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1 Introduction

BoolNet is an R package that provides tools for assembling, analyzing and visu-
alizing synchronous and asynchronous Boolean networks as well as probabilistic
Boolean networks. This document gives an introduction to the usage of the
software and includes examples for use cases.

BoolNet supports four types of networks:

Synchronous Boolean networks consist of a set of Boolean variables

X = {X1, . . . , Xn}

and a set of transition functions

F = {f1, . . . , fn} ,

one for each variable. These transition functions map an input of the
Boolean variables in X to a Boolean value (0 or 1). We call a Boolean
vector x(t) = (x1(t), . . . , xn(t)) the state of the network at time t. Then,
the next state of the network x(t) is calculated by applying all transition
functions fi(x(t− 1)).

In a biological context, genes can be modeled as Boolean variables (active/-
expressed or inactive/not expressed), and the transition functions model
the dependencies among these genes. In the synchronous model, the as-
sumption is that all genes are updated at the same time. This simplifica-
tion facilitates the analysis of the networks.

Asynchronous Boolean networks have the same structure as synchronous
Boolean networks. Yet, at each point of time t, only one of the transition
functions fi ∈ F is chosen at random, and the corresponding Boolean
variable is updated. This corresponds to the assumption that in a genetic
network, gene expression levels are likely to change at different points
of time. In the most common model, the gene to be updated is chosen
uniformly among all genes. Moreover, BoolNet supports specifying non-
uniform update probabilities for the genes.

Probabilistic Boolean networks (PBN) allow for specifying more than one
transition function per variable/gene. Each of these functions has a proba-
bility to be chosen, where the probabilities of all functions for one variable
sum up to 1. Formally

F = {{(f11, p11) , . . . , (f1k1 , p1k1)} , . . . , {(fn1, pn1) , . . . , (fnkn , pnkn)}}

where ki is the number of alternative transition functions for variable i,
and pij is the probability that function j is chosen for variable i. A state
transition is performed by selecting one function for each gene based on
the probabilities and applying the chosen functions synchronously.

Temporal Boolean networks are Boolean networks that incorporate tem-
poral predicates and discrete time delays. Here, the next state x(t) may
not only depend on x(t − 1), but can depend on any predecessor state
x(t −∆),∆ ∈ {1, 2, . . .}. Furthermore, x(t) may also directly depend on
the time step t itself.
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In BoolNet, there are different structure classes representing these network
types:

BooleanNetwork objects contain synchronous and asynchronous Boolean net-
works. Here, the transition functions are internally represented as truth
tables.

ProbabilisticBooleanNetwork objects encode Probabilistic Boolean networks.
They use a truth table representation as well.

SymbolicBooleanNetwork objects represent synchronous and temporal Boolean
networks. They encode Boolean functions in a symbolic form, i.e. as ex-
pression trees.

As we have seen, the networks are represented in two different forms: The truth
table representation, which basically maps inputs to the corresponding output
values, is usually the most efficient representation for synchronous, asynchronous
and probabilistic networks and uses a very fast simulator. However, this repre-
sentation grows exponentially with the number of inputs and is therefore inap-
propriate for networks with a high number of inputs. This is particularly the
case for temporal networks, where each unique time delay for a gene encodes an
input. Hence, temporal networks are represented by directly encoding the cor-
responding Boolean expressions and use a different simulator. As synchronous
Boolean networks are a special case of temporal networks (with all time delays
being 1), these networks can also be represented as SymbolicBooleanNetwork
objects.

The package provides several methods of constructing networks: Networks can
be loaded from files in which human experts describe the dependencies between
the genes. Furthermore, they can be reconstructed from time series of gene
expression measurements. It is also possible to generate random networks. This
can be helpful for the identification of distinct properties of biological networks
by comparison to random structures. The different methods of assembling net-
works are described in Section 2.

In Section 3, tools for the analysis and visualization of network properties are
introduced. For synchronous, asynchronous and temporal Boolean networks,
the most important tool is the identification of attractors. Attractors are cycles
of states and are assumed to be associated with the stable states of cell func-
tion. Another possibility of identifying relevant states is the included Markov
chain simulation. This method is particularly suited for probabilistic networks
and calculates the probability that a state is reached after a certain number
of iterations. To test the robustness of structural properties of the networks
to noise and mismeasurements, the software also includes extensive support for
perturbing networks. In this way, it is possible to test these properties in noisy
copies of a biological network.

In Section 4, the interaction of BoolNet with related software is described.
In particular, the import from and export to SBML is discussed. Also, the
necessary steps to import networks import networks from BioTapestry and to
export networks to Pajek are outlined.

For the examples in the following sections, we assume that the BoolNet package
has been properly installed into the R environment. This can be done by typing
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> install.packages("BoolNet")

into the R console or by the corresponding menu entries in an R GUI. For
some of the plots, the igraph package is required and must be installed in
your R environment as well. This is analogous to installing BoolNet. For
the BioTapestry and SBML import, the XML package must be installed. After
installation, the BoolNet package can be loaded via

> library(BoolNet)

2 Assembling networks

2.1 Assembling a network from expert knowledge

A major advantage of Boolean networks is the fact that natural-language state-
ments can easily be transferred into this representation. This allows researchers
for building Boolean networks entirely from expert knowledge, for example by
collecting statements on gene dependencies from literature and expressing them
as Boolean rules.

BoolNet is able to read in networks consisting of such rule sets in a standardized
text file format. In such a file, each line consists of a target gene and an update
rule, usually separated by a comma. Optionally, it is also possible to add a
probability for the rule if the file describes a probabilistic network. The first
line of such a file is a header

targets, factors

or

targets, factors, probabilities

To illustrate the process of transforming natural-language statements into Boolean
rules, we take a look at the mammalian cell cycle network introduced by Fauré
et al. [5]. In Table 1 of this paper, the authors list natural-language statements
of gene dependencies and the corresponding Boolean expressions. The following
rules are taken from this table.

For gene CycD, Fauré et al. state:

CycD is an input, considered as constant.

Transforming this into a Boolean rule is rather simple: CycD does not change its
value, which means that its value after a transition only depends on its previous
value. Thus, the transition rule is

CycD, CycD

Gene Rb has a more complex description:

Rb is expressed in the absence of the cyclins, which inhibit it by
phosphorylation [...]; it can be expressed in the presence of CycE or
CycA if their inhibitory activity is blocked by p27.
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As a general rule, inhibition can be represented by a Boolean negation. In the
BoolNet file format, a negation is expressed by the ! character. The referenced
cyclins comprise the genes CycA, CycB, CycD, and CycE. If all these genes
are absent, Rb is expressed – i.e. if CycA is not expressed and CycB is not
expressed and CycD is not expressed and CycE is not expressed. A logical AND
is embodied by the & character. Consequently, the first part of the rule is

! CycA & ! CycB & ! CycD & ! CycE

In combination with the above statement, the fact that Rb can be expressed in
the presence of CycE and CycA if p27 is active means that CycB and CycD
must not be active. Thus, the second part of the rule is

p27 & ! CycB & ! CycD

This statement is an exception (or alternative) to the first statement; this can
be expressed as a logical OR, for which the | character is used.

The complete rule for gene Rb is thus

Rb, (! CycA & ! CycB & ! CycD & ! CycE) | (p27 & ! CycB & ! CycD)

After processing all genes in the table in this way, we get the following network
description:

targets, factors

CycD, CycD

Rb, (! CycA & ! CycB & ! CycD & ! CycE) | (p27 & ! CycB & ! CycD)

E2F, (! Rb & ! CycA & ! CycB) | (p27 & ! Rb & ! CycB)

CycE, (E2F & ! Rb)

CycA, (E2F & ! Rb & ! Cdc20 & ! (Cdh1 & UbcH10)) | (CycA & ! Rb & ! Cdc20 & ! (Cdh1 & UbcH10))

p27, (! CycD & ! CycE & ! CycA & ! CycB) | (p27 & ! (CycE & CycA) & ! CycB &! CycD)

Cdc20, CycB

Cdh1,(! CycA & ! CycB) | (Cdc20) | (p27 & ! CycB)

UbcH10, ! Cdh1 | (Cdh1 & UbcH10 & (Cdc20 | CycA | CycB))

CycB, ! Cdc20 & ! Cdh1

Now save this description to a file “cellcycle.txt” in your R working directory.
The network can be loaded via

> cellcycle <- loadNetwork("cellcycle.txt")

The result is an object of class BooleanNetwork containing a truth table repre-
sentation of the network.

The same network is also included in BoolNet as an example and can be accessed
via

> data(cellcycle)

BoolNet also provides several convenience operators that can be used to express
complex Boolean functions in a compact way, e.g.

• maj(a, b, ...) is 1 if the majority of its operands are 1. Similarly,
sumgt(a, b, ..., N) is 1 if more than N operands are 1, sumlt(a, b,

..., N) is 1 if less than N operands are 1, and sumis(a, b, ..., N) is
1 if exactly N operands are 1.
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• all(a, b, ...) is 1 if all its operands are 1 (i.e. a logical AND), and
any(a, b, ...) is 1 if at least one of its operands is 1 (i.e. a logical OR).

The cell cycle network is a classical Boolean network, where each transition func-
tion only depends on the previous state of the network. E.g., CycB, ! Cdc20 & ! Cdh1

can be written formally as CycB(t) = ¬Cdc20(t − 1) ∧ ¬Cdh1(t − 1). As al-
ready discussed before, BoolNet also incorporates several temporal extensions.
For example, a transition function can also depend on the states of genes at
earlier time points:

a, b[-3] & b[-2] & b

is 1 if b has been active in the previous three time steps. The operators described
above can also incorporate time ranges. The previous statement can be written
in a more compact way using the all operator:

a, all[d=-3..-1](b[d])

This defines a time delay variable d that can be used for time specifications
inside the operator. It can also be used in arithmetic operations. E.g.,

a, all[d=-3..-1](b[d] & c[d-1])

specifies that a is active if b has been active in the previous three time steps
and c has been active at time t− 4, t− 3 and t− 2.

Apart from relative time specifications, the BoolNet network language also in-
corporates predicates that depend on the absolute time, i.e. the number of time
steps that have elapsed since the initial state.

For example,

a, timeis(3)

specifies that a is active at time step 3 and inactive at all other time steps.
Similarly, the predicates timelt and timegt evaluate to 1 before and after the
specified time point respectively.

As the above examples do not cover all possibilities of the network description
language, a full language specification is provided in Section 5.

For temporal networks, BoolNet uses a special symbolic simulator that repre-
sents the functions as expression trees, whereas the standard simulator is based
on a truth table representation. These simulators are discussed in Section 3. As
synchronous Boolean networks are a special case of temporal networks, they can
also be simulated with the symbolic simulator. When a network is loaded from a
file using loadNetwork(), the user can specify the parameter symbolic=TRUE to
load it in form of a SymbolicBooleanNetwork object instead of a BooleanNetwork
object. The same parameter is also available for the import functions discussed
in Section 4. Temporal networks can only be loaded with symbolic=TRUE, as
BoolNet cannot represent them as truth tables.

As many network generation and modification routines (such as random net-
work generation and network reconstruction that are discussed in the follow-
ing sections) internally use the truth table representation, there are conversion
routines truthTableToSymbolic() and symbolicToTruthTable() that convert
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synchronous Boolean networks of class BooleanNetwork in a truth table repre-
sentation to networks of class SymbolicBooleanNetwork in a symbolic represen-
tation and vice versa. For more details, please refer to the manual.

2.2 Reconstructing a network from time series

An entirely different approach of assembling a network is to infer rules from
series of expression measurements of the involved genes over time. For example,
microarray experiments can be conducted at different points of time to cover
the expression levels of different cell states. To reconstruct networks from such
data, BoolNet includes two reconstruction algorithms for synchronous Boolean
networks, Best-Fit Extension [10] and REVEAL [12]. REVEAL requires the in-
ferred functions to match the input time series perfectly, hence it is not always
able to reconstruct networks in the presence of noisy and inconsistent measure-
ments. Best-Fit Extension retrieves a set of functions with minimum error on
the input and is thus suited for noisy data.

In the following, we introduce a tool chain for the reconstruction of a Proba-
bilistic Boolean Network from time series using Best-Fit extension.

Microarray measurements are usually represented as matrices of real-valued
numbers which, for example, quantify the expression levels of genes. Bool-

Net includes a real-valued time series of gene measurements from a project to
analyze the yeast cell cycle [16] which can be loaded using

> data(yeastTimeSeries)

This data contains four preselected genes and a series of 14 measurements for
each of these genes.

In a first step, the real-valued dataset has to be converted to binary data as
required by the reconstruction algorithm. BoolNet offers several binarization
algorithms in the function binarizeTimeSeries(). We here employ the de-
fault method which is based on k-means clustering (with k = 2 for active and
inactive):

> binSeries <- binarizeTimeSeries(yeastTimeSeries)

The returned structure in binSeries has an element $binarizedMeasurements
containing the binary time series, and, depending on the chosen binarization
method, some other elements describing parameters of the binarization.

To reconstruct the network from this data, we call the Best-Fit Extension algo-
rithm:

> net <- reconstructNetwork(binSeries$binarizedMeasurements,

+ method="bestfit",

+ maxK=4)

Here, maxK is the maximum number of input genes for a gene examined by
the algorithm. The higher this number, the higher is the runtime and memory
consumption of the reconstruction.
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We can now take a look at the network using

> net

Probabilistic Boolean network with 4 genes

Involved genes:

Fkh2 Swi5 Sic1 Clb1

Transition functions:

Alternative transition functions for gene Fkh2:

Fkh2 = <f(Clb1){01}> (error: 1)

Fkh2 = <f(Fkh2){01}> (error: 1)

Alternative transition functions for gene Swi5:

Swi5 = <f(Clb1){01}> (error: 1)

Swi5 = <f(Fkh2){01}> (error: 1)

Alternative transition functions for gene Sic1:

Sic1 = <f(Sic1,Clb1){0001}> (error: 1)

Sic1 = <f(Swi5,Sic1){0001}> (error: 1)

Sic1 = <f(Fkh2,Sic1){0001}> (error: 1)

Alternative transition functions for gene Clb1:

Clb1 = <f(Clb1){01}> (error: 1)

Clb1 = <f(Fkh2){01}> (error: 1)

The dependencies among the genes in the network can be visualized using the
plotNetworkWiring() function. In this graph, each gene corresponds to a ver-
tex, and the inputs of transition functions correspond to edges.

> plotNetworkWiring(net)

plots a graph similar to that at the top of Figure 1. To use this function, you
must install the igraph package.

A network that involved the same genes was examined by Kim et al. [9]. When
comparing the wiring graph of our reconstructed network with the reference
network presented in Figure 2 of this paper, one observes a very high similarity
between the two networks. However, the reconstructed network comprises too
many links for the gene Sic1: The reference network does not contain a self-
regulation of Sic1 or regulation of Sic1 by Fkh2. If it is known in advance that
these regulations are not plausible, such prior knowledge can be supplied to the
reconstruction algorithm:

> net <- reconstructNetwork(binSeries$binarizedMeasurements,

+ method="bestfit",

+ maxK=4,

+ excludedDependencies = list("Sic1" = c("Sic1", "Fkh2")))
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Fkh2

Swi5

Sic1

Clb1

Fkh2

Swi5

Sic1

Clb1

Figure 1: The wiring graph of the reconstructed network without prior knowl-
edge (top) and with the inclusion of prior knowledge (bottom). Each node of
the graph represents one gene, and each arrow represents a gene dependency.
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The wiring of the reconstruction with prior knowledge is shown at the bottom
of Figure 1. We can see that the two false links are now eliminated. Similar
to excludedDependencies, there is also a parameter requiredDependencies

that specifies dependencies that must be included in the network.

When reconstructNetwork() discovers multiple functions for a gene with the
minimum error on the input data, it includes all of these functions as alter-
native functions with equal probability. Consequently, the function returns a
ProbabilisticBooleanNetwork structure.

If you would like to obtain a BooleanNetwork object with only one function per
gene from a probabilistic network, you can extract such a network by telling
the software which of the functions you would like to use. This can be done by
specifying the indices of the functions to extract:

> net <- reconstructNetwork(binSeries$binarizedMeasurements,

+ method="bestfit", maxK=4)

> functionIndices <- c(1,2,3,2) #select function index for each regulatory component

> dontCareDefaults <- lapply(seq_along(net$interactions), function(idx) rep(F, sum(net$interactions[[idx]][[functionIndices[idx]]]$func == -1))) #determine number of don't care values for each selected function and set them to 0

> names(dontCareDefaults) <- net$genes

> singleNet <- chooseNetwork(net, functionIndices, dontCareValues = dontCareDefaults)

In case of don’t care values in reconstructed functions, it is possible to set
them to 0 or 1 per default. The result is a Boolean network that is created by
extracting the first function of gene Fkh2, the second function of genes Swi5 and
Clb1, and the third function of gene Sic1 from the above probabilistic network:

> singleNet

Boolean network with 4 genes

Involved genes:

Fkh2 Swi5 Sic1 Clb1

Transition functions:

Fkh2 = <f(Clb1){01}>

Swi5 = <f(Fkh2){01}>

Sic1 = <f(Fkh2,Sic1){0001}>

Clb1 = <f(Fkh2){01}>

BoolNet also supports the generation of artificial time series from existing net-
works: The generateTimeSeries() function generates a set of time series from
a network using random start states and optionally adds Gaussian noise.

> series <- generateTimeSeries(cellcycle,

+ numSeries=100,

+ numMeasurements=10,

+ noiseLevel=0.1)

generates a list of 100 time series by calculating 10 consecutive transitions from
100 randomly chosen network states in the mammalian cell cycle network. The
series are subject to Gaussian noise with a standard deviation of 0.1, such that
the result is a list of real-valued matrices.
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We can now binarize these simulated measurements and try to reconstruct the
original network:

> binSeries <- binarizeTimeSeries(series, method="kmeans")

> net <- reconstructNetwork(binSeries$binarizedMeasurements, method="bestfit")

> net

Probabilistic Boolean network with 10 genes

Involved genes:

CycD Rb E2F CycE CycA p27 Cdc20 Cdh1 UbcH10 CycB

Transition functions:

Alternative transition functions for gene CycD:

CycD = <f(CycD){01}> (error: 0)

Alternative transition functions for gene Rb:

Rb = <f(CycD,CycE,p27,CycB){1010001000000000}> (error: 0)

Alternative transition functions for gene E2F:

E2F = <f(Rb,CycA,p27,CycB){1010001000000000}> (error: 0)

Alternative transition functions for gene CycE:

CycE = <f(Rb,E2F){0100}> (error: 0)

Alternative transition functions for gene CycA:

CycA = <f(Rb,E2F,Cdc20,Cdh1,UbcH10){11000000111000000000000000000000}> (error: 5)

CycA = <f(Rb,E2F,CycA,Cdc20,UbcH10){00001100100011000000000*00000*00}> (error: 5)

Alternative transition functions for gene p27:

p27 = <f(CycD,CycE,CycA,p27,CycB){1010*010001000000000*00000000000}> (error: 0)

Alternative transition functions for gene Cdc20:

Cdc20 = <f(CycB){01}> (error: 0)

Alternative transition functions for gene Cdh1:

Cdh1 = <f(CycA,p27,Cdc20,CycB){1011101100111011}> (error: 0)

Alternative transition functions for gene UbcH10:

UbcH10 = <f(CycA,Cdc20,Cdh1,UbcH10,CycB){11110001111100111111001111*10011}> (error: 0)

Alternative transition functions for gene CycB:

CycB = <f(Cdc20,Cdh1){1000}> (error: 0)

Obviously, the number of generated time series is still to small to reconstruct
the network unambiguously. However, the result comes close to the original
network. We see that the functions of the network are not fully specified: At
some positions, there are asterisks (*) denoting a don’t care value. This means
that functions with a 0 and a 1 at this position match the time series equally
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well. That is, a partially defined function with m asterisks corresponds to 2m

fully defined Boolean functions. It is also possible to generate these fully defined
functions instead of the partially defined function by setting the parameter re-
turnPBN to true (which was the behaviour prior to BoolNet version 2.0). For
many don’t care values, this may consume a high amount of memory and com-
putation time.

generateTimeSeries() can also generate time series with artificial knock-outs
and overexpressions:

> series <- generateTimeSeries(cellcycle,

+ numSeries=10,

+ numMeasurements=10,

+ perturbations=1,

+ noiseLevel=0.1)

specifies that each generated time series is generated from a network where
one randomly selected gene is artificially knocked down (constantly 0) or over-
expressed (constantly 1). These perturbations are returned in an additional
element perturbations.

> series$perturbations

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

CycD NA NA NA NA NA NA NA NA NA NA

Rb NA NA NA NA NA NA 0 NA NA NA

E2F NA 0 NA NA NA 0 NA NA NA NA

CycE NA NA NA NA NA NA NA NA NA 1

CycA NA NA NA NA NA NA NA 1 NA NA

p27 NA NA NA 1 NA NA NA NA NA NA

Cdc20 NA NA NA NA 1 NA NA NA NA NA

Cdh1 NA NA NA NA NA NA NA NA 1 NA

UbcH10 NA NA NA NA NA NA NA NA NA NA

CycB 1 NA 0 NA NA NA NA NA NA NA

Here, each column corresponds to the perturbations applied in one series. A
value of 1 denotes an overexpression, a value of 0 denotes a knock-out, and an
N/A value means that no perturbation was applied to this gene.

The reconstructNetwork() function also supports the reconstruction from
such perturbation experiments if it is known which genes were perturbed. First,
we store the series and the perturbation matrix in separate variables and bina-
rize the data as before:

> perturbations <- series$perturbations

> series$perturbations <- NULL

> binSeries <- binarizeTimeSeries(series, method="kmeans")

Now, we can reconstruct the network by specifying the perturbations param-
eter:

> net <- reconstructNetwork(binSeries$binarizedMeasurements,

+ method="bestfit",
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+ perturbations=perturbations)

> net

Probabilistic Boolean network with 10 genes

Involved genes:

CycD Rb E2F CycE CycA p27 Cdc20 Cdh1 UbcH10 CycB

Transition functions:

Alternative transition functions for gene CycD:

CycD = <f(CycD){01}> (error: 0)

Alternative transition functions for gene Rb:

Rb = <f(CycD,CycE,Cdh1,UbcH10){0111000000000000}> (error: 0)

Rb = <f(CycD,CycE,Cdc20,UbcH10){1101000000*00000}> (error: 0)

Rb = <f(CycD,CycE,CycA,CycB){100*0*0000000*00}> (error: 0)

Alternative transition functions for gene E2F:

E2F = <f(Rb,CycA,p27,CycB){101*001*0*0*****}> (error: 0)

Alternative transition functions for gene CycE:

CycE = <f(Rb,E2F){0100}> (error: 0)

CycE = <f(CycD,E2F){0001}> (error: 0)

Alternative transition functions for gene CycA:

CycA = <f(Rb,E2F,CycA,Cdc20,UbcH10){0000110010**10**00*0****0*00****}> (error: 0)

Alternative transition functions for gene p27:

p27 = <f(CycD,CycE,Cdh1,UbcH10){0111000000000000}> (error: 0)

p27 = <f(CycD,CycE,Cdc20,UbcH10){1101000000*000*0}> (error: 0)

p27 = <f(CycD,CycE,CycA,CycB){100*0*0000000*00}> (error: 0)

Alternative transition functions for gene Cdc20:

Cdc20 = <f(CycB){01}> (error: 0)

Alternative transition functions for gene Cdh1:

Cdh1 = <f(CycA,p27,Cdc20,CycB){10111*1100111*1*}> (error: 0)

Cdh1 = <f(CycA,p27,Cdc20,Cdh1){01*1*1110011111*}> (error: 0)

Alternative transition functions for gene UbcH10:

UbcH10 = <f(CycA,Cdc20,Cdh1,UbcH10){1*001101110111*1}> (error: 0)

Alternative transition functions for gene CycB:

CycB = <f(Cdc20,Cdh1){1000}> (error: 0)

As we generated only 10 series in this case, the reconstructed network is much
more incomplete than in the previous reconstruction.

In biological settings, perturbation experiments are probably one of the most
frequent ways of exploring the behaviour of a regulatory network, as it is much
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easier to obtain various different responses by applying perturbations than by
just measuring the wild type behaviour.

2.3 Creating random networks

To study structural properties of Boolean networks and to determine the specific
properties of biological networks in comparison to arbitrary networks, it is often
desirable to generate artificial networks. BoolNet comprises a facility for the
generation of random N -K networks [7, 8]. In the standard N -K networks, N
is the total number of genes, and K is the number of input genes for each gene
transition function. Such a network can be generated using

> net <- generateRandomNKNetwork(n=10, k=3)

This creates a network with 10 genes, each of which has a transition function
that depends on 3 genes and whose output is generated uniformly at random.
Similarly, one can also specify different numbers of input genes for each gene:

> net <- generateRandomNKNetwork(n=10, k=c(1,2,3,1,3,2,3,2,1,1))

BoolNet does not only support this standard case, but allows for different me-
thods of choosing the numbers of input genes (parameter topology), the input
genes themselves (parameter linkage), and the transition functions (parameter
functionGeneration). In the following, some examples are presented.

The command

> net <- generateRandomNKNetwork(n=20, k=20, topology="scale_free")

determines the numbers of input genes by drawing values from the scale-free
Zeta distribution [1]. According to this distribution, most transition functions
will have a small number of input genes, but a few transition functions may
depend on a high number of genes. The shape of the Zeta distribution can be
customized using an additional parameter gamma, which potentially increases
the number of input genes when chosen small and vice versa.

> net <- generateRandomNKNetwork(n=10, k=3, linkage="lattice")

creates a network in which the transition functions of the genes depend on a
choice of genes with adjacent indices [2]. This leads to networks with highly
interdependent genes.

It is also possible to influence the truth tables of the functions in several ways.
The parameter zeroBias changes the ratio of 1 and 0 returned by the functions:

> net <- generateRandomNKNetwork(n=10,

+ k=3,

+ functionGeneration="biased",

+ zeroBias=0.75)

generates a network in which the outcome of a transition function is 0 for around
75% of the inputs.
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A more intricate way of influencing the function generation is the specifica-
tion of generation functions. Generation functions explicitly generate functions
according to a specific function class.

Canalyzing functions are assumed to occur frequently in biological systems [6].
A canalyzing function has the property that one input can determine the out-
put value on its own, i.e. if this input is either active or inactive, the output
of the function is always the same. Nested canalyzing functions are a recursive
definition of canalyzing functions, where the part of the function that does not
depend on the canalyzing input is a canalyzing function for another input. Such
functions can be generated using the built-in generation functions generateC-

analyzing() and generateNestedCanalyzing():

> net1 <- generateRandomNKNetwork(n=10,

+ k=3,

+ functionGeneration=generateCanalyzing,

+ zeroBias=0.75)

> net2 <- generateRandomNKNetwork(n=10,

+ k=3,

+ functionGeneration=generateNestedCanalyzing,

+ zeroBias=0.75)

It is also possible to define own generation functions: A generation function
receives a vector input of input gene indices as a parameter and returns a truth
table result column with 2^length(input) values representing the function.

If no explicit generation scheme is known for the function class of interest, valida-
tion functions can be used instead of generation functions. Validation functions
verify whether randomly generated functions belong to a specific function class
and reject invalid functions. Naturally, this is much less efficient than generat-
ing appropriate functions directly. An example is the generation of monotone
functions, which are also thought to be biologically plausible. These function
account for the assumption that a transcription factor usually either activates
or inhibits a specific target gene, but does not change the type of regulation
depending on other factors [14]. We can specify a simple validation function
that checks whether a Boolean function is monotone:

> isMonotone <- function(input, func)

+ {

+ for (i in seq_len(ncol(input)))

+ # check each input gene

+ {

+ groupResults <- split(func, input[,i])

+ if (any(groupResults[[1]] < groupResults[[2]]) &&

+ any(groupResults[[1]] > groupResults[[2]]))

+ # the function is not monotone

+ return(FALSE)

+ }

+ return(TRUE)

+ }

Here, input is a matrix containing the input part of the transition table, and
func is the output of the Boolean function. In a monotone function, the values
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of the target may only change in one direction when switching one input. Hence,
a function for which switching the value of an input gene sometimes switches
the target from active to inactive, but also sometimes switches it from inactive
to active is not monotone. This is validated by comparing the two groups
of transition table entries for which the current input is active and inactive
respectively.

If a validation function is supplied to generateRandomNKNetwork(), the gen-
erator generates Boolean functions until either the validation function returns
TRUE or the maximum number of iterations (specified by the parameter fail-

ureIterations) is reached, in which case it fails.

> net <- generateRandomNKNetwork(n=10,

+ k=3,

+ validationFunction="isMonotone",

+ failureIterations=1000)

creates a network with 10 genes in which all functions have 3 inputs, of which
at least one is canalyzing.

By default, generateRandomNKNetwork() creates functions that cannot be sim-
plified, i.e. that do not contain any genes that are irrelevant for the outcome of
the function. If desired, this behaviour can be changed by setting noIrrele-

vantGenes to FALSE.

The presented parameters can be combined, and there are further options and
parameters, so that a broad variety of networks with different structural pro-
perties can be generated. For a full reference of the possible parameters, please
refer to the manual.

2.4 Knock-out and overexpression of genes

BoolNet allows for temporarily knocking out and overexpressing genes in a net-
work without touching the transition functions. This means that genes can be
set to a fixed value, and in any calculation on the network, this fixed value is
taken instead of the value of the corresponding transition function. Knocked-out
and overexpressed genes speed up the analysis of the network, as they can be ig-
nored in many calculations. For example, to knock out CycD in the mammalian
cell cycle network, we call

> data(cellcycle)

> knockedOut <- fixGenes(cellcycle, "CycD", 0)

or alternatively use the gene index

> knockedOut <- fixGenes(cellcycle, 1, 0)

This sets the gene constantly to 0. To over-express the gene (i.e. to fix it to 1),
the corresponding call is

> overExpressed <- fixGenes(cellcycle, "CycD", 1)

The command
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> originalNet <- fixGenes(knockedOut, "CycD", -1)

reactivates the gene (for both knock and overexpression) and resets the network
to its original state.

The function also accepts multiple genes in a single call, such as

> newNet <- fixGenes(cellcycle, c("CycD","CycE"), c(0,1))

which knocks out CycD and overexpresses CycE.

3 Network analysis

3.1 Simulation of state transitions

To simulate a state transition and identify successor states of a given state, Bool-
Net includes the function stateTransition(). The function supports transi-
tions for all four types of networks.

The following code performs a synchronous state transition for the state in which
all genes are set to 1 on the mammalian cell cycle network:

> data(cellcycle)

> stateTransition(cellcycle, rep(1,10))

CycD Rb E2F CycE CycA p27 Cdc20 Cdh1 UbcH10 CycB

1 0 0 0 0 0 1 1 1 0

To calculate all state transitions in a synchronous network until an attractor is
reached, you can call

> path <- getPathToAttractor(cellcycle, rep(0,10))

> path

CycD Rb E2F CycE CycA p27 Cdc20 Cdh1 UbcH10 CycB

1 0 0 0 0 0 0 0 0 0 0

2 0 1 1 0 0 1 0 1 1 1

3 0 0 0 0 0 0 1 0 1 0

4 0 1 1 0 0 1 0 1 1 0

5 0 1 0 0 0 1 0 1 0 0

The returned matrix consists of the subsequent states until an attractor is
reached. Depending on the optional parameter includeAttractorStates, the
sequence comprises all attractor states, only the first attractor state or none of
the attractor states.

A sequence can be visualized by plotting a table of state changes:

> plotSequence(sequence=path)

The result is depicted in Figure 2. plotSequence() also includes a shortcut that
calculates the sequence directly if a network and a start state are supplied. It
also provides an alternative way of visualizing the sequence as a state transition
by setting mode="graph".

The function
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CycB

UbcH10

Cdh1

Cdc20

p27

CycA

CycE

E2F

Rb

CycD

Attractor

active inactive

Figure 2: Visualization of a sequence of states in the mammalian cell cycle
network. The columns of the table represent consecutive states of the time
series. The last state is the steady-state attractor of the network.

> sequenceToLaTeX(sequence=path, file="sequence.tex")

creates a LATEX table similar to plotSequence() function document.

In many cases, start states are defined by a set of active genes. Instead of
supplying a full state vector, one can also supply only these active genes using
the generateState() function.

> startState <- generateState(cellcycle, specs=c("CycD"=1,"CycA"=1))

> stateTransition(cellcycle,startState)

CycD Rb E2F CycE CycA p27 Cdc20 Cdh1 UbcH10 CycB

1 0 0 0 1 0 0 0 1 1

calculates a state transition starting from a state where only the genes CycD
and CycA are active, while all other genes are inactive (which is controlled by
the default parameter of generateState()).

For temporal Boolean networks (objects of class SymbolicBooleanNetworks), the
above functions can be utilized mostly in the same way. We demonstrate this us-
ing a small temporal network example of the IGF (Insulin-like growth receptor)
pathway that is included in the package and can be loaded via

> data(igf)

The model illustrates the activation and feedback inhibition of the PI3K-Akt-
mTOR signalling cascade through IGF and IRS.

A state transition from the initial state in which the trigger of the pathway –
IGF – is active, can be performed using
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> startState <- generateState(igf, specs=c("IGF"=1))

> stateTransition(igf, startState)

IGF IRS PI3K Akt mTORC1 mTORC2

1 1 0 0 0 0

The IGF network incorporates time delays of up to 3. Therefore, the last three
states have to be known to calculate a successor state. If only a single state is
supplied – as above – the function assumes that the state was the same before.
This can be seen when calculating the sequence to the attractor using

> getPathToAttractor(network=igf,state=startState)

IGF IRS PI3K Akt mTORC1 mTORC2

t = -2 1 0 0 0 0 0

t = -1 1 0 0 0 0 0

t = 0 1 0 0 0 0 0

t = 1 1 1 0 0 0 0

t = 2 1 1 1 0 0 0

t = 3 1 1 1 1 0 1

t = 4 1 1 1 1 0 1

t = 5 1 1 1 1 0 0

t = 6 1 1 1 1 1 0

t = 7 1 1 1 1 1 0

t = 8 1 0 1 1 1 0

t = 9 1 0 0 1 1 0

t = 10 1 0 0 0 1 0

t = 11 1 0 0 0 1 0

t = 12 1 0 0 0 0 0

t = 13 1 0 0 0 0 0

t = 14 1 0 0 0 0 0

Here, the states at t = −2, . . . 0 are the same as the generated start state. If it
is required to specify multiple predecessor states here, a matrix of states can be
supplied instead of a vector. E.g.,

> startState <- generateState(igf, specs=list("IGF"=c(0,0,1)))

> startState

IGF IRS PI3K Akt mTORC1 mTORC2

[1,] 0 0 0 0 0 0

[2,] 0 0 0 0 0 0

[3,] 1 0 0 0 0 0

specifies that the first two states (t = −2, t = −1) should have all genes inactive,
while IGF is activated only at t = 0. This time, we plot the sequence instead of
printing it:

> plotSequence(network=igf, startState=startState)
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Figure 3: Visualization of a sequence of states in the IGF network. The columns
of the table represent consecutive states of the time series. After activation of
IGF, the attractor consisting of 14 states is entered immediately. This attractor
represents the activation and inactivation of the PI3K-Akt-mTOR signalling
cascade through IGF and IRS.

The result is depicted in Figure 3.

stateTransition() can also perform asynchronous updates. A random asyn-
chronous transition is performed using

> stateTransition(cellcycle, rep(1,10), type="asynchronous")

CycD Rb E2F CycE CycA p27 Cdc20 Cdh1 UbcH10 CycB

1 1 1 1 0 1 1 1 1 1

In this case, the fifth gene, CycA, was chosen at uniformly at random and
updated.

We can also specify non-uniform probabilities for the genes, for example

> stateTransition(cellcycle, rep(1,10), type="asynchronous",

+ geneProbabilities=c(0.05,0.05,0.2,0.3,0.05,0.05,0.05,0.05,0.1,0.1))

CycD Rb E2F CycE CycA p27 Cdc20 Cdh1 UbcH10 CycB

1 1 1 0 1 1 1 1 1 1

This obviously increases probabilities for the genes 3 and 4 (E2F and CycE) to
be chosen. In this case, CycE was chosen for the update.

Sometimes you do not want a random update at all, but would like to specify
which gene should be chosen for the update. This is possible via

> stateTransition(cellcycle, rep(1,10), type="asynchronous",

+ chosenGene="CycE")
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CycD Rb E2F CycE CycA p27 Cdc20 Cdh1 UbcH10 CycB

1 1 1 0 1 1 1 1 1 1

In probabilistic Boolean networks, a state transition is performed by choosing
one of the alternative functions for each gene and applying this set of functions
to the current state. The following performs a state transition with a randomly
chosen set of functions on the artificial probabilistic Boolean network taken from
[15] with 3 genes, starting from state (0,1,1):

> data(examplePBN)

> stateTransition(examplePBN, c(0,1,1), type="probabilistic")

x1 x2 x3

1 0 0

You may get a different result, as the functions are chosen randomly according
to the probabilities stored in the network. If you would like to execute a specific
set of transition functions, you can supply this in an additional parameter:

> stateTransition(examplePBN, c(0,1,1), type="probabilistic",

+ chosenFunctions=c(2,1,2))

x1 x2 x3

0 0 0

This call uses the second function for gene x1 and x3 and the first function for
gene x2.

3.2 Identification of attractors

Attractors are stable cycles of states in a Boolean network. As they comprise
the states in which the network resides most of the time, attractors in models
of gene-regulatory networks are expected to be linked to phenotypes [8, 11].
Transitions from all states in a Boolean network eventually lead to an attractor,
as the number of states in a network is finite. All states that lead to a certain
attractor form its basin of attraction. BoolNet is able to identify attractors
in synchronous and asynchronous Boolean networks. There are three types of
attractors in these networks:

Simple attractors occur in synchronous and temporal Boolean networks and
consist of a set of states whose synchronous transitions form a cycle.

Complex or loose attractors are the counterpart of simple attractors in asyn-
chronous networks. As there is usually more than one possible transition
for each state in an asynchronous network, a complex attractor is formed
by two or more overlapping loops. Precisely, a complex attractor is a set
of states in which all asynchronous state transitions lead to another state
in the set, and a state in the set can be reached from all other states in
the set.
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Steady-state attractors are attractors that consist of only one state. All
transitions from this state result in the state itself. These attractors are
the same both for synchronous and asynchronous update of a network.
Steady states are a special case of both simple attractors and complex
attractors.

The getAttractors() function incorporates several methods for the identifica-
tion of attractors in synchronous and asynchronous networks. We present these
methods using the included mammalian cell cycle network as an example. This
network has one steady-state attractor, one simple synchronous attractor con-
sisting of 7 states, and one complex asynchronous attractor with 112 states (see
[5]).

We first demonstrate the use of exhaustive synchronous search. This means
that the software starts from all possible states of the network and performs
synchronous state transitions until a simple or steady-state attractor is reached.
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> data(cellcycle)

> attr <- getAttractors(cellcycle)

> attr

Attractor 1 is a simple attractor consisting of 1 state(s) and

has a basin of 512 state(s):

|--<---------|

V |

0100010100 |

V |

|-->---------|

Genes are encoded in the following order: CycD Rb E2F CycE CycA

p27 Cdc20 Cdh1 UbcH10 CycB

Attractor 2 is a simple attractor consisting of 7 state(s) and

has a basin of 512 state(s):

|--<---------|

V |

1001100000 |

1000100011 |

1000101011 |

1000001110 |

1010000110 |

1011000100 |

1011100100 |

V |

|-->---------|

Genes are encoded in the following order: CycD Rb E2F CycE CycA

p27 Cdc20 Cdh1 UbcH10 CycB

Typing attr calls a special print method that presents the attractor in a human-
readable way. Here, a state in an attractor is represented by a binary vector,
where each entry of the vector codes for one gene. An alternative is to print only
the names of the active genes (i.e., the genes that are set to 1) instead of the
full vector by calling the print() method explicitly with a changed parameter:

> print(attr, activeOnly=TRUE)

Attractor 1 is a simple attractor consisting of 1 state(s) and

has a basin of 512 state(s).

Active genes in the attractor state(s):

State 1: Rb, p27, Cdh1

Attractor 2 is a simple attractor consisting of 7 state(s) and

has a basin of 512 state(s).

Active genes in the attractor state(s):

State 1: CycD, CycE, CycA
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State 2: CycD, CycA, UbcH10, CycB

State 3: CycD, CycA, Cdc20, UbcH10, CycB

State 4: CycD, Cdc20, Cdh1, UbcH10

State 5: CycD, E2F, Cdh1, UbcH10

State 6: CycD, E2F, CycE, Cdh1

State 7: CycD, E2F, CycE, CycA, Cdh1

We can see that the search identified both synchronous attractors.

The AttractorInfo structure stores the attractors in an encoded form. The
function getAttractorSequence() can be used to obtain the sequence of states
that constitute a specific synchronous attractor as a table:

> getAttractorSequence(attr, 2)

CycD Rb E2F CycE CycA p27 Cdc20 Cdh1 UbcH10 CycB

1 1 0 0 1 1 0 0 0 0 0

2 1 0 0 0 1 0 0 0 1 1

3 1 0 0 0 1 0 1 0 1 1

4 1 0 0 0 0 0 1 1 1 0

5 1 0 1 0 0 0 0 1 1 0

6 1 0 1 1 0 0 0 1 0 0

7 1 0 1 1 1 0 0 1 0 0

retrieves the states that make up the second (i.e., the 7-state attractor) as a
data frame with the genes in the columns and the successive states in the rows.

The advantage of the exhaustive search method is that the complete transition
table is calculated and stored in the return value. This table stores information
that is used by a number of analysis methods described below.

You can extract the transition table in a data frame and print it out using

> tt <- getTransitionTable(attr)

> tt

State Next state Attr. basin # trans. to attr.

0000000000 => 0110010111 1 4

[...]

1111111111 => 1000001110 2 1

Genes are encoded in the following order: CycD Rb E2F CycE

CycA p27 Cdc20 Cdh1 UbcH10 CycB

In the printed table, the first column denotes the initial state, the second column
contains the state after the transition, the first column contains the number of
the attractor that is finally reached from this state, and the fourth column lists
the number of state transitions required to attain this attractor.

A table of the same structure is returned by

> getBasinOfAttraction(attr, 1)

which extracts all states from the transition table that belong to the basin of
attraction of attractor one (i.e., whose attractor number in column 3 is 1).

If you are interested in information on a single state (here: the state with all
genes set to 1), you can type
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> getStateSummary(attr, c(1,1,1,1,1,1,1,1,1,1))

State Next state Attr. basin # trans. to attr.

1111111111 => 1000001110 2 1

Genes are encoded in the following order: CycD Rb E2F CycE

CycA p27 Cdc20 Cdh1 UbcH10 CycB

The visualization function getStateGraph() makes use of the transition table
as well: It plots a transition graph in which the basins of attraction are drawn
in different colors, and the attractors are highlighted. The result of

> plotStateGraph(attr)

is depicted at the top of Figure 4. The blue basin belongs to attractor 1, and
the green basin belongs to attractor 2.

The above call does not ensure that the basins of attraction are clearly sepa-
rated in the plot. If this is desired, one can choose to use a piecewise layout,
which means that the layouting function is applied separately to each basin of
attraction, and the basins are drawn side by side. The result of

> plotStateGraph(attr, piecewise=TRUE)

is depicted at the bottom of Figure 4.

Exhaustive search consumes a high amount of time and memory with increasing
size of the network, which makes it intractable for large networks (BoolNet
currently supports networks with up to 29 genes for exhaustive search due to
memory restrictions in R). Therefore, BoolNet also allows for heuristic search
of attractors, which works for larger networks as well. Heuristic synchronous
search starts from a predefined small set of states and identifies the attractors
to which state transitions from these states lead. The start states can either be
supplied, or they can be calculated randomly.

> attr <- getAttractors(cellcycle, method="random", startStates=100)

chooses 100 random start states for the heuristic search and usually identifies
both attractors.

> attr <- getAttractors(cellcycle,

+ method="chosen",

+ startStates=list(rep(0,10),rep(1,10)))

starts from the states (0,0,0,0,0,0,0,0,0,0) and (1,1,1,1,1,1,1,1,1,1)

and again identifies both synchronous attractors.

For the previous calls, only the subset of the transition table traversed by the
heuristic is returned. This means that there is no guarantee that, e.g. get-

BasinOfAttraction() returns the complete basin of attraction of an attractor
in heuristic mode.

Synchronous attractors can be visualized by plotting a table of changes of gene
values in the states of the attractor:
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Figure 4: The state graph of the mammalian cell cycle network using the regular
layout (top) and using a piecewise layout (bottom). Each node represents a state
of the network, and each arrow is a state transition. The colors mark different
basins of attraction. Attractors are highlighted using bold lines.
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Attractors with 7 state(s)
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Figure 5: Visualization of the state changes in an attractor. The columns of
the table represent consecutive states of the attractor. On top, the percentage
of states leading to the attractor is supplied.

> plotAttractors(attr, subset=2)

plots the state changes of the simple attractor with 7 states, as depicted in
Figure 5. Similarly,

> attractorsToLaTeX(attr, subset=2, file="attractors.tex")

exports the same state table to a LATEX document.

To identify asynchronous attractors, another special heuristic algorithm is in-
cluded. This algorithm again starts from a small subset of states and makes a
number of random transitions to reach an attractor with a high probability. Af-
ter that, a validation step is performed to analyze whether a complex attractor
has been identified.

The command

> attr <- getAttractors(cellcycle,

+ type="asynchronous",

+ method="random",

+ startStates=500)

conducts an asynchronous search with 500 random start states on the mam-
malian cell cycle network. In this case, the algorithm has identified both the
steady-state attractor and the complex attractor:

> attr

Attractor 1 is a simple attractor consisting of 1 state(s):
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|--<---------|

V |

0100010100 |

V |

|-->---------|

Genes are encoded in the following order: CycD Rb E2F CycE

CycA p27 Cdc20 Cdh1 UbcH10 CycB

Attractor 2 is a complex/loose attractor consisting of 112 state(s)

and 338 transition(s):

1011101111 => 1011101110

[...]

1000000000 => 1010000000

Genes are encoded in the following order: CycD Rb E2F CycE

CycA p27 Cdc20 Cdh1 UbcH10 CycB

For the complex attractor, the involved transitions are printed out. By default,
the algorithm tries to avoid self-loops, i.e. transitions that lead to the same
state again. This means that self-loop transitions are only allowed if there is no
other transition that leads to a different state. If you would like to allow the
algorithm to enter self-loops even if transitions to different states are possible,
you can call

> attr <- getAttractors(cellcycle,

+ type="asynchronous",

+ method="random",

+ startStates=500,

+ avoidSelfLoops=FALSE)

In the resulting complex attractor with 112 states, there are 450 transitions
instead of 338 transitions, which is due to the additional self-loops.

The asynchronous heuristic search does not return a transition table, such that
the above analysis methods cannot be applied here.

As there are multiple possible transitions for each state, complex attractors
cannot be visualized as in Figure 5. For this reason, plotAttractors() supports
a graph mode that visualizes the transitions among the states in the attractor:

> plotAttractors(attr, subset=2, mode="graph", drawLabels=FALSE)

plots the 112-state attractor as depicted in Figure 6. We omit the state labels
(i.e. the gene values) due to the high number of states. This plot again requires
the igraph package.

Although getAttractors() can also be applied to temporal networks and other
networks that are in a symbolic representation (i.e. SymbolicBooleanNetwork
objects), this function is only a shortcut to the simulation function simu-

lateSymbolicModel() in this case. It is advised to use simulateSymbolic-

Model() directly , as it provides more options. For the temporal model of the
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Figure 6: Graph representation of the complex attractor in the mammalian cell
cycle network. Each node represents a state of the complex attractor, and each
arrow represents a state transition.

IGF pathway included in BoolNet, an exhaustive simulation can be performed
as follows:

> sim <- simulateSymbolicModel(igf)

> sim

Simulation of a symbolic Boolean network

Sequences for 2048 start states (print with sequences=TRUE to

show them)

Graph containing 320 state transitions (print with graph=TRUE to

show them)

2 Attractors:

Attractor 1 is a simple attractor consisting of 1 state(s) and

has a basin of 160 state(s):

|--<-----|

V |

000000 |

V |

|-->-----|

Genes are encoded in the following order: IGF IRS PI3K Akt mTORC1

mTORC2

Attractor 2 is a simple attractor consisting of 14 state(s) and

has a basin of 160 state(s):
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|--<-----|

V |

100000 |

110000 |

111000 |

111101 |

111101 |

111100 |

111110 |

111110 |

101110 |

100110 |

100010 |

100010 |

100000 |

100000 |

V |

|-->-----|

Genes are encoded in the following order: IGF IRS PI3K Akt mTORC1

mTORC2

By default, the result object of class SymbolicSimulation comprises several com-
ponents:

• A list of sequences sequences from each start state to the corresponding
attractor. If this component is not desired, the parameter returnSe-

quences can be set to false.

• A graph structure graph that comprises all traversed state transitions. If
this component is not desired, the parameter returnGraph can be set to
false.

• The identified attractors attractors. If this component is not desired,
the parameter returnAttractors can be set to false.

In this case, the network has two attractors: A steady state describes the in-
active state of the pathway. The circular attractor describes the activation and
inactivation of the PI3K-Akt-mTOR signalling cascade initiated by IGF.

All visualization and analysis function described above can also be applied to
the simulation results obtained by simulateSymbolicModel. For example, the
cascade attractor can be visualized via

> plotAttractors(sim, subset=2)

Similarly,

> plotStateGraph(sim)

plots the state transition graph of the network. Unlike in classical synchronous
networks, a state can have multiple successor states (outgoing edges) in temporal
networks, as a state transition may also depend on the history of states before
the current state. The two plots are shown in Figure 7.
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Figure 7: Top: Visualization of an attractor that describes the activation and
inactivation of the PI3K-Akt-mTOR signalling cascade through IGF and IRS.
The columns of the table represent consecutive states of the attractor. On top,
the percentage of states leading to the attractor is supplied.
Bottom: The state transition graph of the IGF pathway network. Each node
represents a state of the network, and each arrow is a state transition. The
colors mark different basins of attraction.
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For temporal networks, it is often infeasible to perform an exhaustive search, as
the search space is not only exponential in the number of genes, but also in the
time delays. Hence, the search can also be restricted to randomly generated or
prespecified start states similarly to getAttractors(). If time delays of more
than 1 are included in the network, not only single start states are generated,
but the required history of states is generated as well. For example,

> sim <- simulateSymbolicModel(igf, method="random", startStates=2)

generates two start state matrices, each comprising 3 states (the maximum delay
of the IGF network), and uses them as the basis for a simulation. This can be
seen when examining the sequences to the attractors:

> sim$sequences

[[1]]

IGF IRS PI3K Akt mTORC1 mTORC2

t = -2 1 1 1 0 0 0

t = -1 1 1 1 1 1 0

t = 0 0 1 1 1 0 0

t = 1 0 0 1 1 0 0

t = 2 0 0 0 1 1 0

t = 3 0 0 0 0 1 0

t = 4 0 0 0 0 1 0

t = 5 0 0 0 0 0 0

t = 6 0 0 0 0 0 0

t = 7 0 0 0 0 0 0

[[2]]

IGF IRS PI3K Akt mTORC1 mTORC2

t = -2 1 0 0 0 1 0

t = -1 1 0 0 1 1 0

t = 0 0 0 0 1 1 0

t = 1 0 0 0 0 0 0

t = 2 0 0 0 0 1 0

t = 3 0 0 0 0 0 0

t = 4 0 0 0 0 0 0

t = 5 0 0 0 0 0 0

Both sequences comprise start states t = −2, t = −1 and t = 0.

Classical synchronous Boolean networks can also be simulated using the sym-
bolic simulator simulateSymbolicModel() if they are in a symbolic form. How-
ever, in most cases, getAttractors() will be faster and will consume less mem-
ory for synchronous networks without temporal elements. Only if the number
of inputs to genes is very high and exhaustive simulation is not required, it may
be advisable to use the symbolic simulator.

3.3 Markov chain simulations

Another way of identifying relevant states in Boolean networks are Markov chain
simulations. Instead of identifying cycles explicitly, these simulations calculate
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the probability that a certain state is reached after a predefined number of iter-
ations. Of course, states in an attractor have a high probability of being reached
if the number of iterations is chosen large enough. Markov chain simulations for
probabilistic Boolean networks were introduced by Shmulevich et al. [15]. As a
special case of probabilistic Boolean networks, these simulations are also suited
for synchronous Boolean networks.

The following performs a Markov experiment with the predefined number of
1000 iterations on the example PBN described in [15]:

> data(examplePBN)

> sim <- markovSimulation(examplePBN)

> sim

States reached at the end of the simulation:

x1 x2 x3 Probability

1 0 0 0 0.15

2 1 1 1 0.85

Probabilities of state transitions in the network:

State Next state Probability

000 => 000 1.0

001 => 110 1.0

010 => 110 1.0

011 => 000 0.2

011 => 100 0.3

011 => 001 0.2

011 => 101 0.3

100 => 010 1.0

101 => 110 0.5

101 => 111 0.5

110 => 100 0.5

110 => 101 0.5

111 => 111 1.0

Only states with a non-zero probability are listed in the two tables. The first
table shows the states that are reached after 1000 iterations. The second table
is a transition table annotated with transition probabilities. This table can
be suppressed by the parameter returnTable=FALSE. The results correspond
exactly to those in [15].

If the transition table is included in the simulation results, we can plot a graph
of the network:

> plotPBNTransitions(sim)

This graph is displayed in Figure 8. The vertices are the states of the graph. The
edges represent transitions and are annotated with the corresponding transition
probabilities. For this plot, the igraph package must be installed.
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Figure 8: State transition graph of the example probabilistic Boolean network
included in BoolNet. Each node represents a state of the network, and each
arrow is a possible state transition, annotated by the transition probability.

We can also use Markov chain simulations to identify the attractor states in the
mammalian cell cycle network:

> data(cellcycle)

> sim <- markovSimulation(cellcycle,

+ numIterations=1024,

+ returnTable=FALSE)

> sim

States reached at the end of the simulation:

CycD Rb E2F CycE CycA p27 Cdc20 Cdh1 UbcH10 CycB Probability

1 1 0 0 1 1 0 0 0 0 0 0.00781250

2 1 0 1 1 0 0 0 1 0 0 0.17187500

3 1 0 1 1 1 0 0 1 0 0 0.02343750

4 0 1 0 0 0 1 0 1 0 0 0.50000000

5 1 0 1 0 0 0 0 1 1 0 0.15625000

6 1 0 0 0 0 0 1 1 1 0 0.10937500

7 1 0 0 0 1 0 0 0 1 1 0.00390625

8 1 0 0 0 1 0 1 0 1 1 0.02734375

We set the maximum number of iterations to 1024, which is the number of states
in the network. In a deterministic network, this guarantees that all states are
found.

The fourth state in the returned table is the steady-state attractor identified
previously. It has a probability of 0.5, as the basin of attraction is exactly half
of the states. The other 7 states belong to the simple synchronous attractor.
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It is also possible to restrict the simulation to a certain set of input states instead
of using all possible input states. In the following example, we only consider the
state with all genes set to 1, and identify the state belonging to the steady-state
attractor again:

> sim <- markovSimulation(cellcycle,

+ numIterations=1024,

+ returnTable=FALSE,

+ startStates=list(rep(1,10)))

> sim

States reached at the end of the simulation:

CycD Rb E2F CycE CycA p27 Cdc20 Cdh1 UbcH10 CycB Probability

1 1 0 1 0 0 0 0 1 1 0 1

3.4 Robustness assessment

A biological network is assumed to be robust to small amounts of noise. The
plausibility of network models is therefore often assessed by testing its robustness
to noise and mismeasurements. Typically, artificial noise is applied, and its
influence on the behaviour of a network is measured.

There are two major ways of applying random noise: Either the current state of a
network in a simulation can be perturbed, or the network structure itself can be
perturbed. BoolNet includes functions for both types of robustness assessment.

The function perturbTrajectories measures the influence of noise that is ap-
plied to the current network state. It generates a set of initial states and creates
perturbed copies of these states by randomly flipping bits. It then measures
the influence of the flips on the further dynamic behaviour of the network. For
example

> data(cellcycle)

> r <- perturbTrajectories(cellcycle,

+ measure="hamming",

+ numSamples=100,

+ flipBits=1)

randomly generates 100 states and 100 copies with one bitflip and performs a
single state transition for each state. It then measures the normalized Hamming
distance (the fraction of different bits) between each state and the corresponding
perturbed copy. A robust network is assumed to yield a low Hamming distance.
The average distance can be viewed by typing

> r$value

[1] 0.107

A related measure is the average sensitivity. This measure assesses only a single
transition function and counts the number of successor states that differ between
the original states and the perturbed copies for the corresponding gene. E.g.,
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> r <- perturbTrajectories(cellcycle,

+ measure="sensitivity",

+ numSamples=100,

+ flipBits=1,

+ gene="CycE")

> r$value

[1] 0.11

measures the average sensitivity of the transition function for gene CycE.

The long-term behaviour can be evaluated by comparing the attractors that are
reached from the initial states and their perturbed copies.

> r <- perturbTrajectories(cellcycle,

+ measure="attractor",

+ numSamples=100,

+ flipBits=1)

> r$value

[1] 0.93

measures the fraction of pairs of states and perturbed copies that yield the
same attractors. It can be assumed that small changes in the state should
not influence the long-term behaviour of the network, and hence the attractors
should mostly be the same.

The second class of perturbations adds random noise to the network itself. This
is implemented in the perturbNetwork() function. Unlike perturbTrajecto-

ries(), this function does not perform any simulations, but returns a perturbed
copy of the network that can be analyzed further.

BoolNet includes a set of different perturbation options that can be combined.
For example,

> perturbedNet <- perturbNetwork(cellcycle,

+ perturb="functions",

+ method="bitflip")

chooses a function of the network at random and flips a single bit in this function.
By setting the parameter maxNumBits, you can also flip more than one bit at a
time.

Instead of flipping bits,

> perturbedNet <- perturbNetwork(cellcycle,

+ perturb="functions",

+ method="shuffle")

randomly permutes the output values of the chosen transition functions. This
preserves the numbers of 0s and 1s, but may change the Boolean function com-
pletely. These kinds of perturbations are supported for synchronous and asyn-
chronous networks as well as for probabilistic networks.

For synchronous networks, a further perturbation mode is available:
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> perturbedNet <- perturbNetwork(cellcycle,

+ perturb="transitions",

+ method="bitflip",

+ numStates=10)

Here, BoolNet calculates the complete transition table of the network and then
flips a single bit in 10 states of the transition table. From this modified ta-
ble, a network is reconstructed. Changes of this type only affect a few states
(which might not be the case when perturbing the functions directly as above),
but possibly several of the transition functions. As in the previous examples,
it is also possible to modify the number of bits to be flipped or to choose
method="shuffle".
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A detailed listing of a perturbation experiment is shown below. In this ex-
periment, 1000 perturbed copies of the cell cycle network are created, and the
occurrences of the original synchronous attractors are counted in the perturbed
copies. This is similar to the simulation in perturbTrajectories() with mea-

sure="attractor". However, instead of comparing the outcomes of different
initial states in the same network, it compares all attractors of different per-
turbed networks to all attractors of the original network by exhaustive search.

> # Perform a robustness test on a network

> # by counting the numbers of perturbed networks

> # containing the attractors of the original net

>

> library(BoolNet)

> # load mammalian cell cycle network

> data(cellcycle)

> # get attractors in original network

> attrs <- getAttractors(cellcycle, canonical=TRUE)

> # create 1000 perturbed copies of the network and search for attractors

> perturbationResults <- sapply(1:1000, function(i)

+ {

+ # perturb network and identify attractors

+ perturbedNet <- perturbNetwork(cellcycle, perturb="functions", method="bitflip")

+ perturbedAttrs <- getAttractors(perturbedNet, canonical=TRUE)

+

+ # check whether the attractors in the original network exist in the perturbed network

+ attractorIndices <- sapply(attrs$attractors,function(attractor1)

+ {

+ index <- which(sapply(perturbedAttrs$attractors, function(attractor2)

+ {

+ identical(attractor1, attractor2)

+ }))

+ if (length(index) == 0)

+ NA

+ else

+ index

+ })

+ return(attractorIndices)

+ })

> # perturbationResults now contains a matrix

> # with the first 2 columns specifying the indices or the

> # original attractors in the perturbed network

> # (or NA if the attractor was not found) and the next 2

> # columns counting the numbers of states

> # in the basin of attraction (or NA if the attractor was not found)

>

> # measure the total numbers of occurrences of the original attractors in the perturbed copies

> numOccurrences <- apply(perturbationResults[seq_along(attrs$attractors),,drop=FALSE], 1,

+ function(row)sum(!is.na(row)))

> # print original attractors

> cat("Attractors in original network:\n")

> print(attrs)

> # print information

> cat("Number of occurrences of the original attractors",

+ "in 1000 perturbed copies of the network:\n")

> for (i in 1:length(attrs$attractors))

+ {

+ cat("Attractor ",i,": ",numOccurrences[i],"\n",sep="")

+ }
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The results of such an experiment could look like this:

Attractors in original network:

Attractor 1 is a simple attractor consisting of 1 state(s)

and has a basin of 512 state(s):

[...]

Attractor 2 is a simple attractor consisting of 7 state(s)

and has a basin of 512 state(s):

[...]

Number of occurrences of the original attractors in 1000

perturbed copies of the network:

Attractor 1: 622

Attractor 2: 589

We see that the steady-state attractor is slightly more robust to perturbations
than the simple attractor with 7 states, as it can be identified in a higher number
of perturbed copies.

3.5 Identifying specific properties of biological networks

The described robustness measures could also be used to identify specific pro-
perties of real-world networks in comparison to arbitrary (random) networks.
For example, one could assume that attractors in biological networks are more
robust to perturbations than attractors in random networks with a similar struc-
ture, as they should be capable of compensating for small dysfunctions of their
components. Similarly to the above code, one could execute a number of random
perturbations on the biological network and measure the percentage of original
attractors found in the perturbed copies. Afterwards, one could repeat this
process on a number of randomly generated networks – i.e., generate perturbed
copies from each of the random networks, and measure the percentage of at-
tractors in the copies. If the percentage of the biological network is higher than
most of the percentages of the random network, this suggests that the biological
network exhibits a higher robustness. This is a kind of computer-intensive test.

BoolNet comprises a generic facility for such computer-intensive tests. This
facility already includes several tests (mainly for synchronous Boolean networks)
and can be extended by custom test functions. The outlined example of attractor
robustness is one of the integrated functions:

> data(cellcycle)

> res <- testNetworkProperties(cellcycle,

+ numRandomNets=100,

+ testFunction="testAttractorRobustness",

+ testFunctionParams = list(copies=100, perturb="functions"))

creates a set of 100 random networks (each with the same number of input genes
for the functions as the cell cycle network) and creates 100 perturbed copies for
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each of these networks and for the cell cycle network by applying perturbNet-

work() with perturb="functions". For each network, it then calculates the
percentage of attractors that can still be found in the perturbed copies.

The function plots a histogram of this robustness measures of the random net-
works (see Figure 9, top panel). The corresponding value of the original cell
cycle network is plotted as a red line, and the 95% quantile is plotted as a blue
line.

We can see that the average percentage of found attractors is significantly higher
in the biological network with a p-value of 0.01.

It is also possible to perturb the states instead of the networks themselves by
setting perturb to "trajectories". In this case, the function applies perturb-
Trajectories() with measure="attractor" to the biological network and the
randomly generated networks. It then tests whether the fraction of state pairs
that yield the same attractor is higher in the biological network than in the
randomly generated networks.

The second built-in test function also tests the robustness of the network be-
haviour by perturbing the network states: testTransitionRobustness() ap-
plies perturbTrajectories() with measure="hamming" to each network. It
then checks whether random bit flips yield a higher Hamming distance of the
successor states in randomly generated networks than in the biological model,
i.e. whether noise in the states influences the randomly generated networks
stronger than the biological model. In contrast to the previous measures for
which a greater value was assumed in the biological model, the Hamming dis-
tance is assumed to be smaller. Hence, we must specify the test alternative as
alternative="less".

> testNetworkProperties(cellcycle,

+ numRandomNets=100,

+ testFunction="testTransitionRobustness",

+ testFunctionParams=list(numSamples=100),

+ alternative="less")

The results are shown in the bottom panel of Figure 9. Again, the result is highly
significant (indeed, the Hamming distances are always lower in the biological
network), which means that the biological network is considerably more robust
to noise in the states than the randomly generated models.

Another network property can also be tested using a built-in function: When
looking at the state graph of a biological network (which can be generated using
plotStateGraph()), it can often be observed that many state transitions lead
to the same successor states, which means that the dynamics of the network
quickly concentrate on a few states after a number of state transitions. We
call the number of states whose synchronous state transitions lead to a state s
the in-degree of state s. We expect the biological network to have a few states
with a high in-degree and many states with a low in-degree. A characteristic to
summarize the in-degrees is the Gini index, which is a measure of inhomogeneity.
If all states have an in-degree of 1, the Gini index is 0; if all state transitions
lead to only one state, the Gini index is 1.
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Figure 9: Top: Attractor robustness of randomly generated networks (his-
togram) in comparison to the mammalian cell cycle network (red line).
Bottom: Normalized Hamming distance of randomly generated networks (his-
togram) in comparison to the mammalian cell cycle network (red line).
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> testNetworkProperties(cellcycle,

+ numRandomNets=100,

+ testFunction="testIndegree")

plots an histogram of Gini indices in 100 random networks and draws the Gini
index of the cell cycle network as a red line, as depicted in the top panel of
Figure 10.

The histogram shows that the Gini index of the in-degrees is always higher in
the biological network. This is probably due to the special structure of functions
in biological networks.

Instead of accumulating the in-degrees using the Gini index, it is also possible
to compare the distributions of the in-degrees across the networks. For this
purpose, the Kullback-Leibler distances of the in-degrees of the supplied network
and each of the random networks are calculated and plotted in a histogram. The
Kullback-Leibler distance (also called relative entropy) is an asymetric measure
of similarity of two distributions [4]. If the distributions are equal, the Kullback-
Leibler distance is 0, otherwise it is greater than 0.

> testNetworkProperties(cellcycle,

+ numRandomNets=100,

+ testFunction="testIndegree",

+ accumulation="kullback_leibler")

results in the plot displayed in the bottom panel of Figure 10.

It is possible to switch between the histogram of an accumulated characteristic
(e.g. the Gini index) and the histogram of the Kullback-Leibler distances for all
tests.

You can also easily implement your own tests. To do this, the only thing you
have to do is implement a custom testing function that replaces testInde-

gree() or testAttractorRobustness(). Testing functions have the following
signature:

function(network, accumulate=TRUE, params)

The first parameter is the network that should be tested. The parameter ac-

cumulate specifies whether a single characteristic value (e.g., the Gini index of
the in-degrees) should be calculated, or whether a distribution of values (e.g.,
a vector of all in-degrees) should be returned. The third parameter is a list of
further arguments needed by your function.

42



Gini index of state in−degrees

F
re

qu
en

cy

0
10

20
30

0.5538264 0.6353369 0.7168473 0.7983577 0.8798681 0.9613785

> 100%
of random results

95% quantile

Kullback−Leibler distance

F
re

qu
en

cy

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
2

4
6

8
10

Figure 10: Top: Gini indices of state in-degrees of randomly generated networks
(histogram) in comparison to the mammalian cell cycle network (red line)
Bottom: Kullback-Leibler distances of in-degrees of the mammalian cell cycle
network and 100 random networks.

43



If, for example, we would like to compare the sizes of the basins of attractions
of synchronous attractors in biological and random networks, we would write a
function like this:

> testBasinSizes <- function(network, accumulate=TRUE, params)

+ {

+ attr <- getAttractors(network)

+ basinSizes <- sapply(attr$attractors, function(a)

+ {

+ a$basinSize

+ })

+ if (accumulate)

+ return(mean(basinSizes))

+ else

+ return(basinSizes)

+ }

This function calculates the mean basin size as a characteristic value if accu-
mulation is required, or returns the sizes of all basins of attraction in a vector
otherwise. It does not need any further parameters in params.

Now, we can start a test using

> testNetworkProperties(cellcycle,

+ numRandomNets=100,

+ testFunction="testBasinSizes",

+ xlab="Average size of basins of attraction")

to produce the plot shown in Figure 11. Apparently, the average basin sizes
do not differ as much as the built-in test characteristics between the random
networks and the cell cycle network.

By writing custom test functions, you can extend the test facility to per-
form a wide variety computer-intensive test. Of course, it is also possi-
ble to plot the Kullback-Leibler distances with such new methods by using
accumulation="kullback_leibler".

testNetworkProperties() accepts most of the parameters of generateRan-

domNKNetwork(). If necessary, you can generate more specialized kinds of
random networks which resemble the original network in certain aspects,
for example by specifying a generation function or by setting a proportion
of 0 and 1 in the function outputs similar to the original network using
functionGeneration="biased".
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Figure 11: A custom test statistic measuring the basin sizes on randomly gen-
erated networks (histogram) and the mammalian cell cycle network (red line).
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4 Import and export

4.1 Saving networks in the BoolNet file format

Corresponding to the loadNetwork() command, a network can be saved using
saveNetwork(). This stores the network in the network file format described
in Section 5 and can be applied to all types of networks supported by BoolNet.
For example, the cell cycle network can be saved using

> saveNetwork(cellcycle, file="cellcycle.txt")

The function stores the expressions that describe the transition functions. In
some cases, there may not always be a valid symbolic description of the net-
works (e.g. for networks returned by generateRandomNKNetwork() when the
readableFunctions parameter was not set). In this case, saveNetwork() can
generate symbolic representations of the transition functions in Disjunctive Nor-
mal Form (DNF):

> net <- generateRandomNKNetwork(n=10, k=3, readableFunctions=FALSE)

> saveNetwork(net, file="randomnet.txt", generateDNF=TRUE)

The generateDNF parameter can also be used to detail which type of DNF for-
mulae should be exported: generateDNF="canonical" exports canonical DNF
formulae. generateDNF="short" minimizes the canonical functions by joining
terms. By simply setting generateDNF=TRUE, formulae with up to 12 inputs are
minimized, and formulae with more than 12 inputs are exported in a canonical
form, as a minization is very time-consuming in this case.

4.2 Import from and export to SBML

BoolNet provides an interface to the widely used Systems Biology Markup
Language (SBML) via the import function loadSBML() and the export function
saveSBML(). As the core SBML does not fully support Boolean models,
import and export of SBML models is based on the sbml-qual package which
extends SBML by several qualitative modeling approaches, such as general
logical models and Petri nets. For a full description of sbml-qual, refer to
http://sbml.org/Documents/Specifications/SBML Level 3/Packages/Qualitative Models (qual).

BoolNet only supports a subset of sbml-qual. It can read and write logical
models with two possible values for each state, which are equivalent to Boolean
networks. Logical models with more than two values for a gene or Petri nets
cannot currently be handled by BoolNet.

An export to SBML is usually not associated with any loss of information. For
example, we can write the cell cycle network to a file and re-import it into
BoolNet:

> toSBML(cellcycle, file="cellcycle.sbml")

> sbml_cellcycle <- loadSBML("cellcycle.sbml")

> sbml_cellcycle

Boolean network with 10 genes

Involved genes:
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CycD Rb E2F CycE CycA p27 Cdc20 Cdh1 UbcH10 CycB

Transition functions:

CycD = CycD

Rb = ((!CycA & !CycB & !CycD & !CycE) | (p27 & !CycB & !CycD))

E2F = ((!Rb & !CycA & !CycB) | (p27 & !Rb & !CycB))

CycE = (E2F & !Rb)

CycA = ((E2F & !Rb & !Cdc20 & !(Cdh1 & UbcH10)) | (CycA & !Rb & !Cdc20 & !(Cdh1 & UbcH10)))

p27 = ((!CycD & !CycE & !CycA & !CycB) | (p27 & !(CycE & CycA) & !CycB & !CycD))

Cdc20 = CycB

Cdh1 = ((!CycA & !CycB) | Cdc20 | (p27 & !CycB))

UbcH10 = (!Cdh1 | (Cdh1 & UbcH10 & (Cdc20 | CycA | CycB)))

CycB = (!Cdc20 & !Cdh1)

Apart from some additional brackets, the re-imported network coincides with
the original network.

Similar to the saveNetwork() function, toSBML() exports a symbolic represen-
tation of the network transition functionss, which may not always be available.
As for saveNetwork(), there is a parameter generateDNF that can be set to
generate a symbolic representation in Disjunctive Normal Form from the truth
tables.

4.3 Importing networks from BioTapestry

BioTapestry is a widely-used application for visual modeling of gene-regulatory
networks [13]. It can be freely accessed at http://www.biotapestry.org. Al-
though its primary purpose is visualization, the software supports specifying
logical functions for the genes. BoolNet can read in the top-level (“Full genome”)
plot of a BioTapestry file (*.btp) and convert it into a Boolean network.

As an example, we assume the following BioTapestry model with 5 genes (2 in-
puts and 3 dependent genes):

The corresponding BioTapestry file is included in BoolNet. You can determine
its path using

> system.file("doc/example.btp", package="BoolNet")
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to access it in BioTapestry or BoolNet.

For the import, BoolNet needs to know the type of influence a gene has on
another gene. Therefore, imported networks should only use links that are
either enhancers or repressors. Neutral links are ignored in the import.

We now set further simulation parameters for the model. These parameters are
imported by BoolNet to construct the functions of the Boolean network. First,
we want to change the function of Gene 2 to OR. Right-click on Gene 2 and
choose Simulation Properties....

In the properties dialog, choose the Logic tab, and select OR for the logical
function.

Now set the function of Gene 1 to XOR (exclusive or) in the same way.
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You can also specify initial values for constant genes, i.e., genes with no input
links. Choose the simulation properties of Input 1, and change to the Parame-

ters tab. Choose initVal and set it to 1.

Press Return to store the result, and exit the dialog with OK. This will create
a fixed gene with value 1 (i.e., an over-expressed gene) in the BoolNet import.
Note that values other than 0 and 1 are ignored by the import, as well as
initialization values for non-constant genes.

We assume that you save the network to a file “example.btp” in your working
directory. In R, type

> net <- loadBioTapestry("example.btp")

to import the network. Alternatively, replace the file name by the command
on page 48 to use the file in the package if you do not want to create the file
yourself.

The imported network looks like this:

> net

Boolean network with 5 genes

Involved genes:

Input 1 Input 2 Gene 1 Gene 2 Gene 3
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Transition functions:

Input 1 = 1

Input 2 = Input 2

Gene 1 = (!Gene 1 & !Input 1 & Input 2) | (!Gene 1 & Input 1 & !Input 2)

| (Gene 1 & !Input 1 & !Input 2) | (Gene 1 & Input 1 & Input 2)

Gene 2 = Gene 1 & Gene 3 & !Input 2

Gene 3 = Gene 1 | Gene 2

Knocked-out and over-expressed genes:

Input 1 = 1

We can see that Input 1 is specified as an over-expressed constant gene. Input 2
is modeled as depending only on itself, i.e. it keeps its initial value. Gene 1 is a
representation of the XOR function in Disjunctive Normal Form (DNF), using
only logical ANDs, logical ORs, and negations. Gene 2 and Gene 3 consist of
conjunctions and disjunctions of their inputs respectively. In addition to this
textual description, we can visually verify the network by plotting its wiring:

> plotNetworkWiring(net)

The resulting plot is shown in Figure 12.

Input_1

Input_2

Gene_1

Gene_2

Gene_3

Figure 12: The wiring graph of the imported network specified in BioTapestry.

You can now use the imported network just like any other network in BoolNet.
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4.4 Exporting network simulations to Pajek

For further analysis, network simulations can be exported to Pajek, a Windows
application that provides visualization and analysis methods for graph struc-
tures [3]. For more information on Pajek, please refer to http://pajek.imfm.

si/doku.php.

The export function writes the state transition graph to a Pajek file (*.net).
This requires a synchronous exhaustive attractor search in BoolNet to build the
full transition table.

To export the mammalian cell cycle network to Pajek, call

> data(cellcycle)

> attr <- getAttractors(cellcycle)

> toPajek(attr, file="cellcycle.net")

This will export the graph of the state transitions, which is usually sufficient for
plotting. If you want to include the state information (i.e., the gene assignment
vectors), call

> toPajek(attr, file="cellcycle.net", includeLabels=TRUE)

Now, start Pajek, load the network with File | Network | Read, and check
out the tools provided by this application. For example, visualizations can be
accessed using the menu item Draw | Draw.

Figure 13 shows a plot of the cell cycle network with the Kamada-Kawai layout
(Menu entry Layout | Energy | Kamada-Kawai | Separate Components).

Figure 13: A visualization of the mammalian cell cycle network in Pajek.
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5 Appendix

5.1 Network file format

This section provides a full language description for the network file format of
BoolNet. The language is described in Extended Backus-Naur Form (EBNF).

For synchronous, asynchronous and probabilistic Boolean networks, the sup-
ported format is as follows:

Network = Header Newline {Rule Newline | Comment Newline};

Header = "targets" Separator "factors";

Rule = GeneName Separator BooleanExpression [Separator Probability];

Comment = "#" String;

BooleanExpression = GeneName

| "!" BooleanExpression

| "(" BooleanExpression ")"

| BooleanExpression " & " BooleanExpression

| BooleanExpression " | " BooleanExpression;

| "all(" BooleanExpression {"," BooleanExpression} ")"

| "any(" BooleanExpression {"," BooleanExpression} ")"

| "maj(" BooleanExpression {"," BooleanExpression} ")"

| "sumgt(" BooleanExpression {"," BooleanExpression} "," Integer ")"

| "sumlt(" BooleanExpression {"," BooleanExpression} "," Integer ")";

GeneName = ? A gene name from the list of involved genes ?;

Separator = ",";

Integer = ? An integer value?;

Probability = ? A floating-point number ?;

String = ? Any sequence of characters (except a line break) ?;

Newline = ? A line break character ?;
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The extended format for temporal networks includes additional time specifica-
tions and temporal predicates is defined as follows:

Network = Header Newline

{Function Newline | Comment Newline};

Header = "targets" Separator "factors";

Function = GeneName Separator BooleanExpression;

Comment = "#" String;

BooleanExpression = GeneName

| GeneName TemporalSpecification

| BooleanOperator

| TemporalOperator

BooleanOperator = BooleanExpression

| "!" BooleanExpression

| "(" BooleanExpression ")"

| BooleanExpression " & " BooleanExpression

| BooleanExpression " | " BooleanExpression;

TemporalOperator = "all" [TemporalIteratorDef]

"(" BooleanExpression {"," BooleanExpression} ")"

| "any" [TemporalIteratorDef]

"(" BooleanExpression {"," BooleanExpression} ")"

| "maj" [TemporalIteratorDef]

"(" BooleanExpression {"," BooleanExpression} ")"

| "sumgt" [TemporalIteratorDef]

"(" BooleanExpression {"," BooleanExpression} "," Integer ")"

| "sumlt" [TemporalIteratorDef]

"(" BooleanExpression {"," BooleanExpression} "," Integer ")"

| "timeis" "(" Integer ")"

| "timegt" "(" Integer ")"

| "timelt" "(" Integer ")";

TemporalIteratorDef = "[" TemporalIterator "=" Integer ".." Integer "]";

TemporalSpecification = "[" TemporalOperand {"+" TemporalOperand | "-

" TemporalOperand} "]";

TemporalOperand = TemporalIterator | Integer

TemporalIterator = ? An alphanumeric string ?;

GeneName = ? A gene name from the list of involved genes ?;

Separator = ",";

Integer = ? An integer value?;

String = ? Any sequence of characters (except a line break) ?;

Newline = ? A line break character ?;
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