Package ‘Brobdingnag’

August 13, 2018
Type PackageTitle Very Large Numbers in RVersion 1.2-6
Date 2018-08-08
Author Robin K. S. Hankin
Depends R (>= 2.13.0), methods
Maintainer Robin K. S. Hankin hankin.robin@gmail.com
Description Handles very large numbers in R. Real numbers are held
using their natural logarithms, plus a logical flag indicatingsign. The package includes a vignette that gives astep-by-step introduction to using S4 methods.
LazyLoad yes
License GPL
Repository CRAN
URL https://github.com/RobinHankin/Brobdingnag.git
NeedsCompilation no
Date/Publication 2018-08-13 13:20:03 UTC
R topics documented:
Brobdingnag-package 2
Arith-methods 4
as.numeric 5
brob 6
brob-class 7
cbrob 8
Compare-methods 9
Complex 9
Extract.brob 10
getP 11
glub 12
glub-class 13
length-methods 14
Logic 15
Math 15
plot 16
Print 16
sum 17
swift-class 18
Index 19

Description

Handles very large numbers in R. Real numbers are held using their natural logarithms, plus a logical flag indicating sign. The package includes a vignette that gives a step-by-step introduction to using S4 methods.

Details

The DESCRIPTION file:

Package:	Brobdingnag
Type:	Package
Title:	Very Large Numbers in R
Version:	$1.2-6$
Date:	2018-08-08
Author:	Robin K. S. Hankin
Depends:	R (>=2.13.0), methods
Maintainer:	Robin K. S. Hankin hankin.robin@gmail.com
Description:	Handles very large numbers in R. Real numbers are held using their natural logarithms, plus a logical flag indic
LazyLoad:	yes
License:	GPL
Repository:	CRAN
URL:	https://github.com/RobinHankin/Brobdingnag.git

Index of help topics:

Arith-methods	Methods for Function Arith in package Brobdingnag
Brobdingnag-package	Very Large Numbers in R Compare-methods
Methods for Function Compare in Package Brobdingnag	
[.brob	Real and imaginary manipulation Extract or Replace Parts of brobs or glubs

abs	Various logarithmic and circular functions for brobs
as.numeric	Coerces to numeric or complex form
brob	Brobdingnagian numbers
brob-class	Class "brob"
cbrob	Combine Brobdingnagian vectors
getP	Get and set methods for brob objects
glub	Glubbdubdribian numbers: complex numbers with
	Brobdingnagian real and imaginary parts
glub-class	Class "glub"
length	Get lengths of brobs and glubs
logic.brob	Logical operations on brobs
plot	Basic plotting of Brobs
print.brob	Methods for printing brobs and glubs
sum	Various summary statistics for brobs and glubs
swift-class	Class "swift"

Real numbers are represented by two objects: a real, holding the logarithm of their absolute values; and a logical, indicating the sign. Multiplication and exponentiation are easy: the challenge is addition. This is achieved using the (trivial) identity $\log \left(e^{x}+e^{y}\right)=x+\log \left(1+e^{y-x}\right)$ where, WLOG, $y<x$.

Complex numbers are stored as a pair of brobs: objects of class glub.
The package is a simple example of S4 methods.
However, it could be viewed as a cautionary tale: the underlying R concepts are easy yet the S 4 implementation is long and difficult. I would not recommend using S 4 methods for a package as simple as this; S3 methods would have been perfectly adequate. I would suggest that S 4 methods should only be used when S3 methods are demonstrably inadequate.

Author(s)

Robin K. S. Hankin
Maintainer: Robin K. S. Hankin hankin.robin@gmail.com

References

R. K. S. Hankin 2007. "Very Large Numbers in R: Introducing Package Brobdingnag". R News, volume 7 , number 3, pages 15-16

Examples

```
googol <- as.brob(10)^100
googol
googol + googol/2
1/(googol + 1e99)
(1:10)^googol
```

```
    googolplex <- 10^googol
    googolplex
    googolplex * googol # practically the same as googolplex (!)
```

 Arith-methods Methods for Function Arith in package Brobdingnag

Description

Methods for Arithmetic functions in package Brobdingnag: $+,-\star, /$, ^

Note

The unary arithmetic functions (viz " + " and "-") do no coercion.
The binary arithmetic functions coerce numeric <op> brob to brob; and numeric <op> glub, complex <op> brob, and brob <op> glub, to glub.

Author(s)

Robin K. S. Hankin

Examples

```
x <- as.brob(1:10)
y <- 1e10
x+y
as.numeric((x+y)-1e10)
x^(1/y)
```


Description

Coerces an object of class brob to numeric, or an object of class glub to complex

Arguments

x
Object of class brob or glub
$\ldots \quad$ Further arguments (currently ignored)

Details

Function as.numeric() coerces a brob to numeric; if given a glub, the imaginary component is ignored (and a warning given).

Function as. complex () coerces to complex.

Note
If $|x|$ is greater than .Machine\$double.xmax, then as.numeric (x) returns Inf or -Inf but no warning is given.

Author(s)

Robin K. S. Hankin

Examples

```
a <- as.brob(1:10)
a <- cbrob(a, as.brob(10)^1e26)
a
as.numeric(a)
as.complex(10i + a)
```


brob Brobdingnagian numbers

Description

Create, coerce to or test for a Brobdingnagian object

Usage

brob(x = double(), positive)
as.brob(x)
is. $\operatorname{brob}(x)$

Arguments

x
Quantity to be tested, coerced in to Brobdingnagian form
positive In function brob(), logical indicating whether the number is positive (actually, positive or zero)

Details

Function as.brob() is the user's workhorse: use this to coerce numeric vectors to brobs.
Function is.brob() tests for its arguments being of class brob.
Function $\operatorname{brob}()$ takes argument x and returns a brob formally equal to e^{x}; set argument positive to FALSE to return $-e^{x}$. Thus calling function $\exp (x)$ simply returns brob(x). This function is not really intended for the end user: it is confusing and includes no argument checking. In general numerical work, use function as.brob() instead, although be aware that if you really really want $e^{10^{7}}$, you should use brob(1e7); this would be an exact representation.

Note

Real numbers are represented by two objects: a real, holding the logarithm of their absolute values; and a logical, indicating the sign. Multiplication and exponentiation are easy: the challenge is addition. This is achieved using the (trivial) identity $\log \left(e^{x}+e^{y}\right)=x+\log \left(1+e^{y-x}\right)$ where, WLOG, $y<x$.

Complex numbers are stored as a pair of brobs: objects of class glub.
The package is a simple example of S 4 methods. However, it could be viewed as a cautionary tale: the underlying R concepts are easy yet the $S 4$ implementation is long and difficult. I would not recommend using S4 methods for a package as simple as this; S3 methods would have been perfectly adequate. I would suggest that S 4 methods should only be used when S 3 methods are demonstrably inadequate.

The package has poor handling of NA and NaN. Currently, as.brob(1) + as.brob(c(1,NA)) returns an error.

Author(s)

Robin K. S, Hankin

See Also

glub

Examples

```
googol <- as.brob(10)^100
googolplex <- 10^googol
(googolplex/googol) / googolplex
# Thus googolplex/googol == googolplex (!)
# use cbrob() instead of c() when Brobdingnagian numbers are involved:
cbrob(4, exp(as.brob(1e55)))
```

brob-class Class "brob"

Description

The formal S4 class for Brobdingnagian numbers

Objects from the Class

Objects can be created by calls of the form new("brob", ...) but this is not encouraged. Use functions brob() and, especially, as.brob() instead.

Slots

x : Object of class "numeric" holding the log of the absolute value of the number to be represented positive: Object of class "logical" indicating whether the number is positive (see Note, below)

Extends

Class "swift", directly.

Note

Slot positive indicates non-negativity, as zero is conventionally considered to be "positive".

Author(s)

Robin K. S. Hankin

See Also

```
glub-class,swift-class
```


Examples

```
new("brob", x=5,positive=TRUE) # not intended for the user
as.brob(5) # Standard user-oriented idiom
```

cbrob Combine Brobdingnagian vectors

Description

Combine Brobdingnagian or Glubdubbdribian vectors through concatenation

Usage

cbrob (x, ...)

Arguments

$\begin{array}{ll}x & \text { Brobdingnagian vector } \\ \ldots & \text { Other arguments coerced to brob form }\end{array}$

Details

If any argument has class glub, all arguments are coerced to glubs. Otherwise, if any argument has class brob, all arguments are coerced to brobs.
Function cbrob() operates recursively, calling .cPair() repeatedly. Function .cPair() uses S4 method dispatch to call either .Brob.cpair() or .Glub.cpair() according to the classes of the arguments.

Note

As of R-2.4.0, it is apparently not possible to use $S 4$ methods to redefine $c()$ to coerce to class brob form and concatenate as expected. This would seem to be a reasonable interpretation of $c()$ from the user's perspective.
Conceptually, the operation is simple: concatenate the value slot and the positive slot separately, then call brob() on the two resulting vectors. When concatenating glub objects, the real and imaginary components (being brobs) are concatenated using .Brob.cpair()
The choice of name—cbrob()—is not entirely logical. Because it operates consistently on brob and glub objects, it might be argued that cSwift() would be a more appropriate name.

Author(s)

Robin K. S. Hankin; original idea due to John Chambers

Examples

```
a <- as.brob(2)^1e-40
cbrob(1:4,4:1,a)
cbrob(1:4,a,1i)
```

Compare-methods Methods for Function Compare in Package Brobdingnag

Description

Methods for comparision (greater than, etc) in package Brobdingnag

Note

As for $\min ()$ and $\max ()$, comparison is not entirely straightforward in the presence of NAs.
The low-level workhorses are .Brob.equal() for equality and .Brob.greater() for 'strictly greater than'. All other comparisons are calculated by combining these two.

Comparison [function .Brob. compare()] explicitly tests for a zero length argument and if given one returns logical(0) to match base behaviour.

Examples

```
    a <- as.brob(10)^(0.5 + 97:103)
    a < 1e100
```

Complex Real and imaginary manipulation

Description

Get or set real and imaginary components of brobs or glubs.

Usage

```
## S4 method for signature 'glub'
Re(z)
## S4 method for signature 'glub'
Im(z)
## S4 method for signature 'glub'
Mod(z)
## S4 method for signature 'glub'
Conj(z)
## S4 method for signature 'glub'
Arg(z)
Re(z) <- value
Im(z) <- value
```


Arguments

z
object of class glub (or, in the case of $\operatorname{Im}<-()$ or $\operatorname{Im}(z)<-$ value, class brob)
value object of class numeric or brob

Value

Functions $\operatorname{Re}()$ and $\operatorname{Im}()$ return an object of class brob; functions $\operatorname{Re}<-()$ and $\operatorname{Im}<-$ () return an object of class glub

Author(s)

Robin K. S. Hankin

Examples

a <- cbrob(1:10,brob(1e100))
$\operatorname{Im}(a)<-11: 1$
a

Description

Methods for " [" and "[<-", i.e., extraction or subsetting of brobs and glubs.

Arguments

x	Object of class brob or glub
i	elements to extract or replace
value	replacement value

Value
Always returns an object of the same class as x.

Note

If x is a numeric vector and y a brob, one might expect typing $\mathrm{x}[1]<-\mathrm{y}$ to result in x being a brob. This is impossible, according to John Chambers.

Author(s)

Robin K. S. Hankin

Examples

```
a <- as.brob(10)^c(-100,0,100,1000,1e32)
a[4]
a[4] <- 1e100
```

a

$$
\text { getP } \quad \text { Get and set methods for brob objects }
$$

Description

Get and set methods for brobs: sign and value

Usage

$\operatorname{getP}(x)$
$\operatorname{get} X(x)$
$\operatorname{sign}(x)$ <- value

Arguments

$x \quad$ Brobdingnagian object
value In function sign<-(), Boolean specifying whehter the brob object is positive

Author(s)

Robin K. S. Hankin

See Also

brob

Examples

```
x <- as.brob(-10:10)
sign(x) <- TRUE
```

glub $\quad \begin{aligned} & \text { Glubbdubdribian numbers: complex numbers with Brobdingnagian } \\ & \text { real and imaginary parts }\end{aligned}$

Description

Create, coerce to or test for a Glubbdubdribian object

Usage

glub(real = double(), imag = double())
as.glub(x)
is.glub(x)

Arguments

real, imag Real and imaginary components of complex number: must be Brobdingnagian numbers
x
object to be coerced to or tested for Glubbdubdribian form

Details

Function glub() takes two arguments that are coerced to Brobdingnagian numbers and returns a complex number. This function is not really intended for the end user: it is confusing and includes no argument checking. Use function as.glub() instead.

Function as.glub() is the user's workhorse: use this to coerce numeric or complex vectors to Glubbdubdribian form.
Function is.glub() tests for its arguments being Glubbdubdribian.

Note

Function glub() uses recycling inherited from cbind().

Author(s)

Robin K. S. Hankin

See Also

> brob

Examples

```
a <- as.glub(1:10 + 5i)
a^2 - a*a
f<- function(x){sin(x) +x^4 - 1/x}
as.complex(f(a)) - f(as.complex(a))
# should be zero (in the first
# term, f() works with glubs and coerces to
# complex; in the second, f()
# works with complex numbers directly)
```

```
glub-class Class "glub"
```


Description

Complex Brobdingnagian numbers

Objects from the Class

A glub object holds two slots, both brobs, representing the real and imaginary components of a complex vector.

Slots

real: Object of class "brob" representing the real component
imag: Object of class "brob" representing the imaginary component

Extends

Class "swift", directly.

Methods

.cPair signature($x=$ "brob", $y=$ "glub"): ...
.cPair signature($x=$ "ANY", $y=$ "glub"): ...
.cPair signature(x = "glub", y = "glub"): ...
.cPair signature($x=$ "glub", $y=$ "ANY"): ...
.cPair signature($x=$ "glub", $y=$ "brob"): ...
Im<- signature ($x=$ "glub"): ...
Re<- signature(x = "glub"): ...

Author(s)

Robin K. S. Hankin

See Also

```
    brob-class,swift-class
```


Examples

```
a <- as.brob(45)
new("glub",real=a, imag=a)
as.brob(5+5i) # standard colloquial R idiom
```

 length-methods Get lengths of brobs and glubs

Description

Get lengths of brob and glub vectors

Usage

```
## S4 method for signature 'brob'
length(x)
## S4 method for signature 'glub'
length(x)
```


Arguments

x
vector of class brob or glub

Author(s)

Robin K. S. Hankin

Examples

```
x <- as.brob(-10:10)
length(x)
```


Logic Logical operations on brobs

Description

Logical operations on brobs are not supported

Note

The S4 group generic "Logic" appeared in R-2.4.0-patched.
Carrying out logical operations in this group will call .Brob.logic(), which reports an error.
Negation, "!", is not part of this group: attempting to negate a brob will not activate . Brob.logic(); an "invalid argument type" error is given instead.

Author(s)

Robin K. S. Hankin

Examples

```
## Not run:
!brob(10)
## End(Not run)
```

Math Various logarithmic and circular functions for brobs

Description

Various elementary functions for brobs

Arguments

x	Object of class brob (or sometimes glub)
base	In function $\log ()$, the base of the logarithm

Details

For brobs: apart from $\operatorname{abs}(), \log (), \exp (), \sinh ()$ and $\cosh ()$, these functions return $f($ as. numeric ($x)$) so are numeric; the exceptional functions return brobs.
For glubs: mostly direct transliteration of the appropriate formula; one might note that $\log (z)$ is defined as $g l u b(\log (\operatorname{Mod}(x)), \operatorname{Arg}(x))$.

Author(s)

Robin K. S. Hankin

Examples

$$
\exp (a s . b r o b(3000)) ~ \# \exp (3000) \text { is represented with zero error }
$$

plot Basic plotting of Brobs

Description

Plotting methods. Essentially, any brob is coerced to a numeric and any glub is coerced to a complex, and the argument or arguments are passed to plot().

Usage

$\operatorname{plot}(x, y, \ldots)$

Arguments

x, y	Brob or glub
\ldots	Further arguments passed to plot()

Author(s)

Robin K. S. Hankin

Examples

plot(as.brob(1:10))
Print Methods for printing brobs and glubs

Description

Methods for printing brobs and glubs nicely using exponential notation

Usage

\#\# S3 method for class 'brob'
print(x, ...)
\#\# S3 method for class 'glub'
print(x, ...)

Arguments

x
An object of class brob or glub
... Further arguments (currently ignored)

Author(s)

Robin K. S. Hankin

Examples

a <- as.brob(1:5)
dput(a)
a

sum

Various summary statistics for brobs and glubs

Description

Various summary statistics for brobs and glubs

Arguments

x, \ldots	Objects of class brob or, in the case of sum() and prob(), class glub
na.rm	Boolean, with default FALSE meaning to interpret NAs literally and TRUE meaning to ignore any such elements

Details

For a brob object, being NA is not entirely straightforward. The S4 method for is.na is too "strict" for some of the functions considered here. Consider max (a) where a includes only positive, fully specified, elements, and elements with known negative sign and exponents that include NA values. Here, max (a) is unambiguously determined.
Similar logic applies to min() and, by extension, range().

Note

Function prod() is very slow for long glub vectors. It has to compute four Brobdingnagian products and two Brobdingnagian sums per element of its argument, and this takes a long time.

Author(s)

Robin K. S. Hankin

See Also
is.na

Examples

a <- as.brob(1:10)
$\max (\operatorname{cbrob}(1: 10, b r o b(N A, F A L S E)))$
swift-class Class "swift"

Description

A (virtual) class that extends brob and glub objects

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

No methods defined with class "swift" in the signature.

Author(s)

Robin K. S. Hankin

See Also

brob-class,glub-class

Index

*Topic classes

brob-class, 7
glub-class, 13
swift-class, 18
*Topic math
Arith-methods, 4
as.numeric, 5
brob, 6
cbrob, 8
Compare-methods, 9
Complex, 9
Extract.brob, 10
getP, 11
glub, 12
length-methods, 14
Logic, 15
Math, 15
plot, 16
Print, 16
sum, 17

*Topic methods

Arith-methods, 4
Compare-methods, 9
length-methods, 14

*Topic package

Brobdingnag-package, 2
.cPair, ANY, ANY-method (brob-class), 7
.cPair, ANY, brob-method (brob-class), 7
.cPair, ANY, glub-method (glub-class), 13
.cPair, brob, ANY-method (brob-class), 7
.cPair, brob, brob-method (brob-class), 7
.cPair, brob, complex-method (brob-class), 7
.cPair, brob,glub-method (glub-class), 13
.cPair, complex, brob-method
(brob-class), 7
.cPair,glub, ANY-method (glub-class), 13
.cPair, glub, brob-method (glub-class), 13
.cPair,glub,glub-method (glub-class), 13
[, brob-method (Extract.brob), 10
[,glub-method (Extract.brob), 10
[.brob (Extract.brob), 10
[.glub (Extract.brob), 10
[<-, brob-method (Extract.brob), 10
[<-, glub-method (Extract.brob), 10
[<-. brob (Extract.brob), 10
[<-.glub (Extract.brob), 10
abs (Math), 15
acos (Math), 15
acosh (Math), 15
Arg (Complex), 9
Arg, brob-method (Complex), 9
Arg, glub-method (Complex), 9
Arith, ANY, brob-method (Arith-methods), 4
Arith, ANY, glub-method (Arith-methods), 4
Arith, brob, ANY-method (Arith-methods), 4
Arith,brob,brob-method (Arith-methods),
4
Arith, brob, complex-method
(Arith-methods), 4
Arith,brob,glub-method (Arith-methods), 4
Arith, brob,missing-method
(Arith-methods), 4
Arith, complex, brob-method
(Arith-methods), 4
Arith, complex, glub-method
(Arith-methods), 4
Arith, glub, ANY-method (Arith-methods), 4
Arith,glub,brob-method (Arith-methods),
4
Arith,glub, complex-method
(Arith-methods), 4
Arith,glub,glub-method (Arith-methods), 4
Arith,glub,missing-method
(Arith-methods), 4
Arith-methods, 4

as.complex (as.numeric), 5	
	as.complex, brob-method (as.numeric), 5
	as.complex,glub-method (as.numeric), 5
as.glub (glub), 12	
as.numeric, 5	
as.numeric, brob-method (as.numeric), 5	
as.numeric,glub-method (as.numeric), 5	
asin (Math), 15	
asinh (Math), 15	
atan (Math), 15	
atanh (Math), 15	
brob, 6, 11, 12	
brob-class, 7	
Brobdingnag (Brobdingnag-package), 2	
Brobdingnag-package, 2	
cBrob (cbrob), 8	
cbrob, 8	
ceiling (Math), 15	
coerce, brob, complex-method	
	(as.numeric), 5
coerce, brob, numeric-method	
	(as.numeric), 5
coerce, glub, complex-method	
(as.numeric), 5	
coerce, glub, numeric-method	
	(as.numeric), 5
Compare, ANY, brob-method	
	(Compare-methods), 9
Compare, ANY, glub-method	
	(Compare-methods), 9
Compare, brob, ANY-method	
(Compare-methods), 9	
Compare, brob, brob-method	
	(Compare-methods), 9
Compare, brob,glub-method	
(Compare-methods), 9	
Compare, glub, ANY-method	
(Compare-methods), 9	
Compare, glub, brob-method	
	(Compare-methods), 9
Compare,glub,glub-method	
(Compare-methods), 9	
Compare-methods, 9	
Complex, 9	
Complex, brob-method (Complex), 9	
Complex, glub-method (Complex), 9	

as.brob (brob), 6
as.complex (as.numeric), 5
as.complex,brob-method (as.numeric), 5
as.complex,glub-method (as.numeric), 5
as.glub (glub), 12
as.numeric, 5
s.numeric,brob-method (as.numeric), 5
asin (Math), 15
asinh (Math), 15
atan (Math), 15
atanh (Math), 15
brob, 6, 11, 12
brob-class, 7
Brobdingnag (Brobdingnag-package), 2
Brobdingnag-package, 2
cBrob (cbrob), 8
cbrob, 8
ceiling (Math), 15
coerce, brob, complex-method
(as.numeric), 5
coerce,brob, numeric-method
(as.numeric), 5
coerce,glub, complex-method
(as.numeric), 5
coerce,glub, numeric-method
(as.numeric), 5
Compare, ANY, brob-method
(Compare-methods), 9
Compare, ANY, glub-method
(Compare-methods), 9
Compare, brob, ANY-method
(Compare-methods), 9
Compare, brob, brob-method
(Compare-methods), 9
Compare, brob, glub-method
(Compare-methods), 9
Compare, glub, ANY-method
(Compare-methods), 9
Compare, glub, brob-method
(Compare-methods), 9
Compare,glub,glub-method
(Compare-methods), 9
Compare-methods, 9
Complex, 9
Complex, brob-method (Complex), 9
Complex, glub-method (Complex), 9
Complex-methods (Complex), 9
Conj (Complex), 9
Conj, brob-method (Complex), 9
Conj,glub-method (Complex), 9
cos (Math), 15
cosh (Math), 15
cumsum (Math), 15
\exp (Math), 15
Extract.brob, 10
floor (Math), 15
gamma (Math), 15
getP, 11
getP, brob-method (brob-class), 7
$\operatorname{get} X(\operatorname{getP}), 11$
getX, brob-method (brob-class), 7
glub, 7, 12
glub-class, 13
Im (Complex), 9
Im, brob-method (Complex), 9
Im,glub-method (Complex), 9
Im<- (Complex), 9
Im<-, brob-method (Complex), 9
Im<-, glub-method (Complex), 9
is.brob (brob), 6
is.glub (glub), 12
is.na, 17
length (length-methods), 14
length, brob-method (length-methods), 14
length, glub-method (length-methods), 14
length-methods, 14
lgamma (Math), 15
\log (Math), 15
Logic, 15
Logic, ANY, swift-method (Logic), 15
Logic, swift, ANY-method (Logic), 15
Logic, swift, swift-method (Logic), 15
logic.brob (Logic), 15
Math, 15
Math, brob-method (Math), 15
Math, glub-method (Math), 15
max (sum), 17
min (sum), 17
Mod (Complex), 9
Mod, brob-method (Complex), 9

```
Mod,glub-method (Complex), }
plot,16
plot,ANY, brob-method (plot), 16
plot,ANY,glub-method (plot), 16
plot,brob,ANY-method (plot), 16
plot,brob,missing-method(plot), 16
plot,brob-method (plot), 16
plot,glub,ANY-method (plot), 16
plot,glub,missing-method (plot),16
plot,glub-method (plot),16
Print, 16
print.brob (Print), 16
print.glub (Print), 16
prod (sum), 17
range (sum), 17
Re (Complex), }
Re,brob-method (Complex), 9
Re,glub-method (Complex), 9
Re<- (Complex), }
Re<-,glub-method (Complex), }
show, brob-method (Print), 16
show,glub-method (Print), 16
sign<- (getP), 11
sign<-,brob-method (brob-class), 7
sin(Math), 15
sinh (Math), }1
sqrt (Math), 15
sqrt,brob-method (Math), 15
sqrt,glub-method (Math), 15
sum, 17
Summary, brob-method (sum), 17
Summary,glub-method (sum), 17
swift-class,18
tan(Math), 15
tanh (Math), 15
trunc (Math), 15
```

