
CB2(CRISPRBetaBinomial) is a new algorithm for analyzing CRISPR data based on beta-binomial distribution. We provide CB2 as a R package, and the interal algorithms of CB2 are also implemented in CRISPRCloud.
logFC parameter value of measure_gene_stats to gene will provide the logFC calculate by gene-level CPMs.join_count_and_design function.calc_mappability() provide total_reads and mapped_reads columns.There are several updates.
measure_sgrna_stats. The original name run_estimation has been deprecated.data.frame with character columns. In other words, you can useCurrently CB2 is now on CRAN, and you can install it using install.package function.
Installation Github version of CB2 can be done using the following lines of code in your R terminal.
Alternatively, here is a one-liner command line for the installation.
Rscript -e "install.packages('devtools'); devtools::install_github('LiuzLab/CB2')"
FASTA <- system.file("extdata", "toydata",
"small_sample.fasta",
package = "CB2")
df_design <- data.frame()
for(g in c("Low", "High", "Base")) {
for(i in 1:2) {
FASTQ <- system.file("extdata", "toydata",
sprintf("%s%d.fastq", g, i),
package = "CB2")
df_design <- rbind(df_design,
data.frame(
group = g,
sample_name = sprintf("%s%d", g, i),
fastq_path = FASTQ,
stringsAsFactors = F)
)
}
}
MAP_FILE <- system.file("extdata", "toydata", "sg2gene.csv", package="CB2")
sgrna_count <- run_sgrna_quant(FASTA, df_design, MAP_FILE)
sgrna_stat <- measure_sgrna_stats(sgrna_count$count, df_design,
"Base", "Low",
ge_id = "gene",
sg_id = "id")
gene_stat <- measure_gene_stats(sgrna_stat)Or you could run the example with the following commented code.
sgrna_count <- run_sgrna_quant(FASTA, df_design)
sgrna_stat <- measure_sgrna_stats(sgrna_count$count, df_design, "Base", "Low")
gene_stat <- measure_gene_stats(sgrna_stat)More detailed tutorial is available here!