
ibasis (swap.basis), 98
id.blast, 48, 50
id.blast (util.blast), 110
image, 83
info, 3, 5, 14, 33, 56, 81, 90, 91, 94, 102
interactive, 75
invertible.combs, 144, 145
invertible.combs (util.matrix), 125
invisible, 6, 28, 111, 114
ionize.aa, 3, 12, 48, 58, 131
is.near.equil (wjd), 141

label.figure (util.plot), 128
label.plot (util.plot), 128
lapply, 75
legend, 25, 27, 124
LETTERS, 117
letters, 117
lex (util.legend), 123
library, 75
list2array (util.array), 108
lm, 35
lNaCl (util.legend), 123
loess.smooth, 83
log10, 41
logact (objective), 71
lP (util.legend), 123
lS (util.legend), 123
lT (util.legend), 123
lTP (util.legend), 123

makeCluster, 75
makeup, 3, 5, 14, 32, 60, 94, 102, 115, 116,

122, 123
mass, 61, 78, 103
mass (util.formula), 121
maxdiff (util.test), 133
mod.buffer, 6, 102, 114
mod.buffer (buffer), 19
mod.obigt, 102
mod.obigt (add.obigt), 4
moles (equilibrate), 40
mosaic, 3, 40, 44, 62, 86, 98



INDEX 149

MP90.cp (util.protein), 131
mtext, 130
mtitle (util.plot), 128

NaCl, 64
names, 28
nonideal, 3, 64, 66, 92, 94, 102, 103
nucleic.complement (util.seq), 132
nucleic.formula, 120
nucleic.formula (util.seq), 132

obigt (thermo), 102
objective, 3, 54, 71, 82, 83

P.units, 11, 92, 102
P.units (util.units), 134
palply, 4, 42, 74, 103
par, 26, 130
parent (taxonomy), 100
parLapply, 75
pearson (objective), 71
pinfo, 9, 59, 106, 131
pinfo (protein.info), 77
plot, 26
plot.new, 130
plot_findit (findit), 53
plotmath, 36, 116
png, 44
points, 83
protein, 3, 9, 20, 29, 57, 75
protein.basis (protein.info), 77
protein.equil (protein.info), 77
protein.formula, 123, 132
protein.formula (protein.info), 77
protein.info, 3, 77
protein.length (protein.info), 77
protein.obigt (protein.info), 77

qqnorm, 72, 83
qqr (objective), 71

rainbow, 28
ratlab (util.expression), 115
read.blast, 48
read.blast (util.blast), 110
read.fasta, 9, 49, 75
read.fasta (util.fasta), 119
reset (thermo), 102
retrieve, 80, 107

revisit, 3, 42, 55, 72, 73, 82, 130
RH2obigt, 51
RH2obigt (util.data), 112
rho.IAPWS95, 44, 139
rho.IAPWS95 (util.water), 135
richness (revisit), 82
RMSD (objective), 71
rowSums, 108
Rprofile, 75
run.guess (wjd), 141
run.wjd, 123
run.wjd (wjd), 141

sciname (taxonomy), 100
SD (objective), 71
seq2aa, 120
seq2aa (add.protein), 8
shannon (objective), 71
signif, 77
slice (util.array), 108
solubility, 26, 63, 85, 135
spearman (objective), 71
species, 3, 10, 11, 13, 14, 28, 54, 86, 88, 90,

102, 107
splinefun, 25, 27, 131
strip (diagram), 23
structure, 73
subcrt, 3, 10, 11, 32, 33, 45, 48, 49, 59, 64,

67, 68, 90, 102, 103, 117, 134, 136,
140, 144

substitute, 36
substr, 120
swap.basis, 3, 14, 98
syslab (util.expression), 115

T.units, 11, 91, 92, 102
T.units (util.units), 134
taxonomy, 4, 50, 100
text, 130
thermo, 5, 6, 8–11, 13, 19, 32, 36, 47, 48, 51,

57, 61, 67, 75, 81, 89, 92, 98, 102,
113, 114, 119, 120, 122, 138, 140,
144

thermo.axis (util.plot), 128
thermo.plot.new, 25
thermo.plot.new (util.plot), 128
thermo.refs, 4, 104
thermo.refs (util.data), 112
title, 25



150 INDEX

today (add.obigt), 4
Ttr (util.misc), 126

uniprot.aa, 9
uniprot.aa (util.fasta), 119
uniroot, 40, 42, 64, 136
unitize (util.misc), 126
usrfig (util.plot), 128
util.array, 4, 108
util.blast, 4, 110
util.data, 3, 6, 112
util.expression, 4, 115, 124
util.fasta, 3, 119
util.formula, 3, 121
util.legend, 118, 123
util.list, 4, 124
util.matrix, 4, 125
util.misc, 3, 126
util.plot, 4, 128
util.protein, 3, 131
util.seq, 3, 132
util.test, 4, 133
util.units, 3, 54, 134
util.water, 3, 56, 103, 135

V_s_var (EOSregress), 34

water, 3, 32, 33, 35, 36, 56, 91, 102, 136, 137
water.AW90, 139
water.AW90 (util.water), 135
water.DEW, 23, 68
water.IAPWS95, 56, 136
water.lines (util.plot), 128
water.SUPCRT92, 93
which, 28
which.pmax (util.list), 124
wjd, 3, 141
WP02.auxiliary, 136, 140
WP02.auxiliary (util.water), 135
write.blast, 48
write.blast (util.blast), 110
write.csv, 28

xranges, 144

ZC, 78, 130
ZC (util.formula), 121
ZC.col, 49
ZC.col (util.plot), 128


	CHNOSZ-package
	add.obigt
	add.protein
	affinity
	basis
	berman
	buffer
	DEW
	diagram
	eos
	EOSregress
	eqdata
	equilibrate
	examples
	extdata
	findit
	IAPWS95
	info
	ionize.aa
	makeup
	mosaic
	NaCl
	nonideal
	objective
	palply
	protein
	protein.info
	retrieve
	revisit
	solubility
	species
	subcrt
	swap.basis
	taxonomy
	thermo
	util.array
	util.blast
	util.data
	util.expression
	util.fasta
	util.formula
	util.legend
	util.list
	util.matrix
	util.misc
	util.plot
	util.protein
	util.seq
	util.test
	util.units
	util.water
	water
	wjd
	Index

