
Overview of the package BuyseTest

Brice Ozenne

April 6, 2020

This vignette describes the main functionalities of the BuyseTest package. This package implements
the Generalized Pairwise Comparisons (GPC) as defined in Buyse (2010) for complete observations, and
extended in Péron et al. (2018) to deal with right-censoring. It is assumed that the reader is familar
with the GPC terminology 1, e.g. prioritized endpoints, pair, net benefit, win ratio, threshold of clinical
relevance, . . . , since this vignette focuses on the software aspect of the BuyseTest package (not on the
underlying statistical model).

The BuyseTest package contains three main functions:

• the function BuyseTest is the main function of the package. It performs the GPC, estimates the
net benefit/win ratio, and output a BuyseRes object. The user can interact with BuyseRes objects
using:

– summary to obtain a nice display of the results
– coef to extract the estimates.
– confint to extract estimates, confidence intervals, and p.values.
– getIid to extract the iid decomposition of the estimator.
– getPairScore to extract the contribution of each pair to the net benefit/win ratio.
– getSurvival to extract the estimates of the survival (only relevant for right-censored end-

points).

• the powerBuyseTest function performs simulation studies, e.g. to estimate the statistical power or
assess the bias / type 1 error rate of a test for a specific design.

• the BuyseTest.options function enables the user to display the default values used in the Buy-
seTest package (essentially used by the BuyseTest function). function. The function can also
change the default values to better match the user needs.

1if not, Buyse (2010) is a good place to start.

1

Before going further we need to load the BuyseTest package in the R session:
library(BuyseTest)
library(data.table)

To illustrate the functionalities of the package, we will used the veteran dataset from the survival
package:

data(veteran,package="survival")
head(veteran)

trt celltype time status karno diagtime age prior
1 1 squamous 72 1 60 7 69 0
2 1 squamous 411 1 70 5 64 10
3 1 squamous 228 1 60 3 38 0
4 1 squamous 126 1 60 9 63 10
5 1 squamous 118 1 70 11 65 10
6 1 squamous 10 1 20 5 49 0

See ?veteran for a presentation of the database.

Note: the BuyseTest package is under active development. Newer package versions may include
additional functionalities and fix previous bugs. The version of the package that is being is:

utils::packageVersion("BuyseTest")

[1] ‘2.0.0’

For completness, the details of the R session used to generate this document are:
sessionInfo()

R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.5 LTS

Matrix products: default
BLAS: /usr/lib/libblas/libblas.so.3.6.0
LAPACK: /usr/lib/lapack/liblapack.so.3.6.0

locale:
[1] LC_CTYPE=fr_FR.UTF-8 LC_NUMERIC=C LC_TIME=da_DK.UTF-8
[4] LC_COLLATE=fr_FR.UTF-8 LC_MONETARY=da_DK.UTF-8 LC_MESSAGES=fr_FR.UTF-8
[7] LC_PAPER=da_DK.UTF-8 LC_NAME=C LC_ADDRESS=C

[10] LC_TELEPHONE=C LC_MEASUREMENT=da_DK.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] stats graphics grDevices utils datasets methods base

2

other attached packages:
[1] data.table_1.12.8 BuyseTest_2.0.0 Rcpp_1.0.4

loaded via a namespace (and not attached):
[1] compiler_3.5.1 Matrix_1.2-14 tools_3.5.1 parallel_3.5.1
[5] survival_2.44-1.1 prodlim_2019.11.13 splines_3.5.1 grid_3.5.1
[9] lava_1.6.7 stats4_3.5.1 lattice_0.20-35

3

1 Performing generalized pairwise comparisons (GPC) using
the BuyseTest function

To perform generalized pairwise comparisons, the BuyseTest function needs:

• where the data are stored - argument data

• the name of the endpoints - argument endpoint

• the type of each endpoint - argument type

• the variable defining the two treatment groups - argument treatment

The BuyseTest function has many optional arguments to specify for example:

• the threshold of clinical relevance associated to each endpoint - argument threshold

• the censoring associated to each endpoint (for time to event endpoints) - argument status

There are two equivalent ways to define the GPC:

• using a separate argument for each element2:

BT <- BuyseTest(data = veteran,
endpoint = "time",
type = "timeToEvent",
treatment = "trt",
status = "status",
threshold = 20)

Generalized Pairwise Comparisons

Settings
- 2 groups : Control = 1 and Treatment = 2
- 1 endpoint:

priority endpoint type operator threshold event
1 time time to event higher is favorable 20 status (0 1)

- right-censored pairs: probabilistic score based on the survival curves

Point estimation and calculation of the iid decomposition

Estimation of the estimator’s distribution
- method: moments of the U-statistic

Gather the results in a S4BuyseTest object

2the argument method.inference is set to "none" to diseable the computation of p-values and confidence intervals. This
makes the execution of BuyseTest much faster.

4

• or via a formula interface. In the formula interface endpoint are wrapped by parentheses. The
parentheses must be preceded by their type:

- binary (b, bin, or binary)
- continuous (c, cont, or continuous)
- time to event (t, tte, or timetoevent)

BT.f <- BuyseTest(trt ∼ tte(time, threshold = 20, status = "status"),
data = veteran, trace = 0)

Here we set in addition the argument trace to 0 to force the function to be silent (i.e. no display in
the terminal). We can check that the two approaches are equivalent:

testthat::expect_equal(BT.f,BT)

1.1 Displaying the results
The results of the GPC can be displayed using the summary method:

summary(BT)

Generalized pairwise comparisons with 1 endpoint

> statistic : net benefit (delta: endpoint specific, Delta: global)
> null hypothesis : Delta == 0
> confidence level: 0.95
> inference : H-projection of order 1
> treatment groups: 1 (control) vs. 2 (treatment)
> right-censored pairs: probabilistic score based on the survival curves
> results
endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) delta Delta

time 20 100 37.78 46.54 15.68 0 -0.0877 -0.0877
CI [2.5% ; 97.5%] p.value
[-0.2735;0.1045] 0.37161

5

To display the number of pairs instead of the percentage of pairs that are favorable/unfavorable/neu-
tral/uniformative, set the argument percentage to FALSE:

summary(BT, percentage = FALSE)

Generalized pairwise comparisons with 1 endpoint

> statistic : net benefit (delta: endpoint specific, Delta: global)
> null hypothesis : Delta == 0
> confidence level: 0.95
> inference : H-projection of order 1
> treatment groups: 1 (control) vs. 2 (treatment)
> right-censored pairs: probabilistic score based on the survival curves
> results
endpoint threshold total favorable unfavorable neutral uninf delta Delta

time 20 4692 1772.59 2183.89 735.52 0 -0.0877 -0.0877
CI [2.5% ; 97.5%] p.value
[-0.2735;0.1045] 0.37161

By default summary displays results relative to the net benefit. To get results for the win ratio set the
argument statistic to "winRatio":

summary(BT, statistic = "winRatio")

Generalized pairwise comparisons with 1 endpoint

> statistic : win ratio (delta: endpoint specific, Delta: global)
> null hypothesis : Delta == 1
> confidence level: 0.95
> inference : H-projection of order 1
> treatment groups: 1 (control) vs. 2 (treatment)
> right-censored pairs: probabilistic score based on the survival curves
> results
endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) delta Delta

time 20 100 37.78 46.54 15.68 0 0.8117 0.8117
CI [2.5% ; 97.5%] p.value

[0.5134;1.2832] 0.37194

See help(BuyseRes-summary) for more detailed explanations about the summary method and its out-
put.

6

1.2 Using multiple endpoints
More than one endpoint can be considered by indicating a vector of endpoints, types, and thresholds. In
the formula interface, the different endpoints must be separated with a "+" on the right hand side of the
formula:

ff2 <- trt ∼ tte(time, threshold = 20, status = "status") + cont(karno, threshold = 0)
BT.H <- BuyseTest(ff2, data = veteran, trace = 0)
summary(BT.H)

Generalized pairwise comparisons with 2 prioritized endpoints

> statistic : net benefit (delta: endpoint specific, Delta: global)
> null hypothesis : Delta == 0
> confidence level: 0.95
> inference : H-projection of order 1
> treatment groups: 1 (control) vs. 2 (treatment)
> right-censored pairs: probabilistic score based on the survival curves
> neutral pairs : re-analyzed using lower priority endpoints
> results
endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) delta Delta

time 20 100.00 37.78 46.54 15.68 0 -0.0877 -0.0877
karno 1e-12 15.68 5.78 7.11 2.78 0 -0.0133 -0.1009

CI [2.5% ; 97.5%] p.value
[-0.2735;0.1045] 0.37161
[-0.2901;0.0959] 0.31477

The hierarchy of the endpoint is defined from left (most important endpoint, here time) to right (least
important endpoint, here karno). It is also possible to perform the comparisons on all endpoints setting
the argument hierarchical to FALSE:

BT.nH <- BuyseTest(ff2, hierarchical = FALSE, data = veteran, trace = 0)
summary(BT.nH)

Generalized pairwise comparisons with 2 endpoints

> statistic : net benefit (delta: endpoint specific, Delta: global)
> null hypothesis : Delta == 0
> confidence level: 0.95
> inference : H-projection of order 1
> treatment groups: 1 (control) vs. 2 (treatment)
> right-censored pairs: probabilistic score based on the survival curves
> neutral pairs : re-analyzed using lower priority endpoints
> results
endpoint threshold weight total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) delta

time 20 1 100 37.78 46.54 15.68 0 -0.0877
karno 1e-12 1 100 41.82 44.95 13.24 0 -0.0313

Delta CI [2.5% ; 97.5%] p.value
-0.0877 [-0.2735;0.1045] 0.37161
-0.1190 [-0.4346;0.2226] 0.49821

7

In that case the score of a pair is the weighted sum of the score relative to each endpoint. By default
the weights are all set to 1 but this behavior can be changed by setting the argument weight when calling
BuyseTest, e.g.:

ff2w <- trt ∼ tte(time, threshold = 20, status = "status", weight = 0.8)
ff2w <- update.formula(ff2w, . ∼ . + cont(karno, threshold = 0, weight = 0.2))
BT.nHw <- BuyseTest(ff2w, hierarchical = FALSE, data = veteran, trace = 0)
summary(BT.nHw)

Generalized pairwise comparisons with 2 endpoints

> statistic : net benefit (delta: endpoint specific, Delta: global)
> null hypothesis : Delta == 0
> confidence level: 0.95
> inference : H-projection of order 1
> treatment groups: 1 (control) vs. 2 (treatment)
> right-censored pairs: probabilistic score based on the survival curves
> neutral pairs : re-analyzed using lower priority endpoints
> results
endpoint threshold weight total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) delta

time 20 0.8 100 37.78 46.54 15.68 0 -0.0877
karno 1e-12 0.2 100 41.82 44.95 13.24 0 -0.0313

Delta CI [2.5% ; 97.5%] p.value
-0.0701 [-0.2204;0.0834] 0.37072
-0.0764 [-0.2504;0.1024] 0.40268

This has been refered as the O’Brien test in the litterature (Verbeeck et al. (2019), section 3.2).

8

1.3 What if smaller is better?
By default BuyseTest will always assume that higher values of an endpoint are favorable. This behavior
can be changed by specifying operator = "<0" for an endpoint:

ffop <- trt ∼ tte(time, status = "status", threshold = 20, operator = "<0")
BTinv <- BuyseTest(ffop, data = veteran,

method.inference = "none", trace = 0)
BTinv

endpoint threshold delta Delta
time 20 0.0844 0.0844

Internally BuyseTest will multiply by -1 the values of the endpoint to ensure that lower values are
considered as favorable. A direct consequence is that BuyseTest will not accept an endpoint with different
operators:

ffop2 <- update(ffop, . ∼ . + tte(time, "status", 10, ">0"))
try(BuyseTest(ffop2, data = veteran,

method.inference = "none", trace = 0))

Error in (function (name.call, status, correction.uninf, cpus, data, endpoint, :
Cannot have different operator for the same endpoint used at different priorities.

1.4 Stratified GPC
GPC can be performed for subgroups of a categorical variable - argument strata

For instance, the celltype may have huge influence on the survival time and the investigator would like
to only compare patients that have the same celltype. In the formula interface this is achieved by adding
a single variable in the right hand side of the formula:

ff2strata <- update(ff2, . ∼ . + celltype)
BT2 <- BuyseTest(ff2strata, data = veteran,

trace = 0, method.inference = "none")

The fact the it is not wrapped by bin, cont or tte indicates differentiate it from endpoint variables.

9

When doing a stratified analysis, the summary method displays the global results as well as the results
within each strata3:

summary(BT2, type.display = c("endpoint","threshold","strata",
"total","favorable","unfavorable","delta","Delta"))

Generalized pairwise comparisons with 2 prioritized endpoints and 4 strata

> statistic : net benefit (delta: endpoint specific, Delta: global)
> null hypothesis : Delta == 0
> treatment groups: 1 (control) vs. 2 (treatment)
> right-censored pairs: probabilistic score based on the survival curves
> neutral pairs : re-analyzed using lower priority endpoints
> uninformative pairs: no contribution at the current endpoint, analyzed at later endpoints
> results
endpoint threshold strata total(%) favorable(%) unfavorable(%) delta Delta

time 20 global 100.00 36.06 45.77 -0.0971 -0.0971
squamous 25.38 14.33 8.77 0.2193

smallcell 45.69 12.69 20.88 -0.1792
adeno 13.71 4.74 6.15 -0.1034
large 15.23 4.30 9.97 -0.3722

karno 1e-12 global 18.17 6.72 8.07 -0.0135 -0.1106
squamous 2.28 0.76 0.94 -0.0071

smallcell 12.12 4.33 5.75 -0.0311
adeno 2.81 1.46 0.85 0.0448
large 0.96 0.17 0.54 -0.0241

Note that here the numbers in the total/favorable/unfavorable/ columns are relative to the overall
sample while the delta is only relative to the strata. The global delta is a sum of the strata specific delta
weighted by the empirical proportion of pairs for each strata.

1.5 Stopping comparison for neutral pairs
In presence of neutral pairs, BuyseTest will, by default, continue the comparison on the endpoints with
lower priority. For instance let consider a dataset with one observation in each treatment arm:

dt.sim <- data.table(Id = 1:2,
treatment = c("Yes","No"),
tumor = c("Yes","Yes"),
size = c(15,20))

dt.sim

Id treatment tumor size
1: 1 Yes Yes 15
2: 2 No Yes 20

3the strata-specific results can be removed by setting the argument strata to "global" when calling summary.

10

If we use the GPC with tumor as the first endpoint and size as the second endpoint:
BT.pair <- BuyseTest(treatment ∼ bin(tumor) + cont(size, operator = "<0"), data = dt.sim,

trace = 0, method.inference = "none")
summary(BT.pair)

Generalized pairwise comparisons with 2 prioritized endpoints

> statistic : net benefit (delta: endpoint specific, Delta: global)
> null hypothesis : Delta == 0
> treatment groups: 0 (control) vs. 1 (treatment)
> neutral pairs : re-analyzed using lower priority endpoints
> results
endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) delta Delta

tumor 0.5 100 0 0 100 0 0 0
size 1e-12 100 100 0 0 0 1 1

the outcome of the comparison is neutral for the first priority, but favorable for the second priority.
If we set the argument neutral.as.uninf to FALSE, BuyseTest will stop the comparison when a pair is
classified as neutral:

BT.pair2 <- BuyseTest(treatment ∼ bin(tumor) + cont(size, operator = "<0"), data = dt.sim,
trace = 0, method.inference = "none", neutral.as.uninf = FALSE)

summary(BT.pair2)

Generalized pairwise comparisons with 2 prioritized endpoints

> statistic : net benefit (delta: endpoint specific, Delta: global)
> null hypothesis : Delta == 0
> treatment groups: 0 (control) vs. 1 (treatment)
> neutral pairs : ignored at lower priority endpoints
> results
endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) delta Delta

tumor 0.5 100 0 0 100 0 0 0
size 1e-12 0 0 0 0 0 0 0

So in this case no pair is analyzed at second priority.

11

1.6 What about p-value and confidence intervals?
Several methods are available in BuyseTest to perform statistical inference:

• permutation test setting the argument method.inference to "permutation". Assuming ex-
changeability under the null hypothesis, this approach gives valid p-values (regardless to the sample
size) for testing the absence of a difference between the groups.

BT.perm <- BuyseTest(trt ∼ tte(time, threshold = 20, status = "status"),
data = veteran, trace = 0, method.inference = "permutation",
seed = 10)

summary(BT.perm)

Generalized pairwise comparisons with 1 endpoint

> statistic : net benefit (delta: endpoint specific, Delta: global)
> null hypothesis : Delta == 0
> confidence level: 0.95
> inference : permutation test with 1000 samples

p-value computed using the permutation distribution
> treatment groups: 1 (control) vs. 2 (treatment)
> right-censored pairs: probabilistic score based on the survival curves
> results
endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) delta Delta

time 20 100 37.78 46.54 15.68 0 -0.0877 -0.0877
p.value

0.355

• bootstrap resampling setting the argument method.inference to "bootstrap". In large enough
samples, this approach gives valid p-values and confidence intervals.

BT.boot <- BuyseTest(trt ∼ tte(time, threshold = 20, status = "status"),
data = veteran, trace = 0, method.inference = "bootstrap",
seed = 10)

summary(BT.boot)

Generalized pairwise comparisons with 1 endpoint

> statistic : net benefit (delta: endpoint specific, Delta: global)
> null hypothesis : Delta == 0
> confidence level: 0.95
> inference : bootstrap resampling with 1000 samples

CI computed using the percentile method; p-value by test inversion
> treatment groups: 1 (control) vs. 2 (treatment)
> right-censored pairs: probabilistic score based on the survival curves
> results

12

endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) delta Delta
time 20 100 37.78 46.54 15.68 0 -0.0877 -0.0877

CI [2.5% ; 97.5%] p.value
[-0.2922;0.1013] 0.393

• asymptotic distribution setting the argument method.inference to "u-statistic". In large
enough samples, this approach gives valid p-values and confidence intervals.

BT.ustat <- BuyseTest(trt ∼ tte(time, threshold = 20, status = "status"),
data = veteran, trace = 0, method.inference = "u-statistic")

summary(BT.ustat)

Generalized pairwise comparisons with 1 endpoint

> statistic : net benefit (delta: endpoint specific, Delta: global)
> null hypothesis : Delta == 0
> confidence level: 0.95
> inference : H-projection of order 1
> treatment groups: 1 (control) vs. 2 (treatment)
> right-censored pairs: probabilistic score based on the survival curves
> results
endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) delta Delta

time 20 100 37.78 46.54 15.68 0 -0.0877 -0.0877
CI [2.5% ; 97.5%] p.value
[-0.2735;0.1045] 0.37161

The first two approaches require simulating a large number of samples and applying the GPC to each
of these samples. The number of samples is set using the arugment n.resampling and it should large
enough to limit the Monte Carlo error when estimating the p-value. Typically should be at least 10000 to
get, roughtly, 2-digit precision, as examplified below:

set.seed(10)
sapply(1:10, function(i){mean(rbinom(1e4, size = 1, prob = 0.05))})

[1] 0.0511 0.0491 0.0489 0.0454 0.0516 0.0522 0.0468 0.0483 0.0491 0.0508

Indeed, here we get a reasonnable approximation of 0.05 (if we round and only keep 2 digits). Note that
to get 3 digits precision we would need more samples. The last method does not rely on resampling but on
the computation of the influence function of the estimator. Fortunately, when using the Gehan’s scoring
rule, this does not really involve any extra-calculations and this is therefore very fast to perform. When
using the Peron’s scoring rule, more serious extra-calculations are involved so the computation time is
expected to increase by a factor 5 to 10 compared to the point estimate alone (i.e. method.inference
equal to "none").

13

2 Getting additional inside: looking at the pair level
So far we have looked at the overall score and probabilities. But it is also possible to extract the score
relative to each pair, as well as to "manually" compute this score. This can give further inside on what
the software is actually doing and what is the contribution of each individual on the evaluation of the
treatment.

2.1 Extracting the contribution of each pair to the statistic
The net benefit or the win ratio statistics can be expressed as a sum of a score over all pairs of patients. The
argument keep.pairScore enables to export the score relative to each pair in the output of BuyseTest:

form <- trt ∼ tte(time, threshold = 20, status = "status") + cont(karno)
BT.keep <- BuyseTest(form,

data = veteran, keep.pairScore = TRUE,
trace = 0, method.inference = "none")

The method getPairScore can then be used to extract the contribution of each pair. For instance the
following code extracts the contribution for the first endpoint:

getPairScore(BT.keep, endpoint = 1)

index.1 index.2 favorable unfavorable neutral uninf weight
1: 1 70 1 0 0 0 1
2: 2 70 1 0 0 0 1
3: 3 70 1 0 0 0 1
4: 4 70 1 0 0 0 1
5: 5 70 1 0 0 0 1

4688: 65 137 0 1 0 0 1
4689: 66 137 0 1 0 0 1
4690: 67 137 0 1 0 0 1
4691: 68 137 0 1 0 0 1
4692: 69 137 0 1 0 0 1

Each line corresponds to different comparison between a pair from the control arm and the treatment
arm. The column strata store to which strata the pair belongs (first, second, . . .). The columns favorable,
unfavorable, neutral, uninformative contains the result of the comparison, e.g. the first pair was classified
as favorable while the last was classified as favorable with a weight of 1. The second and third columns
indicates the rows in the original dataset corresponding to the pair:

veteran[c(70,1),]

trt celltype time status karno diagtime age prior
70 2 squamous 999 1 90 12 54 10
1 1 squamous 72 1 60 7 69 0

For the first pair, the event was observed for both observations and since 999 > 72 + 20 the pair is rated
favorable. Substracting the average probability of the pair being favorable minus the average probability
of the pair being unfavorable:

14

getPairScore(BT.keep, endpoint = 1)[, mean(favorable) - mean(unfavorable)]

[1] -0.08765836

gives the net benefit in favor of the treatment for the first endpoint:
BT.keep

endpoint threshold delta Delta
time 20 -0.0877 -0.0877

karno 1e-12 -0.0133 -0.1009

More examples and explanation can be found in the documentation of the method getPairScore.

2.2 Extracting the survival probabilities
When using scoring.rule equals "Peron", survival probabilities at event time, and event times +/-
threshold in the control and treatment arms are used to score the pair. Setting keep.survival to TRUE
in BuyseTest.options enables to export the survival probabilities in the output of BuyseTest:

BuyseTest.options(keep.survival = TRUE)
BT.keep2 <- BuyseTest(trt ∼ tte(time, threshold = 20, status = "status") + cont(karno),

data = veteran, keep.pairScore = TRUE, scoring.rule = "Peron",
trace = 0, method.inference = "none")

The method getSurvival can then be used to extract these survival probabilities. For instance the
following code extracts the survival for the first endpoint:

outSurv <- getSurvival(BT.keep2, endpoint = 1, strata = 1)
str(outSurv)

List of 5
$ survTimeC: num [1:69, 1:7] 72 411 228 126 118 10 82 110 314 100 ...
..- attr(*, "dimnames")=List of 2
.. ..$: NULL
.. ..$: chr [1:7] "time" "SurvivalC-threshold" "SurvivalC_0" "SurvivalC+threshold" ...

$ survTimeT: num [1:68, 1:7] 999 112 87 231 242 991 111 1 587 389 ...
..- attr(*, "dimnames")=List of 2
.. ..$: NULL
.. ..$: chr [1:7] "time" "SurvivalC-threshold" "SurvivalC_0" "SurvivalC+threshold" ...

$ survJumpC: num [1:57, 1:3] 3 4 7 8 10 11 12 13 16 18 ...
..- attr(*, "dimnames")=List of 2
.. ..$: NULL
.. ..$: chr [1:3] "time" "survival" "dSurvival"

$ survJumpT: num [1:51, 1:3] 1 2 7 8 13 15 18 19 20 21 ...
..- attr(*, "dimnames")=List of 2
.. ..$: NULL
.. ..$: chr [1:3] "time" "survival" "dSurvival"

$ lastSurv : num [1:4] 0 0 NA NA

15

2.2.1 Computation of the score with only one censored event

Let’s look at pair 91:
getPairScore(BT.keep2, endpoint = 1, rm.withinStrata = FALSE)[91]

index.1 index.2 indexWithinStrata.1 indexWithinStrata.2 favorable unfavorable neutral
1: 22 71 22 2 0 0.6950827 0.3049173

uninf weight
1: 0 1

In the dataset this corresponds to:
veteran[c(22,71),]

trt celltype time status karno diagtime age prior
22 1 smallcell 97 0 60 5 67 0
71 2 squamous 112 1 80 6 60 0

The observation from the control group is censored at 97 while the observation from the treatment
group has an event at 112. Since the threshold is 20, and (112-20)<97, we know that the pair is not in
favor of the treatment. The formula for probability in favor of the control is Sc(97)

Sc(112+20) . The survival at the
event time in the censoring group is stored in survTimeC. Since observation 22 is the 22th observation in
the control group:

iSurv <- outSurv$survTimeC[22,]
iSurv

time SurvivalC-threshold SurvivalC_0 SurvivalC+threshold
97.0000000 0.5615232 0.5171924 0.4235463

SurvivalT-threshold SurvivalT_0 SurvivalT+threshold
0.4558824 0.3643277 0.2827500

Since we are interested in the survival in the control arm exactly at the event time:
Sc97 <- iSurv["SurvivalC_0"]
Sc97

SurvivalC_0
0.5171924

The survival at the event time in the treatment group is stored in survTimeC. Since observation 71 is
the 2nd observation in the treatment group:

iSurv <- outSurv$survTimeT[2,] ## survival at time 112+20
iSurv

time SurvivalC-threshold SurvivalC_0 SurvivalC+threshold
112.0000000 0.5319693 0.4549201 0.3594915

SurvivalT-threshold SurvivalT_0 SurvivalT+threshold
0.3801681 0.2827500 0.2827500

16

Since we are interested in the survival in the control arm at the event time plus threshold:
Sc132 <- iSurv["SurvivalC+threshold"]
Sc132

SurvivalC+threshold
0.3594915

The probability in favor of the control is then:
Sc132/Sc97

SurvivalC+threshold
0.6950827

2.2.2 Computation of the score with two censored events

When both observations are censored, the formula for computing the probability in favor of treatment or
control involves an integral. This integral can be computed using the function calcIntegralSurv_cpp
that takes as argument a matrix containing the survival and the jumps in survival, e.g.:

head(outSurv$survJumpT)

time survival dSurvival
[1,] 1 0.7681159 -0.02941176
[2,] 2 0.7536232 -0.01470588
[3,] 7 0.7388463 -0.02941176
[4,] 8 0.7388463 -0.02941176
[5,] 13 0.7092924 -0.01470588
[6,] 15 0.6945155 -0.02941176

and the starting time of the integration time. For instance, let’s look at pair 148:
getPairScore(BT.keep2, endpoint = 1, rm.withinStrata = FALSE)[148]

index.1 index.2 indexWithinStrata.1 indexWithinStrata.2 favorable unfavorable neutral
1: 10 72 10 3 0.5058685 0.3770426 0.1170889

uninf weight
1: 0 1

which corresponds to the observations:
veteran[c(10,72),]

trt celltype time status karno diagtime age prior
10 1 squamous 100 0 70 6 70 0
72 2 squamous 87 0 80 3 48 0

17

The probability in favor of the treatment (pF) and control (pUF) can be computed as:

pF = − 1
ST (x)SC(y)

∫
t>y

ST (t+ τ)dSC(t)

pUF = − 1
ST (x)SC(y)

∫
t>x

SC(t+ τ)dST (t)

where x = 87 and y = 100. To ease the call of calcIntegralScore_cpp we create a warper:
calcInt <- function(...){ ## here we don’t need to return the functionnal derivative of the

score
calcIntegralSurv_cpp(...,

returnDeriv = FALSE, column = 0,
derivSurv = matrix(0), derivSurvD = matrix(0))

}

and then call it to compute the probabilities:
denom <- as.double(outSurv$survTimeT[3,"SurvivalT_0"] * outSurv$survTimeC[10,"SurvivalC_0"

])
M <- cbind("favorable" = -calcInt(outSurv$survJumpC, start = 100,

lastSurv = outSurv$lastSurv[2],
lastdSurv = outSurv$lastSurv[1])/denom,

"unfavorable" = -calcInt(outSurv$survJumpT, start = 87,
lastSurv = outSurv$lastSurv[1],
lastdSurv = outSurv$lastSurv[2])/denom)

rownames(M) <- c("lowerBound","upperBound")
M

favorable unfavorable
lowerBound 0.5058685 0.3770426
upperBound 0.5058685 0.3770426

18

3 Dealing with missing values or/and right censoring
In presence of censoring or missing values, some pairs may be classified as uninformative. This may bias
the estimate of the net net benefit. Two corrections are currently proposed to correct this bias.

To illustrate the effect of these correction, we will use the following dataset:
set.seed(10)
dt <- simBuyseTest(5e2, latent = TRUE, argsCont = NULL,

argsTTE = list(rates.T = 2, rates.C = 1,
rates.Censoring.C = 3, rates.Censoring.T = 3))

dt[, status1 := 1]
head(dt)

treatment toxicity eventtimeUncensored eventtimeCensoring eventtime status status1
1: C 0 0.1588268 0.29186778 0.15882682 1 1
2: C 1 1.7204676 0.02222436 0.02222436 0 1
3: C 1 0.4900490 0.06386661 0.06386661 0 1
4: C 0 0.1138545 0.16875557 0.11385446 1 1
5: C 1 0.5191035 0.42600053 0.42600053 0 1
6: C 0 0.9405830 0.21198508 0.21198508 0 1

where we have the uncensored event times as well as the censored event times. The percentage of
censored observations is:

dt[,mean(status==0)]

[1] 0.658

We would like to be able to recover the net benefit estimated with the uncensored event times:
BuyseTest(treatment ∼ tte(eventtimeUncensored, status1, threshold = 1),

data = dt,
scoring.rule = "Gehan", method.inference = "none", trace = 0)

endpoint threshold delta Delta
eventtimeUncensored 1 -0.2304 -0.2304

using the censored survival times:
BuyseTest(treatment ∼ tte(eventtime, status, threshold = 1),

data = dt,
scoring.rule = "Gehan", method.inference = "none", trace = 0)

endpoint threshold delta Delta
eventtime 1 -0.0022 -0.0022

As we can see on this example, the net benefit is shrunk toward 0.

19

3.0.1 Inverse probability-of-censoring weights (IPCW)

With IPCW the weights of the non-informative pairs is redistributed to the informative pairs. This is only
a good strategy when there are no neutral pairs or there are no lower priority endpoints. This gives an
estimate much closer to the true net benefit:

BT <- BuyseTest(treatment ∼ tte(eventtime, status, threshold = 1),
data = dt, keep.pairScore = TRUE, trace = 0,
scoring.rule = "Gehan", method.inference = "none", correction.uninf = 2)

summary(BT)

Generalized pairwise comparisons with 1 endpoint

> statistic : net benefit (delta: endpoint specific, Delta: global)
> null hypothesis : Delta == 0
> treatment groups: C (control) vs. T (treatment)
> right-censored pairs: deterministic score or uninformative
> uninformative pairs: no contribution, their weight is passed to the informative pairs using IPCW
> results
endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) delta Delta

eventtime 1 100 1.18 3.19 95.63 0 -0.0202 -0.0202

We can also see that no pair is finally classified as non informative. To get some inside about the
correction we can look at the scores of the pairs:

iScore <- getPairScore(BT, endpoint = 1)

To get a synthetic view, we only look at the unique favorable/unfavorable/neutral/uniformative re-
sults:

iScore[,.SD[1],
.SDcols = c("favorableC","unfavorableC","neutralC","uninfC"),
by = c("favorable","unfavorable","neutral","uninf")]

favorable unfavorable neutral uninf favorableC unfavorableC neutralC uninfC
1: 0 0 0 1 0.000000 0.000000 0.000000 0
2: 0 0 1 0 0.000000 0.000000 9.012582 0
3: 0 1 0 0 0.000000 9.012582 0.000000 0
4: 1 0 0 0 9.012582 0.000000 0.000000 0

We can see that the favorable/unfavorable/neutral pairs have seen their contribution multiplied by:
iScore[,1/mean(favorable + unfavorable + neutral)]

[1] 9.012582

i.e. the inverse probability of being informative.

20

3.0.2 Correction at the pair level

Another possible correction is to distribute the non-informative weight of a pair to the average favor-
able/unfavorable/neutral probability observed on the sample:

BT <- BuyseTest(treatment ∼ tte(eventtime, status, threshold = 1),
data = dt, keep.pairScore = TRUE, trace = 0,
scoring.rule = "Gehan", method.inference = "none", correction.uninf = TRUE)

summary(BT)

Generalized pairwise comparisons with 1 endpoint

> statistic : net benefit (delta: endpoint specific, Delta: global)
> null hypothesis : Delta == 0
> treatment groups: C (control) vs. T (treatment)
> right-censored pairs: deterministic score or uninformative
> uninformative pairs: score equals the averaged score of all informative pairs
> results
endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) delta Delta

eventtime 1 100 1.18 3.19 95.63 0 -0.0202 -0.0202

Looking at the scores of the pairs:
iScore <- getPairScore(BT, endpoint = 1)
iScore[,.SD[1],

.SDcols = c("favorableC","unfavorableC","neutralC","uninfC"),
by = c("favorable","unfavorable","neutral","uninf")]

favorable unfavorable neutral uninf favorableC unfavorableC neutralC uninfC
1: 0 0 0 1 0.01175241 0.03194059 0.956307 0
2: 0 0 1 0 0.00000000 0.00000000 1.000000 0
3: 0 1 0 0 0.00000000 1.00000000 0.000000 0
4: 1 0 0 0 1.00000000 0.00000000 0.000000 0

we can see that the corrected probability have not changed for the informative pairs, but for the
non-informative they have been set to:

iScore[, .(favorable = weighted.mean(favorable, w = 1-uninf),
unfavorable = weighted.mean(unfavorable, w = 1-uninf),
neutral = weighted.mean(neutral, w = 1-uninf))]

favorable unfavorable neutral
1: 0.01175241 0.03194059 0.956307

21

4 Simulating data using simBuyseTest

You can simulate data with the simBuyseTest function. For instance the following code simulates data
for 5 individuals in the treatment arm and 5 individuals in the control arm:

set.seed(10)
simBuyseTest(n.T = 5, n.C = 5)

treatment toxicity score eventtime status
1: C 1 0.54361539 0.64461311 1
2: C 1 -0.70762484 0.73722641 1
3: C 1 -0.36944577 0.72134020 0
4: C 1 -1.32197565 0.15806508 1
5: C 1 1.28059746 0.22121166 0
6: T 1 0.01874617 0.14534811 0
7: T 1 -0.18425254 0.48556014 0
8: T 0 -1.37133055 0.25475046 0
9: T 1 -0.59916772 0.45965924 1

10: T 0 0.29454513 0.08948311 1

By default a categorical, continuous and time to event outcome are generated independently. You can
modify their distribution via the arguments argsBin, argsCont, argsTTE. For instance the following code
simulates two continuous variables with mean 5 in the treatment arm and 10 in the control arm all with
variance 1:

set.seed(10)
argsCont <- list(mu.T = c(5,5), mu.C = c(10,10),

sigma.T = c(1,1), sigma.C = c(1,1),
name = c("tumorSize","score"))

dt <- simBuyseTest(n.T = 5, n.C = 5,
argsCont = argsCont)

dt

treatment toxicity tumorSize score eventtime status
1: C 1 9.010394 10.667415 0.27296196 0
2: C 0 9.965152 11.691755 0.55624768 0
3: C 0 10.847160 10.001261 0.37864505 1
4: C 0 11.525498 9.257539 0.46192620 1
5: C 1 9.932625 10.609684 0.09098929 1
6: T 1 5.389794 5.018746 0.17361208 1
7: T 1 3.791924 4.815747 0.08819698 1
8: T 1 4.636324 3.628669 0.71441489 1
9: T 0 3.373327 4.400832 0.10554670 0

10: T 0 4.743522 5.294545 0.51655591 1

This functionality is based on the sim function of the lava package (https://github.com/kkholst/
lava)

22

https://github.com/kkholst/lava
https://github.com/kkholst/lava

5 Power calculation using powerBuyseTest

The function powerBuyseTest can be used to perform power calculation, i.e., estimate the probability of
rejecting a null hypothesis under a specific generative mechanism. The user therefore need to specify:

• the generative mecanism via a function - argument sim

• the null hypothesis - argument null

• the sample size(s) for the which the power should be computed - argument sample.size

6 Modifying default options
The BuyseTest.options method enable to get and set the default options of the BuyseTest function. For
instance, the default option for trace is:

BuyseTest.options("trace")

$trace
[1] 2

To change the default option to 0 (i.e. no output) use:
BuyseTest.options(trace = 0)

To change what the results output by the summary function use:
BuyseTest.options(summary.display = list(c("endpoint","threshold","delta","Delta","

information(%)")))
summary(BT)

Generalized pairwise comparisons with 1 endpoint

> statistic : net benefit (delta: endpoint specific, Delta: global)
> null hypothesis : Delta == 0
> treatment groups: C (control) vs. T (treatment)
> right-censored pairs: deterministic score or uninformative
> uninformative pairs: score equals the averaged score of all informative pairs
> results
endpoint threshold delta Delta information(%)

eventtime 1 -0.0202 -0.0202 100

To restore the original default options do:
BuyseTest.options(reinitialise = TRUE)

23

References
Buyse, M. (2010). Generalized pairwise comparisons of prioritized outcomes in the two-sample problem.

Statistics in medicine, 29(30):3245–3257.

Péron, J., Buyse, M., Ozenne, B., Roche, L., and Roy, P. (2018). An extension of generalized pairwise
comparisons for prioritized outcomes in the presence of censoring. Statistical methods in medical research,
27(4):1230–1239.

Verbeeck, J., Spitzer, E., de Vries, T., van Es, G., Anderson, W., Van Mieghem, N., Leon, M., Molenberghs,
G., and Tijssen, J. (2019). Generalized pairwise comparison methods to analyze (non) prioritized
composite endpoints. Statistics in medicine.

24

	Performing generalized pairwise comparisons (GPC) using the BuyseTest function
	Displaying the results
	Using multiple endpoints
	What if smaller is better?
	Stratified GPC
	Stopping comparison for neutral pairs
	What about p-value and confidence intervals?

	Getting additional inside: looking at the pair level
	Extracting the contribution of each pair to the statistic
	Extracting the survival probabilities
	Computation of the score with only one censored event
	Computation of the score with two censored events

	Dealing with missing values or/and right censoring
	Inverse probability-of-censoring weights (IPCW)
	Correction at the pair level

	Simulating data using simBuyseTest
	Power calculation using powerBuyseTest
	Modifying default options

