Package ‘BuyseTest’

May 7, 2020
Type Package

Title Generalized Pairwise Comparisons
Version 2.1.3
Date 2020-05-06

Description Implementation of the Generalized Pairwise Comparisons (GPC)
as defined in Buyse (2010) <doi:10.1002/sim.3923> for complete observations,
and extended in Peron (2018) <do0i:10.1177/0962280216658320> to deal with right-censoring.
GPC compare two groups of observations (intervention vs. control group)
regarding several prioritized endpoints to estimate the probability that a random observa-
tion drawn from
one group performs better than a random observation drawn from the other group (Mann-
Whitney parameter).
The net benefit and win ratio statistics,
i.e. the difference and ratio between the probabilities relative to the intervention and con-
trol groups,
can then also be estimated. Confidence intervals and p-
values are obtained using permutations, a non-parametric bootstrap, or the asymptotic theory.
The software enables the use of thresholds of minimal importance difference,
stratification, non-prioritized endpoints (O'Brien test), and can handle right-
censoring and competing-risks.

License GPL-3
Encoding UTF-8

URL https://github.com/bozenne/BuyseTest

BugReports https://github.com/bozenne/BuyseTest/issues
Depends R (>=2.10), Rcpp

Imports data.table, doParallel, foreach, methods, lava, parallel,
prodlim, stats, stats4, utils

Suggests cvAUC, pbapply, pROC, R.rsp, riskRegression, survival,
testthat

LinkingTo Rcpp, ReppArmadillo

SystemRequirements C++11

https://github.com/bozenne/BuyseTest
https://github.com/bozenne/BuyseTest/issues

2 R topics documented:

VignetteBuilder R.rsp
NeedsCompilation yes
RoxygenNote 7.1.0

Collate '0-onLoad.R''I-setGeneric.R' 'BuyseTest-check.R'
'BuyseTest-inference.R' 'BuyseTest-initialization.R'
'BuyseTest-package.R' ‘BuyseTest-print.R' 'BuyseTest.R'
'‘BuyseTest.options.R' 'PairScore.R"' 'RcppExports.R’
'S4-BuysePower.R' 'S4-BuysePower-summary.R'
'S4-BuysePower-show.R' 'S4-BuyseTest.R' 'S4-BuyseTest-coef.R'
'S4-BuyseTest-confint.R' 'S4-BuyseTest-get.R'
'S4-BuyseTest-summary.R' 'S4-BuyseTest-show.R'
'S4-BuyseTest.options.R' 'auc.R' 'constStrata.R'
'discreteRoot.R" 'iid.prodlim.R' ‘powerBuyseTest.R'’
'simBuyseTest.R' 'simCompetingRisks.R' 'valid.R'

Author Brice Ozenne [aut, cre] (<https://orcid.org/0000-0001-9694-2956>),
Julien Peron [ctb],
Eva Cantagallo [aut]

Maintainer Brice Ozenne <brice.mh.ozenne@gmail.com>
Repository CRAN
Date/Publication 2020-05-07 15:10:22 UTC

R topics documented:

BuyseTest-package 3
AUC .« v v e e e e e e e e e e e e e e e 4
boot2pvalue e e e e e e e 5
BuyseTest e e e e 7
BuyseTestoptions e 14
BuyseTest.options-class 15
BuyseTest.options-methods L 15
coef.BuyseTestAuc e 16
confint.BuyseTestAuc e 16
constStrata. 17
discreteRoot e 18
getCount L e e e 19
getlid o e 19
getPairScore L L e e 20
getSurvival . ..o e 23
GPC_cpp . . o o e 24
iid.prodlim 28
powerBuyseTest L 29
S4BuysePower-class e e 31
S4BuysePower-show L 31
S4BuysePower-summary L. Lo 32
S4BuyseTest-class e 33

S4BuyseTest-coef 33

BuyseTest-package 3

S4BuyseTest-confint e 34
S4BuyseTest-sShow 37
S4BuyseTest-summaryt i ot e e e e e e e e e e e e 38
simCompetingRisks L 41
Simulation function L e 43
Index 46
BuyseTest-package BuyseTest package: Generalized Pairwise Comparisons
Description

Implementation of the Generalized Pairwise Comparisons. BuyseTest is the main function of the
package. See the vignette of an overview of the functionalities of the package. Run citation("BuyseTest")
in R for how to cite this package in scientific publications. See the section reference below for ex-

amples of application in clinical studies.

Details

The Generalized Pairwise Comparisons form all possible pairs of observations, one observation
being taken from the intervention group and the other is taken from the control group, and compare
the value of their endpoints.

If the difference in endpoint value between the two observations of the pair is greater than the
threshold of clinical relevance, the pair is classified as favorable (i.e. win). If the difference is
lower than minus the threshold of clinical relevance the pair is classified as unfavorable (i.e. loss).
Otherwise the pair is classified as neutral. In presence of censoring, it might not be possible to
compare the difference to the threshold. In such cases the pair is classified as uninformative.

Simultaneously analysis of several endpoints is performed by prioritizing the endpoints, assigning
the highest priority to the endpoint considered the most clinically relevant. The endpoint with
highest priority is analyzed first, and neutral and uninformative pair are analyzed regarding endpoint
of lower priority.

References

Examples of application in clinical studies:

J. Peron, P. Roy, K. Ding, W. R. Parulekar, L. Roche, M. Buyse (2015). Assessing the benefit-risk
of new treatments using generalized pairwise comparisons: the case of erlotinib in pancreatic
cancer. British journal of cancer 112:(6)971-976.

J. Peron, P. Roy, T. Conroy, F. Desseigne, M. Ychou, S. Gourgou-Bourgade, T. Stanbury, L. Roche,
B. Ozenne, M. Buyse (2016). An assessment of the benefit-risk balance of FOLFORINOX in
metastatic pancreatic adenocarcinoma. Oncotarget 7:82953-60, 2016.

Comparison between the net benefit and alternative measures of treatment effect:

J. Peron, P. Roy, B. Ozenne, L. Roche, M. Buyse (2016). The net chance of a longer survival as
a patient-oriented measure of benefit in randomized clinical trials. JAMA Oncology 2:901-5.
E. D. Saad , J. R. Zalcberg, J. Peron, E. Coart, T. Burzykowski, M. Buyse (2018). Understanding

auc

and communicating measures of treatment effect on survival: can we do better?. J Natl Cancer

Inst.

auc

Estimation of the Area Under the ROC Curve

Description

Estimation of the Area Under the ROC curve, possibly after cross validation, to assess the discrim-
inant ability of a biomarker regarding a disease status.

Usage

auc(
labels,
predictions,
fold = NULL,
observation
direction =
null = 9.5,

NULL,

nn
>

’

conf.level = 0.95,
transformation = FALSE

Arguments

labels
predictions
fold

observation

direction
null

conf.level

transformation

Details

[integer/character vector] the disease status (should only take two different val-
ues).

[numeric vector] A vector with the same length as 1abels containing the biomarker
values.

[character/integer vector] If using cross validation, the index of the fold. Should
have the same length as labels.

[integer vector] If using cross validation, the index of the corresponding obser-
vation in the original dataset. Necessary to compute the standard error when
using cross validation.

[character] ">" lead to estimate P[Y>X], "<" to estimate P[Y<X], and "auto”
to estimate max(P[Y>X],P[Y<X]).

[numeric, 0-1] the value against which the AUC should be compared when com-
puting the p-value.

[numeric, 0-1] the confidence level of the confidence intervals.

[logical] should a log-log transformation be used when computing the confi-
dence intervals and the p-value.

Compared to other functions computing the AUC (e.g. the auc fonction of the ROCR package), the
AUC is defined here as P[Y>X] with a strict inequality sign (i.e. not P[Y>=X]).

boot2pvalue 5

Value

A data.frame containing for each fold the AUC value with its standard error (when computed). The
last line of the data.frame contains the global AUC value with its standard error.

References

Erin LeDell, Maya Petersen, and Mark van der Laan (2015). Computationally efficient con-
fidence intervals for cross-validated area under the ROC curve estimates. Electron J Stat.
9(1):1583-1607.

Examples

library(data.table)

n <- 200

set.seed(10)

X <= rnorm(n)

dt <- data.table(Y = as.factor(rbinom(n, size = 1, prob = 1/(1+exp(1/2-X)))),
X = X,
fold = unlist(lapply(1:10,function(iL){rep(iL,n/10)3})))

compute auc
auc(labels = dt$Y, predictions = dt$X, direction = ">")

compute auc after 10-fold cross-validation
auc(labels = dt$Y, prediction = dt$X, fold = dt$fold, observation = 1:NROW(dt))

boot2pvalue Compute the p.value from the distribution under HI

Description

Compute the p.value associated with the estimated statistic using a bootstrap sample of its distribu-
tion under HI.

Usage

boot2pvalue(
X,
null,
estimate = NULL,
alternative = "two.sided”,
FUN.ci = quantileCI,
checkSign = TRUE,
tol = .Machine$double.eps”0.5

6 boot2pvalue

Arguments

X [numeric vector] a vector of bootstrap estimates of the statistic.

null [numeric] value of the statistic under the null hypothesis.

estimate [numeric] the estimated statistic.

alternative [character] a character string specifying the alternative hypothesis, must be one
of "two.sided" (default), "greater" or "less".

FUN.ci [function] the function used to compute the confidence interval. Must take x,
alternative, conf.level and sign.estimate as arguments and only return
the relevant limit (either upper or lower) of the confidence interval.

checkSign [logical] should a warning be output if the sign of the estimate differs from the
sign of the mean bootstrap value?

tol [numeric] the absolute convergence tolerance.

Details

For test statistic close to 0, this function returns 1.

For positive test statistic, this function search the quantile alpha such that:

e quantile(x,probs = alpha)=0 when the argument alternative is set to "greater”.

* quantile(x,probs = @.5%alpha)=@ when the argument alternative is set to "two.sided".

If the argument alternative is set to "less”, it returns 1.

For negative test statistic, this function search the quantile alpha such that:

e quantile(x,probs = 1-alpha=0 when the argument alternative is set to "less".

* quantile(x,probs = 1-0.5xalpha=0 when the argument alternative is set to "two.sided".

If the argument alternative is set to "greater”, it returns 1.
Examples
set.seed(10)

#i##H# no effect #it##
X <= rnorm(1e3)

boot2pvalue(x, null = @, estimate = mean(x), alternative = "two.sided")
expected value of 1

boot2pvalue(x, null = @, estimate = mean(x), alternative = "greater")
expected value of 0.5

boot2pvalue(x, null = @, estimate = mean(x), alternative = "less")

expected value of 0.5

#i##H# positive effect #iH
X <= rnorm(l1e3, mean = 1)

BuyseTest

boot2pvalue(x, null = @, estimate = 1, alternative = "two.sided")
expected value of 0.32 = 2%pnorm(q = @, mean = -1) = 2*mean(x<=0)
boot2pvalue(x, null = @, estimate = 1, alternative = "greater”)

expected value of 0.16 = pnorm(q = @, mean = 1) = mean(x<=0)
boot2pvalue(x, null = @, estimate = 1, alternative = "less"”)
expected value of ©.84 = 1-pnorm(gq = @, mean = 1) = mean(x>=0)

#i##H# negative effect #iHH#

X <= rnorm(1e3, mean = -1)

boot2pvalue(x, null = @, estimate = -1, alternative = "two.sided")

expected value of 0.32 = 2%(1-pnorm(q = @, mean = -1)) = 2*mean(x>=0)

boot2pvalue(x, null = @, estimate = -1, alternative = "greater")

expected value of 0.84 = pnorm(q = @, mean = -1) = mean(x<=0)

boot2pvalue(x, null = @, estimate = -1, alternative = "less") # pnorm(q = @, mean = -1)

expected value of ©0.16 = 1-pnorm(q = @, mean = -1) = mean(x>=0)

BuyseTest Generalized Pairwise Comparisons (GPC)

Description

Performs Generalized Pairwise Comparisons for binary, continuous and time-to-event endpoints.

Usage

BuyseTest(
formula,
data,
scoring.rule = NULL,
correction.uninf = NULL,
model.tte = NULL,
method.inference = NULL,
n.resampling = NULL,
strata.resampling = NULL,
hierarchical = NULL,
weight = NULL,
neutral.as.uninf = NULL,
keep.pairScore = NULL,

seed = NULL,
cpus = NULL,
trace = NULL,

treatment = NULL,
endpoint = NULL,
type = NULL,
threshold = NULL,
status = NULL,
operator = NULL,
censoring = NULL,

8 BuyseTest

strata = NULL,
keep.comparison,

method. tte
)
Arguments
formula [formula] a symbolic description of the GPC model, typically treatment ~
typel(endpoint1) + type2(endpoint2,threshold2) + strata. See Details,
section "Specification of the GPC model".
data [data.frame] dataset.

scoring.rule [character] method used to compare the observations of a pair in presence of
right censoring (i.e. "timeToEvent” endpoints). Can be "Gehan"” or "Peron”.
See Details, section "Handling missing values".

correction.uninf
[integer] should a correction be applied to remove the bias due to the presence
of uninformative pairs? 0 indicates no correction, 1 impute the average score
of the informative pairs, and 2 performs IPCW. See Details, section "Handling
missing values".

model. tte [list] optional survival models relative to each time to each time to event end-
point. Models must prodlim objects and stratified on the treatment and strata
variable. When used, the uncertainty from the estimates of these survival models
is ignored.

method. inference
[character] method used to compute confidence intervals and p-values. Can
be "none”, "u-statistic”, "permutation”, "studentized permutation”,
"bootstrap”, "studentized bootstrap”. See Details, section "Statistical in-
ference".

n.resampling [integer] the number of permutations/samples used for computing the confi-
dence intervals and the p.values. See Details, section "Statistical inference".
strata.resampling
[character] the variable on which the permutation/sampling should be stratified.
See Details, section "Statistical inference".

hierarchical [logical] should only the uninformative pairs be analyzed at the lower priority
endpoints (hierarchical GPC)? Otherwise all pairs will be compaired for all end-
point (full GPC).

weight [numeric vector] weights used to cumulating the pairwise scores over the end-
points. Only used when hierarchical=FALSE. Disregarded if the argument
formula is defined.

neutral.as.uninf
[logical] should paired classified as neutral be re-analyzed using endpoints of
lower priority (as it is done for uninformative pairs). See Details, section "Han-
dling missing values".

keep.pairScore [logical] should the result of each pairwise comparison be kept?

seed [integer, >0] the seed to consider when performing resampling. If NULL no seed
is set.

BuyseTest 9

cpus [integer, >0] the number of CPU to use. Only the permutation test can use
parallel computation. See Details, section "Statistical inference".

trace [integer] should the execution of the function be traced ? @ remains silent and
1-3 correspond to a more and more verbose output in the console.

treatment, endpoint, type, threshold, status, operator, censoring, strata
Alternative to formula for describing the GPC model. See Details, section
"Specification of the GPC model".

keep.comparison
Obsolete. Alias for "keep.pairScore’.

method. tte Obsolete. Alias for ’scoring.rule’.

Details

Specification of the GPC model:

There are two way to specify the GPC model in BuyseTest. A Formula interface via the argument
formula where the response variable should be a binary variable defining the treatment arms. The
rest of the formula should indicate the endpoints by order of priority and the strata variables (if any).
A Vector interface using the following arguments

* treatment: [character] name of the treatment variable identifying the control and the experi-
mental group. Must have only two levels (e.g. @ and 1).

* endpoint: [character vector] the name of the endpoint variable(s).

* threshold: [numeric vector] critical values used to compare the pairs (threshold of minimal
important difference). There must be one threshold for each endpoint variable; it must be NA
for binary endpoints and positive for continuous or time to event endpoints.

* status: [character vector] the name of the binary variable(s) indicating whether the endpoint
was observed or censored. Must value NA when the endpoint is not a time to event.

* operator: [character vector] the sign defining a favorable endpoint. ">@" indicates that higher
values are favorable while "<0" indicates the opposite. When the operator is set to "<@" the
corresponding column in the dataset is internally multiplied by -1.#

* type: [character vector] indicates whether it is a binary outcome ("b"”, "bin", or "binary"),
a continuous outcome ("c"”, "cont”, or "continuous”), or a time to event outcome ("t",
"tte", "time"”, or "timetoevent")

* censoring: [character vector] is the endpoint subject to right or left censoring ("left” or
"right"). The default is right-censoring.

* strata: [character vector] if not NULL, the GPC will be applied within each group of patient
defined by the strata variable(s).

The formula interface can be more concise, especially when considering few outcomes, but may
be more difficult to apprehend for new users. Note that arguments endpoint, threshold, status,
operator, type, and censoring must have the same length.

GPC procedure
The GPC procedure form all pairs of observations, one belonging to the experimental group and the
other to the control group, and class them in 4 categories:

10

BuyseTest

* Favorable pair: the endpoint is better for the observation in the experimental group.
* Unfavorable pair: the endpoint is better for the observation in the control group.

* Neutral pair: the difference between the endpoints of the two observations is (in absolute
value) below the threshold. When threshold=0, neutral pairs correspond to pairs with equal
endpoint. Lower-priority outcomes (if any) are then used to classified the pair into favor-
able/unfavorable.

» Uninformative pair: censoring/missingness prevents from classifying into favorable, unfavor-
able or neutral.

With complete data, pairs can be decidely classified as favorable/unfavorable/neutral. In presence of
missing values, the GPC procedure uses the scoring rule (argument scoring.rule) and the correc-
tion for uninformative pairs (argument correction.uninf) to classify the pairs. The classification
may not be 0,1, e.g. the probability that the pair is favorable/unfavorable/neutral with the Peron’s
scoring rule. To export the classification of each pair set the argument codekeep.pairScore to TRUE
and call the function getPairScore on the result of the BuyseTest function.

Handling missing values

* scoring.rule: indicates how to handle right-censoring in time to event endpoints. The
Gehan’s scoring rule (argument scoring.rule="Gehan") only scores pairs that can be decid-
edly classified as favorable, unfavorable, or neutral while the "Peron"’s scoring rule (argument
scoring.rule="Peron") uses the empirical survival curves of each group to also score the
pairs that cannot be decidedly classified. The Peron’s scoring rule is the recommanded scoring
rule but only handles right-censoring.

* correction.uninf: indicates how to handle missing values that could not be classified by the
scoring rule. 0 treat them as uninformative: if neutral.as.uninf=FALSE - this is an equiv-
alent to complete case analysis - while for neutral.as.uninf=TRUE uninformative pairs are
treated as neutral, i.e., analyzed at the following endpoint (if any). However both will (in
general) lead to biased estimates for the proportion of favorable, unfavorable, or neutral pairs.
Inverse probability of censoring weights (IPCW, correction.uninf=2) is only recommanded
when the analysis is stopped after the first endpoint with uninformative pairs. Imputing the
average score of the informative pairs (correction.uninf=1) is the recommanded approach.
Note that both corrections will convert the whole proportion of uninformative pairs of a given
endpoint into favorable, unfavorable, or neutral pairs.

Statistical inference

The argument method. inference defines how to approximate the distribution of the GPC esti-
mators and so how standard errors, confidence intervals, and p-values are computed. Available
methods are:

» argument method. inference="none": only the point estimate is computed which makes the
execution of the BuyseTest faster than with the other methods.

e argument method. inference="u-statistic"”: uses a Gaussian approximation to obtain the
distribution of the GPC estimators. The U-statistic theory indicates that this approximation

BuyseTest 11

is asymptotically exact. The variance is computed using a H-projection of order 1 (default
option), which is a consistent but downward biased estimator. An unbiased estimator can be
obtained using a H-projection of order 2 (only available for the uncorrected Gehan’s scoring
rule, see BuyseTest.options). WARNING: the current implementation of the H-projection
has not been validated when using corrections for uninformative pairs (correction.uninf=1,
or correction.uninf=2).

e argument method.inference="permutation”: perform a permutation test, estimating in
each sample the summary statistics (net benefit, win ratio).

* argument method.inference="studentized permutation”: perform a permutation test,
estimating in each sample the summary statistics (net benefit, win ratio) and the variance-
covariance matrix of the estimate.

» argument method. inference="bootstrap”: perform a non-parametric boostrap, estimating
in each sample the summary statistics (net benefit, win ratio).

» argument method. inference=" studentized bootstrap”: perform a non-parametric boos-
trap, estimating in each sample the summary statistics (net benefit, win ratio) and the variance-
covariance matrix of the estimator.

Additional arguments for permutation and bootstrap resampling:

e strata.resampling If NA or of length O, the permutation/non-parametric boostrap will be
performed by resampling in the whole sample. Otherwise, the permutation/non-parametric
boostrap will be performed separately for each level that the variable defined in strata.resampling
take.

* n.resampling set the number of permutations/samples used. A large number of permutations
(e.g. n.resampling=10000) are needed to obtain accurate CI and p.value. See (Buyse et al.,
2010) for more details.

* cpus indicates whether the resampling procedure can be splitted on several cpus to save time.
Can be set to "all” to use all available cpus. The detection of the number of cpus relies on
the detectCores function from the parallel package.

Default values

The default of the arguments scoring.rule, correction.uninf, method.inference, n.resampling,
hierarchical, neutral.as.uninf, keep.pairScore, strata.resampling, cpus, trace is read
from BuyseTest.options().

Additional (hidden) arguments are

* alternative [character] the alternative hypothesis. Must be one of "two.sided", "greater" or
"less" (used by confint).

* conf.level [numeric] level for the confidence intervals (used by confint).

* keep.survival [logical] export the survival values used by the Peron’s scoring rule.

* order.Hprojection [1 or 2] the order of the H-projection used to compute the variance when
method. inference="u-statistic".

Value

An R object of class S4BuyseTest.

12 BuyseTest

Author(s)

Brice Ozenne

References

On the GPC procedure: Marc Buyse (2010). Generalized pairwise comparisons of prioritized
endpoints in the two-sample problem. Statistics in Medicine 29:3245-3257

On the win ratio: D. Wang, S. Pocock (2016). A win ratio approach to comparing continuous
non-normal outcomes in clinical trials. Pharmaceutical Statistics 15:238-245

On the Peron’s scoring rule: J. Peron, M. Buyse, B. Ozenne, L. Roche and P. Roy (2018). An
extension of generalized pairwise comparisons for prioritized outcomes in the presence of
censoring. Statistical Methods in Medical Research 27: 1230-1239

On the Gehan’s scoring rule: Gehan EA (1965). A generalized two-sample Wilcoxon test for
doubly censored data. Biometrika 52(3):650-653

On inference in GPC using the U-statistic theory: I. Bebu, J. M. Lachin (2015). Large sample
inference for a win ratio analysis of a composite outcome based on prioritized components.
Biostatistics 17(1):178-187

See Also

S4BuyseTest-summary for a summary of the results of generalized pairwise comparison.
S4BuyseTest-class for a presentation of the S4BuyseTest object.
constStrata to create a strata variable from several clinical variables.

Examples

library(data. table)

reset the default value of the number of permuation sample
BuyseTest.options(method.inference = "none”) # no permutation test

simulate some data
set.seed(10)
df.data <- simBuyseTest(1e2, n.strata = 2)

display
if(require(prodlim)){
reskM_tempo <- prodlim(Hist(eventtime,status)~treatment, data = df.data)
plot(reskKM_tempo)
3

one time to event endpoint
BT <- BuyseTest(treatment ~ TTE(eventtime, status = status), data= df.data)

summary (BT) # net benefit
summary (BT, percentage = FALSE)
summary (BT, statistic = "winRatio”) # win Ratio

BuyseTest 13

bootstrap to compute the CI
Not run:
BT <- BuyseTest(treatment ~ TTE(eventtime, status = status), data=df.data,
method.inference = "permutation”, n.resampling = 1e3)

End(Not run)

summary (BT, statistic = "netBenefit") ## default
summary (BT, statistic = "winRatio")

parallel bootstrap

Not run:
BT <- BuyseTest(treatment ~ TTE(eventtime, status = status), data=df.data,
method.inference = "permutation”, n.resampling = 1e3, cpus = 2)
summary (BT)

End(Not run)

method Gehan is much faster but does not optimally handle censored observations

BT <- BuyseTest(treatment ~ TTE(eventtime, status = status), data=df.data,
scoring.rule = "Gehan"”, trace = 0)

summary (BT)

one time to event endpoint: only differences in survival over 1 unit #i##
BT <- BuyseTest(treatment ~ TTE(eventtime, threshold = 1, status = status), data=df.data)
summary (BT)

#i### one time to event endpoint with a strata variable
BT <- BuyseTest(treatment ~ strata + TTE(eventtime, status = status), data=df.data)
summary (BT)

several endpoints with a strata variable
f <- treatment ~ strata + T(eventtime, status, 1) + B(toxicity)
f <- update(f,
~. + T(eventtime, status, 0.5) + C(score, 1) + T(eventtime, status, 0.25))

BT <- BuyseTest(f, data=df.data)
summary (BT)

#i### real example : Veteran dataset of the survival package ##i##
Only one endpoint. Type = Time-to-event. Thresold = @. Stratfication by histological subtype
scoring.rule = "Gehan”

if(require(survival)){
Not run:
data(veteran,package="survival")

scoring.rule = "Gehan”
BT_Gehan <- BuyseTest(trt ~ celltype + TTE(time,threshold=0,status=status),
data=veteran, scoring.rule="Gehan")

summary_Gehan <- summary(BT_Gehan)
summary_Gehan <- summary(BT_Gehan, statistic = "winRatio”)

14 BuyseTest.options

scoring.rule = "Peron”
BT_Peron <- BuyseTest(trt ~ celltype + TTE(time, threshold=0,status=status),
data=veteran, scoring.rule="Peron")

class(BT_Peron)
summary (BT_Peron)

End(Not run)
}

BuyseTest.options Global options for BuyseTest package

Description

Update or select global options for the BuyseTest package.

Usage

BuyseTest.options(..., reinitialise = FALSE)

Arguments

options to be selected or updated

reinitialise should all the global parameters be set to their default value

Details

It only affects the BuyseTest function

Examples

library(data.table)

see all global parameters
BuyseTest.options()

see some of the global parameters
BuyseTest.options("”n.resampling”, "trace")

update some of the global parameters
BuyseTest.options(n.resampling = 10, trace = 1)
BuyseTest.options(”n.resampling”, "trace")

reinitialise all global parameters
BuyseTest.options(reinitialise = TRUE)

BuyseTest.options-class 15

BuyseTest.options-class
Class "BuyseTest.options" (global setting for the BuyseTest package)

Description

Class defining the global settings for the BuyseTest package.

Author(s)

Brice Ozenne

See Also

BuyseTest.options to select or update global settings.

BuyseTest.options-methods
Methods for the class "BuyseTest.options"

Description

Methods to update or select global settings

Usage

S4 method for signature 'BuyseTest.options'
alloc(object, field)

S4 method for signature 'BuyseTest.options'
select(object, name.field)

Arguments
object an object of class BuyseTest.options.
field a 1ist named with the name of the fields to update and containing the values to

assign to these fields

name.field a character vector containing the names of the field to be selected.

16 confint. BuyseTestAuc

coef.BuyseTestAuc Extract the AUC Value

Description

Extract the AUC value.

Usage

S3 method for class 'BuyseTestAuc'
coef(object, ...)

Arguments

object object of class BuyseTestAUC (output of the auc function).

not used. For compatibility with the generic function.

Value

Estimated value for the AUC (numeric).

confint.BuyseTestAuc Extract the AUC value with its Confidence Interval

Description

Extract the AUC value with its Confidence Interval and p-value testing whether the AUC equals
0.5.

Usage
S3 method for class 'BuyseTestAuc'
confint(object, ...)
Arguments
object object of class BuyseTestAUC (output of the auc function).

not used. For compatibility with the generic function.

Value

Estimated value for the AUC, its standard error, the lower and upper bound of the confidence interval
and the p-value.

constStrata 17
constStrata Strata creation
Description
Create strata from several variables.
Usage
constStrata(
data,
strata,
sep = n . n s
lex.order = FALSE,
trace = TRUE,
as.numeric = FALSE
)
Arguments
data [data.frame] dataset.
strata [character vector] A vector of the variables capturing the stratification factors.
sep [character] string to construct the new level labels by joining the constituent
ones.
lex.order [logical] Should the order of factor concatenation be lexically ordered ?
trace [logical] Should the execution of the function be traced ?
as.numeric [logical] Should the strata be converted from factors to numeric?
Details

This function uses the interaction function from the base package to form the strata.

Value

A factor vector or a numeric vector.

Author(s)

Brice Ozenne

Examples

library(data.table)

data(veteran,package="survival")

strata with two variables : celltype and karno

18 discreteRoot

veteran$stratal <- constStrata(veteran,c("celltype”,"karno"))
table(veteran$stratal)

strata with three variables : celltype, karno and age dichotomized at 60 years
veteran$age60 <- veteran$age>60

veteran$age60 <- factor(veteran$age60,labels=c("<=60",">60")) # convert to factor with labels
veteran$strata2 <- constStrata(veteran,c(”celltype”,"karno"”,"age60"))
table(veteran$strata2) # factor strata variable

veteran$strata2 <- constStrata(veteran,c(”celltype”,"karno”,"age60"), as.numeric=TRUE)
table(veteran$strata2) # numeric strata variable

discreteRoot Dichotomic search for monotone function

Description

Find the root of a monotone function on a discrete grid of value using dichotomic search

Usage
discreteRoot(
fn,
grid,
increasing = TRUE,
check = TRUE,
tol = .Machine$double.eps”*0.5
)
Arguments
fn [function] objective function to minimize in absolute value.
grid [vector] possible minimizers.
increasing [logical] is the function fn increasing?
check [logical] should the program check that fn takes a different sign for the first vs.
the last value of the grid?
tol [numeric] the absolute convergence tolerance.
Author(s)

Brice Ozenne

getCount 19

getCount Extract the Number of Favorable, Unfavorable, Neutral, Uninforma-
tive pairs

Description

Extract the number of favorable, unfavorable, neutral, uninformative pairs.
Usage
getCount(object, type)

S4 method for signature 'S4BuyseTest'
getCount(object, type)

Arguments
object an R object of class S4BuyseTest, i.e., output of BuyseTest
type the type of pairs to be counted. Can be "favorable”, "unfavorable”, neutral,
or uninf. Can also be "all"” to select all of them.
Value

A "vector” containing the number of pairs

Author(s)

Brice Ozenne

getIid Extract the H-decomposition of the Estimator

Description

Extract the H-decomposition of the GPC estimator.

Usage

getIid(object, endpoint = NULL, normalize = TRUE, type = "all”, cluster = NULL)

S4 method for signature 'S4BuyseTest'
getIid(object, endpoint = NULL, normalize = TRUE, type = "all", cluster

NULL)

20 getPairScore

Arguments
object an R object of class S4BuyseTest, i.e., output of BuyseTest
endpoint [character] for which endpoint(s) the H-decomposition should be output? If
NULL returns the sum of the H-decomposition over all endpoints.
normalize [logical] if TRUE the iid is centered and multiplied by the sample size. Otherwise
not.
type [character] type of iid to be output. Can be only for the nuisance parameters
("nuisance"), or for the u-statistic given the nuisance parameters ("u-statistic”),
or both.
cluster [numeric vector] return the H-decomposition aggregated by cluster.
Author(s)

Brice Ozenne

See Also

BuyseTest for performing a generalized pairwise comparison.
S4BuyseTest-summary for a more detailed presentation of the S4BuyseTest object.

getPairScore Extract the Score of Each Pair

Description

Extract the score of each pair.

Usage

getPairScore(
object,
endpoint = NULL,
strata = NULL,
sum = FALSE,
rm.withinStrata = TRUE,
rm.strata = is.na(object@strata),
rm.indexPair = TRUE,
rm.weight = FALSE,

rm.corrected = (object@correction.uninf == @),
unlist = TRUE,
trace = 1

)

S4 method for signature 'S4BuyseTest'
getPairScore(
object,

getPairScore 21

endpoint = NULL,
strata = NULL,
sum = FALSE,
rm.withinStrata = TRUE,
rm.strata = is.na(object@strata),
rm.indexPair = TRUE,
rm.weight = FALSE,
rm.corrected = (object@correction.uninf == @),
unlist = TRUE,
trace =1
)
Arguments
object an R object of class S4BuyseTest, i.e., output of BuyseTest
endpoint [integer/character vector] the endpoint for which the scores should be output.
strata [integer/character vector] the strata for which the scores should be output.
sum [logical] should the scores be cumulated over endpoints?
rm.withinStrata
[logical] should the columns indicating the position of each member of the pair
within each treatment group be removed?
rm.strata [logical] should the column containing the level of the strata variable be removed

from the output?

rm.indexPair [logical] should the column containing the number associated to each pair be

removed from the output?

rm.weight [logical] should the column weight be removed from the output?

rm.corrected [logical] should the columns corresponding to the scores after weighting be re-

moved from the output?

unlist [logical] should the structure of the output be simplified when possible?

trace [logical] should a message be printed to explain what happened when the func-

Details

tion returned NULL?

The maximal output (i.e. with all columns) contains for each endpoint, a data.table with:

"strata": the name of the strata to which the pair belongs.
"index.T": the index of the treatment observation in the pair relative to the original dataset.
"index.C": the index of the control observation in the pair relative to the original dataset.

"indexWithinStrata.T": the index of the treatment observation in the pair relative to the
treatment group and the strata.

"indexWithinStrata.C": the index of the control observation in the pair relative to the con-
trol group and the strata.

"favorable"”: the probability that the endpoint is better in the treatment arm vs. in the control
arm.

22 getPairScore

* "unfavorable”: the probability that the endpoint is worse in the treatment arm vs. in the
control arm.

e "neutral”: the probability that the endpoint is no different in the treatment arm vs. in the
control arm.

* "uninformative”: the weight of the pair that cannot be attributed to favorable/unfavorable/neutral.

* "weight": the residual weight of the pair to be analyzed at the current outcome. Each pair
starts with a weight of 1.

* "favorable.corrected”: same as "favorable” after weighting.
* "unfavorable.corrected”: same as "favorable” after weighting.
* "neutral.corrected”: same as "favorable” after weighting.

* "uninformative.corrected”: same as "favorable” after weighting.

Note that the . T and . C may change since they correspond of the label of the treatment and control
arms. The first weighting consists in multiplying the probability by the residual weight of the
pair (i.e. the weight of the pair that was not informative at the previous endpoint). This is always
performed. For time to event endpoint an additional weighting may be performed to avoid a possible
bias in presence of censoring.

Author(s)

Brice Ozenne

Examples

library(data. table)
library(prodlim)

run BuyseTest
data(veteran,package="survival")

BT.keep <- BuyseTest(trt ~ tte(time, threshold = 20, status = "status"”) + cont(karno),
data = veteran, keep.pairScore = TRUE,
trace = @, method.inference = "none")

Extract scores
pScore <- getPairScore(BT.keep, endpoint = 1)

look at one pair

indexPair <- intersect(which(pScore$index.1 == 22),
which(pScore$index.2 == 71))

pScore[indexPair]

retrive pair in the original dataset
pVeteran <- veteran[pScore[indexPair,c(index.1,index.2)],]
pVeteran

the observation from the control group is censored at 97
the observation from the treatment group has an event at 112
since the threshold is 20, and (112-20)<97

getSurvival 23

we know that the pair is not in favor of the treatment

the formula for probability in favor of the control is
Sc(97)/Sc(112+20)
where Sc(t) is the survival at time t in the control arm.

we first estimate the survival in each arm
e.KM <- prodlim(Hist(time,status)~trt, data = veteran)

and compute the survival
iSurv <- predict(e.KM, times = ¢(97,112+20),
newdata = data.frame(trt = 1, stringsAsFactors = FALSE))[[1]]

the probability in favor of the control is then
pUF <- iSurv[2]/iSurv[1]

pUF

and the complement to one of that is the probability of being neutral
pN <- 1 - pUF

pN

if(require(testthat)){
testthat: :expect_equal (pUF, pScore[indexPair, unfavorable])
testthat: :expect_equal (pN, pScore[indexPair, neutrall)

getSurvival Extract the Survival and Survival Jumps

Description

Extract the survival and survival jumps.

Usage

getSurvival(
object,
type = NULL,
endpoint = NULL,
strata = NULL,
unlist = TRUE,
trace = TRUE

S4 method for signature 'S4BuyseTest'
getSurvival(

object,

type = NULL,

endpoint = NULL,
strata = NULL,

24 GPC _cpp

unlist = TRUE,

trace = TRUE
)
Arguments
object an R object of class S4BuyseTest, i.e., output of BuyseTest
type [character vector] the type of survival to be output. See details.
endpoint [integer/character vector] the endpoint for which the survival should be output.
strata [integer/character vector] the strata for which the survival should be output.
unlist [logical] should the structure of the output be simplified when possible.
trace [logical] should a message be printed to explain what happened when the func-
tion returned NULL.
Details

The argument type can take any of the following values:

e "survTimeC": survival at the event times for the observations of the control arm.

e "survTimeT": survival at the event times for the observations of the treatment arm.
e "survJumpC": survival at the jump times for the survival model in the control arm.

e "survJumpT”: survival at the time times for the survival model in the treatment arm.

e "lastSurv": survival at the last event time.

Author(s)

Brice Ozenne

GPC_cpp C++ function performing the pairwise comparison over several end-
points.

Description

GPC_cpp call for each endpoint and each strata the pairwise comparison function suited to the type
of endpoint and store the results.

Usage

GPC_cpp(
endpoint,
status,
indexC,
posC,
indexT,

GPC _cpp

posT,
threshold,
weight,
method,
D,
D_UTTE,
n_strata,
nUTTE _analyzedPeron_M1,
index_endpoint,
index_status,
index_UTTE,
list_survTimeC,
list_survTimeT,
list_survJumpC,
list_survJumpT,
list_lastSurv,
p_C,
p_T,
iid_survJumpC,
iid_survJumpT,
zeroPlus,
correctionUninf,
hierarchical,
hprojection,
neutralAsUninf,
keepScore,
returnlID,
debug

)

GPC2_cpp(
endpoint,
status,
indexC,
posC,
indexT,
posT,
threshold,
weight,
method,

D,

D_UTTE,

n_strata,
nUTTE_analyzedPeron_M1,
index_endpoint,
index_status,
index_UTTE,
list_survTimeC,

25

26 GPC _cpp
list_survTimeT,
list_survJumpC,
list_survJumpT,
list_lastSurv,
p_C,
p_T,
iid_survJumpC,
iid_survJumpT,
zeroPlus,
correctionUninf,
hierarchical,
hprojection,
neutralAsUninf,
keepScore,
returnlID,
debug
)
Arguments
endpoint A matrix containing the values of each endpoint (in columns) for each observa-
tion (in rows).
status A matrix containing the values of the status variables relative to each endpoint
(in columns) for each observation (in rows).
indexC A list containing, for each strata, which rows of the endpoint and status matrices
corresponds to the control observations. Not unique when bootstraping.
posC A list containing, for each strata, the unique identifier of each control observa-
tions.
indexT A list containing, for each strata, which rows of the endpoint and status matrices
corresponds to the treatment observations. Not unique when bootstraping.
posT A list containing, for each strata, the unique identifier of each treatment obser-
vations.
threshold Store the thresholds associated to each endpoint. Must have length D. The
threshold is ignored for binary endpoints.
weight Store the weight associated to each endpoint. Must have length D.
method The index of the method used to score the pairs. Must have length D. 1 for
continuous, 2 for Gehan, and 3 for Peron.
D The number of endpoints.
D_UTTE The number of distinct time to event endpoints.
n_strata The number of strata.

nUTTE_analyzedPeron_M1

The number of unique time-to-event endpoints that have been analyzed the
Peron scoring rule before the current endpoint. Must have length D.

index_endpoint The position of the endpoint at each priority in the argument endpoint. Must

have length D.

GPC _cpp
index_status
index_UTTE
list_survTimeC
list_survTimeT
list_survJumpC
list_survJumpT
list_lastSurv
p_C
p_T

iid_survJumpC
iid_survJumpT

zeroPlus

correctionUninf

hierarchical

hprojection

neutralAsUninf

keepScore
returnIID
debug

Details

27

The position of the status at each priority in the argument status. Must have
length D.

The position, among all the unique tte endpoints, of the TTE endpoints. Equals
-1 for non tte endpoints. Must have length n_TTE.

A list of matrix containing the survival estimates (-threshold, O, +threshold ...)
for each event of the control group (in rows).

A list of matrix containing the survival estimates (-threshold, 0, +threshold ...)
for each event of the treatment group (in rows).

A list of matrix containing the survival estimates and survival jumps when the
survival for the control arm jumps.

A list of matrix containing the survival estimates and survival jumps when the
survival for the treatment arm jumps.

A list of matrix containing the last survival estimate in each strata (rows) and
treatment group (columns).

Number of nuisance parameter in the survival model for the control group, for
each endpoint and strata

Number of nuisance parameter in the survival model for the treatment group, for
each endpoint and strata

A list of matrix containing the iid of the survival estimates in the control group.
A list of matrix containing the iid of the survival estimates in the treatment
group.

Value under which doubles are considered 07

Should the uninformative weight be re-distributed to favorable and unfavorable?
Should only the uninformative pairs be analyzed at the lower priority endpoints
(hierarchical GPC)? Otherwise all pairs will be compaired for all endpoint (full
GPC).

Order of the H-projection used to compute the variance.

Should paired classified as neutral be re-analyzed using endpoints of lower pri-
ority?

Should the result of each pairwise comparison be kept?

Should the iid be computed?

Print messages tracing the execution of the function to help debugging. The
amount of messages increase with the value of debug (0-5).

GPC_cpp implements GPC looping first over endpoints and then over pairs. To handle multiple
endpoints, it stores some of the results which can be memory demanding when considering large
sample - especially when computing the iid decomposition. GPC2_cpp implements GPC looping
first over pairs and then over endpoints. It has rather minimal memory requirement but does not
handle correction for uninformative pairs.

Author(s)

Brice Ozenne

28 iid.prodlim

iid.prodlim Extract i.i.d. decomposition from a prodlim model

Description

Compute the influence function for each observation used to estimate the model

Usage
S3 method for class 'prodlim'
iid(object, add@ = FALSE, ...)
Arguments
object A prodlim object.
adde [logical] add the O to vector of relevant times.

not used. For compatibility with the generic method.

Details

This function is a simplified version of the iidCox function of the riskRegression package. Formula
for the influence function can be found in (Ozenne et al., 2017).

Author(s)

Brice Ozenne

References

Brice Ozenne, Anne Lyngholm Sorensen, Thomas Scheike, Christian Torp-Pedersen and Thomas
Alexander Gerds. riskRegression: Predicting the Risk of an Event using Cox Regression Models.
The R Journal (2017) 9:2, pages 440-460.

Examples

library(data.table)
library(prodlim)

set.seed(10)
dt <- simBuyseTest(10)
setkeyv(dt, "treatment”)

e.KM <- prodlim(Hist(eventtime,status)~treatment, data = dt)
lava::iid(e.KM)

powerBuyseTest

29

powerBuyseTest

Performing simulation studies with BuyseTest

Description

Performs a simulation studies for several sample sizes. Returns estimates, standard errors, confi-
dence intervals and p.values.

Usage

powerBuyseTest (
sim,
sample.size,
sample.sizeC

sample.sizeT
n.rep,
null = c(netB
cpus = 1,
seed = NULL,
conf.level =
alternative =
order.Hprojec
transformatio
trace = 1,

)

Arguments
sim

sample.size

sample.sizeC
sample.sizeT
n.rep

null

cpus

seed

conf.level

NULL,
NULL,

enefit = @),

NULL,

NULL,

tion = NULL,
n = NULL,

[function] take two arguments: the sample size in the control group (n.C) and
the sample size in the treatment group (n.C) and generate datasets. The datasets
must be data.table objects.

[integer vector, >0] the various sample sizes at which the simulation should be
perform. Disregarded if any of the arguments sample.sizeC or sample.sizeT
are specified.

[integer vector, >0] the various sample sizes in the control group.
[integer vector, >0] the various sample sizes in the treatment group.
[integer, >0] the number of simulations.

[numeric vector] For each statistic of interest, the null hypothesis to be tested.
The vector should be named with the names of the statistics.

[integer, >0] the number of CPU to use. Only the permutation test can use
parallel computation. Default value read from BuyseTest.options().

[integer, >0] the seed to consider for the simulation study.

[numeric] confidence level for the confidence intervals. Default value read from
BuyseTest.options().

30 powerBuyseTest

alternative [character] the type of alternative hypothesis: "two.sided”, "greater”, or
"less". Default value read from BuyseTest.options().

order.Hprojection
[integer 1,2] the order of the H-project to be used to compute the variance of the
net benefit/win ratio. Default value read from BuyseTest.options().

transformation [logical] should the CI be computed on the logit scale / log scale for the net
benefit / win ratio and backtransformed. Otherwise they are computed without
any transformation. Default value read from BuyseTest.options().

trace [integer] should the execution of the function be traced?

other arguments (e.g. scoring.rule, method.inference)to be passedto initializeArgs.

Author(s)

Brice Ozenne

Examples

library(data.table)

Using simBuyseTest ##H#H#
only point estimate

powerBuyseTest(sim = simBuyseTest, sample.size = c(10, 50, 100), n.rep = 10,
formula = treatment ~ bin(toxicity), seed = 10,
method.inference = "none”, trace = 4)

point estimate with rejection rate

powerBuyseTest(sim = simBuyseTest, sample.size = c(10, 50, 100), n.rep = 10,
formula = treatment ~ bin(toxicity), seed = 10,
method.inference = "u-statistic”, trace = 4)

Using user defined simulation function
Example of power calculation for Wilcoxon test
simFCT <- function(n.C, n.T){
out <- rbind(cbind(Y=stats::rt(n.C, df
cbind(Y=stats::rt(n.T, df
return(data.table::as.data.table(out))

5), group=9),
5), group=1) + 1)

Not run:

powerW <- powerBuyseTest(sim = simFCT, sample.size = c(5, 10,20,30,50,100),
n.rep = 1000, formula = group ~ cont(Y), cpus = "all")

summary (powerW)

End(Not run)

S4BuysePower-class 31

S4BuysePower-class Class "S4BuysePower" (output of BuyseTest)

Description

A powerBuyseTest output is reported in a S4BuysePower object.

Author(s)

Brice Ozenne

See Also

powerBuyseTest for the function computing generalized pairwise comparisons.
S4BuysePower-summary for the summary of the BuyseTest function results

S4BuysePower-show Show Method for Class "S4BuysePower"

Description

Display the main results stored in a S4BuysePower object.

Usage
S4 method for signature 'S4BuysePower'
show(object)

Arguments

object an R object of class S4BuysePower, i.e., output of BuyseTest

Author(s)

Brice Ozenne

See Also

BuyseTest for performing a generalized pairwise comparison.
S4BuysePower-summary for a more detailed presentation of the S4BuysePower object.

32

S4BuysePower-summary

S4BuysePower-summary Summary Method for Class "S4BuysePower"

Description

Summarize the results from the powerBuyseTest function.

Usage
S4 method for signature 'S4BuysePower'
summary (
object,
print = TRUE,

statistic = NULL,
endpoint = NULL,
order.Hprojection = NULL,
transformation = NULL,
legend = TRUE,

col.rep = FALSE,
digit = 4
)
Arguments
object output of powerBuyseTest
print [logical] Should the table be displayed?.
statistic [character] statistic relative to which the power should be computed: "netBenefit”
displays the net benefit, as described in Buyse (2010) and Peron et al. (2016)),
"winRatio” displays the win ratio, as described in Wang et al. (2016), "mannWhitney”
displays the proportion in favor of the treatment (also called Mann-Whitney pa-
rameter), as described in Fay et al. (2018). Default value read from BuyseTest.options().
endpoint [character vector] the endpoints to be displayed: must be the name of the end-

point followed by an underscore and then by the threshold.

order.Hprojection

[integer 1,2] the order of the H-project to be used to compute the variance of the

net benefit/win ratio.

transformation [logical] should the CI be computed on the logit scale / log scale for the net

benefit / win ratio and backtransformed.

legend [logical] should explainations about the content of each column be displayed?

col.rep [logical] should the number of successful simulations be displayed?

digit [integer vector] the number of digit to use for printing the counts and the delta.
Author(s)

Brice Ozenne

S4BuyseTest-class 33

References

On the GPC procedure: Marc Buyse (2010). Generalized pairwise comparisons of prioritized
endpoints in the two-sample problem. Statistics in Medicine 29:3245-3257

On the win ratio: D. Wang, S. Pocock (2016). A win ratio approach to comparing continuous
non-normal outcomes in clinical trials. Pharmaceutical Statistics 15:238-245

On the Mann-Whitney parameter: Fay, Michael P. et al (2018). Causal estimands and confidence
intervals asscoaited with Wilcoxon-Mann-Whitney tests in randomized experiments. Statistics
in Medicine 37:2923-2937 \

See Also

powerBuyseTest for performing a simulation study for generalized pairwise comparison.

S4BuyseTest-class Class "S4BuyseTest" (output of BuyseTest)

Description

A BuyseTest output is reported in a S4BuyseTest object.

Author(s)

Brice Ozenne

See Also

BuyseTest for the function computing generalized pairwise comparisons.
S4BuyseTest-summary for the summary of the BuyseTest function results

S4BuyseTest-coef Coef Method for Class "S4BuyseTest"

Description

Extract summary statistics from the result of a BuyseTest function.

Usage

S4 method for signature 'S4BuyseTest'
coef(object, statistic = NULL, stratified = FALSE, cumulative = TRUE, ...)

34

Arguments

object
statistic

stratified

cumulative

Details

S4BuyseTest-confint

output of BuyseTest
[character] the type of summary statistic. See the detail section.

[logical] should the summary statistic be strata-specific? Otherwise a summary
statistic over all strata is returned.

[logical] should the score be cumulated over endpoints? Otherwise display the
contribution of each endpoint.

ignored.

One of the following statistic can be specified:

e "netBenefit"”: returns the net benefit.

e "winRatio": returns the win ratio.

e "favorable”: returns the proportion in favor of the treatment (also called Mann-Whitney

parameter).

* "unfavorable”: returns the proportion in favor of the control.

* "count.favorable”: returns the number of pairs in favor of the treatment.

* "count.unfavorable”: returns the number of pairs in favor of the control.

e "count.neutral”: returns the number of neutral pairs.

e "count.uninf": returns the number of uninformative pairs.

* "pc.favorable”: returns the percentage of pairs in favor of the treatment, i.e. P[X > Y +7].

* "pc.unfavorable”: returns the percentage of pairs in favor of the control, i.e. P[Y > X +7].

* "pc.neutral”: returns the percentage of neutral pairs.

* "pc.uninf”: returns the percentage of uninformative pairs.

Author(s)

Brice Ozenne

S4BuyseTest-confint Confidence Intervals for Model Parameters

Description

Computes confidence intervals for net benefit statistic or the win ratio statistic.

S4BuyseTest-confint

Usage

S4 method for signature 'S4BuyseTest

confint(
object,

35

statistic = NULL,

null = NULL,

conf.level = NULL,

alternative

NULL,

method.ci.resampling = NULL,
order.Hprojection = NULL,
transformation = NULL,
cluster = NULL

Arguments

object

statistic

null

conf.level

alternative

an R object of class S4BuyseTest, i.e., output of BuyseTest

[character] the statistic summarizing the pairwise comparison: "netBenefit”
displays the net benefit, as described in Buyse (2010) and Peron et al. (2016)),
"winRatio" displays the win ratio, as described in Wang et al. (2016), "favorable
displays the proportion in favor of the treatment (also called Mann-Whitney pa-
rameter), as described in Fay et al. (2018). "unfavorable” displays the propor-
tion in favor of the control. Default value read from BuyseTest.options().

n

[numeric] right hand side of the null hypothesis (used for the computation of the
p-value).

[numeric] confidence level for the confidence intervals. Default value read from
BuyseTest.options().

[character] the type of alternative hypothesis: "two.sided", "greater”, or
"less". Default value read from BuyseTest.options().

method.ci.resampling

[character] the method used to compute the confidence intervals and p-values

when using bootstrap or permutation ("percentile”, "gaussian”, "student").
See the details section.

order.Hprojection

transformation

cluster

Details

[integer, 1-2] order of the H-decomposition used to compute the variance.

[logical] should the CI be computed on the logit scale / log scale for the net ben-
efit / win ratio and backtransformed. Otherwise they are computed without any
transformation. Default value read from BuyseTest.options(). Not relevant
when using permutations or percentile bootstrap.

[numeric vector] Group of observations for which the iid assumption holds .

method.ci.resampling: when using bootstrap/permutation, p-values and confidence intervals are
computing as follow:

36 S4BuyseTest-confint

* percentile (bootstrap): compute the confidence interval using the quantiles of the bootstrap
estimates. Compute the p-value by finding the confidence level at which a bound of the confi-
dence interval equals the null hypothesis.

* percentile (permutation): apply the selected transformation to the estimate and permutation
estimates. Compute the confidence interval by (i) shfiting the estimate by the quantiles of
the centered permutation estimates and (ii) back-transforming . Compute the p-value as the
relative frequency at which the estimate are less extreme than the permutation estimates.

* gaussian (bootstrap and permutation): apply the selected transformation to the estimate and
bootstrap/permutation estimates. Estimate the variance of the estimator using the empirical
variance of the transformed boostrap/permutation estimates. Compute confidence intervals
and p-values under the normality assumption and back-transform the confidence intervals.

* student (bootstrap): apply the selected transformation to the estimate, its standard error, the
bootstrap estimates, and their standard error. Compute the studentized bootstrap estimates by
dividing the centered bootstrap estimates by their standard error. Compute the confidence in-
terval based on the standard error of the estimate and the quantiles of the studentized bootstrap
estimates, and back-transform. Compute the p-value by finding the confidence level at which
a bound of the confidence interval equals the null hypothesis.

* student (permutation): apply the selected transformation to the estimate, its standard error,
the permutation estimates, and their standard error. Compute the studentized permutation
estimates by dividing the centered permutation estimates by their standard error. Compute
the confidence interval based on the standard error of the estimate and the quantiles of the
studentized permutation estimates, and back-transform. Compute the p-value as the relative
frequency at which the studentized estimate are less extreme than the permutation studentized
estimates.

WARNING: when using a permutation test, the uncertainty associated with the estimator is com-
puted under the null hypothesis. Thus the confidence interval may not be valid if the null hypothesis
is false.

Value

A matrix containing a column for the estimated statistic (over all strata), the lower bound and upper
bound of the confidence intervals, and the associated p-values. When using resampling methods:

* an attribute n.resampling specified how many samples have been used to compute the con-
fidence intervals and the p-values.

* an attribute method.ci.resampling method used to compute the confidence intervals and
p-values.

Author(s)

Brice Ozenne

References

On the GPC procedure: Marc Buyse (2010). Generalized pairwise comparisons of prioritized
endpoints in the two-sample problem. Statistics in Medicine 29:3245-3257

S4BuyseTest-show 37

On the win ratio: D. Wang, S. Pocock (2016). A win ratio approach to comparing continuous
non-normal outcomes in clinical trials. Pharmaceutical Statistics 15:238-245

On the Mann-Whitney parameter: Fay, Michael P. et al (2018). Causal estimands and confidence
intervals asscoaited with Wilcoxon-Mann-Whitney tests in randomized experiments. Statistics
in Medicine 37:2923-2937

See Also

BuyseTest for performing a generalized pairwise comparison.
S4BuyseTest-summary for a more detailed presentation of the S4BuyseTest object.

S4BuyseTest-show Show Method for Class "S4BuyseTest"

Description

Display the main results stored in a S4BuyseTest object.

Usage
S4 method for signature 'S4BuyseTest'
show(object)

Arguments

object an R object of class S4BuyseTest, i.e., output of BuyseTest

Author(s)

Brice Ozenne

See Also

BuyseTest for performing a generalized pairwise comparison.
S4BuyseTest-summary for a more detailed presentation of the S4BuyseTest object.

38 S4BuyseTest-summary

S4BuyseTest-summary Summary Method for Class "S4BuyseTest"

Description

Summarize the results from the BuyseTest function.

Usage
S4 method for signature 'S4BuyseTest'
summary (
object,
print = TRUE,

percentage = TRUE,

statistic = NULL,

conf.level = NULL,

strata = if (length(object@level.strata) == 1) { "global” } else { NULL 3,
type.display = 1,

digit = c(2, 4, 5),

Arguments

object output of BuyseTest

print [logical] Should the table be displayed?.

percentage [logical] Should the percentage of pairs of each type be displayed ? Otherwise
the number of pairs is displayed.

statistic [character] the statistic summarizing the pairwise comparison: "netBenefit”
displays the net benefit, as described in Buyse (2010) and Peron et al. (2016)),
"winRatio" displays the win ratio, as described in Wang et al. (2016), "favorable”
displays the proportion in favor of the treatment (also called Mann-Whitney pa-
rameter), as described in Fay et al. (2018). "unfavorable” displays the propor-
tion in favor of the control. Default value read from BuyseTest.options().

conf.level [numeric] confidence level for the confidence intervals. Default value read from
BuyseTest.options().

strata [character vector] the name of the strata to be displayed. Can also be "global”

to display the average over all strata.

type.display [numeric or character] the results/summary statistics to be displayed. Either an
integer indicating refering to a type of display in BuyseTest.options() or the
name of the column to be output (e.g. c("strata”, "Delta”, "p.value”)).

digit [integer vector] the number of digit to use for printing the counts and the delta.

arguments to be passed to S4BuyseTest-confint

S4BuyseTest-summary 39

Details

Content of the output

The '

'results” table in the output show the result of the GPC at each endpoint, as well as its contri-

bution to the global statistics. More precisely, the column:

endpoint lists the endpoints, by order of priority.

threshold lists the threshold associated to each endpoint.

total lists the total number of pairs to be analyzed at the current priority.

total(%) lists the total percentage of pairs to be analyzed at the current priority.

favorable lists the number of pairs classified in favor of the treatment at the current priority.

favorable (%) lists the number of pairs classified in favor of the treatment at the current
priority.

unfavorable lists the number of pairs classified in favor of the control at the current priority.
unfavorable (%) lists the percentage of pairs classified in favor of the control at the current
priority.

neutral lists the number of pairs classified as neutral at the current priority.

neutral (%) lists the percentage of pairs classified as neutral at the current priority.

uninf lists the number of pairs that could not be classified at the current priority (due to
missing values/censoring).

uninf (%) lists the percentage of pairs that could not be classified at the current priority (due
to missing values/censoring).

delta lists the value of the statistic (i.e. net benefit or win ratio) computed on the pairs
analyzed at the current priority only.

Delta lists the value of the statistic (i.e. net benefit or win ratio) computed on all the pairs
analyzed up to the current priority.

Delta(%) lists the net benefit or win ratio fraction (i.e. statistic up to the current priority
divided by the final statistic).

information (%) lists the information fraction (i.e. number of favorable and unfavorable pairs
up to the current priority divided by the final number of favorable and unfavorable pairs).

CI Confidence interval for the value of Delta (performed independently at each priority, no
adjustment for multiple comparison).

p.value p-value for the test Delta=0 (performed independently at each priority, no adjust-
ment for multiple comparison).

resampling number of samples used to compute the confidence intervals or p-values from
permutations or bootstrap samples. Only displayed if some bootstrap samples have been dis-
carded, for example, they did not lead to sample any case or control.

Note: when using the Peron scoring rule or a correction for uninformative pairs, the columns total,
favorable, unfavorable, neutral, and uninf are computing by summing the contribution of the
pairs. This may lead to a decimal value.

Statistical inference
When the interest is in obtaining p-values, we recommand the use of a permutation test. How-
ever, when using a permutation test confidence intervals are not displayed in the summary. This is

40

S4BuyseTest-summary

because there is no (to the best of our knowledge) straightforward way to obtain good confidence in-
tervals with permutations. An easy way consist in using the quantiles of the permutation distribution
and then shift by the point estimate of the statistic. This is what is output by S4BuyseTest-confint.
However this approach leads to a much too high coverage when the null hypothesis is false. The
limits of the confidence interval can also end up being outside of the interval of definition of the
statistic (e.g. outside [-1,1] for the proportion in favor of treatment). Therefore, for obtaining con-
fidence intervals, we recommand the boostrap method or the u-statistic method.

Win ratio

For the win ratio, the proposed implementation enables the use of thresholds and endpoints that are
not time to events as well as the correction proposed in Peron et al. (2016) to account for censoring.
These development have not been examined by Wang et al. (2016), or in other papers (to the best
of our knowledge). They are only provided here by implementation convenience.

Competing risks

In presence of competing risks, looking at the net benefit/win ratio computed with respect to the
event of interest will likely not give a full picture of the difference between the two groups. For
instance a treatment may decrease the risk of the event of interest (i.e. increase the net benefit for
this event) by increasing the risk of the competing event. If the competing event is death, this is not
desirable. It is therefore advised to taking into consideration the risk of the competing event, e.g.
by re-running BuyseTest where cause 1 and 2 have been inverted.

Author(s)

Brice Ozenne

References

On the GPC procedure: Marc Buyse (2010). Generalized pairwise comparisons of prioritized
endpoints in the two-sample problem. Statistics in Medicine 29:3245-3257

On the win ratio: D. Wang, S. Pocock (2016). A win ratio approach to comparing continuous
non-normal outcomes in clinical trials. Pharmaceutical Statistics 15:238-245

On the Mann-Whitney parameter: Fay, Michael P. et al (2018). Causal estimands and confidence
intervals asscoaited with Wilcoxon-Mann-Whitney tests in randomized experiments. Statistics
in Medicine 37:2923-2937 \

See Also

BuyseTest for performing a generalized pairwise comparison.
S4BuyseTest-class for a presentation of the S4BuyseTest object.
S4BuyseTest-confint to output confidence interval and p-values in a matrix format.

Examples

library(data.table)
dt <- simBuyseTest(le2, n.strata = 3)

Not run:
BT <- BuyseTest(treatment ~ TTE(eventtime, status = status) + Bin(toxicity), data=dt)

simCompetingRisks 41

End(Not run)

summary (BT)
summary (BT, percentage = FALSE)
summary (BT, statistic = "winRatio")
simCompetingRisks Simulation of Gompertz competing risks data for the BuyseTest
Description

Simulate Gompertz competing risks data with proportional (via prespecified sub-distribution hazard
ratio) or non-proportional sub-distribution hazards. A treatment variable with two groups (treatment
and control) is created.

Usage
simCompetingRisks(
n.T,
n.C,
p.1C = NULL,
v.1C,
v. 1T,
v.2C,
v.2T,
sHR = NULL,
b.1T = NULL,
b.1C = NULL,
b.2T = NULL,
b.2C = NULL,

cens.distrib = NULL,
param.cens = NULL,
latent = NULL

)
Arguments
n.T [integer, >0] number of patients in the treatment arm
n.c [integer, >0] number of patients in the control arm
p.1C [integer, >0] proportion of events of interest in the control group. Can be NULL

ifand only if (b.1T,b.1C,b.2T,b.2C) are provided.

v.1C, v.1T, v.2C, v.2T
[double, <0] shape parameters for Gompertz distribution of time to event of
interest in control/treatment (C/T) group and of time to competing event in con-
trol/treatment (C/T) group respectively

42

simCompetingRisks

sHR [double, >0] pre-specified sub-distribution hazard ratio for event of interest. Can
be NULL if and only if (b.1T,b.1C,b.2T,b.2C) are provided.

b.1C, b.1T, b.2C, b.2T
[double, >0] rate parameters for Gompertz distribution of time to event of in-
terest in control/treatment (C/T) group and of time to competing event in con-
trol/treatment (C/T) group respectively. Can be NULL if and only if (p.1C, sHR)
are provided.

cens.distrib [character] censoring distribution. Can be "exponential” for exponential cen-
soring or "uniform” for uniform censoring. NULL means no censoring.

param.cens [>0] parameter for censoring distribution. Should be a double for rate parameter
of exponential censoring distribution or a vector of doubles for lower and upper
bounds of uniform censoring distribution. NULL means no censoring

latent [logical] If TRUE, also export the latent variables (e.g. true event times, true event
types and censoring times). NULL sets this parameter to FALSE.

Details

The times to the event of interest and to the competing event in each group follow an improper
Gompertz distribution (see Jeong and Fine, 2006), whose cumulative distribution function is

F(t;b,v)=1-expb (1 -exp(vt)/v)

and hazard functions is
h(t; b, v) =bexp(v t)

The shape parameters must be negative to have improper distributions for the times to the two events
in each group. Note however that in each group, the overall cumulative incidence function must be
proper (i.e. the maximum values of the cumulative incidence of each event type sum up to 1 in each
group). When only providing the shape parameters, the rate parameters are computed to fulfill this
condition. In case you whish to provide the rate parameters too, make sure that the condition is met.

Author(s)

Eva Cantagallo

References

Jeong J-H. and Fine J. (2006) Direct parametric inference for the cumulative incidence func-
tion. Journal of the Royal Statistical Society 55: 187-200

Examples

Providing p.1C and sHR #i###

d <- simCompetingRisks(n.T = 100, n.C = 100, p.1C = 0.55, v.1C = -0.30,
v.1T = -0.30, v.2C = -0.30, v.2T = -0.30, sHR = 0.5, b.1T = NULL,

b.1C = NULL, b.2T = NULL, b.2C = NULL)

Simulation function 43

H#itHE
d <-
v. T
b.1C

H#itHE
d <-
v.1T
b.1C

Providing the rate parameters ####

simCompetingRisks(n.T = 100, n.C = 100, p.1C = NULL, v.1C = -0.30,
= -0.30, v.2C = -0.30, v.2T = -0.30, sHR = NULL, b.1T = 0.12,

= 0.24, b.2T = 0.33, b.2C = 0.18)

With exponential censoring #it##

simCompetingRisks(n.T = 100, n.C = 100, p.1C = ©.55, v.1C = -0.30,
= -0.30, v.2C = -0.30, v.2T = -0.30, sHR = 0.5, b.1T = NULL,

= NULL, b.2T = NULL, b.2C = NULL, cens.distrib = "exponential”,

param.cens = 0.8, latent = TRUE)

With uniform censoring #i###

d <-
v.1T
b.1C

simCompetingRisks(n.T = 100, n.C = 100, p.1C = ©0.55, v.1C = -0.30,
= -0.30, v.2C = -0.30, v.2T = -0.30, sHR = 0.5, b.1T = NULL,
= NULL, b.2T = NULL, b.2C = NULL, cens.distrib = "uniform”,

param.cens = c(@, 7), latent=TRUE)

Simulation function Simulation of data for the BuyseTest

Description

Simulate binary, continuous or time to event data, possibly with strata. Outcomes are simulated
independently of each other and independently of the strata variable.

Usage
simBuyseTest(
n.T,
n.C = NULL,

argsBin = list(),
argsCont = list(),
argsTTE = list(),
n.strata = NULL,
names.strata = NULL,
format = "data.table”,
latent = FALSE

)
Arguments
n.T [integer, >0] number of patients in the treatment arm
n.c [integer, >0] number of patients in the control arm
argsBin [list] arguments to be passed to simBuyseTest_bin. They specify the distribu-

tion parameters of the binary endpoints.

44 Simulation function
argsCont [list] arguments to be passed to simBuyseTest_continuous. They specify the
distribution parameters of the continuous endpoints.
argsTTE [list] arguments to be passed to simBuyseTest_TTE. They specify the distribu-
tion parameters of the time to event endpoints.
n.strata [integer, >0] number of strata. NULL indicates no strata.
names.strata [character vector] name of the strata variables. Must have same length as n. strata.
format [character] the format of the output. Can be "data.table”, "data.frame” or
"matrix”.
latent [logical] If TRUE also export the latent variables (e.g. censoring times or event
times).
Details

This function is built upon the 1vm and sim functions from the lava package.

Arguments in the list argsBin:

p.T probability of event of each endpoint (binary endpoint, treatment group).

p.C same as p.T but for the control group.

name names of the binary variables.

Arguments in the list argsCont:

mu. T expected value of each endpoint (continuous endpoint, treatment group).
mu.C same as mu. C but for the control group.

sigma.T standard deviation of the values of each endpoint (continuous endpoint, treatment
group).

sigma.C same as sigma.T but for the control group.

name names of the continuous variables.

Arguments in the list argsTTE:

CR should competing risks be simulated?

rates.T hazard corresponding to each endpoint (time to event endpoint, treatment group).

rates.C same as rates.T but for the control group.

rates.CR same as rates.T but for the competing event (same in both groups).

Simulation function
* rates.Censoring.T Censoring same as rates.T but for the censoring.
* rates.Censoring.C Censoring same as rates.C but for the censoring.
* name names of the time to event variables.

* nameCensoring names of the event type indicators.

Author(s)

Brice Ozenne

Examples

library(data.table)
n <- le2

#i### default option ##H##
simBuyseTest(n)

with a strata variable having 5 levels

simBuyseTest(n, n.strata = 5)

with a strata variable named grade

simBuyseTest(n, n.strata = 5, names.strata = "grade")

several strata variables

simBuyseTest(1e3, n.strata = c(2,4), names.strata = c("Gender”,"AgeCategory"”))

only binary endpoints #i#t##
args <- list(p.T = c(3:5/10))
simBuyseTest(n, argsBin = args, argsCont = NULL, argsTTE = NULL)

only continuous endpoints #ii##
args <- list(mu.T = c(3:5/10), sigma.T = rep(1,3))
simBuyseTest(n, argsBin = NULL, argsCont = args, argsTTE = NULL)

only TTE endpoints
args <- list(rates.T = c(3:5/10), rates.Censoring.T = rep(1,3))
simBuyseTest(n, argsBin = NULL, argsCont = NULL, argsTTE = args)

Index

+Topic BuyseTest.options-class
BuyseTest.options-class, 15
xTopic BuyseTest
GPC_cpp, 24
+Topic BuyseTes
BuyseTest, 7
+Topic Cpp
GPC_cpp, 24
xTopic S4BuysePower-class
S4BuysePower-class, 31
xTopic S4BuysePower-method
S4BuysePower-show, 31
S4BuysePower-summary, 32
xTopic S4BuyseTest-class
S4BuyseTest-class, 33
xTopic S4BuyseTest-method
getCount, 19
getlid, 19
getPairScore, 20
getSurvival, 23
S4BuyseTest-coef, 33
S4BuyseTest-confint, 34
S4BuyseTest-show, 37
S4BuyseTest-summary, 38
*Topic classes
BuyseTest.options-class, 15
S4BuysePower-class, 31
S4BuyseTest-class, 33
*Topic coef
S4BuyseTest-coef, 33
+Topic confint
S4BuyseTest-confint, 34
+Topic function
BuyseTest, 7
constStrata, 17
GPC_cpp, 24
simCompetingRisks, 41
Simulation function, 43
*Topic get

46

getCount, 19
getPairScore, 20
getSurvival, 23

«Topic options
BuyseTest.options-class, 15

*Topic simulations
simCompetingRisks, 41
Simulation function, 43

+Topic SuIMmary
S4BuysePower-show, 31
S4BuysePower-summary, 32
S4BuyseTest-show, 37
S4BuyseTest-summary, 38

alloc,BuyseTest.options-method
(BuyseTest.options-methods), 15
auc, 4

boot2pvalue, 5

BuyseTest, 3,7, 14, 19-21, 24, 31, 33-35, 37,
38, 40

BuyseTest-package, 3

BuyseTest.options, 14, 15

BuyseTest.options-class, 15

BuyseTest.options-methods, 15

coef,S4BuyseTest-method
(S4BuyseTest-coef), 33

coef.BuyseTestAuc, 16

confint, S4BuyseTest-method
(S4BuyseTest-confint), 34

confint.BuyseTestAuc, 16

constStrata, 12, 17

discreteRoot, 18

getCount, 19

getCount, S4BuyseTest-method (getCount),
19

getlid, 19

getlid, S4BuyseTest-method (getlid), 19

INDEX

getPairScore, 20

getPairScore, S4BuyseTest-method
(getPairScore), 20

getSurvival, 23

getSurvival, S4BuyseTest-method
(getSurvival), 23

GPC2_cpp (GPC_cpp), 24

GPC_cpp, 24

iid.prodlim, 28
powerBuyseTest, 29, 31-33

S4BuysePower-class, 31
S4BuysePower-show, 31
S4BuysePower-summary, 32
S4BuyseTest, 11, 19-21, 24, 35
S4BuyseTest-class, 33
S4BuyseTest-coef, 33
S4BuyseTest-confint, 34
S4BuyseTest-getCount (getCount), 19
S4BuyseTest-getlid (getIid), 19
S4BuyseTest-getPairScore
(getPairScore), 20
S4BuyseTest-getSurvival (getSurvival),
23
S4BuyseTest-show, 37
S4BuyseTest-summary, 38
select,BuyseTest.options-method
(BuyseTest.options-methods), 15
show, S4BuysePower-method
(S4BuysePower-show), 31
show, S4BuyseTest-method
(S4BuyseTest-show), 37
simBuyseTest (Simulation function), 43
simCompetingRisks, 41
Simulation function, 43
summary, S4BuysePower-method
(S4BuysePower-summary), 32
summary, S4BuyseTest-method
(S4BuyseTest-summary), 38

47

	BuyseTest-package
	auc
	boot2pvalue
	BuyseTest
	BuyseTest.options
	BuyseTest.options-class
	BuyseTest.options-methods
	coef.BuyseTestAuc
	confint.BuyseTestAuc
	constStrata
	discreteRoot
	getCount
	getIid
	getPairScore
	getSurvival
	GPC_cpp
	iid.prodlim
	powerBuyseTest
	S4BuysePower-class
	S4BuysePower-show
	S4BuysePower-summary
	S4BuyseTest-class
	S4BuyseTest-coef
	S4BuyseTest-confint
	S4BuyseTest-show
	S4BuyseTest-summary
	simCompetingRisks
	Simulation function
	Index

