Package ‘CHCN’

February 19, 2015
Type Package

Title Canadian Historical Climate Network

Version 1.5

Date 2012-06-07

Author Steven Mosher

Maintainer Steven Mosher <moshersteven@gmail.com>
Depends R (>=2.11.0),methods,bitops, RCurl

Description A compilation of historical through contemporary climate
measurements scraped from the Environment Canada Website
Including tools for scraping data, creating metadata and
formating temperature files.

License GPL (>=2)

URL http://stevemosher.wordpress.com/
LazyLoad yes

LazyData FALSE

Repository CRAN

Date/Publication 2012-06-08 18:23:46

NeedsCompilation no

R topics documented:

CHCN-package o i e e e e e e e e e e e e e e
BASE.URL e
createDataset L. e
createlnventory L. e e
DATA.DIRECTORY e
downloadMaster.
FORMAT.URL e e e e e
formatGhen e
getEmptyCsv e e e
getMissingScrape e e

http://stevemosher.wordpress.com/

2 CHCN-package
MASTER.STATION.LIST o e 11
MONTHLY.STATION.LIST e 12
readLocalMaster L e 12
readMonthlyCsv e 13
scrapeToCsv L L e 14
STARTING.STATION.ID e s 15
STATION.URL s 16
writeData 16
writeGhen L L e 17
writelnventory L 18
writeMonthlyStations 19
YEARURLo 20

Index 21

CHCN-package A package for Building Historical Climate data for Canada

Description

The package provides tools for scraping climate data from the Environment Canada website and
turning it into R objects that can easily be used by analysts. The functions provided allow the
user to download a master list of all the data at Environment Canada and to build a collection of
monthly climate data from those resources. The master list is downloaded and then the stations
which provide monthly data is extracted. Those station Ids are used to make http requests and the
data is downloaded as csv files. There are function provided to parse the local csv files and create
station "Inventories" with limited metadata (station name, latitude, longitude, etc). In addition,
functions for selecting and compiling temperature data are provided. Other data, such as snowfall,
rainfall, can also be easily extracted with simple R commands. Data can be reformated into a format
similar to that provided by NOAA’s GHCN (Global Historical Climate Network) and integration
with the package RghenV3 is trivial.

Details

Package: CHCN

Type: Package
Version: 1.5
Date: 2012-06-07

License: GPL (>=2)
LazyLoad: yes
LazyData: FALSE

CHCN-package 3

key functions and building the database

The process of building the database is shown in the demo files. The process starts by download-
ing the master station list. The format of this list has changed somewhat since the first publica-
tion of this code, so version prior to 1.3 will be broken by that change. The first call to make is
downloadMaster () That call creates a master list of all stations and their web ids. If that download
fails there is a backup version of the file shipped with the package. It can be read using the function
readLocalMaster. See that documentation for directions. Next, we create a list of monthly sta-
tions from that master list using Stations <- writeMonthlyStations() This writes a file of the
stations that report monthly. Then we scrape the website: scrapeToCsv(Stations), passing that
function our list of monthly stations. When this process completes we check for missing or empty
csv files: EMPTY <- getEmptyCsv (). If the list is null then we have no empty downloads. Checking
for missing downloads is accomplished by getMissingScrape. Assuming that all files are down-
loaded, then we can proceed to create datasets and inventories. data <- createDataset() will
create a dataset by reading all the csv files. As there is more than temperature data here, we want to
saveitall: writeData(data). Next, we create an inventory of all the stations: inv <- createInventory().
This inventory can be saved with a simple write.table. When we save this we preserve all the
orginal metadata in the format we downloaded it in: write.table(inv, "masterInventory.inv").
Next for working with other packages (like RghcnV3) we want to save data in a friendly format:
writeInventory(inv) will write a GHCN style inventory with variables named appropriately and
put into the correct columns for RghenV3. Lastly, we want to select certain data from the master
datafile and write it out. To select Tmean we do the following Mean <- formatGhcn(data, dataColumn = 7).
Data column 7 (use colnames(data) to see the entire list of options).

lastly, we write out the data in ghcn format writeGhen(data, directory = DATA.DIRECTORY, filename = "TaveCHCN.d:

Author(s)

Steven Mosher

Maintainer: Steven Mosher<moshersteven @ gmail.com>

References

http://climate.weatheroffice.gc.ca

Examples

Not run:

downloadMaster()

Stations <- writeMonthlyStations()

scrapeToCsv(Stations)

EMPTY <- getEmptyCsv()

if (is.null(EMPTY)){
data <- createDataset()
save all the data
writeData(data)
inv <- createlnventory()
write.table(inv, "masterInventory.inv")
write a ghcn style inventory
writeInventory(inv)
select Tave data

http://climate.weatheroffice.gc.ca

4 BASE.URL

Mean <- formatGhcn(data, dataColumn = 7)
writeGhcn(Mean)

T elsef
scrapeToCsv (EMPTY)
3

End(Not run)

BASE . URL The "base" elements of the url for scraping

Description

The http request is made to Enviroment Canada using a URL that consists of a "base" element, a
station Id, a year and a format.

Usage

BASE.URL

Format

The format is: chr "http://climate.weatheroffice.gc.ca/climateData/ bulkdata_e.html?timeframe=3&Prov=XX&StationID="

Details

The base is used to construct the final http request. The various elements are pasted together.

Source

http://climate.weatheroffice.gc.ca

References

The request format was passed from Enviroment Canada via email and verified by performing
sample downloads.

http://climate.weatheroffice.gc.ca

createDataset 5

createDataset A function to create a dataset from csv files on disk

Description

After files have been scraped to disk they have to processed from cvs files into proper R objects.
The first step is to create and inventory and then to create datasets. This function creates datasets.
Every csv file has 25 parameters. Creating the entire dataset makes a 350Mb file and takes a long
time to process. In the end you have a dataset that conatins all the monthly data from Environment
canada.

Usage

createDataset(Ids = NULL, filename = MONTHLY.STATION.LIST, directory = "EnvCanada")

Arguments

Ids a sequence of unique station Ids. Ids start at 99111111. They are present as
variables in both the file names and the inventories. Ids defaults to NULL. If
this is not changed by the caller then all station Ids are used to create the dataset.
Alternatively, one can create a subset of all the data by subseting the inventory
and working with the Ids from that inventory. For example, one could create
datasets for every province or for lat/lon combinations.

filename This is the filename of the master list of monthly stations. that file is read in get
a list of all unique Ids

directory The directory defaults to EnvCanada where all the csv files are. The csv files
all have unique names that are tied to the unique Ids. Given the vector of Ids
provided by the caller, and the list of files available, the function then reads in
those files to generate a data structure.

Value

The function returns a dataframe of 27 variables, including Ids, climate data, and the file that was
used to create the data. This data can then be written out by R’s write commands. You can also pass
this data through formatGhcn and create datasets that can be read by RghcnV3

Author(s)

Steven Mosher
Examples
Not run:

data <-createDataset(Ids = STARTING.STATION.ID: (STARTING.STATION.ID + 5))
data <-createDataset() # compiles a complete dataset of all files

6 createlnventory

End(Not run)

createlnventory Creates an inventory of all stations in the directory

Description

After all the files have been scraped to EnvCanada the next step is to create a master inventory of
every station. The cvs files have 7 lines of metadata which is read by this function and formated
into a R data structure for saving

Usage

createlnventory(directory = "EnvCanada"”)
Arguments

directory Defaults to EnvCanada where all scrapes are written to.
Details

As they are scraped the files are given a unique identifier which is contained in the monthly station
list. That identifier is a part of the filename is it saved under. The directory is searched for files
matching a specific name pattern. Those files are read in and the metadata is collected and formated
into a dataframe

Value
the function returns a dataframe conatining all the metadata of the stations in the directory. this
should be saved as a file.

Author(s)

Steven Mosher

Examples

Not run:

Inv <- createlnvetory()
write.table(Inv, "masterInventory.inv")

End(Not run)

DATA.DIRECTORY 7

DATA.DIRECTORY Directory for the final data storage

Description

Finalized inventories and data files are written here

Usage
DATA.DIRECTORY

Format

The format is: chr "DataDirectory”

Details

When data is processed from the web or local csv files files are created and put in this directory

downloadMaster Download the master list of stations

Description

This function simply downloads the master list and gives it a name that other functions rely on

Usage

downloadMaster(url = STATION.URL, localFile = MASTER.STATION.LIST)

Arguments
url the url for the csv file that contains all the stations
localFile A local filename to write this data to

Details

The function downloads the output of a scraper written by DrJ of clearclimatecode. That scraper is
found here: http://scraperwiki.com/scrapers/can-weather-stations/ It scrapes the main
page at Enviroment Canada and deposits a csv file containing all the information needed to data
scrape

Value

The function downloads a csv file and writes a local version

http://scraperwiki.com/scrapers/can-weather-stations/

8 formatGhcn

Author(s)

Steven Mosher

References

http://scraperwiki.com/scrapers/can-weather-stations/

FORMAT . URL A string for completing the http request

Description
htpp requests for data are made by combining 5 strings: a base string, a year string, a station webid,
a year, and a format string
Usage
FORMAT . URL

Format

The format is: chr "&Month=1&Day=1&format=csv"

Details

A string to specify that we want monthly data in a csv file

Source

http://climate.weatheroffice.gc.ca

formatGhcn creates a 14 column dataset for output

Description

The entire dataset of Environment Canada has 25 columns of data: Tmax,Tmin,Tave, quality flags
and other climate data. For use with the package RghcnV3 a 14 column format is required. This
format is similar to the 14 column format of GHCN V2. Id is in the first column, followed by Year,
followed by 12 measures, one for each month of the year in column 2. This function takes a column
and creates a dataset in that format

Usage

formatGhcn(data, dataColumn = 7)

http://scraperwiki.com/scrapers/can-weather-stations/
http://climate.weatheroffice.gc.ca

getEmptyCsv 9

Arguments
data A dataset that has been created by createDataset
dataColumn The column of the data you want to reformat. column = 7, will collate the
Mean air temperature from a full 25 column dataset. Use colnames(data) to
determine which column you want to format
Details

GHCN data is in 14 column or 51 column format. Every row of data has an Id, a year and 12 months
of data. This function takes the datasets of this package and creates formats that are readable by the
package RghcnV3. The function createDataset is used to read from csv files and create a complete
dataset with 25 columns of data. Typically you want to work with one data item at a time. This
function allows you to extract and reformat a column of that data

Value

Returns a 14 column dataframe

Author(s)

Steven Mosher

See Also

createDataset

Examples

Not run:
data <-createDataset()
Mean <-formatGhcn(data)
writeGhcn(Mean)

End(Not run)

getEmptyCsv A function to check for empty Csv files

Description

Before creating inventories or datasets the EnvCanada directory should be checked for complete-
ness. Sometimes the scraping process will result in empty csv files. This function checks for empty
files and returns a set of indices for re-scraping the empty files

Usage

getEmptyCsv(directory = "EnvCanada”, Monthly = MONTHLY.STATION.LIST)

10 getMissingScrape

Arguments

directory The directory where the csv files live

Monthly The name of the cvs file with the list of stations that report monthly
Details

The function uses file.info and list.files to find csv files with zero size. Then it seatches the
list of monthly stations to find the index (1-7676) of that station Id and returns the set of indices for
files that have zero length. Thus the function scrapeToCsv can then be called with the results of
getEmptyCsv

Value

A vector of indicies for empty files OR NULL

Author(s)

Steven Mosher

Examples

Not run:
x<-getEmptyCsv()
check if x is non null
scrapeToCsv(get = x)

End(Not run)

getMissingScrape A function to find which scrapes need to be done

Description

During the course of scraping the server sometimes loses the connection or returns an empty file.
When that happens the scrapeToCsv should be run again to complete the scrape. That function
takes a sequence of files that have not been downloaded. To figure out the missing files, call
getMissingScrape

Usage
getMissingScrape(monthlylList = MONTHLY.STATION.LIST, directory = "EnvCanada”)

Arguments

monthlylList The file name of the list of stations that report monthly. This is created by calling
createMonthlyStations

directory the default directory where scrapes are stored. EnvCanada.

MASTER.STATION.LIST 11

Details

The monthly list of stations contains all the stations that report monthly, numbered from 99111111
upwards. As files are scraped then are downloaded to EnvCanada. If the scrape should fail, or if you
want to do it in bits and peices you can find out which files are missing by comparing the master
station list with the directory of EnvCanada. This function makes that easy and uses the file names
to determin which elements of the monthly station list are missing.

Value

the function returns a sequence of integers that are references into the monthly station list. That list
has 7676 stations. If elements 52,78,954, and 3215 do not have their associated files in envCanada,
then those files can be scraped by calling scrapeToCsv and passing the sequence of elements to
that function

Author(s)

Steven Mosher

Examples

Not run:
missing <- getMissingScrape()
scrapeToCsv(Stations,get=missing)

End(Not run)

MASTER.STATION.LIST Name for the local version of the master station list

Description

defines the name of the local version of the master list

Usage

MASTER.STATION.LIST

Format

The format is: chr "EnvCanadaMaster.csv"

Details

Name of the local file. used in other functions

12 readlLocalMaster

MONTHLY.STATION.LIST Name of the local file for Monthly stations

Description
This file will contain a subset of master list. feilds have been edited to make scraping easier. Only
stations with monthly data are in the list
Usage
MONTHLY.STATION.LIST

Format

The format is: chr "MonthlyStations.Env.csv"

Details

The name used for the local version of the stations that report monthly

readLocalMaster A function to read a local copy of the master csv file

Description

The Process of building the dataset depends upon downloading a csv file that lists all the data on
environment canada. If for some reason the function downloadMaster does not function, the file
can be read from a local copy shipped with the package. This version should be current to the last
release date of the package.

Usage

readLocalMaster()

Details

The function reads a stored copy of EnvCanadaMaster.csv that ships with the package. After reading
the file you should write it out to your working directory. The following call will read the local copy
and write it out to your working directory. write.csv(readLocalMaster(), MASTER.STATION.LIST)

Value

the function returns a data.frame that contains the information neeed to create a master list of
monthly stations (as opposed to daily stations and hourly stations which are also in the master
list) That data.frame should be written as a csv file to the working directory It must be given the
name EnvCanadaMaster.csv . The constant MASTER.STATION.LIST is predefined to this strings
value

readMonthlyCsv 13

Author(s)

Steven Mosher

readMonthlyCsv reads the csv file that contains all the monthly stations

Description

A simple function that wraps a read. csv call to read the stations in the monthly station list

Usage

readMonthlyCsv(filename = MONTHLY.STATION.LIST)

Arguments

filename Default name oof the file. Should not be changed

Details

simplys wraps a read. csv call

Value

returns a data frame of the stations that report monthly

Author(s)

Steven Mosher

Examples

Not run:
Stations <- readMonthlyCsv()

End(Not run)

14 scrapeToCsv

scrapeToCsv A function to scrape files to local csv files

Description

This function uses the monthly list of stations and downloads them to a local directory. There are
7676 files as of July 2011. The function throws warnings about wrong files sizes. These can be
ignored or suppressed by setting warning options

Usage
scrapeToCsv(Stations, get = seq(from = 1, to = 1e+05), directory = "EnvCanada")
Arguments
Stations A data structure returned from readMonthlyStations If the monthly station
file already exists, it can simply be read from disk with read. csv
get get is assigned to a sequence of numbers that is used to index the monthly station
list. It defaults to 1:100000. This results in the function trying to download all
7676 files from Env Canada. Alternatively, one can download the files in chunks,
for example setting get to 1:1000, or any other sequence of numbers. Internal
checking ensures that the sequence sought is available for download. Irregular
sequences are also supported: get = c(23,65,257,7000) would get those
elements from the list of stations in monthly.env.csv
directory The local directory to write the csv files to. "EnvCanada”
Details

When createMonthlyStations is executed the master list is parsed and only those stations that
report monthly are copied into a file. The file contains a web Id that is used when downloading.
To scrape the files in the monthly data structure youc all scrapeToCsv and provide a sequence
of stations you want to download. The download will occasionally fail for server timeouts. By
using the function getMissingScrapes you can determine which files are missing from the di-
rectory. So if you try to download all 7676 files and the server times out after 2365, the function
getMissingScrapes will provide a sequence of files to be downloaded to complete your scrape.
Value

function downloads files according to the sequence of values in the "get" parameter.

Author(s)

Steven Mosher

See Also

getMissingScrape

STARTING.STATION.ID 15

Examples

Not run:
Stations <- writeMonthlyStations()
scrapeToCsv(Stations,get=1:100)
scrapeToCsv(Stations,get=100:2075)

End(Not run)

STARTING.STATION.ID The starting unique Id created for these stations

Description

Stations are numbered sequentially when they are taken out of the master list. Obviously if the
master list changes this unquie Id will change. It is used only for keeping track of files during
processing. It is not an officially recognized Id and should not be confused with WMo numbers or
the like

Usage

STARTING.STATION.ID

Format

The format is: num 99111111

Details

Stations are numbered sequentially

Examples

data(STARTING.STATION. ID)
print (STARTING. STATION.ID)

16 writeData

STATION.URL url for getting master station list

Description

url to get csv file of master list

Usage
STATION.URL

Format
The format is: chr "http://scraperwiki.com/api/1.0/datastore/ sqlite?format=csv&name=can-weather-
stations&query=select+*+from+‘swdata ‘"

Details

Output of the scraper written by DrJ of clearclimatecode.org

Source

http://scraperwiki.com/scrapers/can-weather-stations/

writeData Writes a file from a dataframe of climate data

Description

A function that simply writes the data in a dataframe to the data directory. Typically this would be
your master data file containing all stations and all data

Usage
writeData(Data, filename = "EnvCanadaData.dat”, directory = DATA.DIRECTORY)

Arguments
Data The data created by scraping and processing all the web page requests
filename Default file name for your master data file
directory Default directory for your data

Details

Function merely wraps a write.csv call and creates a data directory if you need one

http://scraperwiki.com/scrapers/can-weather-stations/

writeGhcn

Value

Side efffect is a file is written

Author(s)

Steven Mosher

Examples

Not run:
writeData(data)

End(Not run)

writeGhcn A simple wrapper to write.table

Description

Simply writes a file to the data directory using write.table

Usage

writeGhcn(data, directory = DATA.DIRECTORY, filename = "TaveCHCN.dat")

Arguments
data The data you want to write
directory defaults to the processed data directory
filename The filename you want for the data
Details

Simply uses write.table to write the data

Value

side effect is a file is written

Author(s)

Steven Mosher

18 writelnventory

Examples

Not run:
writeGhcn(data)

End(Not run)

writeInventory Writes inventory data in a format usable by RghcnV3 package

Description

The RGhenV3 package expects certain fields — Id, lat,lon in a specific order. This write function
insures the data is read in a compatible manner with that package

Usage

writeInventory(Inventory, filename = "Inventory.inv”, directory = DATA.DIRECTORY)

Arguments
Inventory A inventory of stations
filename A default name
directory the default data directory
Details
the function merely reorders the columns so that id is in the first column followed by latitude, and
longitude
Value

The side effect is writing a file

Author(s)

Steven Mosher

writeMonthlyStations 19

writeMonthlyStations Function to read the master list and write a monthly list of stations.
This file is critical to the operation of the scraper.

Description

the function reads the master list and writes a local list of stations that report monthly data. It also
returns an object dataframe. That dataframe can be fed to downstream processes

Usage

writeMonthlyStations(filename = MASTER.STATION.LIST,
outfile = MONTHLY.STATION.LIST)

Arguments
filename The filename of the master list. This is set to a default that should not be
changed.
outfile the local filename. Used by other functions. It should not be changed
Details

reads the master list. Extracts those stations that report monthly. Selects the first year reporting and
the web Id for the http request builder. Assigns an Id to every station for file naming and tracking.
The id it assigns is used for tracking the scrape progress and recovering from scrape failures.

Value

returns a dataframe and writes that dataframe to disk. can be read with read.csv

Author(s)

Steven Mosher

Examples

Not run:
Stations <- writeMonthlyStations()

End(Not run)

20 YEAR.URL

YEAR. URL A string for making the http request

Description

1 of 5 strings concatenated to make the final request

Usage
YEAR.URL

Format

The format is: chr "& Year="

Details

used to make the http request

Index

+Topic datasets
BASE.URL, 4
DATA.DIRECTORY, 7
FORMAT.URL, 8
MASTER.STATION.LIST, 11
MONTHLY.STATION.LIST, 12
STARTING.STATION.ID, 15
STATION.URL, 16
YEAR.URL, 20

+Topic files
createDataset, 5
createlnventory, 6
downloadMaster, 7
formatGhcn, 8
getEmptyCsv, 9
getMissingScrape, 10
readMonthlyCsv, 13
scrapeToCsv, 14
writeData, 16
writeGhcen, 17
writeInventory, 18
writeMonthlyStations, 19

xTopic filetools
readLocalMaster, 12

+Topic package
CHCN-package, 2

BASE.URL, 4

CHCN (CHCN-package), 2
CHCN-package, 2
createDataset, 5, 9
createlnventory, 6

DATA .DIRECTORY, 7
downloadMaster, 7

FORMAT.URL, 8
formatGhcn, 8

getEmptyCsv, 9

21

getMissingScrape, 10, 14

MASTER.STATION.LIST, 11
MONTHLY.STATION.LIST, 12

readLocalMaster, 12
readMonthlyCsv, 13

scrapeToCsv, 14
STARTING.STATION.ID, 15
STATION.URL, 16

writeData, 16
writeGhcn, 17
writeInventory, 18
writeMonthlyStations, 19

YEAR.URL, 20

	CHCN-package
	BASE.URL
	createDataset
	createInventory
	DATA.DIRECTORY
	downloadMaster
	FORMAT.URL
	formatGhcn
	getEmptyCsv
	getMissingScrape
	MASTER.STATION.LIST
	MONTHLY.STATION.LIST
	readLocalMaster
	readMonthlyCsv
	scrapeToCsv
	STARTING.STATION.ID
	STATION.URL
	writeData
	writeGhcn
	writeInventory
	writeMonthlyStations
	YEAR.URL
	Index

