
BioMedR: R/CRAN Package for generating various
molecular representations for chemicals, proteins,

DNAs/RNAs and their interactions

Minfeng Zhu, Jie Dong, Dongsheng Cao

Package Version: Release 1

2019-07-03

COMPUTATIONAL BIOLOGY &
DRUG DESIGN GROUP!
CENTRAL SOUTH UNIV., CHINA

.

BioMedR Manual

Contents

1. Introduction 1

2. Miscellaneous Tools 3

2.1 Retrieve small molecules from PubChem, ChEMBL, CAS, KEGG, DrugBank . . 3

2.2 Retrieve protein Sequences from Uniprot, KEGG, RCSBPDB 3

2.3 Retrieve DNA/RNA Sequences from GenBank 4

2.4 Read FASTA, PDB Format files . 4

2.5 Sanity Check of the Deoxyribonucleic Acid Types 5

2.6 Protein Sequence Partition . 5

2.7 Molecular data manipulation . 5

2.8 Summary . 6

3. Calculating Drug Molecular Descriptors and Fingerprints 6

3.1 Calculating Drug Molecular Descriptors . 7

3.2 Calculating Drug Molecular Fingerprints . 10

3.3 Summary . 11

4. Calculating Commonly Used Protein Descriptors 13

4.1 Amino Acid Composition (AAC) . 13

4.2 Dipeptide Composition (DC) . 14

4.3 Tripeptide Composition (TC) . 14

4.4 Autocorrelation Descriptors . 15

4.5 Composition / Transition / Distribution . 18

4.6 Conjoint Triad Descriptors . 21

4.7 Quasi-sequence-order Descriptors . 23

4.8 Pseudo-Amino Acid Composition (PAAC) . 25

4.9 Profile-based Descriptors . 27

4.10 Descriptors for Proteochemometric Modeling . 27

4.11 Summary . 29

5. Calculating DNA/RNA Commonly Used Descriptors 31

5.1 Kmer . 31

5.2 Dinucleotide-based auto covariance . 33

5.3 Trinucleotide-based auto covariance . 35

5.4 Pseudo dinucleotide composition . 38

5.5 Summary . 41

2

6. Generating Interaction Descriptors between Drug, Protein and DNA/RNA 42

6.1 Generating Drug-Target Interaction descriptors 42

6.2 Summary . 44

7. Clustering 44

7.1 Binning Clustering . 45

7.2 Jarvis-Patrick Clustering . 47

7.3 Multi-Dimensional Scaling (MDS) . 48

7.4 Kohonen’s self-organising map (SOM) . 49

7.5 Summary . 50

8. Similarity 50

8.1 Structure-Based Chemical Similarity Searching 50

8.2 Similarity Calculation by Sequence Alignment . 51

8.3 Similarity Calculation by GO Semantic Similarity Measures 52

8.4 Summary . 53

9. Applications 53

9.1 Regression Modeling in QSRR Study of logD . 54

9.2 Classification Modeling in QSRR Study of hERG 56

9.3 Chemical Similarity Searching . 60

9.4 Clustering of Molecules Based on Structural Similarities 62

9.5 Predicting Protein Subcellular Localization . 63

9.6 Predicting nucleosome positioning in genomes . 67

9.7 Predicting Drug-Target Interaction by Integrating Chemical and Genomic Spaces 70

Acknowledgments 72

References 74

BioMedR Manual

1. Introduction

The BioMedR package presented in this manual offers an R/CRAN package for generating
various molecular representations for chemicals, proteins, DNAs/RNAs and their interactions.

BioMedR implemented and integrated the state-of-the-art protein sequence descriptors, molec-
ular descriptors/fingerprints and DNA/RNAdescriptors with R. For small molecules, the
BioMedR package could

• Calculate 307 molecular descriptors (2D/3D), including constitutional, topological, ge-
ometrical, and electronic descriptors, etc.

• Calculate more than ten types of molecular fingerprints, including FP4 keys, E-state
fingerprints, MACCS keys, etc., and parallelized chemical similarity search.

• Parallelized pairwise similarity computation derived by fingerprints and maximum com-
mon substructure search within a list of small molecules.

• Clustering of Molecules Based on Structural Similarities.

For protein sequences, the BioMedR package could

• Calculate six protein descriptor groups composed of fourteen types of commonly used
structural and physicochemical descriptors that include 9,920 descriptors.

• Calculate profile-based protein representation derived by PSSM (Position-Specific Scor-
ing Matrix).

• Calculate six types of generalized scales-based descriptors derived by various dimension-
ality reduction methods for proteochemometric (PCM) modeling.

• Parallellized pairwise similarity computation derived by protein sequence alignment and
Gene Ontology (GO) semantic similarity measures within a list of proteins.

For DNA sequences, the BioMedR package could

• Calculate three nucleic acid composition features describing the local sequence informa-
tion by means of kmers (subsequences of DNA sequences);

• Calculate six autocorrelation features describing the level of correlation between two
oligonucleotides along a DNA sequence in terms of their specific physicochemical prop-
erties;

• Calculate two pseudo nucleotide composition features, which can be used to represent
a DNA sequence with a discrete model or vector yet still keep considerable sequence
order information, particularly the global or long-range sequence order information, via
the physicochemical properties of its constituent oligonucleotides.

• Parallellized pairwise similarity computation derived by protein sequence alignment and
Gene Ontology (GO) semantic similarity measures within a list of proteins.

1

BioMedR Manual

By combining various types of descriptors for drugs, proteins and DNA/RNA in different
methods, interaction descriptors representing protein-protein, compound-compound, DNA-
DNA, compound-DNA compound-protein and DNA-protein interactions could be conve-
niently generated with BioMedR, including:

• Two types of compound-protein interaction (CPI) descriptors

• Two types of compound-DNA interaction (CDI) descriptors

• Two types of DNA-protein interaction (DPI) descriptors

• Three types of protein-protein interaction (PPI) descriptors

• Three types of compound-compound interaction (CCI) descriptors

• Three types of DNA-DNA interaction (DDI) descriptors

Several useful auxiliary utilities are also shipped with BioMedR:

• Parallelized molecule, protein and DNA sequence retrieval from several online databases,
like PubChem, ChEMBL, KEGG, DrugBank, UniProt, RCSB PDB, genBank, etc.

• Loading molecules stored in SMILES/SDF files and loading protein/DNA/RNA se-
quences from FASTA/PDB files

• Molecular file format conversion

The computed protein sequence descriptors, molecular descriptors/fingerprints, DNA/RNA
sequence descriptors, interaction descriptors and pairwise similarities are widely used in var-
ious research fields relevant to drug disvery, primarily bioinformatics, chemoinformatics, pro-
teochemometrics and chemogenomics. In this part, there are several examples using afore-
mentioned descriptors and their detailed information are as follows:

• Regression Modeling in QSAR Study of logD. A prediction model for logD based on
molecular descriptors.

• Classification Modeling in QSAR Study of hERG. A prediction model for hERG based
on molecular fingerprint.

• Chemical Similarity Searching. A similarity searching study for bcl2 database.

• Clustering of Molecules Based on Structural Similarity. A clustering process was carried
out for bcl2 and resuled in a heatmap and a hierarchical cluster result.

• Predicting Protein Subcellular Localization. The protein descriptors and random forest
were used to build a model for protein subcellular localization.

• Predicting nucleosome positioning in genomes. The DNA descriptors and random for-
est were applied to construct the prediction model for the nucleosome positioning in
genomes.

2

BioMedR Manual

• Predicting Drug-Target Interaction by Integrating Chemical and Genomic Spaces.

To install the BioMedR package in R, simply type

install.packages('BioMedR')

Several dependencies of the BioMedR package may require some system-level libraries, check
the corresponding manuals of these packages for detailed installation guides.

2. Miscellaneous Tools

In this section, we will briefly introduce some useful tools provided by the BioMedR package.

2.1. Retrieve small molecules from PubChem, ChEMBL, CAS, KEGG,
DrugBank

This function BMgetDrugKEGG() get drug molecules from KEGG by drug ID(s), The input ID
is a character vector specifying the drug ID(s). The returned sequences are stored in a list:

> ids = c('D00496', 'D00411')
> drugseq = BMgetDrugSmiKEGG(ids)

> print(drugseq)

[1] "C(C(C(S)(C)C)N)(O)=O"

[2] "C=12C(CC=3C(=CC(C(NS(C=4C(=CC=CC4)C)(=O)=O)=O)=CC3)OC)=CN(C1C=CC(=C2)NC

(OC5CCCC5)=O)C"

If the connection is slow or accidentally interrupts, just try more times until success.

The functions in BioMedR named after BMgetDrugMol...() and BMgetDrugSmi...() sup-
ports the parallelized retrieval of (drug) molecules from PubChem, ChEMBL, CAS, KEGG,
and DrugBank.

2.2. Retrieve protein Sequences from Uniprot, KEGG, RCSBPDB

This function BMgetProtseqUniprot() get protein sequences from uniprot.org by protein
ID(s), The input ID is a character vector specifying the protein ID(s). The returned sequences
are stored in a list:

> ids = c('P00750', 'P00752')
> protseq = BMgetProtSeqUniprot(ids)

> print(protseq)

[[1]]

[[1]]$`sp|P00750|TPA_HUMAN`
[1] "MDAMKRGLCCVLLLCGAVFVSPSQEIHARFRRGARSYQVICRDEKTQMIYQQHQSWLRPVLRSNRVEYCWCN

SGRAQCHSVPVKSCSEPRCFNGGTCQQALYFSDFVCQCPEGFAGKCCEIDTRATCYEDQGISYRGTWSTAESGAECT

3

BioMedR Manual

NWNSSALAQKPYSGRRPDAIRLGLGNHNYCRNPDRDSKPWCYVFKAGKYSSEFCSTPACSEGNSDCYFGNGSAYRGT

HSLTESGASCLPWNSMILIGKVYTAQNPSAQALGLGKHNYCRNPDGDAKPWCHVLKNRRLTWEYCDVPSCSTCGLRQ

YSQPQFRIKGGLFADIASHPWQAAIFAKHRRSPGERFLCGGILISSCWILSAAHCFQERFPPHHLTVILGRTYRVVP

GEEEQKFEVEKYIVHKEFDDDTYDNDIALLQLKSDSSRCAQESSVVRTVCLPPADLQLPDWTECELSGYGKHEALSP

FYSERLKEAHVRLYPSSRCTSQHLLNRTVTDNMLCAGDTRSGGPQANLHDACQGDSGGPLVCLNDGRMTLVGIISWG

LGCGQKDVPGVYTKVTNYLDWIRDNMRP"

[[2]]

[[2]]$`sp|P00752|KLK_PIG`
[1] "APPIQSRIIGGRECEKNSHPWQVAIYHYSSFQCGGVLVNPKWVLTAAHCKNDNYEVWLGRHNLFENENTAQF

FGVTADFPHPGFNLSLLKXHTKADGKDYSHDLMLLRLQSPAKITDAVKVLELPTQEPELGSTCEASGWGSIEPGPDB

FEFPDEIQCVQLTLLQNTFCABAHPBKVTESMLCAGYLPGGKDTCMGDSGGPLICNGMWQGITSWGHTPCGSANKPS

IYTKLIFYLDWINDTITENP"

The functions named after BMgetProtSeq...(), BMgetProtFASTA...() and BMgetProtPDB...()

supports the parallelized retrieval of proteins from UniProt, KEGG and RCSB PDB.

2.3. Retrieve DNA/RNA Sequences from GenBank

This function BMgetDNAGenBank() get DNA/RNA sequences from GenBank by GI ID(s), The
input ID is a character vector specifying the GI ID(s). The returned sequences are stored in
a list:

> ids = c('2', '392893239')
> DNAseq = BMgetDNAGenBank(ids)

> print(DNAseq)

$gi_2

[1] "AATTCATGCGTCCGGACTTCTGCCTCGAGCCGCCGTACACTGGGCCCTGCAAAGCTCGTATCATCCGTTACT

TCTACAATGCAAAGGCAGGCCTGTGTCAGACCTTCGTATACGGCGGTTGCCGTGCTAAGCGTAACAACTTCAAATCC

GCGGAAGACTGCGAACGTACTTGCGGTGGTCCTTAGTAAAGCTTG"

$gi_392893239

[1] "GCCTAAAGACGACCGCGACGCGGCCGCTCGCACTCATAGACTACGCTAGTGGTGAGATACGCAGAGAAAAAG

ACGAGAGAGTATTGAGAGAATGGAGACATCACTACATCTAACATAGGGTCGCCAGTCGTCACCGAATTATTGGATTC

AAATTTAGGTCCC"

2.4. Read FASTA, PDB Format files

The readFASTA() function provides a convenient way to read protein/DNA sequences stored
in FASTA format files. See ?readFASTA for details. The returned sequences are stored in a
named list, whose components are named with the DNA sequences’ names.

The Protein Data Bank (pdb) file format is a textual file format describing the three dimen-
sional structures of protein. The readPDB() function provides the function to read protein
sequences stored in PDB format files. See ?readPDB for details.

4

BioMedR Manual

2.5. Sanity Check of the Deoxyribonucleic Acid Types

The checkDNA() function checks if the DNA sequence’s deoxyribonucleic acids types are in
the 4 default types, which returns a TRUE if all the deoxyribonucleic acids in the sequence
belongs to the 4 default types; The protcheck() function checks if the protein sequence’s
amino acid types are in the 20 default types, which returns a TRUE if all the amino acids in
the sequence belongs to the 20 default types:

require(BioMedR)

x = readFASTA(system.file('protseq/P00750.fasta', package = 'BioMedR'))[[1]]
A real sequence

checkProt(x)

[1] TRUE

An artificial sequence

checkProt(paste(x, 'Z', sep = ''))
[1] FALSE

2.6. Protein Sequence Partition

The segProt() function partitions the protein sequences to create sliding windows. This is
usually required when creating feature vectors for machine learning tasks. Users could specify
a sequence x, and a character aa, one of the 20 amino acid types, and a positive integer k,
which controls the window size (half of the window).

This function returns a named list, each component contains one of the segmentations (a
character string), names of the list components are the positions of the specified amino acid
in the sequence. See the example below:

segProt(x, aa = 'M', k = 5)

$`48`
[1] "DEKTQMIYQQH"

##

$`242`
[1] "LPWNSMILIGK"

##

$`490`
[1] "TVTDNMLCAGD"

##

$`525`
[1] "LNDGRMTLVGI"

##

The BioMedR package also integrated the functionality of converting molecular file formats.
For example, we could convert the SDF files to SMILES files using convMolFormat().

2.7. Molecular data manipulation

we load the BioMedR package, and read the molecules stored in a SMILES file:

5

BioMedR Manual

smi = system.file('vignettedata/FDAMDD.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')

The readMolFromSmi() function is used for reading molecules from SMILES files, for molecules
stored in SDF files, use readMolFromSDF() instead.

2.8. Summary

The summary of the Retrieving data from various online databases in the BioMedR package
is listed in table 1, 2 and 3.

Table 1: Retrieving drug molecular data from various online databases

Function name Function description

BMgetDrug() Retrieve drug molecules in MOL format and SMILES format from
various online databases

BMgetDrugMolDrugBank() Retrieve drug molecules in MOL format from DrugBank
BMgetDrugMolPubChem() Retrieve drug molecules in MOL format from PubChem
BMgetDrugMolChEMBL() Retrieve drug molecules in MOL format from ChEMBL
BMgetDrugMolKEGG() Retrieve drug molecules in MOL format from the KEGG
BMgetDrugMolCAS() Retrieve drug molecules in InChI format from CAS
BMgetDrugSmiDrugBank() Retrieve drug molecules in SMILES format from DrugBank
BMgetDrugSmiPubChem() Retrieve drug molecules in SMILES format from PubChem
BMgetDrugSmiChEMBL() Retrieve drug molecules in SMILES format from ChEMBL
BMgetDrugSmiKEGG() Retrieve drug molecules in SMILES format from KEGG

Table 2: Retrieving protein sequence data from various online databases

Function name Function description

BMgetProt() Retrieve protein sequence in FASTA format or PDB format from
various online databases

BMgetProtFASTAFUniProt() Retrieve protein sequence in FASTA format from UniProt
BMgetProtFASTAKEGG() Retrieve protein sequence in FASTA format from KEGG
BMgetProtPDBRCSBPDB() Retrieve protein sequence in PDB Format from RCSB PDB
BMgetProtSeqUniProt() Retrieve protein sequence from UniProt
BMgetProtSeqKEGG() Retrieve protein sequence from KEGG
BMgetProtSeqRCSBPDB() Retrieve protein sequence from RCSB PDB

Table 3: Retrieving DNA/RNA sequences data from various online databases

Function name Function description

BMgetDNAGenBank() Retrieve DNA/RNA sequences in FASTA format from GenBank

The summary of the data manipulation in the BioMedR package is listed in table 4 and 5.

3. Calculating Drug Molecular Descriptors and Fingerprints

6

BioMedR Manual

Table 4: Protein/DNA sequence data manipulation

Function name Function description

readFASTA() Read protein sequences in FASTA format
readPDB() Read protein sequences in PDB format
segProt() Protein sequence segmentation
checkProt() Check if the protein sequence’s amino acid

types are the 20 default types
checkDNA() Check if the DNA/RNA sequence’s de-

oxyribonucleic acid types are the 4 default
types

Table 5: Molecular data manipulation

Function name Function description

readMolFromSDF() Read molecules from SDF files and return
parsed Java molecular object

readMolFromSmi() Read molecules from SMILES files and re-
turn parsed Java molecular object or plain
text list

convMolFormat() Chemical file formats conversion

To reasonably and conveniently use the BioMedR package, the users should intelligently
evaluate the underlying details of the descriptors provided rather than using this package with
their data blindly, especially for these more flexible descriptor types. For a drug molecule,
its molecular descriptors and chemical fragments can be calculated by rcdk (Steinbeck et al.
2003) package and the ChemmineOB package (Horan and Girke 2013).

3.1. Calculating Drug Molecular Descriptors

logP

The atomic parameters was developed to successfully evaluate the molecular water-octanol
partition coefficient, which is a measure of hydrophobicity (Ghose and Crippen 1986); The
atomic physicochemical parameters was developed to model the dispersive and hydrophobic
interactions (Ghose and Crippen 1987).

smi = system.file('vignettedata/FDAMDD.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
logp = extrDrugALOGP(mol)

head(logp)

ALogP ALogp2

c1ccc2c(c1)oc(=O)c(C(CC(=O)C)c1ccc([N+](=O)[O-])cc1)c2O 1.4501 2.10279001

7

BioMedR Manual

c1(ccc(cc1)O)NC(=O)C -0.2314 0.05354596

c1ccccc1NC(=O)C 0.3317 0.11002489

n1nc(S(=O)(=O)N)sc1NC(=O)C 0.1354 0.01833316

O=S(=O)(c1ccc(cc1)C(=O)C)NC(=O)NC1CCCCC1 -2.0362 4.14611044

CC(=O)NO -1.0852 1.17765904

AMR

c1ccc2c(c1)oc(=O)c(C(CC(=O)C)c1ccc([N+](=O)[O-])cc1)c2O 98.1118

c1(ccc(cc1)O)NC(=O)C 44.7549

c1ccccc1NC(=O)C 43.1494

n1nc(S(=O)(=O)N)sc1NC(=O)C 44.2004

O=S(=O)(c1ccc(cc1)C(=O)C)NC(=O)NC1CCCCC1 76.3739

CC(=O)NO 15.4305

This function returns three columns named ALogP, ALogp2 and AMR. Note the underlying code
in CDK assumes that aromaticity has been detected before evaluating this descriptor. The
code also expects that the molecule will have hydrogens explicitly set. For SD files, this is
usually not a problem since hydrogens are explicit. But for the case of molecules obtained
from SMILES, hydrogens must be made explicit.

WienerNumbers

The wiener polarity number p is defined as the number of pairs of carbon atoms which are
separated by three carbon-carbon bonds. The wiener path number w is defined as the sum of
the tiistmces between any two carbon atoms in the molecule. They were proposed by Harry
Wiener in 1947 to study the correlation between the boiling points of the paraffins and the
structural variables (Wiener 1947).

wiener = extrDrugWienerNumbers(mol)

head(wiener)

WPATH WPOL

c1ccc2c(c1)oc(=O)c(C(CC(=O)C)c1ccc([N+](=O)[O-])cc1)c2O 1592 44

c1(ccc(cc1)O)NC(=O)C 166 11

c1ccccc1NC(=O)C 126 9

n1nc(S(=O)(=O)N)sc1NC(=O)C 257 14

O=S(=O)(c1ccc(cc1)C(=O)C)NC(=O)NC1CCCCC1 1176 31

CC(=O)NO 18 2

This descriptor calculates the Wiener numbers, including the Wiener Path number and the
Wiener Polarity Number. Wiener path number: half the sum of all the distance matrix
entries; Wiener polarity number: half the sum of all the distance matrix entries with a value
of 3.

BCUT

The BCUT value based on the activity-seeded and structure-based clustering was proposed
by R. S. Pearlman in 1999 (Pearlman and Smith 1999). It has been proven to be an ideal

8

BioMedR Manual

approach to validate either high- or low-dimensional chemistry-space metrics when validation
by computer-graphic visualization is not possible.

bcut = extrDrugBCUT(mol)

head(bcut)

BCUTw.1l BCUTw.1h

c1ccc2c(c1)oc(=O)c(C(CC(=O)C)c1ccc([N+](=O)[O-])cc1)c2O 11.99616 16.00080

c1(ccc(cc1)O)NC(=O)C 11.89000 15.99592

c1ccccc1NC(=O)C 11.89000 15.99492

n1nc(S(=O)(=O)N)sc1NC(=O)C 11.89000 31.97307

O=S(=O)(c1ccc(cc1)C(=O)C)NC(=O)NC1CCCCC1 11.90000 31.97207

CC(=O)NO 11.99900 16.00115

BCUTc.1l

c1ccc2c(c1)oc(=O)c(C(CC(=O)C)c1ccc([N+](=O)[O-])cc1)c2O -0.3848947

c1(ccc(cc1)O)NC(=O)C -0.3607188

c1ccccc1NC(=O)C -0.2810520

n1nc(S(=O)(=O)N)sc1NC(=O)C -0.2805235

O=S(=O)(c1ccc(cc1)C(=O)C)NC(=O)NC1CCCCC1 -0.2941177

CC(=O)NO -0.3632885

BCUTc.1h BCUTp.1l

c1ccc2c(c1)oc(=O)c(C(CC(=O)C)c1ccc([N+](=O)[O-])cc1)c2O 0.2972769 3.726860

c1(ccc(cc1)O)NC(=O)C 0.2511029 4.199143

c1ccccc1NC(=O)C 0.2510941 4.191793

n1nc(S(=O)(=O)N)sc1NC(=O)C 0.2643700 4.464387

O=S(=O)(c1ccc(cc1)C(=O)C)NC(=O)NC1CCCCC1 0.2858059 4.592529

CC(=O)NO 0.2197801 3.520334

BCUTp.1h

c1ccc2c(c1)oc(=O)c(C(CC(=O)C)c1ccc([N+](=O)[O-])cc1)c2O 11.858618

c1(ccc(cc1)O)NC(=O)C 8.415819

c1ccccc1NC(=O)C 8.357006

n1nc(S(=O)(=O)N)sc1NC(=O)C 12.193660

O=S(=O)(c1ccc(cc1)C(=O)C)NC(=O)NC1CCCCC1 11.513438

CC(=O)NO 5.198756

This function return a data frame, each row represents one of the molecules, each column
represents one feature. This function returns 6 columns, See ?extrDrugBCUT for details.

By default, the descriptor will return the highest and lowest eigenvalues for the three classes
of descriptor in a single ArrayList (in the order shown above). However it is also possible
to supply a parameter list indicating how many the highest and lowest eigenvalues (for each
class of descriptor) are required. The descriptor works with the hydrogen depleted molecule.

A side effect of specifying the number of highest and lowest eigenvalues is that it is possible to
get two copies of all the eigenvalues. That is, if a molecule has 5 heavy atoms, then specifying
the 5 highest eigenvalues returns all of them, and specifying the 5 lowest eigenvalues returns
all of them, resulting in two copies of all the eigenvalues.

9

BioMedR Manual

Note that it is possible to specify an arbitrarily large number of eigenvalues to be returned.
However if the number (i.e., nhigh or nlow) is larger than the number of heavy atoms, the
remaining eignevalues will be NaN.

Given the above description, if the aim is to get all the eigenvalues for a molecule, you should
set nlow to 0 and specify the number of heavy atoms (or some large number) for nhigh (or
vice versa).

3.2. Calculating Drug Molecular Fingerprints

Estate

Estate was an electrotopoligicl state indice for atom types combining the electronic, topologi-
cal and valence state information proposed by Lowell H. Hall in 1995. It is useful for database
characterization, molecular similarity analysis, and QSAR.

estate = extrDrugEstate(mol)

head(estate)

$`79`
[1] 7 9 12 13 16 17 18 31 34 35 37

##

$`79`
[1] 7 12 16 17 24 34 35

##

$`79`
[1] 7 12 16 17 24 35

##

$`79`
[1] 7 16 17 21 24 29 35 51 53

##

$`79`
[1] 7 9 12 13 16 17 24 35 53

##

$`79`
[1] 7 16 24 34 35

MACCS

The MACCS fingerprint uses a dictionary of MDL keys, which contains a set of 166 mostly
common substructure features. These are referred to as the MDL public MACCS keys.

maccs = extrDrugMACCS(mol)

head(maccs)

10

BioMedR Manual

$`166`
[1] 24 49 56 57 63 70 71 89 91 94 98 102 105 113 115 119 122 123 124 125 127

[22] 130 132 133 135 136 137 139 140 143 144 145 146 148 150 152 154 155 156 157 158 159

[43] 160 161 162 163 164 165

##

$`166`
[1] 92 110 113 117 127 131 133 135 139 143 151 152 154 156 157 158 159 160 161 162 163

[22] 164 165

##

$`166`
[1] 92 110 117 133 135 151 154 156 158 160 161 162 163 164 165

##

$`166`
[1] 32 33 36 47 51 52 55 58 59 60 61 64 65 67 69 73 77 79 80 81 83

[22] 84 88 92 94 95 96 97 102 106 110 112 117 120 121 124 130 131 133 135 136 137

[43] 142 146 148 151 154 156 158 159 160 161 162 164 165

##

$`166`
[1] 32 33 37 43 51 55 58 59 60 61 64 67 69 73 77 81 88 89 90 91 94

[22] 97 102 104 106 110 111 112 117 118 124 129 130 131 133 136 140 142 145 146 147 148

[43] 151 152 154 156 158 159 160 161 162 163 164 165

##

$`166`
[1] 24 68 69 71 72 92 94 102 110 117 124 131 139 151 154 156 158 159 160 161 164

extrDrugMACCS and extrDrugEstate return a list, each component represents one of the
molecules, each element in the component represents the index of which element in the fin-
gerprint is 1. Each component’s name is the length of the fingerprints.

what’s more, we can calculate several selected molecular descriptors. The corresponding
functions for molecular descriptor calculation are all named after extrDrug...() in BioMedR:

calculate selected molecular descriptors

x = suppressWarnings(cbind(

extrDrugALOGP(mol),

extrDrugApol(mol),

extrDrugECI(mol),

extrDrugTPSA(mol),

extrDrug...(),

...)

3.3. Summary

The summary of the drug molecule descriptors in the BioMedR package is listed in table 6.

The summary of the drug molecule fingerprint in the BioMedR package is listed in table 7.

11

BioMedR Manual

Table 6: Molecular descriptors

Function name Descriptor name

extrDrugAIO() All the molecular descriptors in the BioMedR package
extrDrugALOGP() Atom additive logP and molar refractivity values descriptor
extrDrugAminoAcidCount() Number of amino acids
extrDrugApol() Sum of the atomic polarizabilities
extrDrugAromaticAtomsCount() Number of aromatic atoms
extrDrugAromaticBondsCount() Number of aromatic bonds
extrDrugAtomCount() Number of atom descriptor
extrDrugAutocorrelationCharge() Moreau-Broto autocorrelation descriptors using partial charges
extrDrugAutocorrelationMass() Moreau-Broto autocorrelation descriptors using atomic weight
extrDrugAutocorrelationPolarizability() Moreau-Broto autocorrelation descriptors using polarizability
extrDrugBCUT() BCUT, the eigenvalue based descriptor
extrDrugBondCount() Number of bonds of a certain bond order
extrDrugBPol() Sum of the absolute value of the difference between atomic po-

larizabilities of all bonded atoms in the molecule
extrDrugCarbonTypes() Topological descriptor characterizing the carbon connectivity in

terms of hybridization
extrDrugChiChain() Kier & Hall Chi chain indices of orders 3, 4, 5, 6 and 7
extrDrugChiCluster() Kier & Hall Chi cluster indices of orders 3, 4, 5 and 6
extrDrugChiPath() Kier & Hall Chi path indices of orders 0 to 7
extrDrugChiPathCluster() Kier & Hall Chi path cluster indices of orders 4, 5 and 6
extrDrugCPSA() Descriptors combining surface area and partial charge information
extrDrugDescOB() Molecular descriptors provided by OpenBabel
extrDrugECI() Eccentric connectivity index descriptor
extrDrugFMF() FMF descriptor
extrDrugFragmentComplexity() Complexity of a system
extrDrugGravitationalIndex() Mass distribution of the molecule
extrDrugHBondAcceptorCount() Number of hydrogen bond acceptors
extrDrugHBondDonorCount() Number of hydrogen bond donors
extrDrugHybridizationRatio() Molecular complexity in terms of carbon hybridization states
extrDrugIPMolecularLearning() Ionization potential
extrDrugKappaShapeIndices() Kier & Hall Kappa molecular shape indices
extrDrugKierHallSmarts() Number of occurrences of the E-State fragments
extrDrugLargestChain() Number of atoms in the largest chain
extrDrugLargestPiSystem() Number of atoms in the largest Pi chain
extrDrugLengthOverBreadth() Ratio of length to breadth descriptor
extrDrugLongestAliphaticChain() Number of atoms in the longest aliphatic chain
extrDrugMannholdLogP() LogP based on the number of carbons and hetero atoms
extrDrugMDE() Molecular Distance Edge (MDE) descriptors for C, N and O
extrDrugMomentOfInertia() Principal moments of inertia and ratios of the principal moments
extrDrugPetitjeanNumber() Petitjean number of a molecule
extrDrugPetitjeanShapeIndex() Petitjean shape indices
extrDrugRotatableBondsCount() Number of non-rotatable bonds on a molecule
extrDrugRuleOfFive() Number failures of the Lipinski’s Rule Of Five
extrDrugTPSA() Topological Polar Surface Area (TPSA)
extrDrugVABC() Volume of a molecule
extrDrugVAdjMa() Vertex adjacency information of a molecule
extrDrugWeight() Total weight of atoms
extrDrugWeightedPath() Weighted path (Molecular ID)
extrDrugWHIM() Holistic descriptors described by Todeschini et al.
extrDrugWienerNumbers() Wiener path number and wiener polarity number
extrDrugXLogP() Prediction of logP based on the atom-type method called XLogP
extrDrugZagrebIndex() Sum of the squared atom degrees of all heavy atoms

12

BioMedR Manual

Table 7: Molecular fingerprints

Function name Fingerprint type

extrDrugStandard() Standard molecular fingerprints (in compact format)
extrDrugStandardComplete() Standard molecular fingerprints (in complete format)
extrDrugExtended() Extended molecular fingerprints (in compact format)
extrDrugExtendedComplete() Extended molecular fingerprints (in complete format)
extrDrugGraph() Graph molecular fingerprints (in compact format)
extrDrugGraphComplete() Graph molecular fingerprints (in complete format)
extrDrugHybridization() Hybridization molecular fingerprints (in compact format)
extrDrugHybridizationComplete() Hybridization molecular fingerprints (in complete format)
extrDrugMACCS() MACCS molecular fingerprints (in compact format)
extrDrugMACCSComplete() MACCS molecular fingerprints (in complete format)
extrDrugEstate() E-State molecular fingerprints (in compact format)
extrDrugEstateComplete() E-State molecular fingerprints (in complete format)
extrDrugPubChem() PubChem molecular fingerprints (in compact format)
extrDrugPubChemComplete() PubChem molecular fingerprints (in complete format)
extrDrugKR() KR (Klekota and Roth) molecular fingerprints (in compact format)
extrDrugKRComplete() KR (Klekota and Roth) molecular fingerprints (in complete format)
extrDrugShortestPath() Shortest Path molecular fingerprints (in compact format)
extrDrugShortestPathComplete() Shortest Path molecular fingerprints (in complete format)
extrDrugOBFP2() FP2 molecular fingerprints
extrDrugOBFP3() FP3 molecular fingerprints
extrDrugOBFP4() FP4 molecular fingerprints
extrDrugOBMACCS() MACCS molecular fingerprints
extrDrugAP() atom pair fingerprints

4. Calculating Commonly Used Protein Descriptors

Disclaimer. Users of the BioMedR package need to intelligently evaluate the underlying
details of the descriptors provided, instead of using BioMedR with their data blindly, especially
for the descriptor types with more flexibility. It would be wise for the users to use some
negative and positive control comparisons where relevant to help guide interpretation of the
results.

A protein or peptide sequence with N amino acid residues could be generally represented as
{R1, R2, . . . , Rn }, where Ri represents the residue at the i-th position in the sequence. The
labels i and j are used to index amino acid position in a sequence, and r, s, t are used to
represent the amino acid type. The computed descriptors are roughly divided into 4 groups
according to their known applications described in the literature.

A protein sequence could be divided equally into segments and the methods, described as
follows for the global sequence, could be applied to each segment.

4.1. Amino Acid Composition (AAC)

The Amino Acid Composition (AAC) is the fraction of each amino acid type within a protein.
The fractions of all 20 natural amino acids are calculated as:

f(r) =
Nr

N
r = 1, 2, . . . , 20.

where Nr is the number of the amino acid type r and N is the length of the sequence.

As was described above, we could use the function extrProtAAC() to extrProt the descriptors
(features) from protein sequences:

13

BioMedR Manual

require(BioMedR)

x = readFASTA(system.file('protseq/P00750.fasta', package = 'BioMedR'))[[1]]
extrProtAAC(x)

Q G H I L K

0.04804270 0.08185053 0.03024911 0.03558719 0.07651246 0.03914591

M F P S T W

0.01245552 0.03202847 0.05338078 0.08896797 0.04448399 0.02313167

Y V

0.04270463 0.04982206

Here with the function readFASTA() we loaded a single protein sequence (P00750, Tissue-type
plasminogen activator) from a FASTA format file. Then extrProted the AAC descriptors with
extrProtAAC(). The result returned is a named vector, whose elements are tagged with the
name of each amino acid.

4.2. Dipeptide Composition (DC)

The Dipeptide Composition (DC) gives 400 descriptors, defined as:

f(r, s) =
Nrs

N − 1
r, s = 1, 2, . . . , 20.

where Nrs is the number of dipeptide represented by amino acid type r and type s. Similar
to extrProtAAC(), here we use extrProtDC() to compute the descriptors:

dc = extrProtDC(x)

head(dc, n = 18L)

AA RA NA DA CA EA

0.003565062 0.003565062 0.000000000 0.007130125 0.003565062 0.003565062

QA GA HA IA LA KA

0.007130125 0.007130125 0.001782531 0.003565062 0.001782531 0.001782531

MA FA PA SA TA WA

0.000000000 0.005347594 0.003565062 0.007130125 0.003565062 0.000000000

Here we only showed the first 30 elements of the result vector and omitted the rest of the
result. The element names of the returned vector are self-explanatory as before.

4.3. Tripeptide Composition (TC)

The Tripeptide Composition (TC) gives 8000 descriptors, defined as:

f(r, s, t) =
Nrst

N − 2
r, s, t = 1, 2, . . . , 20

where Nrst is the number of tripeptides represented by amino acid type r, s and t. With
function extrProtTC(), we could easily obtain the length-8000 descriptor, to save some space,
here we also omitted the tedious outputs:

14

BioMedR Manual

tc = extrProtTC(x)

head(tc, n = 12L)

AAA RAA NAA DAA CAA EAA

0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000

QAA GAA HAA IAA LAA KAA

0.001785714 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000

4.4. Autocorrelation Descriptors

Autocorrelation descriptors are defined based on the distribution of amino acid properties
along the sequence. The amino acid properties used here are various types of amino acids
index (Retrieved from AAindex Database: http://www.genome.jp/dbget/aaindex.html,
see Kawashima et al. (1999), Kawashima and Kanehisa (2000), and Kawashima et al. (2008)).
Three types of autocorrelation descriptors are defined here and described below.

All the amino acid indices are centralized and standardized before the calculation, i.e.

Pr =
Pr − P̄
σ

where P̄ is the average of the property of the 20 amino acids:

P̄ =

∑20
r=1 Pr
20

and σ =

√√√√1

2

20∑
r=1

(Pr − P̄)2

Normalized Moreau-Broto Autocorrelation Descriptors

Moreau-Broto autocorrelation descriptors application to protein sequences could be defined
as:

AC(d) =
N−d∑
i=1

PiPi+d d = 1, 2, . . . ,nlag

where d is called the lag of the autocorrelation and Pi and Pi+d are the properties of the
amino acids at position i and i+ d, respectively. nlag is the maximum value of the lag.

The normalized Moreau-Broto autocorrelation descriptors are defined as:

ATS(d) =
AC(d)

N − d d = 1, 2, . . . ,nlag

The corresponding function for this descriptor is extrProtMoreauBroto(). A typical call
could be:

moreau = extrProtMoreauBroto(x)

head(moreau, n = 12L)

15

http://www.genome.jp/dbget/aaindex.html

BioMedR Manual

CIDH920105.lag1 CIDH920105.lag2 CIDH920105.lag3 CIDH920105.lag4

0.081573213 -0.016064817 -0.015982990 -0.025739038

CIDH920105.lag5 CIDH920105.lag6 CIDH920105.lag7 CIDH920105.lag8

0.079058632 -0.042771564 -0.036320847 0.024087298

CIDH920105.lag9 CIDH920105.lag10 CIDH920105.lag11 CIDH920105.lag12

-0.005273958 0.052274763 0.082170073 0.005419919

The 8 default properties used here are:

• AccNo. CIDH920105 — Normalized Average Hydrophobicity Scales

• AccNo. BHAR880101 — Average Flexibility Indices

• AccNo. CHAM820101 — Polarizability Parameter

• AccNo. CHAM820102 — Free Energy of Solution in Water, kcal/mole

• AccNo. CHOC760101 — Residue Accessible Surface Area in Tripeptide

• AccNo. BIGC670101 — Residue Volume

• AccNo. CHAM810101 — Steric Parameter

• AccNo. DAYM780201 — Relative Mutability

Users could change the property names of AAindex database with the argument props. The
AAindex data shipped with BioMedR could be loaded by data(AAindex), which has the
detailed information of each property. With the argument customprops and nlag, users
could specify their own properties and lag value to calculate with. For illustration, we could
use:

Define 3 custom properties

myprops = data.frame(AccNo = c("MyProp1", "MyProp2", "MyProp3"),

A = c(0.62, -0.5, 15), R = c(-2.53, 3, 101),

N = c(-0.78, 0.2, 58), D = c(-0.9, 3, 59),

C = c(0.29, -1, 47), E = c(-0.74, 3, 73),

Q = c(-0.85, 0.2, 72), G = c(0.48, 0, 1),

H = c(-0.4, -0.5, 82), I = c(1.38, -1.8, 57),

L = c(1.06, -1.8, 57), K = c(-1.5, 3, 73),

M = c(0.64, -1.3, 75), F = c(1.19, -2.5, 91),

P = c(0.12, 0, 42), S = c(-0.18, 0.3, 31),

T = c(-0.05, -0.4, 45), W = c(0.81, -3.4, 130),

Y = c(0.26, -2.3, 107), V = c(1.08, -1.5, 43))

Use 4 properties in the AAindex database, and 3 cutomized properties

moreau2 = extrProtMoreauBroto(x, customprops = myprops,

props = c('CIDH920105', 'BHAR880101',
'CHAM820101', 'CHAM820102',
'MyProp1', 'MyProp2', 'MyProp3'))

head(moreau2, n = 12L)

16

BioMedR Manual

CIDH920105.lag1 CIDH920105.lag2 CIDH920105.lag3 CIDH920105.lag4

0.081573213 -0.016064817 -0.015982990 -0.025739038

CIDH920105.lag5 CIDH920105.lag6 CIDH920105.lag7 CIDH920105.lag8

0.079058632 -0.042771564 -0.036320847 0.024087298

CIDH920105.lag9 CIDH920105.lag10 CIDH920105.lag11 CIDH920105.lag12

-0.005273958 0.052274763 0.082170073 0.005419919

About the standard input format of props and customprops, see ?extrProtMoreauBroto for
details.

Moran Autocorrelation Descriptors

Moran autocorrelation descriptors application to protein sequence may be defined as:

I(d) =
1

N−d
∑N−d

i=1 (Pi − P̄ ′)(Pi+d − P̄ ′)
1
N

∑N
i=1(Pi − P̄ ′)2

d = 1, 2, . . . , 30

where d and Pi and Pi+d are defined in the same way as in the first place, and P̄ ′ is the
considered property P along the sequence, i.e.,

P̄ ′ =

∑N
i=1 Pi
N

d, P , Pi and Pi+d, nlag have the same meaning as above.

With extrProtMoran(), which has exactly the same arguments with extrProtMoreauBroto(),
we could compute the Moran autocorrelation descriptors (only output the first 36 elements
of the result):

Use the 3 custom properties defined before

and 4 properties in the AAindex database

moran = extrProtMoran(x, customprops = myprops,

props = c('CIDH920105', 'BHAR880101',
'CHAM820101', 'CHAM820102',
'MyProp1', 'MyProp2', 'MyProp3'))

head(moran, n = 12L)

CIDH920105.lag1 CIDH920105.lag2 CIDH920105.lag3 CIDH920105.lag4

0.062895724 -0.044827681 -0.045065117 -0.055955678

CIDH920105.lag5 CIDH920105.lag6 CIDH920105.lag7 CIDH920105.lag8

0.060586377 -0.074128412 -0.067308852 -0.001293384

CIDH920105.lag9 CIDH920105.lag10 CIDH920105.lag11 CIDH920105.lag12

-0.033747588 0.029392193 0.061789800 -0.023368437

Geary Autocorrelation Descriptors

17

BioMedR Manual

Geary autocorrelation descriptors for protein sequence could be defined as:

C(d) =

1
2(N−d)

∑N−d
i=1 (Pi − Pi+d)2

1
N−1

∑N
i=1(Pi − P̄ ′)2

d = 1, 2, . . . , 30

where d, P , Pi and Pi+d, nlag have the same meaning as above.

For each amino acid index, there will be 3 × nlag autocorrelation descriptors. The usage of
extrProtGeary() is exactly the same with extrProtMoreauBroto() and extrProtMoran():

Use the 3 custom properties defined before

and 4 properties in the AAindex database

geary = extrProtGeary(x, customprops = myprops,

props = c('CIDH920105', 'BHAR880101',
'CHAM820101', 'CHAM820102',
'MyProp1', 'MyProp2', 'MyProp3'))

head(geary, n = 12L)

CIDH920105.lag1 CIDH920105.lag2 CIDH920105.lag3 CIDH920105.lag4

0.9361830 1.0442920 1.0452843 1.0563467

CIDH920105.lag5 CIDH920105.lag6 CIDH920105.lag7 CIDH920105.lag8

0.9406031 1.0765517 1.0675786 0.9991363

CIDH920105.lag9 CIDH920105.lag10 CIDH920105.lag11 CIDH920105.lag12

1.0316555 0.9684585 0.9353130 1.0201990

4.5. Composition / Transition / Distribution

These descriptors are developed and described by Dubchak et al. (1995) and Dubchak et al.
(1999).

Sequence M T E I T A S M V K E L R E A T G T G A

Sequence Index 1 5 10 15 20
Transformation 3 2 1 3 2 2 2 3 3 1 1 3 1 1 2 2 2 2 2 2

Index for 1 1 2 3 4 5
Index for 2 1 2 3 4 5 6 7 8 9 10
Index for 3 1 2 3 4 5

1/2 Transitions | |
1/3 Transitions | | | |
2/3 Transitions | | |

Figure 1: The sequence of a hypothetic protein indicating the construction of composition,
transition and distribution descriptors of a protein. Sequence index indicates the position of
an amino acid in the sequence. The index for each type of amino acids in the sequence (‘1’,
‘2’ or ‘3’) indicates the position of the first, second, third, ... of that type of amino acid. 1/2
transition indicates the position of ‘12’ or ‘21’ pairs in the sequence (1/3 and 2/3 are defined
in the same way.).

18

BioMedR Manual

Step 1: Sequence Encoding

The amino acids are divided in three classes according to its attribute and each amino acid is
encoded by one of the indices 1, 2, 3 according to which class it belonged. The attributes used
here include hydrophobicity, normalized van der Waals volume polarity, and polarizability, as
in the references. The corresponding division is in the table 1.

Table 8: Amino acid attributes and the division of the amino acids into three groups for each
attribute

Group 1 Group 2 Group 3

Hydrophobicity Polar Neutral Hydrophobicity
R, K, E, D, Q, N G, A, S, T, P, H, Y C, L, V, I, M, F, W

Normalized van der 0-2.78 2.95-4.0 4.03-8.08
Waals Volume G, A, S, T, P, D, C N, V, E, Q, I, L M, H, K, F, R, Y, W

Polarity 4.9-6.2 8.0-9.2 10.4-13.0
L, I, F, W, C, M, V, Y P, A, T, G, S H, Q, R, K, N, E, D

Polarizability 0-1.08 0.128-0.186 0.219-0.409
G, A, S, D, T C, P, N, V, E, Q, I, L K, M, H, F, R, Y, W

Charge Positive Neutral Negative
K, R A, N, C, Q, G, H, I, L, M, F, P, S, T, W, Y, V D, E

Secondary Helix Strand Coil
Structure E, A, L, M, Q, K, R, H V, I, Y, C, W, F, T G, N, P, S, D

Solvent Buried Exposed Intermediate
Accessibility A, L, F, C, G, I, V, W R, K, Q, E, N, D M, S, P, T, H, Y

For example, for a given sequence “MTEITAAMVKELRESTGAGA”, it will be encoded as
“32132223311311222222” according to its hydrophobicity division.

Step 2: Compute Composition, Transition and Distribution Descriptors

Three descriptors, Composition (C), Transition (T), and Distribution (D) were calculated
for a given attribute as follows.

Composition

It is the global percent for each encoded class in the sequence. In the above example using
hydrophobicity division, the numbers for encoded classes “1”, “2”, “3” are 5, 10, 5 respectively,
so the compositions for them are 5/20 = 25%, 10/20 = 10%, and 5/20 = 25% respectively,
where 20 is the length of the protein sequence. Composition can be defined as

Cr =
nr
n

r = 1, 2, 3

where nr is the number of amino acid type r in the encoded sequence and N is the length of
the sequence. An example for extrProtCTDC() could be:

ctdc = extrProtCTDC(x)

head(ctdc, 12L)

prop1.G1 prop1.G2 prop1.G3 prop2.G1 prop2.G2 prop2.G3 prop3.G1

0.2971530 0.4056940 0.2971530 0.4519573 0.2971530 0.2508897 0.3398577

19

BioMedR Manual

prop3.G2 prop3.G3 prop4.G1 prop4.G2 prop4.G3

0.3327402 0.3274021 0.3309609 0.4181495 0.2508897

The result shows the elements whose names are PropertyNumber.GroupNumber in the re-
turned vector.

Transition

A transition from class 1 to 2 is the percent frequency with which 1 is followed by 2 or 2 is
followed by 1 in the encoded sequence. Transition descriptor can be calculated as

Trs =
nrs + nsr
N − 1

rs = ‘12’, ‘13’, ‘23’

where nrs, nsr is the numbers of dipeptide encoded as“rs”and“sr”respectively in the sequence
and N is the length of the sequence. An example for extrProtCTDT() could be:

ctdt = extrProtCTDT(x)

head(ctdt, 12L)

prop1.Tr1221 prop1.Tr1331 prop1.Tr2332 prop2.Tr1221 prop2.Tr1331

0.2709447 0.1604278 0.2335116 0.2673797 0.2263815

prop2.Tr2332 prop3.Tr1221 prop3.Tr1331 prop3.Tr2332 prop4.Tr1221

0.1711230 0.2103387 0.2049911 0.2370766 0.2727273

prop4.Tr1331 prop4.Tr2332

0.1515152 0.2459893

Distribution

The “distribution” descriptor describes the distribution of each attribute in the sequence.

There are five “distribution” descriptors for each attribute and they are the position percents
in the whole sequence for the first residue, 25% residues, 50% residues, 75% residues and
100% residues, respectively, for a specified encoded class. For example, there are 10 residues
encoded as “2” in the above example, the positions for the first residue “2”, the 2th residue “2”
(25%*10=2), the 5th “2” residue (50%*10=5), the 7th “2” (75%*10=7) and the 10th residue
“2” (100%*10) in the encoded sequence are 2, 5, 15, 17, 20 respectively, so the distribution
descriptors for “2” are: 10.0 (2/20*100), 25.0 (5/20*100), 75.0 (15/20*100), 85.0 (17/20*100)
, 100.0 (20/20*100), respectively.

Finally, an example for extrProtCTDD() could be:

ctdd = extrProtCTDD(x)

head(ctdd, 12L)

prop1.G1.residue0 prop1.G1.residue25 prop1.G1.residue50

0.3558719 23.1316726 50.1779359

20

BioMedR Manual

prop1.G1.residue75 prop1.G1.residue100 prop1.G2.residue0

73.8434164 99.8220641 0.5338078

prop1.G2.residue25 prop1.G2.residue50 prop1.G2.residue75

27.4021352 47.3309609 75.2669039

prop1.G2.residue100 prop1.G3.residue0 prop1.G3.residue25

100.0000000 0.1779359 19.5729537

4.6. Conjoint Triad Descriptors

Conjoint triad descriptors are proposed by Shen et al. (2007). These conjoint triad descriptors
abstracts the features of protein pairs based on the classification of amino acids. In this
approach, each protein sequence is represented by a vector space consisting of descriptors of
amino acids. To reduce the dimensions of vector space, the 20 amino acids were clustered
into several classes according to their dipoles and volumes of the side chains. The conjoint
triad descriptors are calculated as follows:

Step 1: Classification of Amino Acids

Electrostatic and hydrophobic interactions dominate protein-protein interactions. These two
kinds of interactions may be reflected by the dipoles and volumes of the side chains of amino
acids, respectively. Accordingly, these two parameters were calculated, respectively, by us-
ing the density-functional theory method B3LYP/6-31G and molecular modeling approach.
Based on the dipoles and volumes of the side chains, the 20 amino acids could be clustered
into seven classes (See Table 2). Amino acids within the same class likely involve synonymous
mutations because of their similar characteristics.

Table 9: Classification of amino acids based on dipoles and volumes of the side chains

No. Dipole Scale1 Volume Scale2 Class

1 − − Ala, Gly, Val
2 − + Ile, Leu, Phe, Pro
3 + + Tyr, Met, Thr, Ser
4 ++ + His, Asn, Gln, Tpr
5 + + + + Arg, Lys
6 +′ +′ +′ + Asp, Glu
7 +3 + Cys

Step 2: Conjoint Triad Calculation

The conjoint triad descriptors considered the properties of one amino acid and its vicinal
amino acids and regarded any three continuous amino acids as a unit. Thus, the triads can
be differentiated according to the classes of amino acids, i.e., triads composed by three amino
acids belonging to the same classes, such as ART and VKS, could be treated identically. To
conveniently represent a protein, we first use a binary space (V,F) to represent a protein

1Dipole Scale (Debye): −, Dipole < 1.0; +, 1.0 < Dipole < 2.0; ++, 2.0 < Dipole < 3.0; + + +, Dipole >
3.0; +′ +′ +′, Dipole > 3.0 with opposite orientation.

2Volume Scale (Å3): −, Volume < 50; +, Volume > 50.
3Cys is separated from class 3 because of its ability to form disulfide bonds.

21

BioMedR Manual

sequence. Here, V is the vector space of the sequence features, and each feature vi represents
a sort of triad type; F is the frequency vector corresponding to V, and the value of the i-th
dimension of F(fi) is the frequency of type vi appearing in the protein sequence. For the
amino acids that have been catogorized into seven classes, the size of V should be 7× 7× 7;
thus i = 1, 2, . . . , 343. The detailed description for (V, F) is illustrated in Figure 2.

= f A, G, V g

= f I, L, F, P g

= f Y, M, T, S g

= f H, N, Q, W g

= f R, K g

= f D, E g

= f C g

= v1

= v4

= v7

= v338

= v341

= v2

= v5

= v8

= v339

= v342

= v3

= v6

= v9

= v340

= v343

f1 = 5

f2 = 1

f3 = 2

f4 = 1

¢ ¢ ¢

¢ ¢ ¢

f341 = 1

f342 = 1

f343 = 0

Protein Sequence:

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

V

F

Figure 2: Schematic diagram for constructing the vector space (V, F) of protein sequence. V
is the vector space of the sequence features; each feature (vi) represents a triad composed of
three consecutive amino acids; F is the frequency vector corresponding to V, and the value
of the i-th dimension of F(fi) is the frequency that vi triad appeared in the protein sequence.

Clearly, each protein correlates to the length (number of amino acids) of protein. In general,
a long protein would have a large value of fi, which complicates the comparison between two
heterogeneous proteins. Thus, we defined a new parameter, di, by normalizing fi with the
following equation:

di =
fi −min{ f1, f2, . . . , f343 }

max{ f1, f2, . . . , f343 }
The numerical value of di of each protein ranges from 0 to 1, which thereby enables the
comparison between proteins. Accordingly, we obtain another vector space (designated D)

22

BioMedR Manual

consisting of di to represent protein.

To compute conjoint triads of protein sequences, we could simply use:

ctriad = extrProtCTriad(x)

head(ctriad, n = 65L)

VS111 VS211 VS311 VS411 VS511 VS611 VS711 VS121 VS221 VS321 VS421 VS521

0.1 0.3 0.6 0.2 0.4 0.0 0.3 1.0 0.6 0.5 0.0 0.2

VS621 VS721 VS131 VS231 VS331 VS431 VS531 VS631 VS731 VS141 VS241 VS341

0.3 0.0 0.2 0.4 0.5 0.2 0.3 0.3 0.1 0.3 0.3 0.2

VS441 VS541 VS641 VS741 VS151 VS251 VS351 VS451 VS551 VS651 VS751 VS161

0.2 0.0 0.1 0.2 0.2 0.2 0.5 0.1 0.2 0.0 0.0 0.1

VS261 VS361 VS461 VS561 VS661 VS761 VS171 VS271 VS371 VS471 VS571 VS671

0.4 0.2 0.3 0.2 0.0 0.1 0.1 0.3 0.1 0.0 0.1 0.0

VS771 VS112 VS212 VS312 VS412 VS512 VS612 VS712 VS122 VS222 VS322 VS422

0.1 0.8 0.4 0.4 0.6 0.1 0.5 0.2 0.8 0.5 0.2 0.3

VS522 VS622 VS722 VS132 VS232

0.2 0.0 0.2 0.1 0.3

by which we only outputted the first 65 of total 343 dimension to save space.

4.7. Quasi-sequence-order Descriptors

The quasi-sequence-order descriptors are proposed by Chou (2000). They are derived from
the distance matrix between the 20 amino acids.

Sequence-order-coupling Number

The d-th rank sequence-order-coupling number is defined as:

τd =

N−d∑
i=1

(di,i+d)
2 d = 1, 2, . . . ,maxlag

where di,i+d is the distance between the two amino acids at position i and i+ d.

Note: maxlag is the maximum lag and the length of the protein must be not less than maxlag.

The function extrProtSOCN(x) is used for computing the sequence-order-coupling numbers:

socn = extrProtSOCN(x)

head(socn, 15L)

Schneider.lag1 Schneider.lag2 Schneider.lag3 Schneider.lag4

204.2036 199.8708 206.8102 197.4828

Schneider.lag5 Schneider.lag6 Schneider.lag7 Schneider.lag8

193.3366 208.1936 195.5476 200.9789

Schneider.lag9 Schneider.lag10 Schneider.lag11 Schneider.lag12

23

BioMedR Manual

196.7110 193.9931 199.7031 204.9389

Schneider.lag13 Schneider.lag14 Schneider.lag15

187.0140 198.4702 205.4526

Users could also specify the maximum lag value with the nlag argument.

Note: In addition to Schneider-Wrede physicochemical distance matrix (Schneider and Wrede
1994) used by Kuo-Chen Chou, another chemical distance matrix by Grantham (1974) is
also used here. So the descriptors dimension will be nlag * 2. The quasi-sequence-order
descriptors described next also utilized the two matrices.

Quasi-sequence-order Descriptors

For each amino acid type, a quasi-sequence-order descriptor can be defined as:

Xr =
fr∑20

r=1 fr + w
∑maxlag

d=1 τd
r = 1, 2, . . . , 20

where fr is the normalized occurrence for amino acid type i and w is a weighting factor
(w = 0.1). These are the first 20 quasi-sequence-order descriptors. The other 30 quasi-
sequence-order are defined as:

Xd =
wτd−20∑20

r=1 fr + w
∑maxlag

d=1 τd
d = 21, 22, . . . , 20 + maxlag

Figure 3: A schematic drawing to show (a) the 1st-rank, (b) the 2nd-rank, and (3) the
3rd-rank sequence-order-coupling mode along a protein sequence. (a) Reflects the coupling
mode between all the most contiguous residues, (b) that between all the 2nd most contiguous
residues, and (c) that between all the 3rd most contiguous residues. This figure is from Chou
(2000).

An minimal example for extrProtQSO() could be:

24

BioMedR Manual

qso = extrProtQSO(x)

head(qso, 15L)

Schneider.Xr.A Schneider.Xr.R Schneider.Xr.N Schneider.Xr.D Schneider.Xr.C

0.06096218 0.06773576 0.03725467 0.04910842 0.06434897

Schneider.Xr.E Schneider.Xr.Q Schneider.Xr.G Schneider.Xr.H Schneider.Xr.I

0.04572164 0.04572164 0.07789612 0.02878770 0.03386788

Schneider.Xr.L Schneider.Xr.K Schneider.Xr.M Schneider.Xr.F Schneider.Xr.P

0.07281594 0.03725467 0.01185376 0.03048109 0.05080182

where users could also specify the maximum lag with argument nlag and the weighting factor
with argument w.

4.8. Pseudo-Amino Acid Composition (PAAC)

This groups of descriptors are proposed in Chou (2001). PAAC descriptors are also called the
type 1 pseudo-amino acid composition. Let Ho

1(i) , Ho
2(i), Mo(i) (i = 1, 2, 3, . . . , 20) be the

original hydrophobicity values, the original hydrophilicity values and the original side chain
masses of the 20 natural amino acids, respectively. They are converted to following qualities
by a standard conversion:

H1(i) =
Ho

1(i)− 1
20

∑20
i=1H

o
1(i)√∑20

i=1[Ho
1 (i)− 1

20

∑20
i=1H

o
1 (i)]2

20

Ho
2(i) and Mo(i) are normalized as H2(i) and M(i) in the same way.

Then, a correlation function could be defines as

Θ(Ri, Rj) =
1

3

{
[H1(Ri)−H1(Rj)]

2 + [H2(Ri)−H2(Rj)]
2 + [M(Ri)−M(Rj)]

2

}
This correlation function is actually an averaged value for the three amino acid properties:
hydrophobicity value, hydrophilicity value and side chain mass. Therefore we can extend this
definition of correlation function for one amino acid property or for a set of n amino acid
properties.

For one amino acid property, the correlation can be defined as:

Θ(Ri, Rj) = [H1(Ri)−H1(Rj)]
2

where H(Ri) is the amino acid property of amino acid Ri after standardization.

For a set of n amino acid properties, it can be defined as: where Hk(Ri) is the k-th property
in the amino acid property set for amino acid Ri.

Θ(Ri, Rj) =
1

n

n∑
k=1

[Hk(Ri)−Hk(Rj)]
2

where Hk(Ri) is the k-th property in the amino acid property set for amino acid Ri.

25

BioMedR Manual

Figure 4: A schematic drawing to show (a) the first-tier, (b) the second-tier, and (3) the
third-tiersequence order correlation mode along a protein sequence. Panel (a) reflects the
correlation mode between all the most contiguous residues, panel (b) that between all the
second-most contiguous residues, and panel (c) that between all the third-most contiguous
residues. This figure is from Chou (2001).

A set of descriptors called sequence order-correlated factors are defined as:

θ1 =
1

N − 1

N−1∑
i=1

Θ(Ri, Ri+1)

θ2 =
1

N − 2

N−2∑
i=1

Θ(Ri, Ri+2)

θ3 =
1

N − 3

N−3∑
i=1

Θ(Ri, Ri+3)

. . .

θλ =
1

N − λ
N−λ∑
i=1

Θ(Ri, Ri+λ)

λ (λ < L) is a parameter to be chosen. Let fi be the normalized occurrence frequency of the
20 amino acids in the protein sequence, a set of 20 + λ descriptors called the pseudo-amino
acid composition for a protein sequence can be defines as:

Xc =
fc∑20

r=1 fr + w
∑λ

j=1 θj
(1 < c < 20)

Xc =
wθc−20∑20

r=1 fr + w
∑λ

j=1 θj
(21 < c < 20 + λ)

26

BioMedR Manual

where w is the weighting factor for the sequence-order effect and is set as w = 0.05 in BioMedR
as suggested by Kuo-Chen Chou.

With extrProtPAAC(), we could compute the PAAC descriptors:

pacc = extrProtPAAC(x)

head(pacc, 25L)

Xc1.A Xc1.R Xc1.N Xc1.D Xc1.C

9.07025432 10.07806035 5.54293319 7.30659376 9.57415734

Xc1.E Xc1.Q Xc1.G Xc1.H Xc1.I

6.80269074 6.80269074 11.58976941 4.28317565 5.03903018

Xc1.L Xc1.K Xc1.M Xc1.F Xc1.P

10.83391488 5.54293319 1.76366056 4.53512716 7.55854527

Xc1.S Xc1.T Xc1.W Xc1.Y Xc1.V

12.59757544 6.29878772 3.27536961 6.04683621 7.05464225

Xc2.lambda.1 Xc2.lambda.2 Xc2.lambda.3 Xc2.lambda.4 Xc2.lambda.5

0.02514092 0.02500357 0.02527773 0.02553159 0.02445265

The extrProtPAAC() fucntion also provides the props and customprops arguments, which
is similar to the functions for Moreau-Broto/Moran/Geary autocorrelation descriptors. For
minor differences, see ?extrPAAC. Users could specify the lambda parameter and the weighting
factor with arguments lambda and w.

Note: In the work of Kuo-Chen Chou, the definition for “normalized occurrence frequency”
was not given. In this work, we define it as the occurrence frequency of amino acid in the
sequence normalized to 100% and hence our calculated values are not the same as values by
them.

4.9. Profile-based Descriptors

The profile-based descriptors for protein sequences are available in the BioMedR package. The
feature vectors of profile-based methods were based on the PSSM by running PSI-BLAST,
and often show good performance. See Ye et al. (2011) and Rangwala and Karypis (2005) for
details. The functions extrProtPSSM(), extrProtPSSMAcc() and extrProtPSSMFeature()

are used to generate these descriptors. Users need to install the NCBI-BLAST+ software
package first to make the functions fully functional.

4.10. Descriptors for Proteochemometric Modeling

Proteochemometric (PCM) modeling utilizes statistical modeling techniques to model ligand-
target interaction space. The below descriptors implemented in BioMedR are extensively
used in Proteochemometric modeling.

• Scales-based descriptors derived by Principal Components Analysis

– Scales-based descriptors derived by Amino Acid Properties from AAindex (Protein
Fingerprint)

27

BioMedR Manual

– Scales-based descriptors derived by 20+ classes of 2D and 3D molecular descriptors
(Topological, WHIM, VHSE, etc.)

• Scales-based descriptors derived by Factor Analysis

• Scales-based descriptors derived by Multidimensional Scaling

• BLOSUM and PAM matrix-derived descriptors

Note that each of the scales-based descriptor functions are freely to combine with the more
than 20 classes of 2D and 3D molecular descriptors to construct highly customized scales-
based descriptors. Of course, these functions are designed to be flexible enough that users
could provide totally self-defined property matrices to construct scales-based descriptors.

For example, to compute the “topological scales” derived by PCA (using the first 5 principal
components), one could use extrProtDescScales():

x = readFASTA(system.file('protseq/P00750.fasta', package = 'BioMedR'))[[1]]
descscales = extrPCMDescScales(x, propmat = 'AATopo',

index = c(37:41, 43:47),

pc = 5, lag = 7, silent = FALSE)

Summary of the first 5 principal components:

PC1 PC2 PC3 PC4 PC5

Standard deviation 2.581537 1.754133 0.4621854 0.1918666 0.08972087

Proportion of Variance 0.666430 0.307700 0.0213600 0.0036800 0.00080000

Cumulative Proportion 0.666430 0.974130 0.9954900 0.9991700 0.99998000

the argument propmat involkes the AATopo dataset shipped with BioMedR package, and the
argument index selects the 37 to 41 and the 43 to 47 columns (molecular descriptors) in
the AATopo dataset to use, the parameter lag was set for the Auto Cross Covariance (ACC)
for generating scales-based descriptors of the same length. At last, we printed the summary
of the first 5 principal components (standard deviation, proportion of variance, cumulative
proportion of variance).

The result is a length 175 named vector, which is consistent with the descriptors before:

length(descscales)

[1] 175

head(descscales, 15)

scl1.lag1 scl2.lag1 scl3.lag1 scl4.lag1 scl5.lag1

-2.645644e-01 -1.717847e-02 1.975438e-02 -7.930659e-05 -3.710597e-05

scl1.lag2 scl2.lag2 scl3.lag2 scl4.lag2 scl5.lag2

3.548612e-01 1.343712e-01 5.699395e-03 -5.489472e-04 -6.364577e-05

scl1.lag3 scl2.lag3 scl3.lag3 scl4.lag3 scl5.lag3

2.011431e-02 -9.211136e-02 -1.461755e-03 6.747801e-04 2.386782e-04

For another example, to compute the descriptors derived by BLOSUM62 matrix and use the
first 5 scales, one could use:

28

BioMedR Manual

x = readFASTA(system.file('protseq/P00750.fasta', package = 'BioMedR'))[[1]]
blosum = extrPCMBLOSUM(x, submat = 'AABLOSUM62',

k = 5, lag = 7, scale = TRUE, silent = FALSE)

Relative importance of all the possible 20 scales:

[1] 1.204960e+01 7.982007e+00 6.254364e+00 4.533706e+00 4.326286e+00

[6] 3.850579e+00 3.752197e+00 3.538207e+00 3.139155e+00 2.546405e+00

[11] 2.373286e+00 1.666259e+00 1.553126e+00 1.263685e+00 1.024699e+00

[16] 9.630187e-01 9.225759e-01 7.221636e-01 1.020085e-01 -4.714220e-16

The result is a length 175 named vector:

length(blosum)

[1] 175

head(blosum, 15)

scl1.lag1 scl2.lag1 scl3.lag1 scl4.lag1 scl5.lag1

0.0042370555 -0.0021502057 0.0005993291 0.0006456375 0.0014849592

scl1.lag2 scl2.lag2 scl3.lag2 scl4.lag2 scl5.lag2

-0.0014919096 0.0032873726 0.0011734162 -0.0021758536 -0.0018127568

scl1.lag3 scl2.lag3 scl3.lag3 scl4.lag3 scl5.lag3

-0.0029413528 0.0001494193 0.0003298806 -0.0017877430 -0.0051044133

Dealing with gaps. In proteochemometrics, (sequence alignment) gaps can be very useful,
since a gap in a certain position contains information. The BioMedR package has built-in
support for such gaps. We deal with the gaps by using a dummy descriptor to code for the
21st type of amino acid. The function extrPCMScalesGap() and extrPCMPropscaleGap()

could be used to deal with such gaps. See ?extrPCMScalesGap and ?extrPCMPropscaleGap

for details.

4.11. Summary

The summary of the protein descriptors in the BioMedR package is listed in table 10.

The summary of the scales-based PCM descriptors in the BioMedR package is listed in table
11.

The summary of the amino acid descriptor sets used by scales-based descriptors provided in
the BioMedR package is listed in table 11. Note that the non-informative descriptors (like the
descriptors have only one value across all the 20 amino acids) in these datasets have already
been filtered out.

1The number depends on the choice of the number of properties of amino acids and the choice of the
maximum values of the lag. The default is use 8 types of properties and lag = 30.

2The number depends on the maximum value of lag. By default lag = 30. And two distance matrices were
used, so the descriptor dimension is 30 × 2 = 60 and (20 + 30) × 2 = 100.

3The number depends on the choice of the number of the set of amino acid properties and the choice of the
λ value. The default is use 3 types of properties proposed by Kuo-Chen Chou and λ = 30.

4The number depends on the choice of the λ vlaue. The default is that λ = 30.

29

BioMedR Manual

Table 10: List of commonly used descriptors in BioMedR

Descriptor Group Descriptor Name Descriptor Dimension Function Name

Amino Acid Composition Amino Acid Composition 20 extrProtAAC()

Dipeptide Composition 400 extrProtDC()

Tripeptide Composition 8000 extrProtTC()

Autocorrelation Normalized Moreau-Broto Auto-
correlation

2401 extrProtMoreauBroto()

Moran Autocorrelation 2401 extrProtMoran()

Geary Autocorrelation 2401 extrProtGeary()

CTD Composition 21 extrProtCTDC(),
extrProtCTDCClass()

Transition 21 extrProtCTDT(),
extrProtCTDTClass()

Distribution 105 extrProtCTDD(),
extrProtCTDDClass()

Conjoint Triad Conjoint Triad 343 extrProtCTriad(),
extrProtCTriadClass()

Quasi-Sequence-Order Sequence-Order-Coupling Number 602 extrProtSOCN()

Quasi-Sequence-Order Descriptors 1002 extrProtQSO()

Pseudo-Amino Acid Composition Pseudo-Amino Acid Composition 503 extrProtPAAC()

Amphiphilic Pseudo-Amino Acid
Composition

804 extrProtAPAAC()

Table 11: List of PCM descriptors in BioMedR

Derived by Descriptor Class Function Name

Principal Components Analysis Scales-based descriptors derived by Principal
Components Analysis

extrPCMScales(),
extrPCMScalesGap()

Scales-based descriptors derived by amino acid
properties from AAindex (a.k.a. Protein Finger-
print)

extrPCMPropScales(),
extrProtFPGap()

Scales-based descriptors derived by 2D and
3D molecular descriptors (Topological, WHIM,
VHSE, etc.)

extrPCMDescScales()

Factor Analysis Scales-based descriptors derived by Factor Analy-
sis

extrPCMFAScales()

Multidimensional Scaling Scales-based descriptors derived by Multidimen-
sional Scaling

extrPCMMDSScales()

Substitution Matrix BLOSUM and PAM matrix-derived descriptors extrPCMBLOSUM()

Auto cross covariance (ACC) for generating scales-
based descriptors of the same length

acc()

30

BioMedR Manual

Table 12: List of the pre-calculated descriptor sets of the 20 amino acids in BioMedR

Dataset Name Descriptor Set Name Dimensionality Calculated by

AA2DACOR 2D Autocorrelations Descriptors 92 Dragon
AA3DMoRSE 3D-MoRSE Descriptors 160 Dragon
AAACF Atom-Centred Fragments Descriptors 6 Dragon
AABurden Burden Eigenvalues Descriptors 62 Dragon
AAConn Connectivity Indices Descriptors 33 Dragon
AAConst Constitutional Descriptors 23 Dragon
AAEdgeAdj Edge Adjacency Indices Descriptors 97 Dragon
AAEigIdx Eigenvalue-Based Indices Descriptors 44 Dragon
AAFGC Functional Group Counts Descriptors 5 Dragon
AAGeom Geometrical Descriptors 41 Dragon
AAGETAWAY GETAWAY Descriptors 194 Dragon
AAInfo Information Indices Descriptors 47 Dragon
AAMolProp Molecular Properties Descriptors 12 Dragon
AARandic Randic Molecular Profiles Descriptors 41 Dragon
AARDF RDF Descriptors 82 Dragon
AATopo Topological Descriptors 78 Dragon
AATopoChg Topological Charge Indices Descriptors 15 Dragon
AAWalk Walk and Path Counts Descriptors 40 Dragon
AAWHIM WHIM Descriptors 99 Dragon
AACPSA CPSA Descriptors 41 Accelrys Discovery Studio
AADescAll All the 2D Descriptors Calculated by Dragon 1171 Dragon
AAMOE2D All the 2D Descriptors Calculated by MOE 148 MOE
AAMOE3D All the 3D Descriptors Calculated by MOE 143 MOE

5. Calculating DNA/RNA Commonly Used Descriptors

Disclaimer. Users of the BioMedR package need to intelligently evaluate the underlying
details of the descriptors provided, instead of using BioMedR with their data blindly, especially
for the descriptor types with more flexibility. It would be wise for the users to use some
negative and positive control comparisons where relevant to help guide interpretation of the
results.

A DNA or deoxyribonucleic acid sequence with N deoxyribonucleic acid could be generally
represented as {R1, R2, . . . , Rn }, where Ri represents the residue at the i-th position in the
sequence. The labels i and j are used to index deoxyribonucleic acid position in a sequence,
and r, s, t are used to represent the Deoxyribonucleic acid type .

A DNA sequence could be divided equally into segments and the methods, described as follows
for the global sequence, could be applied to each segment.

5.1. Kmer

Basic kmer is the simplest approach to represent the DNAs, in which the DNA sequences are
represented as the occurrence frequencies of k neighboring nucleic acids. This approach has
been successfully applied to human gene regulatory sequence prediction (Noble et al. 2005),
enhancer identification (Lee et al. 2011), etc.

f(r, s) =
Nrs

N − 1
r, s = 1, 2, . . . , 16.

31

BioMedR Manual

where Nrs is the number of dipeptide represented by deoxyribonucleic acid r and type s. here
we use kmer() to compute the descriptors:

require(BioMedR)

x = "GGAGTATGAGGCCGAATCTCATCCTCTAGTCCCAAGCCTCTCCACTACCAGGGCT"

extrDNAkmer(x)

AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT

2 2 5 3 4 7 1 7 3 3 4 2 3 7 1 0

if reverse is TRUE, we can use extrDNAkmer() to compute the reverse compliment kmer.The
reverse compliment kmer is a variant of the basic kmer, in which the kmers are not expected
to be strand-specific, so reverse complements are collapsed into a single feature. For example,
if k=2, there are totally 16 basic kmers (‘AA’, ‘AC’, ‘AG’, ‘AT’, ‘CA’, ‘CC’, ‘CG’, ‘CT’, ‘GA’,
‘GC’, ‘GG’, ‘GT’, ‘TA’, ‘TC’, ‘TG’, ‘TT’), but by removing the reverse compliment kmers,
there are only 10 distinct kmers in the reverse compliment kmer approach (‘AA’, ‘AC’, ‘AG’,
‘AT’, ‘CA’, ‘CC’, ‘CG’, ‘GA’, ‘GC’, ‘TA’). For more information of this approach, please refer
to (Noble et al. 2005) (Gupta et al. 2008).

extrDNAkmer(x, k = 2, reverse = TRUE)

AA AC AG AT CA CC CG GA GC TA

2 4 12 3 5 11 1 10 3 3

5.2. Increment of diversity

The increment of diversity has been successfully applied in the prediction of exonintron splice
sites for several model genomes Zhang and Luo (2003), transcription start site prediction,
and studying the organization of nucleosomes around splice sites Lu and Luo (2008). In this
method, the sequence features are converted into the increment of diversity (ID), defined by
the relation of sequence X with standard source S:

ID = Diversity(X + S)−Diversity(S)−Diversity(X)

Given a sequence X with r feature variables (ID1 to IDr), we obtain an r-dimensional
feature vector R = (ID1, ID2, . . . , IDr) . The feature vector R is designed by the following
considerations. The kmers are responsible for the discrimination between positive samples
and negative samples, and therefore they construct the diversity sources. Based on this, 2
kmer-based increments of diversities ID1 (ID2) between sequence X and the standard source
in positive (negative) training set can be easily introduced as the feature vectors. 9 For more
information of this approach, please refer to (Chen et al. 2010) and (Liu et al. 2012).

pos = readFASTA(system.file('dnaseq/hs.fasta', package = 'BioMedR'))
neg = readFASTA(system.file('dnaseq/non-hs.fasta', package = 'BioMedR'))
extrDNAIncDiv(k = 6, x, pos, neg)

32

BioMedR Manual

[[1]]

[1] 1.253961 3.582857 -175.436114 -175.249244 -261.305425

[6] -261.542600 -290.422865 -290.422865 -287.293692 -287.293692

[11] -282.192809 -282.192809

5.3. Dinucleotide-based auto covariance

Suppose a DNA sequence D with L nucleic acid residues; i.e.

D = R1R2R3R4R5R6R7 . . . RL

where R1 represents the nucleic acid residue at the sequence position 1, R2 the nucleic acid
residue at position 2 and so forth. The DAC measures the correlation of the same physico-
chemical index between two dinucleotide separated by a distance of lag along the sequence,
which can be calculated as:

DAC(u, lag) =

L−lag−1∑
i=1

(Pu(RiRi+1) − P̄u)(Pu(Ri+lagRi+lag+1) − P̄u)

L− lag − 1

where u is a physicochemical index, L is the length of the DNA sequence, Pu(RiRi+1) means
the numerical value of the physicochemical index u for the dinucleotide RiRi+1 at position
i, P̄u sequence: is the average value for physicochemical index u along the whole sequence:

P̄u =

L−1∑
j=1

Pu(RjRj+1)

L− 1

In such a way, the length of DAC feature vector is N ∗ LAG, where N is the number of
physicochemical indices and LAG is the maximum of lag (lag = 1, 2, . . ., LAG). This DAC

approach is similar as the approach used for DNA fold recognition (Dong et al. 2009).

extrDNADAC(x)

Twist.lag1 Twist.lag2 Tilt.lag1 Tilt.lag2

-0.223 -0.087 -0.123 -0.043

phyche_index = data.frame(cust1 = c(2.26, 3.03, 2.03, 3.83, 1.78, 1.65, 2.00,

2.03, 1.93, 2.61, 1.65, 3.03, 1.20, 1.93, 1.78, 2.26), cust2 = c(7.65, 8.93,

7.08, 9.07, 6.38, 8.04, 6.23, 7.08, 8.56, 9.53, 8.04, 8.93, 6.23, 8.56, 6.38,

7.65))

customprops = t(phyche_index)

colnames(customprops) = make_kmer_index(2, alphabet = "ACGT")

extrDNADAC(x, normaliztion = TRUE, customprops = customprops)

Twist.lag1 Twist.lag2 Tilt.lag1 Tilt.lag2 cust1.lag1 cust1.lag2

-0.223 -0.087 -0.123 -0.043 -0.223 -0.061

cust2.lag1 cust2.lag2

-0.247 -0.019

33

BioMedR Manual

5.4. Dinucleotide-based cross covariance

Given a DNA sequence D, the DCC approach measures the correlation of two different physic-
ochemical indices between two dinucleotides separated by lag nucleic acids along the sequence,
which can be calculated by:

DCC(u1, u2, lag) =

L−lag−1∑
i=1

(Pu1(RiRi+1) − P̄u1)(Pu2(Ri+lagRi+lag+1) − P̄u2)

L− lag − 1

where u1, u2 are two different physicochemical indices, L is the length of the DNA sequence,
Pu1(RiRi+1)(Pu2(RiRi+1)) is the numerical value of the physicochemical index u1(u2)
for the dinucleotide at position i, P̄u1(P̄u2) is the average value for physicochemical index
value u1, u2 along the whole sequence:

In such a way, the length of the DCC feature vector is N∗(N-1)∗LAG, where N is the number
of physicochemical indices and LAG is the maximum of lag (lag=1, 2, . . ., LAG).

This DCC approach is similar as the approach used for DNA fold recognition (Dong et al.
2009).

extrDNADCC(x)

Twist.Tilt.lag.1 Twist.Tilt.lag.2 Tilt.Twist.lag.1 Tilt.Twist.lag.2

-0.134 -0.107 -0.305 -0.036

phyche_index = data.frame(cust1 = c(2.26, 3.03, 2.03, 3.83, 1.78, 1.65, 2.00,

2.03, 1.93, 2.61, 1.65, 3.03, 1.20, 1.93, 1.78, 2.26), cust2 = c(7.65, 8.93,

7.08, 9.07, 6.38, 8.04, 6.23, 7.08, 8.56, 9.53, 8.04, 8.93, 6.23, 8.56, 6.38,

7.65))

customprops = t(phyche_index)

colnames(customprops) = make_kmer_index(2, alphabet = "ACGT")

extrDNADCC(x, normaliztion = TRUE, customprops = customprops)

Twist.Tilt.lag.1 Twist.Tilt.lag.2 Tilt.Twist.lag.1 Tilt.Twist.lag.2

-0.134 -0.107 -0.305 -0.036

Twist.cust1.lag.1 Twist.cust1.lag.2 cust1.Twist.lag.1 cust1.Twist.lag.2

-0.289 -0.035 -0.140 -0.079

Twist.cust2.lag.1 Twist.cust2.lag.2 cust2.Twist.lag.1 cust2.Twist.lag.2

-0.081 -0.007 -0.177 -0.086

Tilt.cust1.lag.1 Tilt.cust1.lag.2 cust1.Tilt.lag.1 cust1.Tilt.lag.2

-0.354 0.035 -0.035 -0.056

Tilt.cust2.lag.1 Tilt.cust2.lag.2 cust2.Tilt.lag.1 cust2.Tilt.lag.2

-0.206 0.075 -0.003 -0.117

cust1.cust2.lag.1 cust1.cust2.lag.2 cust2.cust1.lag.1 cust2.cust1.lag.2

-0.045 -0.059 -0.338 0.055

5.5. Dinucleotide-based auto-cross covariance

34

BioMedR Manual

DACC is a combination of DAC and DCC. Therefore, the length of the DACC feature vector
is N∗N∗LAG, where N is the number of physicochemical indices and LAG is the maximum
of lag (lag = 1, 2, . . ., LAG).

extrDNADACC(x)

Twist.lag1 Twist.lag2 Tilt.lag1 Tilt.lag2

-0.223 -0.087 -0.123 -0.043

Twist.Tilt.lag.1 Twist.Tilt.lag.2 Tilt.Twist.lag.1 Tilt.Twist.lag.2

-0.134 -0.107 -0.305 -0.036

phyche_index = data.frame(cust1 = c(2.26, 3.03, 2.03, 3.83, 1.78, 1.65, 2.00,

2.03, 1.93, 2.61, 1.65, 3.03, 1.20, 1.93, 1.78, 2.26), cust2 = c(7.65, 8.93,

7.08, 9.07, 6.38, 8.04, 6.23, 7.08, 8.56, 9.53, 8.04, 8.93, 6.23, 8.56, 6.38,

7.65))

customprops = t(phyche_index)

colnames(customprops) = make_kmer_index(2, alphabet = "ACGT")

extrDNADACC(x, normaliztion = TRUE, customprops = customprops)

Twist.lag1 Twist.lag2 Tilt.lag1 Tilt.lag2

-0.223 -0.087 -0.123 -0.043

cust1.lag1 cust1.lag2 cust2.lag1 cust2.lag2

-0.223 -0.061 -0.247 -0.019

Twist.Tilt.lag.1 Twist.Tilt.lag.2 Tilt.Twist.lag.1 Tilt.Twist.lag.2

-0.134 -0.107 -0.305 -0.036

Twist.cust1.lag.1 Twist.cust1.lag.2 cust1.Twist.lag.1 cust1.Twist.lag.2

-0.289 -0.035 -0.140 -0.079

Twist.cust2.lag.1 Twist.cust2.lag.2 cust2.Twist.lag.1 cust2.Twist.lag.2

-0.081 -0.007 -0.177 -0.086

Tilt.cust1.lag.1 Tilt.cust1.lag.2 cust1.Tilt.lag.1 cust1.Tilt.lag.2

-0.354 0.035 -0.035 -0.056

Tilt.cust2.lag.1 Tilt.cust2.lag.2 cust2.Tilt.lag.1 cust2.Tilt.lag.2

-0.206 0.075 -0.003 -0.117

cust1.cust2.lag.1 cust1.cust2.lag.2 cust2.cust1.lag.1 cust2.cust1.lag.2

-0.045 -0.059 -0.338 0.055

5.6. Trinucleotide-based auto covariance

Given a DNA sequence D, the TAC approach measures the correlation of the same physico-
chemical index between two trinucleotides separated by lag nucleic acids along the sequence,
which can be calculated as:

TAC(u, lag) =

L−lag−2∑
i=1

(Pu(RiRi+1Ri+2) − P̄u)(Pu(Ri+lagRi+lag+1Ri+lag+2) − P̄u)

L− lag − 2

35

BioMedR Manual

where u is a physicochemical index, L is the length of the DNA sequence, Pu(RiRi+1Ri+2)
represents the numerical value of the physicochemical index u for the trinucleotideRiRi+1Ri+2

at position i, P̄u is the average value for physicochemical index u value along the whole se-
quence:

P̄u =

L−2∑
j=1

Pu(RjRj+1Rj+2)

L− 2

In such a way, the length of TAC feature vector is N∗LAG, where N is the number of physic-
ochemical indices and LAG is the maximum of lag (lag=1, 2, . . ., LAG).

extrDNATAC(x)

Dnase I.lag1 Dnase I.lag2 Nucleosome.lag1 Nucleosome.lag2

-0.033 -0.023 0.276 -0.015

phyche_index = data.frame(cust = c(7.176, 6.272, 4.736, 7.237, 3.810, 4.156,

4.156, 6.033, 3.410, 3.524, 4.445, 6.033, 1.613, 5.087, 2.169, 7.237, 3.581,

3.239, 1.668, 2.169, 6.813, 3.868, 5.440, 4.445, 3.810, 4.678, 5.440, 4.156,

2.673, 3.353, 1.668, 4.736, 4.214, 3.925, 3.353, 5.087, 2.842, 2.448, 4.678,

3.524, 3.581, 2.448, 3.868, 4.156, 3.467, 3.925, 3.239, 6.272, 2.955, 3.467,

2.673, 1.613, 1.447, 3.581, 3.810, 3.410, 1.447, 2.842, 6.813, 3.810, 2.955,

4.214, 3.581, 7.176))

customprops = t(phyche_index)

colnames(customprops) = make_kmer_index(3, alphabet = "ACGT")

extrDNATAC(x, normaliztion = TRUE, customprops = customprops)

Dnase I.lag1 Dnase I.lag2 Nucleosome.lag1 Nucleosome.lag2

-0.033 -0.023 0.271 -0.015

cust.lag1 cust.lag2

-0.003 -0.004

5.7. Trinucleotide-based cross covariance

Given a DNA sequenceD, the TCC approach measures the correlation of two different physic-
ochemical indices between two trinucleotides separated by lag nucleic acids along the sequence,
which can be calculated by:

TCC(u1, u2, lag) =

L−lag−2∑
i=1

(Pu1(RiRi+1Ri+2) − P̄u1)(Pu2(Ri+lagRi+lag+1Ri+lag+2) − P̄u2)

L− lag − 2

where u1, u2 are two physicochemical indices, L is the length of the DNA sequence,Pu1(RiRi+1Ri+2)
(Pu2(RiRi+1Ri+2)) represents the numerical value of the physicochemical index u1(u2) for
the trinucleotide RiRi+1Ri+2 at position i,

36

BioMedR Manual

P̄u =

L−2∑
j=1

Pu(RjRj+1Rj+2)

L− 2

In such a way, the length of TCC feature vector is N∗(N-1)∗LAG, where N is the number of
physicochemical index and LAG is the maximum of lag (lag = 1, 2, . . ., LAG).

extrDNATCC(x)

Dnase I.Nucleosome.lag.1 Dnase I.Nucleosome.lag.2 Nucleosome.Dnase I.lag.1

-0.186 -0.043 -0.079

Nucleosome.Dnase I.lag.2

-0.082

phyche_index = data.frame(cust = c(7.176, 6.272, 4.736, 7.237, 3.810, 4.156,

4.156, 6.033, 3.410, 3.524, 4.445, 6.033, 1.613, 5.087, 2.169, 7.237, 3.581,

3.239, 1.668, 2.169, 6.813, 3.868, 5.440, 4.445, 3.810, 4.678, 5.440, 4.156,

2.673, 3.353, 1.668, 4.736, 4.214, 3.925, 3.353, 5.087, 2.842, 2.448, 4.678,

3.524, 3.581, 2.448, 3.868, 4.156, 3.467, 3.925, 3.239, 6.272, 2.955, 3.467,

2.673, 1.613, 1.447, 3.581, 3.810, 3.410, 1.447, 2.842, 6.813, 3.810, 2.955,

4.214, 3.581, 7.176))

customprops = t(phyche_index)

colnames(customprops) = make_kmer_index(3, alphabet = "ACGT")

extrDNATCC(x, normaliztion = TRUE, customprops = customprops)

Dnase I.Nucleosome.lag.1 Dnase I.Nucleosome.lag.2 Nucleosome.Dnase I.lag.1

-0.183 -0.043 -0.078

Nucleosome.Dnase I.lag.2 Dnase I.cust.lag.1 Dnase I.cust.lag.2

-0.081 -0.004 0.018

cust.Dnase I.lag.1 cust.Dnase I.lag.2 Nucleosome.cust.lag.1

-0.062 -0.117 -0.061

Nucleosome.cust.lag.2 cust.Nucleosome.lag.1 cust.Nucleosome.lag.2

0.055 -0.123 -0.102

5.8. Trinucleotide-based auto-cross covariance

TACC is a combination of TAC and TCC. Therefore, the length of the TACC feature vector
is N∗N∗LAG, where N is the number of physicochemical indices and LAG is the maximum
of lag (lag = 1, 2, . . ., LAG).

extrDNATACC(x)

Dnase I.lag1 Dnase I.lag2 Nucleosome.lag1

-0.033 -0.023 0.276

Nucleosome.lag2 Dnase I.Nucleosome.lag.1 Dnase I.Nucleosome.lag.2

-0.015 -0.186 -0.043

Nucleosome.Dnase I.lag.1 Nucleosome.Dnase I.lag.2

-0.079 -0.082

37

BioMedR Manual

phyche_index = data.frame(cust = c(7.176, 6.272, 4.736, 7.237, 3.810, 4.156,

4.156, 6.033, 3.410, 3.524, 4.445, 6.033, 1.613, 5.087, 2.169, 7.237, 3.581,

3.239, 1.668, 2.169, 6.813, 3.868, 5.440, 4.445, 3.810, 4.678, 5.440, 4.156,

2.673, 3.353, 1.668, 4.736, 4.214, 3.925, 3.353, 5.087, 2.842, 2.448, 4.678,

3.524, 3.581, 2.448, 3.868, 4.156, 3.467, 3.925, 3.239, 6.272, 2.955, 3.467,

2.673, 1.613, 1.447, 3.581, 3.810, 3.410, 1.447, 2.842, 6.813, 3.810, 2.955,

4.214, 3.581, 7.176))

customprops = t(phyche_index)

colnames(customprops) = make_kmer_index(3, alphabet = "ACGT")

extrDNATACC(x, normaliztion = TRUE, customprops = customprops)

Dnase I.lag1 Dnase I.lag2 Nucleosome.lag1

-0.033 -0.023 0.271

Nucleosome.lag2 cust.lag1 cust.lag2

-0.015 -0.003 -0.004

Dnase I.Nucleosome.lag.1 Dnase I.Nucleosome.lag.2 Nucleosome.Dnase I.lag.1

-0.183 -0.043 -0.078

Nucleosome.Dnase I.lag.2 Dnase I.cust.lag.1 Dnase I.cust.lag.2

-0.081 -0.004 0.018

cust.Dnase I.lag.1 cust.Dnase I.lag.2 Nucleosome.cust.lag.1

-0.062 -0.117 -0.061

Nucleosome.cust.lag.2 cust.Nucleosome.lag.1 cust.Nucleosome.lag.2

0.055 -0.123 -0.102

5.9. Pseudo dinucleotide composition

PseDNC is an approach incorporating the contiguous local sequence-order information and
the global sequence-order information into the feature vector of the DNA sequence.

Given a DNA sequence D, the feature vector of D is defined:

D = [d1d2 . . . d16d16+1 . . . d16+λ]T

where

dk =

fk∑16

i=1 fi + w
∑λ
j=1 θj

1 ≤ k ≤ 16

wθk−16∑16
i=1 fi + w

∑λ
j=1 θj

17 ≤ k ≤ 16 + λ

where fk (k = 1, 2, . . ., 16) is the normalized occurrence frequency of dinucleotide in the
DNA sequence; the parameter λ is an integer, representing the highest counted rank(or tier)
of the correlation along a DNA sequence; w is the weight factor ranged from 0 to 1; θj (j =
1, 2, . . ., λ) is called the j-tier correlation factor that reflects the sequence order correlation
between all the most contiguous dinucleotide along a DNA sequence, which is defined:

38

BioMedR Manual

θ1 =
1

L− 2

L−2∑
i=1

Θ(RiRi+1, Ri+1Ri+2)

θ2 =
1

L− 3

L−3∑
i=1

Θ(RiRi+1, Ri+2Ri+3)

λ < L

θ3 =
1

L− 4

L−4∑
i=1

Θ(RiRi+1, Ri+3Ri+4)

. . .

θ1 =
1

L− 1 − λ

L−1−λ∑
i=1

Θ(RiRi+1, Ri+λRi+λ+1)

where the correlation function is given by

Θ(RiRi+1, RjRj+1) =
1

u

u∑
u=1

[Pu(RiRi+1) − Pu(RjRj+1)]2

where µ is the number of physicochemical indices, in this study, 6 indices reflecting the local
DNA structural properties were employed to generate the PseDNCfeature vector;Pu(RiRi+1)
represents the numerical value of the u-th (u = 1, 2, . . ., µ) physicochemical index of the
dinucleotide RiRi+1 at position i and Pu(RjRj+1) represents the corresponding value of
the dinucleotide RjRj+1 at position j. For more information about this approach, please
refer to (Chen et al. 2013).

extrDNAPseDNC(x)

Xc1.AA Xc1.AC Xc1.AG Xc1.AT Xc1.CA

0.030 0.030 0.076 0.046 0.061

Xc1.CC Xc1.CG Xc1.CT Xc1.GA Xc1.GC

0.106 0.015 0.106 0.046 0.046

Xc1.GG Xc1.GT Xc1.TA Xc1.TC Xc1.TG

0.061 0.030 0.046 0.106 0.015

Xc1.TT Xc2.lambda.1 Xc2.lambda.2 Xc2.lambda.3

0.000 0.067 0.059 0.053

phyche_index = data.frame(cust1 = c(1.019, -0.918, 0.488, 0.567, 0.567,

-0.070, -0.579, 0.488, - 0.654, -2.455,-0.070, -0.918, 1.603, -0.654,

0.567, 1.019))

customprops = t(phyche_index)

colnames(customprops) = make_kmer_index(2, alphabet = "ACGT")

extrDNAPseDNC(x, normalize = TRUE, customprops = customprops, lambda = 2,

w = 0.1)

Xc1.AA Xc1.AC Xc1.AG Xc1.AT Xc1.CA

0.027 0.027 0.067 0.040 0.054

39

BioMedR Manual

Xc1.CC Xc1.CG Xc1.CT Xc1.GA Xc1.GC

0.094 0.013 0.094 0.040 0.040

Xc1.GG Xc1.GT Xc1.TA Xc1.TC Xc1.TG

0.054 0.027 0.040 0.094 0.013

Xc1.TT Xc2.lambda.1 Xc2.lambda.2

0.000 0.143 0.128

5.10. Pseudo k-tupler composition

PseKNC improved the PseDNC approach by incorporating k-tuple nucleotide composition.
Given a DNA sequence D, the feature vector of D is defined:

D = [d1d2 . . . d4kd4k+1 . . . d4k+λ]T

du =

fu∑4k

i=1 fi + w
∑λ
j=1 θj

1 ≤ u ≤ 4k

wθu−4k∑4k

i=1 fi + w
∑λ
j=1 θj

4k ≤ u ≤ 4k + λ

where λ is the number of the total counted ranks (or tiers) of the correlations along a DNA
sequence; fu (u = 1, 2, . . ., 4k) is the frequency of oligonucleotide that is normalized to∑4k

i=1 fi = 1; w is a weight factor; θj is given by:

θj =
1

L− j − 1

L−j−1∑
i=1

Θ(RiRi1, Ri+jRi+j+1) j = 1, 2, . . . , λ;λ < L

which represents the j-tier structural correlation factor between all the jth most contiguous
dinucleotides. The correlation function Θ(RiRi1, Ri+jRi+j+1) is defined by

Θ(RiRi+1, Ri+jRi+j+1) =
1

u

u∑
v=1

[Pv(RiRi+1) − Pv(Ri+jRi+j+1)]2

where µ is the number of physicochemical indices, in this study, 6 indices reflecting the
local DNA structural properties were employed to generate the PseKNC feature vector;
Pv(RiRi+1) represents the numerical value of the v-th (u = 1, 2, . . . , µ) physicochemi-
cal indices for the dinucleotide RiRi+1 at position i and Pv(Ri+jRi+j+1) represents the
corresponding value for the dinucleotide Ri+jRi+j+1 atposition i+ j. For more information
about this approach, please refer to (Guo et al. 2014).

pseknc = extrDNAPseKNC(x)

head(pseknc)

Xc1.AAA Xc1.AAC Xc1.AAG Xc1.AAT Xc1.ACA Xc1.ACC

0.00 0.00 0.01 0.01 0.00 0.01

40

BioMedR Manual

phyche_index = data.frame(cust1 = c(1.019, -0.918, 0.488, 0.567, 0.567,

-0.070, -0.579, 0.488, - 0.654, -2.455,-0.070, -0.918, 1.603, -0.654,

0.567, 1.019))

customprops = t(phyche_index)

colnames(customprops) = make_kmer_index(2, alphabet = "ACGT")

extrDNAPseKNC(x, normalize = TRUE, customprops = customprops, lambda = 1,

w = 0.05, k = 2)

Xc1.AA Xc1.AC Xc1.AG Xc1.AT Xc1.CA

0.034 0.034 0.085 0.051 0.068

Xc1.CC Xc1.CG Xc1.CT Xc1.GA Xc1.GC

0.119 0.017 0.119 0.051 0.051

Xc1.GG Xc1.GT Xc1.TA Xc1.TC Xc1.TG

0.068 0.034 0.051 0.119 0.017

Xc1.TT Xc2.lambda.1

0.000 0.085

5.11. Summary

The summary of the DNA/RNA descriptors in the BioMedR package is listed in table 13.

Table 13: List of commonly used descriptors in BioMedR

Descriptor Group Descriptor Name Descriptor Dimension Function Name

Nucleic acid composition Basic kmer 161 extrDNAkmer()

Reverse compliment kmer 101 extrDNAkmer()

Increment of diversity 122 extrDNAIncDiv()

Autocorrelation Dinucleotide-based auto covariance 43 extrDNADAC()

Dinucleotide-based cross covariance 43 extrDNADCC()

Dinucleotide-based auto-cross covariance 83 extrDNADACC()

Trinucleotide-based auto covariance 43 extrDNATAC()

Trinucleotide-based cross covariance 43 extrDNATCC()

Trinucleotide-based auto-cross covari-
ance

83 extrDNATACC()

Pseudo nucleotide compo-
sition

Pseudo dinucleotide composition 194 extrDNAPseDNC()

Pseudo k-tupler nucleotide composition 655 extrDNAPseKNC()

The summary of the names of the 38 physicochemical indices for dinucleotides. in the
BioMedR package is listed in table 14.

The summary of the names of the 12 physicochemical indices for trinucleotides. in the
BioMedR package is listed in table 15.

The summary of the names of the 6 physicochemical indices for dinucleotides. in the BioMedR
package is listed in table 16.

1The number depends on the choice of the k value of kmer. The default is k = 2.
2The number depends on the choice of the k value of kmer. The default is k = 6.
3The number depends on the maximum value of lag. By default lag = 2. And the number of the

physicochemical indices, By default the length of index = 2.
4The number depends on the maximum value of lambda. By default lambda = 3.
5The number depends on the maximum value of lambda. By default lambda = 1.

41

BioMedR Manual

Table 14: The names of the 38 physicochemical indices for dinucleotides

Base stacking DNA induced deformability B-DNA twist
Propeller twist Propeller twist Duplex stability: (freeenergy)
DNA denaturation Bending stiffness DNA DNA twist
Aida BA transition Breslauer dG Breslauer dH
Electron interaction Hartman trans free energy Helix-Coil transition
Lisser BZ transition Polar interaction SantaLucia dG
SantaLucia dS Sarai flexibility Stability
Sugimoto dG Sugimoto dH Sugimoto dS
Duplex tability (disruptenergy) Stabilising energy of Z-DNA Breslauer dS
Ivanov BA transition SantaLucia dH Stacking energy
Watson-Crick interaction Dinucleotide GC Content Twist
Tilt Roll Shift
Slide Rose

Table 15: The names of the 12 physicochemical indices for trinucleotides.

Bendability (DNAse) Bendability (consensus) Trinucleotide GC Content
Consensus roll Consensus-Rigid Dnase I
MW-Daltons MW-kg Nucleosome
Nucleosome positioning Dnase I-Rigid Nucleosome-Rigid

Table 16: The names of the 6 physicochemical indices for dinucleotides.

Twist Tilt Roll
Shift Slide Rise

6. Generating Interaction Descriptors between Drug, Protein and DNA/RNA

For chemogenomics modeling, BioMedR calculates compound-protein interaction (CPI) de-
scriptors, compound-DNA descriptors (CDI), DNA-protein descriptors (DPI), DNA-DNA
descriptors (DDI), compound-compound descriptors (CCI) and protein-protein interaction
(PPI) descriptors.

6.1. Generating Drug-Target Interaction Descriptors

The prediction of novel interactions between drugs and target proteins is a key area in genomic
drug discovery.

A drug-target interaction network can be naturally modeled as a bipartite graph, where the
nodes are target proteins or drug molecules and edges (only drugs and proteins could be
connected by edges) represent drug-target interactions. They are constructed as follows:

1. Separate the pairs in the above positive samples into single drugs and proteins;

2. Re-couple these singles into pairs in a way that none of them occurs in the corresponding
positive dataset.

Ten generated negative sets were used in Cao et al. (2012a), here we only use one of them
for a demonstration. The drug ID and target ID is stored in GPCR.csv. The first column

42

BioMedR Manual

is KEGG protein ID, and the second column is KEGG drug ID. The first 635 rows is the
positive set, and the last 635 rows is the negative set.

require(BioMedR)

gpcr = read.table(system.file('vignettedata/GPCR.csv', package = 'BioMedR'),
header = FALSE, as.is = TRUE)

Get a glimpse of the data:

head(gpcr)

V1 V2

1 hsa:10161 D00528

2 hsa:10800 D00411

3 hsa:10800 D01828

4 hsa:10800 D05129

5 hsa:11255 D00234

6 hsa:11255 D00300

Next, we will download the target protein sequences (in FASTA format) and drug molecule
(in SMILES format) from the KEGG database, in parallel:

gpcr = read.table(system.file('vignettedata/GPCR.csv', package = 'BioMedR'),
header = FALSE, as.is = TRUE)

protid = unique(gpcr[, 1])

drugid = unique(gpcr[, 2])

protseq = BMgetProtSeqKEGG(protid, parallel = 5)

drugseq = BMgetDrugSmiKEGG(drugid, parallel = 5)

x0.prot = cbind(t(sapply(unlist(protseq), extrProtAPAAC)),

t(sapply(unlist(protseq), extrProtCTriad)))

x0.drug = cbind(extrDrugEstateComplete(readMolFromSmi(textConnection(drugseq))),

extrDrugMACCSComplete(readMolFromSmi(textConnection(drugseq))))

If the connection is slow or accidentally interrupts, just try more times until success.

Since the descriptors is only for the uniqued drug and target list, we need to generate the full
descriptor matrix for the training data:

x.prot = matrix(NA, nrow = nrow(gpcr), ncol = ncol(x0.prot))

x.drug = matrix(NA, nrow = nrow(gpcr), ncol = ncol(x0.drug))

for (i in 1:nrow(gpcr)) x.prot[i,] = x0.prot[which(gpcr[, 1][i] == protid),]

for (i in 1:nrow(gpcr)) x.drug[i,] = x0.drug[which(gpcr[, 2][i] == drugid),]

Generate drug-target interaction descriptors using getCPI().

43

BioMedR Manual

x = getCPI(x.prot, x.drug, type = 'combine')
head(x[, 1:5])

[,1] [,2] [,3] [,4] [,5]

[1,] 13.37680 11.59323 19.619312 7.134295 13.37680

[2,] 13.68312 10.03428 13.683115 9.122077 11.85870

[3,] 13.68312 10.03428 13.683115 9.122077 11.85870

[4,] 13.68312 10.03428 13.683115 9.122077 11.85870

[5,] 43.48494 25.22126 9.566686 7.827289 10.43638

[6,] 43.48494 25.22126 9.566686 7.827289 10.43638

The pairwise interaction is another useful type of representation in drug-target , drug-DNA/RNA,
DNA/RNA-protein, DNA/RNA-DNA/RNA, drug-drug and protein-protein interaction pre-
diction and related research. BioMedR also provides getPPI() to generate protein-protein
interaction descriptors. getPPI(), getDDI() and getCCI() provides three types of interac-
tions while getCPI(), getCDI() and getDPI() provides two types. The argument type is
used to control this:

• Compound-Protein Interaction (CPI) Descriptors

For compound descriptor vector d1×p11 and the protein descriptor vector d1×p22 , there
are two methods for construction of descriptor vector d for compound-protein interac-
tion:

1. 'combine' - combine the two feature matrix, d has p1 + p2 columns;

2. 'tensorprod' - column-by-column (pseudo)-tensor product type interactions, d
has p1 × p2 columns.

• Protein-Protein Interaction (PPI) Descriptors

For interaction protein A and protein B, let d1×p1 and d1×p2 be the descriptor vectors.
There are three methods to construct the protein-protein interaction descriptor d:

1. 'combine' - combine the two descriptor matrix, d has p+ p columns;

2. 'tensorprod' - column-by-column (pseudo)-tensor product type interactions, d
has p× p columns;

3. 'entrywise' - entrywise product and entrywise sum of the two matrices, then
combine them, d has p+ p columns.

6.2. Summary

The summary of the compound protein DNA/RNA interation descriptors in the BioMedR
package is listed in table 17.

7. Clustering

44

BioMedR Manual

Table 17: Compound protein DNA/RNA interation descriptors

Function name Function description

getPPI() Generating protein-protein interaction descriptors
getCCI() Generating compound-compound interaction descrip-

tors
getDDI() Generating DNA-DNA interaction descriptors
getCPI() Generating compound-protein interaction descriptors
getCDI() Generating compound-DNA interaction descriptors
getDPI() Generating DNA-protein interaction descriptors

Apart from supervised methods (classification and regression), unsupervised approaches, like
clustering, is also widely applied in the quantitative research of drugs.

In reality, there are usually too many chemical compounds available for identifying drug-like
molecules. Thus it would be attractive using clustering methods to aid the selection of a
representative subset of all available compounds. For a clustering approach that groups com-
pounds together by their structural similarity, applying the principle similar compounds have
similar properties means that we only need to test the representative compounds from each
individual cluster, rather than do the time-consuming complete set of experiments, and this
should be sufficient to understand the structure-activity relationships of the whole compound
set.

7.1. Binning Clustering

Compound libraries can be clustered into discrete similarity groups with the binning cluster-
ing function clusterCMP. The function accepts as input an atom pair (APset) or a fingerprint
(FPset) descriptor database as well as a similarity threshold. The binning clustering result
is returned in form of a data frame. Single linkage is used for cluster joining. The func-
tion calculates the required compound-to-compound distance information on the fly, while a
memory-intensive distance matrix is only created upon user request via the save.distances

argument (see below).

Because an optimum similarity threshold is often not known, the clusterCMP function can
calculate cluster results for multiple cutoffs in one step with almost the same speed as for a
single cutoff. This can be achieved by providing several cutoffs under the cutoff argument.
The clustering results for the different cutoffs will be stored in one data frame.

One may force the clusterCMP function to calculate and store the distance matrix by sup-
plying a file name to the save.distances argument. The generated distance matrix can be
loaded and passed on to many other clustering methods available in R, such as the hierarchical
clustering function hclust (see below).

If a distance matrix is available, it may also be supplied to clusterCMP via the save.distances
argument. This is useful when one has a pre-computed distance matrix either from a previous
call to clusterCMP or from other distance calculation subroutines.

Single-linkage binning clustering with one or multiple cutoffs:

data(sdfbcl)

apbcl = convSDFtoAP(sdfbcl)

45

BioMedR Manual

clusters <- clusterCMP(db = apbcl, cutoff = c(0.7, 0.8, 0.9),

quiet = TRUE)

head(clusters)

ids CLSZ_0.7 CLID_0.7 CLSZ_0.8 CLID_0.8 CLSZ_0.9 CLID_0.9

38 CMP38 10 38 5 38 3 38

39 CMP39 10 38 5 38 1 39

40 CMP40 10 38 5 38 1 40

41 CMP41 10 38 5 38 3 38

44 CMP44 10 38 5 38 3 38

42 CMP42 10 38 2 42 1 42

Clustering of FPset objects with multiple cutoffs:

fpbcl = convAPtoFP(apbcl)

clusters2 <- clusterCMP(fpbcl, cutoff=c(0.5, 0.7, 0.9),

method = "Tanimoto", quiet = TRUE)

head(clusters2)

ids CLSZ_0.5 CLID_0.5 CLSZ_0.7 CLID_0.7 CLSZ_0.9 CLID_0.9

1 CMP1 50 1 47 1 18 1

2 CMP2 50 1 47 1 18 1

3 CMP3 50 1 47 1 18 1

4 CMP4 50 1 47 1 1 4

5 CMP5 50 1 47 1 18 1

6 CMP6 50 1 47 1 18 1

Sames as above, but using Tversky similarity measure:

clusters3 <- clusterCMP(fpbcl, cutoff = c(0.5, 0.7, 0.9),

method = "Tversky", alpha = 0.3, beta = 0.7, quiet = TRUE)

head(clusters3)

ids CLSZ_0.5 CLID_0.5 CLSZ_0.7 CLID_0.7 CLSZ_0.9 CLID_0.9

1 CMP1 50 1 50 1 50 1

2 CMP2 50 1 50 1 50 1

3 CMP3 50 1 50 1 50 1

4 CMP4 50 1 50 1 50 1

5 CMP5 50 1 50 1 50 1

6 CMP6 50 1 50 1 50 1

Return cluster size distributions for each cutoff:

clusterStat(clusters, cluster.result=1)

46

BioMedR Manual

cluster size count

1 1 8

2 2 3

3 3 2

4 4 2

5 6 2

6 10 1

7.2. Jarvis-Patrick Clustering

The Jarvis-Patrick clustering algorithm is widely used in cheminformatics (Jarvis and Patrick
1973). It requires a nearest neighbor table, which consists of j nearest neighbors for each
item. The nearest neighbor table is then used to join items into clusters when they meet
the following requirements: (a) they are contained in each other’s neighbor list and (b) they
share at least k nearest neighbors. The values for j and k are user-defined parameters.
The clusterJP function implemented in BioMedR takes a nearest neighbor table generated
by NNeighbor, which works for APset and FPset objects. This function takes either the
standard Jarvis-Patrick j parameter (as the numNbrs parameter), or else a cutoff value,
which is an extension to the basic algorithm that we have added. Given a cutoff value, the
nearest neighbor table returned contains every neighbor with a similarity greater than the
cutoff value, for each item. This allows one to generate tighter clusters and to minimize certain
limitations of this method, such as false joins of completely unrelated items when operating
on small data sets.

The clusterJP function also allows one to relaxsome of the requirements of the algorithm
through the mode parameter. When set to “a1a2b”, then all requirements are used. If set to
“a1b”, then (a) is relaxed to a unidirectional requirement. Lastly, if mode is set to “b”, then
only requirement (b) is used, which means that all pairs of items will be checked to see if
(b) is satisfied between them. The size of the clusters generated by the different methods
increases in this order: “a1a2b” < “a1b” < “b”. The run time of method “a1a2b” follows a
close to linear relationship, while it is nearly quadratic for the much more exhaustive method
“b”. Only methods “a1a2b” and “a1b” are suitable for clustering very large data sets (e.g. >
50,000 items) in a reasonable amount of time.

An additional extension to the algorithm is the ability to set the linkage mode. The linkage

parameter can be one of “single”, “average”, or “complete”, for single linkage, average linkage
and complete linkage merge requirements, respectively. In the context of Jarvis-Patrick,
average linkage means that at least half of the pairs between the clusters under consideration
must meet requirement (b). Similarly, for complete linkage, all pairs must requirement (b).
Single linkage is the normal case for Jarvis-Patrick and just means that at least one pair must
meet requirement (b).

The output is a cluster vector with the item labels in the name slot and the cluster IDs in the
data slot. There is a utility function called byCluster, which takes out cluster vector output
by clusterJP and transforms it into a list of vectors. Each slot of the list is named with
a cluster id and the vector contains the cluster members. By default the function excludes
singletons from the output, but they can be included by setting excludeSingletons is FALSE.

Standard Jarvis-Patrick clustering on APset and FPset objects:

47

BioMedR Manual

jpap = clusterJP(NNeighbors(apbcl, numNbrs = 6), k = 5, mode = "a1a2b")

head(jpap)

CMP1 CMP2 CMP3 CMP4 CMP5 CMP6

1 1 1 2 2 2

jpfp = clusterJP(NNeighbors(fpbcl, numNbrs = 6), k = 5, mode = "a1a2b")

head(jpfp)

CMP1 CMP2 CMP3 CMP4 CMP5 CMP6

1 2 2 3 4 5

Jarvis-Patrick clustering with a minimum similarity cutoff value (here Tanimoto coefficient).
In addition, it uses the much more exhaustive “b” method that generates larger cluster sizes,
but significantly increased the run time. For more details, consult the corresponding help file
with ?clusterJP.

require(ChemmineR)

cl <- clusterJP(NNeighbors(fpbcl, cutoff = 0.6,

method = "Tanimoto"), k = 2 ,mode = "b")

byCluster(cl)

$`1`
[1] "CMP1" "CMP2" "CMP3" "CMP4" "CMP5" "CMP6" "CMP7" "CMP8"

[9] "CMP9" "CMP10" "CMP13" "CMP14" "CMP15" "CMP16" "CMP17" "CMP18"

[17] "CMP19" "CMP20" "CMP21" "CMP22" "CMP23" "CMP24" "CMP25" "CMP26"

[25] "CMP27" "CMP28" "CMP30" "CMP31" "CMP32" "CMP33" "CMP34" "CMP35"

[33] "CMP36" "CMP37" "CMP38" "CMP39" "CMP40" "CMP41" "CMP42" "CMP43"

[41] "CMP44" "CMP45" "CMP46" "CMP47" "CMP48" "CMP49" "CMP50"

7.3. Multi-Dimensional Scaling (MDS)

To visualize and compare clustering results, the clusterPlot function can be used. The
function performs Multi-Dimensional Scaling (MDS) and visualizes the results in form of a
scatter plot. It requires as input an APset, a clustering result from clusterCMP, and a cutoff
for the minimum cluster size to consider in the plot. To help determining a proper cutoff size,
the clusterStat function is provided to generate cluster size statistics.

MDS clustering and scatter plot:

mds = clusterMDS(apbcl, clusters, size.cutoff = 2, quiet = TRUE)

head(mds)

V1 V2 CLID_0.7 Clicked

CMP38 -0.08110183 -0.3937917 38 0

CMP39 -0.07078328 -0.4024284 38 0

48

BioMedR Manual

-0.4 -0.2 0.0 0.2

-0
.4

-0
.2

0
.0

0
.2

Clustering Result

Figure 5: Multi-Dimensional Scaling (MDS)

CMP40 -0.08319071 -0.4019104 38 0

CMP41 -0.09350389 -0.4038405 38 0

CMP44 -0.09595493 -0.4041470 38 0

CMP42 -0.11566290 -0.3686453 38 0

7.4. Kohonen’s self-organising map (SOM)

Self-organizing maps (Kohonen 2001) tackle the problem in a way similar to MDS, but instead
of trying to reproduce distances they aim at reproducing topology, or in other words, they
try to keep the same neighbours. So if two high-dimensional objects are very similar, then
their position in a two-dimensional plane should be very similar as well. Rather than mapping
objects in a continuous space, SOMs use a regular grid of units onto which objects are mapped.
The differences with MDS can be seen as both strengths and weaknesses: where in a 2D MDS
plot a distance – also a large distance – can be directly interpreted as an estimate of the
true distance, in a SOM plot this is not the case: one can only say that objects mapped to
the same, or neighbouring, units are very similar. In other words, SOMs concentrate on the
largest similarities, whereas MDS concentrates on the largest dissimilarities. Which of these
is more useful depends on the application.

There is an example: we collected 80 drugs binding to bcl2 protein and 300 compounds
unbinding to bcl2 protein. Firstly, we analyze the global character for total 380 compounds
and maped them to 5 × 5 lattices. Secondly, we analyzed the structral characters for 80
drugs and maped them to these 5 × 5 lattices and counted the drugs in each lattice. From
the result, we can choose some negative compouds for bcl2 protein with chemical structures

49

BioMedR Manual

similar to its positive drugs. The R code to generate the plot is as follows:

data(som.bcl)

idx = unique(som.bcl$unit.classif[1:80])

bgcols <- c("gray", "lightgreen")

index = rep(1, 5 * 5)

index[idx] = 2

bgcol = bgcols[as.integer(index)]

label = c()

for (i in 1:length(idx)) {

label[i] = length(which(som.bcl$unit.classif[1:80] == idx[i]))

}

opar <- par(no.readonly = TRUE)

par(mfrow=c(1,2))

clusterPlotSOMmap(som.bcl, pchs = 1)

clusterPlotSOMmap(som.bcl, index = idx, label = label, bgcol = bgcol)

par(opar)

Mapping plot Mapping plot

4

33
5

2

1

7

9

5

3

1

3

1

1

1

1

1

1

1

Figure 6: Kohonen’s self-organising map (SOM)

7.5. Summary

The summary of the cluster methods in the BioMedR package is listed in table 18.

8. Similarity

8.1. Structure-Based Chemical Similarity Searching

50

BioMedR Manual

Table 18: Clustering

Function name Function description

clusterCMP() Binning Clustering
clusterMDS() Multi-Dimensional Scaling (MDS)
clusterJP() Jarvis-PatrickClustering
clusterSOMPlot() Kohonen’sself-organisingmap(SOM)

Structure-based chemical similarity searching ranks molecules in a database by their similarity
degree to one query molecule structure. The numerical similarity value is usually computed
based on the molecular fingerprints with selected metrics or by maximum common structure
search. It is one of the core techniques for ligand-based virtual screening in drug discovery.

mol = system.file('compseq/example.sdf', package = 'BioMedR')
moldb = system.file('compseq/bcl.sdf', package = 'BioMedR')

We could do parallelized drug molecular similarity search with the searchDrug() function
in BioMedR. Here we choose the search criterion to be MACCS keys with cosine similarity,
FP2 fingerprints with tanimoto similarity, and maximum common substructure search with
tanimoto similarity.

rank1 = searchDrug(mol, moldb, cores = 4, method = 'fp',
fptype = 'maccs', fpsim = 'tanimoto')

rank2 = searchDrug(mol, moldb, cores = 4, method = 'fp',
fptype = 'fp2', fpsim = 'cosine')

The returned search result is stored as a numerical vector, each element’s name is the molecule
number in the database, and the value is the similarity value between the query molecule and
this molecule. We shall print the top search results here:

The BioMedR package also integrated the functionality of converting molecular file formats.
For example, we could convert the SDF files to SMILES files using convMolFormat(). Since
the No. 50 molecule ranks the highest in the three searches performed, we will calculate the
similarity derived by maximum common substructure search between the query molecule and
the No. 50 molecule using calcDrugMCSSim():

The MCS search result is stored in a list, which contains the original MCS result provided by
the fmcsR package (Wang et al. 2013), the Tanimoto coefficient and the overlap coefficient.

8.2. Similarity Calculation by Sequence Alignment

Similarity computation derived by local or global protein/DNA sequence alignment between
a list of protein/DNA sequences is great need in the protein/DNA related research and appli-
cations. However, this sort of pairwise similarity computation often computationally inten-
sive, especially when there exists many protein/DNA sequences. Luckily, this process is also
highly parallelizable, the BioMedR package integrates the function of parallelized similarity
computation derived by local or global protein/DNA sequence alignment between a list of
protein/DNA sequences.

51

BioMedR Manual

The function twoSeqSim() calculates the alignment result between two protein/DNA se-
quences, and the function parSeqSim() calculates the pairwise similarity calculation with a
list of protein/DNA sequences in parallel:

> s1 = readFASTA(system.file('protseq/P00750.fasta', package = 'BioMedR'))[[1]]
> s2 = readFASTA(system.file('protseq/P08218.fasta', package = 'BioMedR'))[[1]]
> s3 = readFASTA(system.file('protseq/P10323.fasta', package = 'BioMedR'))[[1]]
> s4 = readFASTA(system.file('protseq/P20160.fasta', package = 'BioMedR'))[[1]]
> s5 = readFASTA(system.file('protseq/Q9NZP8.fasta', package = 'BioMedR'))[[1]]
> plist = list(s1, s2, s3, s4, s5)

> psimmat = parSeqSim(plist, cores = 4, type = 'local', submat = 'BLOSUM62')
> print(psimmat)

[,1] [,2] [,3] [,4] [,5]

[1,] 1.00000000 0.11825938 0.10236985 0.04921696 0.03943488

[2,] 0.11825938 1.00000000 0.18858241 0.12124217 0.06391103

[3,] 0.10236985 0.18858241 1.00000000 0.05819984 0.06175942

[4,] 0.04921696 0.12124217 0.05819984 1.00000000 0.05714638

[5,] 0.03943488 0.06391103 0.06175942 0.05714638 1.00000000

It should be noted that for a small number of proteins, calculating their pairwise similarity
scores derived by sequence alignment in parallel may not significantly reduce the overall
computation time, since each of the task only requires a relatively small time to finish, thus,
computational overheads may exist and affect the performance. In testing, we used about
1,000 protein sequences on 64 CPU cores, and observed significant performance improvement
comparing to the sequential computation.

Users should install the packages foreach and doParallel before using parSeqSim(), according
to their operation system. The BioMedR package will automatically decide which backend
to use.

8.3. Similarity Calculation by GO Semantic Similarity Measures

The BioMedR package also integrates the function of similarity score computation derived
by Gene Ontology (GO) semantic similarity measures between a list of GO terms / Entrez
Gene IDs.

The function twoGOSim() calculates the similarity derived by GO-terms semantic similarity
measures between two GO terms / Entrez Gene IDs, and the function parGOSim() calculates
the pairwise similarity with a list of GO terms / Entrez Gene IDs:

by GO Terms

> go1 = c('GO:0005215', 'GO:0005488', 'GO:0005515',
+ 'GO:0005625', 'GO:0005802', 'GO:0005905') # AP4B1

> go2 = c('GO:0005515', 'GO:0005634', 'GO:0005681',
+ 'GO:0008380', 'GO:0031202') # BCAS2

> go3 = c('GO:0003735', 'GO:0005622', 'GO:0005840',
+ 'GO:0006412') # PDE4DIP

52

BioMedR Manual

> glist = list(go1, go2, go3)

> gsimmat1 = parGOSim(glist, type = 'go', ont = 'CC')
> print(gsimmat1)

[,1] [,2] [,3]

[1,] 1.000 0.077 0.055

[2,] 0.077 1.000 0.220

[3,] 0.055 0.220 1.000

by Entrez gene id

> genelist = list(c('150', '151', '152', '1814', '1815', '1816'))
> gsimmat2 = parGOSim(genelist, type = 'gene')
> print(gsimmat2)

150 151 152 1814 1815 1816

150 0.689 0.335 0.487 0.133 0.169 0.160

151 0.335 0.605 0.441 0.171 0.198 0.274

152 0.487 0.441 0.591 0.151 0.178 0.198

1814 0.133 0.171 0.151 0.512 0.401 0.411

1815 0.169 0.198 0.178 0.401 0.619 0.481

1816 0.160 0.274 0.198 0.411 0.481 0.819

8.4. Summary

The summary of the similarity in the BioMedR package is listed in table 19.

Table 19: Similarity and similarity searching

Function name Function description

calcDrugFPSim() Calculate drug molecule similarity derived by molecular
fingerprints

calcDrugMCSSim() Calculate drug molecule similarity derived by maxi-
mum common substructure search

searchDrug() Parallelized drug molecule similarity search by molec-
ular fingerprints similarity or maximum common sub-
structure search

calcTwoProtSeqSim() Similarity calculation based on sequence alignment for
a pair of protein sequences

calcParProtSeqSim() Parallellized protein sequence similarity calculation
based on sequence alignment

calcTwoProtGOSim() Similarity calculation based on Gene Ontology (GO)
similarity between two proteins

calcParProtGOSim() Protein similarity calculation based on Gene Ontology
(GO) similarity

9. Applications

53

BioMedR Manual

9.1. Regression Modeling in QSRR Study of logD

In 2015, 1130 compounds with LogD7.4 values were collected from different literatures by our
group (Wang et al. 2015). And then, partial least squares (PLS) and support vector machine
(SVM) regressions were employed to build prediction models with 30 molecular descriptors
selected by genetic algorithm. Here we choose the molecules and logD as our benchmark
dataset.

Just like the last section, we load the BioMedR package, and read the molecules stored in a
SMILES file:

x.mol = readMolFromSmi(system.file('vignettedata/logD.smi',
package = 'BioMedR'), type = 'mol')
x.tab = read.csv(system.file('vignettedata/logD.csv',
package = 'BioMedR'), sep = ';', header = TRUE)

y = x.tab$logD

The readMolFromSmi() function is used for reading molecules from SMILES files, for molecules
stored in SDF files, use readMolFromSDF() instead.

The CSV file logD.csv contains the smiles structures and experimental values of 1310 com-
pounds, Here we only extracted the logD values by calling x.tab$logD.

After the molecules were properly loaded, we calculate several selected molecular descriptors.

calculate selected molecular descriptors

x = suppressWarnings(cbind(

extrDrugBCUT(x.mol), extrDrugTPSA(x.mol),

extrDrugKierHallSmarts(x.mol),

extrDrugALOGP(x.mol),

extrDrugLogP(x.mol),

extrDrugMannholdLogP(x.mol)

))

After the descriptors were calculated, the result x would be an R data frame, each row
represents one molecule, and each column is one descriptor (predictor).

Next, a partial least squares(PLS) and random forest(RF) model will be

regression on training set

require(pls)

require(randomForest)

feature selection

this step may take several minutes, please wait!

result <- rf.fs(x, y, scale = FALSE, step = -1)

with(result, plot(n.var, error.cv, type = "l", lwd = 2))

We see that the error of the randomForest regression model was decreasing when the n.var
was increasing. In general, we select the features with which the error value decrease at the
fastest rate, here we selected 17 features for further study.

54

BioMedR Manual

0 20 40 60 80

0
.6

0
.8

1
.0

1
.2

1
.4

1
.6

1
.8

2
.0

n.var

e
rr
o
r.
c
v

Figure 7: Random Forest Cross-Valdidation for feature selection

xtr = x[, order(result$res[[75]], decreasing = T)[1:17]]

split training and test set

set.seed(1002)

index = sample(1:1096, 872)

trainX = xtr[index,]

trainy = y[index]

testX = xtr[-index,]

testy = y[-index]

cross-validation of RF model

rf = rf.cv(trainX, trainy, mtrysize = 4)

cross-validation of pls model

pls = pls.cv(trainX, trainy, maxcomp = 5)

The cross-validation result is:

rf$Q2

[1,] 0.8130789

pls$Q2

55

BioMedR Manual

[1] 0.6363464

predict test set

rf.out = randomForest(trainy ~ ., data = data.frame(trainy, trainX), mtry = 4)

rf.pred = predict(rf.out, testX)

xcal <- scale(trainX, center = TRUE, scale = TRUE)

xcen <- attributes(xcal)$'scaled:center'
xsca <- attributes(xcal)$'scaled:scale'
xtest <- scale(testX, xcen, xsca)

ycal <- scale(trainy, center = TRUE, scale = FALSE)

ycen <- attributes(ycal)$'scaled:center'

mvrout <- plsr(ycal ~ ., ncomps = 5, data = data.frame(xcal, ycal),

scale = FALSE, method = 'simpls')
pls.pred <- predict(mvrout, comps = 1:5, xtest) + ycen

plot experimental logD vs predicted logD

require(ggplot2)

predict <- c(rf$RFpred, rf.pred, pls$plspred, pls.pred)

ytrain <- rep(c(trainy, testy), 2)

methods <- c(rep("RF", 1096), rep("PLS", 1096))

Ind <- rep(c(rep("training", 872), rep("test", 224)), 2)

Expre <- data.frame(Predicted = predict, ytrain = ytrain,

Methods = methods, Ind = Ind)

p <- ggplot(Expre, aes(x = ytrain, y = Predicted, shape = Ind,

colour = Ind)) + geom_point() +

geom_abline(intercept = 0, slope = 1, colour = "#CCCCCC") +

scale_shape_manual(values = c(17,16)) +

xlim(range(y)) + ylim(range(y))

p+facet_wrap(~ Methods, nrow = 1)+

facet_wrap(~ Methods, nrow = 1)+

xlab("Experimental logD") + ylab("Predicted logD")+

labs(colour = "Data", shape = "Data")

9.2. Classification Modeling in QSRR Study of hERG

In the perspective of quantitative pharmacology, the successful discovery of novel drugs de-
pends on the pharmacokinetics properties, like absorption, distribution, metabolism, and
excretion. In addition, the potential toxicity of chemical compounds is taken into account.
QSAR or QSPR methods are usually employed to predict the ADME/T qualities of potential
drug candidates.

During cardiac depolarization and repolarization, a voltage-gated potassium channel encoded
by the human ether-a-go-go related gene (hERG) plays a major role in the regulation of the
exchange of cardiac action potential and resting potential. The hERG blockade may cause long

56

BioMedR Manual

PLS RF

-2.5

0.0

2.5

5.0

-2.5 0.0 2.5 5.0 -2.5 0.0 2.5 5.0

Experimental logD

P
re

d
ic

te
d

 lo
g

D

Data

test

training

Figure 8: Experimental logD vs. Predicted logD

QT syndrome (LQTS), arrhythmia, and Torsade de Pointes (TdP), which lead to palpitations,
fainting, or even sudden death. Therefore, assessment of hERG-related cardiotoxicity has
become an important step in the drug design/discovery pipeline. In this study, we collected
655 hERG blocker from Hou’s study published in 2016.

First, load the drug molecules stored in a SMILES file into R:

require(BioMedR)

cpdbas.smi = system.file('vignettedata/CPDBAS.smi', package = 'BioMedR')
cpdbas.csv = read.csv(system.file('vignettedata/CPDBAS.csv', package =

'BioMedR'), header = TRUE, sep = ';')

x.mol = readMolFromSmi(cpdbas.smi, type = 'mol')
x.smi = readMolFromSmi(cpdbas.smi, type = 'text')
y = as.factor(cpdbas.csv[, 3])

The object x.mol is used for computing the MACCS and E-state fingerprints, the object
x.smi is used for computing the FP4 fingerprints. The 0-1 class labels stored in FDAMDD.csv

indicates whether the drug molecule has high toxicity or not.

Then we calculate three different types of molecular fingerprints (E-state and MACCS) for
the drug molecules:

calculate molecular fingerprints

x1 = extrDrugEstateComplete(x.mol)

x2 = extrDrugMACCSComplete(x.mol)

As the nature of fingerprint-based structure representation, the calculated 0-1 matrix x1, x2,
and x3 will be very sparse. Since there are several columns have nearly exactly the same value

57

BioMedR Manual

for all the molecules, we should remove them with nearZeroVar() in caret before modeling,
and split our training set and test set:

name1 = c()

for (i in 1:dim(x1)[2]) {

name1 = c(name1, paste('X', i, sep = ''))
}

colnames(x1) = name1

name2 = c()

for (i in 1:dim(x2)[2]) {

name2 = c(name2, paste('X', i, sep = ''))
}

colnames(x2) = name2

Remove near zero variance variables

require(caret)

x1 = x1[, -nearZeroVar(x1)]

x2 = x2[, -nearZeroVar(x2)]

split training and test set

set.seed(1003)

tr.idx = sample(1:nrow(x1), round(nrow(x1) * 0.8))

te.idx = setdiff(1:nrow(x1), tr.idx)

x1.tr = x1[tr.idx,]

x1.te = x1[te.idx,]

x2.tr = x2[tr.idx,]

x2.te = x2[te.idx,]

y.tr = y[tr.idx]

y.te = y[te.idx]

On the training sets, we will train three classification models separately using PLS and ran-
domForest. The cross-validation setting is 5-fold repeated CV. Then print the cross-validation
result.

rf.x1 = rf.cv(x1.tr, y.tr, type = 'classification', mtrysize = 5)

rf.x2 = rf.cv(x2.tr, y.tr, type = 'classification', mtrysize = 11)

The training result when using E-state fingerprints:

print cross-validation result

accuracy

rf.x1$ACC

[1] 0.7368421

58

BioMedR Manual

sensitivity

rf.x1$SE

[1] 0.7472924

specificity

rf.x1$SP

[1] 0.7254902

We could see that after removing the near zero variance predictors, there are only 21 predictors
left for the original length 79 E-state fingerprints.

The training result when using MACCS keys:

accuracy

rf.x2$ACC

[1] 0.7706767

sensitivity

rf.x2$SE

[1] 0.8050542

specificity

rf.x2$SP

[1] 0.7333333

There are 111 predictors left for the original length 166 MACCS keys after removing the near
zero variance predictors. The model performance by ACC values is slightly better than using
the E-state fingerprints.

We predict on the test sets with the established models, and plot the ROC curves in one
figure, as is shown in figure 9.

predict on test set

rf.model1 = randomForest(y.tr ~ ., data = data.frame(x1.tr, y.tr), mtry = 5,

ntree = 500)

rf.pred1 = predict(rf.model1, x1.te, type = "prob")[, 2]

rf.model2 = randomForest(y.tr ~ ., data = data.frame(x2.tr, y.tr), mtry = 11,

ntree = 500)

rf.pred2 = predict(rf.model2, x2.te, type = "prob")[, 2]

generate colors

require(RColorBrewer)

pal = brewer.pal(3, 'Set1')

ROC curves of different fingerprints

59

BioMedR Manual

require(pROC)

cross-validation

opar <- par(no.readonly = TRUE)

par(mfrow=c(1,2))

plot(smooth(roc(y.tr, rf.x1$prob[, 2])), col = pal[1], grid = TRUE,

main = 'Cross Validation')
plot(smooth(roc(y.tr, rf.x2$prob[, 2])), col = pal[2], grid = TRUE, add = TRUE)

prediction

plot(smooth(roc(y.te, rf.pred1)), col = pal[1], grid = TRUE,

main = 'Prediction')
plot(smooth(roc(y.te, rf.pred2)), col = pal[2], grid = TRUE, add = TRUE)

par(opar)

Cross Validation

Specificity

S
e
n
s
iti
v
ity

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1.0 0.8 0.6 0.4 0.2 0.0

Prediction

Specificity

S
e
n
s
iti
v
ity

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1.0 0.8 0.6 0.4 0.2 0.0

Figure 9: Smoothed ROC curves for different fingerprint types

9.3. Chemical Similarity Searching

Structure-based chemical similarity searching ranks molecules in a database by their similarity
degree to one query molecule structure. The numerical similarity value is usually computed
based on the molecular fingerprints with selected metrics or by maximum common structure
search. It is one of the core techniques for ligand-based virtual screening in drug discovery.

mol = system.file('compseq/example.sdf', package = 'BioMedR')
moldb = system.file('compseq/bcl.sdf', package = 'BioMedR')

We could do parallelized drug molecular similarity search with the searchDrug() function
in BioMedR. Here we choose the search criterion to be MACCS keys with cosine similarity,
FP2 fingerprints with tanimoto similarity, and maximum common substructure search with
tanimoto similarity.

rank1 = searchDrug(mol, moldb, cores = 4, method = 'fp',

60

BioMedR Manual

fptype = 'maccs', fpsim = 'tanimoto')
rank2 = searchDrug(mol, moldb, cores = 4, method = 'fp',

fptype = 'standard', fpsim = 'cosine')

The returned search result is stored as a numerical vector, each element’s name is the molecule
number in the database, and the value is the similarity value between the query molecule and
this molecule. We shall print the top search results here:

head(rank1)

50 15 13 19 16 17

0.9532710 0.9439252 0.9351852 0.9351852 0.9266055 0.9266055

head(rank2)

50 20 14 1 6 8

0.9706932 0.9233684 0.9130435 0.9071174 0.9025330 0.9014839

require(ChemmineR)

sdf1 = read.SDFset(system.file('compseq/example.sdf', package = 'BioMedR'))
sdf2 = read.SDFset(system.file('compseq/bcl.sdf', package = 'BioMedR'))

opar <- par(no.readonly = TRUE)

par(mfrow=c(1,2))

plotStructure(sdf2[[50]])

plotStructure(sdf1[[1]])

par(opar)

Cl F
ON

N+

Cl

O

NSO

O-

N+OO-

NH

N+

O

Cl

N+N

O

NH

F

O

NS

O

O-
N+
O
O-

NH

N+

O

Figure 10: Maximum common structure of the query molecule and No.50 molecule in the
drug database (SDF file)

61

BioMedR Manual

9.4. Clustering of Molecules Based on Structural Similarities

Apart from supervised methods (classification and regression), unsupervised approaches, like
clustering, is also widely applied in the quantitative research of drugs.

In reality, there are usually too many chemical compounds available for identifying drug-like
molecules. Thus it would be attractive using clustering methods to aid the selection of a
representative subset of all available compounds. For a clustering approach that groups com-
pounds together by their structural similarity, applying the principle similar compounds have
similar properties means that we only need to test the representative compounds from each
individual cluster, rather than do the time-consuming complete set of experiments, and this
should be sufficient to understand the structure-activity relationships of the whole compound
set.

The BioMedR package provides easy-to-use functions for computing the similarity between
small molecules derived by molecular fingerprints and maximum common substructure search.

As a example, the SDF file bcl.sdf below is a database composed by searching UniProt
P10415 in ChEMBL. We load this SDF file into R using readMolFromSDF():

require(BioMedR)

mols = readMolFromSDF(system.file('compseq/bcl.sdf', package = 'BioMedR'))

Then compute the E-state fingerprints for all the molecules using extrDrugEstate(), and
calculate their pairwise similarity matrix with calcDrugFPSim():

simmat = diag(length(mols))

for (i in 1:length(mols)) {

for (j in i:length(mols)) {

fp1 = extrDrugEstate(mols[[i]])

fp2 = extrDrugEstate(mols[[j]])

tmp = calcDrugFPSim(fp1, fp2, fptype = 'compact', metric = 'tanimoto')
simmat[i, j] = tmp

simmat[j, i] = tmp

}

}

For the computed similarity matrix simmat, we will try to do hierarchical clustering with it,
then visualize the clustering result:

mol.hc = hclust(as.dist(1 - simmat), method = 'ward.D')

require(ape) # for tree-like visualization, if not please install.

clus5 = cutree(mol.hc, 5) # cut dendrogram into 5 clusters

generate colors

require(RColorBrewer)

pal5 = brewer.pal(5, 'Set1')
plot(as.phylo(mol.hc), type = 'fan', tip.color = pal5[clus5],

label.offset = 0.1, cex = 0.7)

62

BioMedR Manual

The clustering result for these molecules is shown in figure 11.

1

2

3

4

5

6

7

8

9

1
0

11

12

13

1
4

15

16

17

18

19

2
0

21

2
2

23

24

2
5

26

27

28

29

30

31

32

33

34

35

36

37
3
8

39

4
0 4

1

42

43

4
4

45

4
6

4
7

48

49

50

Figure 11: Tree visualization of molecular clustering result

BioMedR allows the user to take advantage of the wide spectrum of clustering utilities avail-
able in R. An example on how to perform hierarchical clustering with the hclust function is
given below.

Clustering with other algorithms

require(gplots) # if not please install.

data(sdfbcl)

apbcl = convSDFtoAP(sdfbcl)

dummy = clusterCMP(db = apbcl, cutoff = 0, save.distances = 'distmat.rda',
quiet = TRUE)

load('distmat.rda')
Hierarchical clustering

hc <- hclust(as.dist(distmat), method = 'single')

heatmap.2(1-distmat, Rowv = as.dendrogram(hc), Colv = as.dendrogram(hc),

col = colorpanel(40, 'darkblue', 'yellow', 'white'),
density.info = 'none', trace = 'none')

9.5. Predicting Protein Subcellular Localization

63

BioMedR Manual

1
1
1
2
2
9
2
1
1
5
1
3
1
9
1
6
1
7
1
8
5
0 4 5 6 3 8 2
1
4 1
2
0 7 9
1
0
4
8
4
9
4
5
4
7
4
6
4
2
4
3
3
9
4
0
4
4
3
8
4
1
2
6
2
7
2
3
2
4
2
8
2
2
2
5
3
6
3
2
3
7
3
0
3
4
3
1
3
3
3
5

11
12
29
21
15
13
19
16
17
18
50
4
5
6
3
8
2
14
1
20
7
9
10
48
49
45
47
46
42
43
39
40
44
38
41
26
27
23
24
28
22
25
36
32
37
30
34
31
33
35

Figure 12: heatmap visualization of molecular clustering result

64

BioMedR Manual

Protein subcellular localization prediction involves the computational prediction of where a
protein resides in a cell. It is an important component of bioinformatics-based prediction of
protein function and genome annotation, and could also aid us to identify novel drug targets.

First, we load the BioMedR package, then read the protein sequences stored in two separated
FASTA files with readFASTA():

load FASTA files

Cytoplasm = readFASTA(system.file('vignettedata/Cytoplasm.fasta',
package = 'BioMedR'))

Nuclear = readFASTA(system.file('vignettedata/Nuclear.fasta',
package = 'BioMedR'))

To read protein sequences stored in PDB format files, use readPDB() instead. The loaded
sequences will be stored as two lists in R, and each component in the list is a character string
representing one protein sequence. In this case, there are 300 Cytoplasm protein sequences
and 300 Nuclear protein sequences:

To assure that the protein sequences only have the twenty standard amino acid types which
is required for the descriptor computation, we use the checkProt() function in BioMedR to
do the amino acid type sanity checking and remove the non-standard sequences:

Cytoplasm = Cytoplasm[(sapply(Cytoplasm, checkProt))]

Nuclear = Nuclear[(sapply(Nuclear, checkProt))]

Two protein sequences were removed from each class. For the remaining sequences, we cal-
culate the amphiphilic pseudo amino acid composition (APAAC) descriptor (Chou 2005) and
make class labels for classification modeling.

calculate APAAC descriptors

x1 = t(sapply(Cytoplasm, function(x) {c(extrProtCTDC(x),

extrProtCTDD(x),

extrProtCTDT(x))}))

x2 = t(sapply(Nuclear, function(x) {c(extrProtCTDC(x),

extrProtCTDD(x),

extrProtCTDT(x))}))

x = rbind(x1, x2)

na.idx = which(is.na(x), arr.ind = TRUE)

x = x[, -unique(na.idx[, 2])]

make class labels

labels = as.factor(c(rep(0, length(Cytoplasm)), rep(1, length(Nuclear))))

In BioMedR, the functions of commonly used descriptors for protein sequences and pro-
teochemometric (PCM) modeling descriptors are named after extrProt...() and extrPCM...().

Next, we will split the data into a 75% training set and a 25% test set.

65

BioMedR Manual

split training and test set

set.seed(1001)

tr.idx = c(sample(1:nrow(x1), round(nrow(x1) * 0.75)),

sample(nrow(x1) + 1:nrow(x2), round(nrow(x2) * 0.75)))

te.idx = setdiff(1:nrow(x), tr.idx)

x.tr = x[tr.idx,]

x.te = x[te.idx,]

y.tr = labels[tr.idx]

y.te = labels[te.idx]

We will train a random forest classification model on the training set with 5-fold cross-
validation.

rf.prot = rf.cv(x.tr, y.tr, type = 'classification', cv.fold = 5)

The training result is:

print cross-validation result

accuracy

rf.prot$ACC

[1] 0.8066667

sensitivity

rf.prot$SE

[1] 0.82

specificity

rf.prot$SP

[1] 0.7933333

With the model trained on the training set, we predict on the test set and plot the ROC curve
with the pROC package, as is shown in figure 13.

predict on test set

require(randomForest)

rf.p = randomForest(y.tr ~ ., data = data.frame(y.tr, x.tr))

rf.pred = predict(rf.p, newdata = x.te, type = 'prob')[, 1]

plot ROC curve

require(RColorBrewer)

pal = brewer.pal(3, 'Set1')
require(pROC)

opar <- par(no.readonly = TRUE)

66

BioMedR Manual

par(mfrow=c(1,2))

plot.roc(y.tr, rf.prot$prob[, 1], col = pal[2], grid = TRUE,

print.auc = TRUE, main = 'Cross Validation')
plot.roc(y.te, rf.pred, col = pal[1], grid = TRUE, print.auc = TRUE,

main = 'prediction')
par(opar)

The area under the ROC curve (AUC) is:

cross validation

Call:

plot.roc.default(x = y.tr, predictor = rf.prot$prob[, 1], col = pal[2], grid

= TRUE, print.auc = TRUE, main = "prediction")

##

Data: rf.prot$prob[, 1] in 150 controls (y.tr 0) > 150 cases (y.tr 1).

Area under the curve: 0.881

predict

Call:

plot.roc.default(x = y.te, predictor = rf.pred, col = pal[1], grid = TRUE,

print.auc = TRUE, main = "Cross Validation")

##

Data: rf.pred in 50 controls (y.te 0) > 50 cases (y.te 1).

Area under the curve: 0.823

Cross Validation

Specificity

S
e

n
s
iti

v
ity

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1.0 0.8 0.6 0.4 0.2 0.0

AUC: 0.881

prediction

Specificity

S
e

n
s
iti

v
ity

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1.0 0.8 0.6 0.4 0.2 0.0

AUC: 0.823

Figure 13: ROC curve for protein subcellular localization data

9.6. Predicting nucleosome positioning in genomes

In the living cell nucleus, genomic DNA is packaged into chromatin. DNA sequences that
regulate transcription and other chromosomal processes are associated with local disruptions,

67

BioMedR Manual

or openings, in chromatin structure caused by the cooperative action of regulatory proteins
(Noble et al. 2005),

Nucleosome positioning participates in many cellular activities and plays significant roles in
regulating cellular processes (Guo et al. 2014). Computational methods that can predict
nucleosome positioning based on the DNA sequences is highly desired. Here, a computational
predictor was constructed by using dinucleotide-based auto covariance and randomForest,
and its performance was evaluated by 5-fold cross-validation.

load FASTA files

neg = readFASTA(system.file('vignettedata/H_sapiens_neg.fasta',
package = 'BioMedR'))

pos = readFASTA(system.file('vignettedata/H_sapiens_pos.fasta',
package = 'BioMedR'))

each component in the list is a character string representing one protein sequence. In this
case, there are 300 neg DNA sequences and 300 pos DNA sequences:

To assure that the protein sequences only have the twenty standard amino acid types which
is required for the descriptor computation, we use the checkDNA() function in BioMedR to
do the amino acid type sanity checking and remove the non-standard sequences:

neg = neg[(sapply(neg, checkDNA))]

pos = pos[(sapply(pos, checkDNA))]

Two protein sequences were removed from each class. For the remaining sequences, we cal-
culate the amphiphilic pseudo amino acid composition (APAAC) descriptor (Chou 2005) and
make class labels for classification modeling.

calculate APAAC descriptors

x1 = t(sapply(neg, function(x) {c(extrDNAkmer(x),

extrDNADAC(x),

extrDNADCC(x))}))

x2 = t(sapply(pos, function(x) {c(extrDNAkmer(x),

extrDNADAC(x),

extrDNADCC(x))}))

x = rbind(x1, x2)

make class labels

labels = as.factor(c(rep(0, length(neg)), rep(1, length(pos))))

In BioMedR, the functions of commonly used descriptors for protein sequences and pro-
teochemometric (PCM) modeling descriptors are named after extrProt...() and extrPCM...().

Next, we will split the data into a 75% training set and a 25% test set.

split training and test set

set.seed(1001)

68

BioMedR Manual

tr.idx = c(sample(1:nrow(x1), round(nrow(x1) * 0.75)),

sample(nrow(x1) + 1:nrow(x2), round(nrow(x2) * 0.75)))

te.idx = setdiff(1:nrow(x), tr.idx)

x.tr = x[tr.idx,]

x.te = x[te.idx,]

y.tr = labels[tr.idx]

y.te = labels[te.idx]

rownames(x.tr) = NULL

rownames(x.te) = NULL

We will train a random forest classification model on the training set with 5-fold cross-
validation.

rf.dna = rf.cv(x.tr, y.tr, type = 'classification', cv.fold = 5)

With the model trained on the training set, we predict on the test set and plot the ROC curve
with the pROC package, as is shown in figure 14.

predict on test set

rf.d = randomForest(y.tr ~ ., data = data.frame(y.tr, x.tr))

rf.pred = predict(rf.d, newdata = x.te, type = 'prob')[, 1]

plot ROC curve

require(RColorBrewer)

pal = brewer.pal(3, 'Set1')
require(pROC)

opar <- par(no.readonly = TRUE)

par(mfrow=c(1,2))

plot.roc(y.tr, rf.dna$prob[, 1], col = pal[2], grid = TRUE,

print.auc = TRUE, main = 'Cross Validation')
plot.roc(y.te, rf.pred, col = pal[1], grid = TRUE, print.auc = TRUE,

main = 'prediction')
par(opar)

The area under the ROC curve (AUC) is:

cross validation

Call:

plot.roc.default(x = y.tr, predictor = rf.dna$prob[, 1], col = pal[2], grid

= TRUE, print.auc = TRUE, main = "Cross Validation")

##

Data: rf.dna$prob[, 1] in 225 controls (y.tr 0) > 225 cases (y.tr 1).

Area under the curve: 0.81

predict

Call:

69

BioMedR Manual

plot.roc.default(x = y.te, predictor = rf.pred, col = pal[1], grid = TRUE,

print.auc = TRUE, main = "prediction")

##

Data: rf.pred in 75 controls (y.te 0) > 75 cases (y.te 1).

Area under the curve: 0.8047

Cross Validation

Specificity

S
e

n
s
iti

v
ity

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1.0 0.8 0.6 0.4 0.2 0.0

AUC: 0.810

prediction

Specificity

S
e

n
s
iti

v
ity

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1.0 0.8 0.6 0.4 0.2 0.0

AUC: 0.805

Figure 14: ROC curve for nucleosome positioning data

9.7. Predicting Drug-Target Interaction by Integrating Chemical and Ge-
nomic Spaces

In this example, we use the G protein-coupled receptor (GPCR) dataset provided by Yaman-
ishi et al. (2008) as our benchmark dataset.

A drug-target interaction network can be naturally modeled as a bipartite graph, where the
nodes are target proteins or drug molecules and edges (only drugs and proteins could be
connected by edges) represent drug-target interactions. Initially, the graph only contains
edges describing the real drug-target interactions determined by experiments or other ways.
In this example, all real drug-target interaction pairs (i.e., 635 drug-target interactions) are
used as the positive samples. For negative samples we select random, non-interacting pairs
from these drugs and proteins.

Ten generated negative sets were used in Cao et al. (2012a), here we only use one of them
for a demonstration. The drug ID and target ID is stored in GPCR.csv. The first column
is KEGG protein ID, and the second column is KEGG drug ID. The first 635 rows is the
positive set, and the last 635 rows is the negative set.

we will download the target protein sequences (in FASTA format) and drug molecule (in
SMILES format) from the KEGG database, in parallel:

require(BioMedR)

gpcr = read.table(system.file('vignettedata/GPCR.csv', package = 'BioMedR'),

70

BioMedR Manual

header = FALSE, as.is = TRUE)

protid = unique(gpcr[, 1])

drugid = unique(gpcr[, 2])

protseq = BMgetProtSeqKEGG(protid, parallel = 5)

drugseq = c()

for (id in 1:length(drugid)) {

drugseq[id] = BMgetDrugSmiKEGG(drugid[id])

}

if the network environment is not good, use the following code instead.

protseq = readFASTA(system.file('vignettedata/GPCR_seq.fasta', package = 'BioMedR'))
drugseq = as.vector(read.table(system.file('vignettedata/GPCR_smi.txt',
package = 'BioMedR'), col.names = 'SMILES'))

x0.prot = cbind(t(sapply(unlist(protseq), extrProtMoreauBroto)),

t(sapply(unlist(protseq), extrProtCTDC)))

x0.drug = cbind(extrDrugGraphComplete(readMolFromSmi(textConnection(drugseq))),

extrDrugPubChemComplete(readMolFromSmi(textConnection(drugseq))))

If the connection is slow or accidentally interrupts, just try more times until success.

Since the descriptors is only for the uniqued drug and target list, we need to generate the full
descriptor matrix for the training data:

x.prot = matrix(NA, nrow = nrow(gpcr), ncol = ncol(x0.prot))

x.drug = matrix(NA, nrow = nrow(gpcr), ncol = ncol(x0.drug))

for (i in 1:nrow(gpcr)) x.prot[i,] = x0.prot[which(gpcr[, 1][i] == protid),]

for (i in 1:nrow(gpcr)) x.drug[i,] = x0.drug[which(gpcr[, 2][i] == drugid),]

y = as.factor(c(rep('1', nrow(gpcr)/2), rep('0', nrow(gpcr)/2)))

Generate drug-target interaction descriptors using getCPI().

x = getCPI(x.prot, x.drug, type = 'combine')
colnames(x) = paste('CCI', 1:dim(x)[2], sep = '_')

Train a random forest classification model with 5-fold repeated CV:

require(caret)

x = x[, -nearZeroVar(x)]

training set split

set.seed(20180808)

split_index = createDataPartition(y, p = 0.75, list = FALSE)

71

BioMedR Manual

train_x = x[split_index,]

train_y = y[split_index]

test_x = x[-split_index,]

test_y = y[-split_index]

cross-validation

require(randomForest)

cv_result = rf.cv(train_x, train_y, cv.fold = 5, type = 'classification',
trees = 500, mtry = 30)

train a random forest classifier

rf.fit = randomForest(x = train_x, y = train_y, ntree = 500,

mtry = 30, importance = TRUE)

Predict on the training set (for demonstration purpose only) and plot ROC curve.

Predict on the test set

pre_res = predict(rf.fit, newdata = test_x, type = 'prob')[, 2]

require(pROC)

plot the CV result and test result

require(RColorBrewer)

pal = brewer.pal(3, 'Set1')
opar <- par(no.readonly = TRUE)

par(mfrow=c(1,2))

plot.roc(train_y, cv_result$prob[,1], col = pal[2], grid = TRUE,

print.auc = TRUE, main = 'Cross Validation')
plot.roc(test_y, pre_res, col = pal[1], grid = TRUE, print.auc = TRUE,

main = 'prediction')
par(opar)

The ROC curve is shown in figure 15.

Acknowledgments

The authors thank all members of the Computational Biology and Drug Design (CBDD)
Group (http://www.scbdd.com/) of Central South University for their support.

This work is financially supported by the National Natural Science Foundation of China
(Grants No. 81402853), the Central South University Innovation Foundation for Postgrad-
uate (2016zzts498), the Project of Innovation-driven Plan in Central South University, and
the Postdoctoral Science Foundation of Central South University, the Chinese Postdoctoral
Science Foundation (2014T70794, 2014M562142). The studies meet with the approval of the
university’s review board.

72

http://www.scbdd.com/

BioMedR Manual

Cross Validation

Specificity

S
e

n
s
iti

v
ity

1.0 0.8 0.6 0.4 0.2 0.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

AUC: 0.877

prediction

Specificity

S
e

n
s
iti

v
ity

1.0 0.8 0.6 0.4 0.2 0.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

AUC: 0.882

Figure 15: ROC curve for predicting on the training set of the GPCR drug-target interaction
dataset using random forest

73

BioMedR Manual

References

Atchley WR, Zhao J, Fernandes AD, Drüke T (2005). “Solving the protein sequence metric
problem.”Proceedings of the National Academy of Sciences of the United States of America,
102(18), 6395–6400.

Bhasin M, Raghava GPS (2004). “Classification of Nuclear Receptors Based on Amino
Acid Composition and Dipeptide Composition.” Journal of Biological Chemistry, 279(22),
23262–6.

Cao DS, Liang YZ, Deng Z, Hu QN, He M, Xu QS, Zhou GH, Zhang LX, Deng Zx, Liu
S (2013a). “Genome-Scale Screening of Drug-Target Associations Relevant to Ki Using a
Chemogenomics Approach.” PloS one, 8(4), e57680.

Cao DS, Liang YZ, Yan J, Tan GS, Xu QS, Liu S (2013b). “PyDPI: Freely Available Python
Package for Chemoinformatics, Bioinformatics, and Chemogenomics Studies.” Journal of
chemical information and modeling.

Cao DS, Liu S, Xu QS, Lu HM, Huang JH, Hu QN, Liang YZ (2012a). “Large-scale predic-
tion of drug-target interactions using protein sequences and drug topological structures.”
Analytica chimica acta, 752, 1–10.

Cao DS, Xu QS, Hu QN, Liang YZ (2013c). “ChemoPy: freely available python package for
computational biology and chemoinformatics.” Bioinformatics, 29(8), 1092–1094.

Cao DS, Xu QS, Liang YZ (2013d). “propy: a tool to generate various modes of Chou’s
PseAAC.” Bioinformatics.

Cao DS, Zhao JC, Yang YN, Zhao CX, Yan J, Liu S, Hu QN, Xu QS, Liang YZ (2012b).
“In silico toxicity prediction by support vector machine and SMILES representation-based
string kernel.” SAR and QSAR in Environmental Research, 23(1-2), 141–153.

Cao Y, Charisi A, Cheng LC, Jiang T, Girke T (2008). “ChemmineR: a compound mining
framework for R.” Bioinformatics, 24(15), 1733–1734.

Chen W, Feng PM, Lin H, Chou KC (2013). “iRSpot-PseDNC: identify recombination spots
with pseudo dinucleotide composition.” Nucleic acids research, p. gks1450.

Chen W, Lei TY, Jin DC, Lin H, Chou KC (2014). “PseKNC: a flexible web server for
generating pseudo K-tuple nucleotide composition.” Analytical biochemistry, 456, 53–60.

Chen W, Luo L, Zhang L (2010). “The organization of nucleosomes around splice sites.”
Nucleic acids research, 38(9), 2788–2798.

Chou KC (2000). “Prediction of Protein Subcellar Locations by Incorporating Quasi-Sequence-
Order Effect.” Biochemical and Biophysical Research Communications, 278, 477–483.

Chou KC (2001). “Prediction of Protein Cellular Attributes Using Pseudo-Amino Acid Com-
position.” PROTEINS: Structure, Function, and Genetics, 43, 246–255.

Chou KC (2005). “Using Amphiphilic Pseudo Amino Acid Composition to Predict Enzyme
Subfamily Classes.” Bioinformatics, 21, 10–19.

74

BioMedR Manual

Chou KC, Cai YD (2004). “Prediction of Protein Sub-cellular Locations by GO-FunD-PseAA
Predictor.” Biochemical and Biophysical Research Communications, 320, 1236–1239.

Damborsky J (1998). “Quantitative Structure-function and Structure-stability Relationships
of Purposely Modified Proteins.” Protein Engineering, 11, 21–30.

Dong Q, Zhou S, Guan J (2009). “A new taxonomy-based protein fold recognition approach
based on autocross-covariance transformation.” Bioinformatics, 25(20), 2655–2662.

Dubchak I, Muchink I, Holbrook SR, Kim SH (1995). “Prediction of Protein Folding Class
Using Global Description of Amino Acid Sequence.” Proceedings of the National Academy
of Sciences, 92, 8700–8704.

Dubchak I, Muchink I, Mayor C, Dralyuk I, Kim SH (1999). “Recognition of a Protein Fold
in the Context of the SCOP Classification.” Proteins: Structure, Function and Genetics,
35, 401–407.

Georgiev AG (2009). “Interpretable numerical descriptors of amino acid space.” Journal of
Computational Biology, 16(5), 703–723.

Ghose AK, Crippen GM (1986). “Atomic physicochemical parameters for three-dimensional
structure-directed quantitative structure-activity relationships I. Partition coefficients as a
measure of hydrophobicity.” Journal of Computational Chemistry, 7(4), 565–577.

Ghose AK, Crippen GM (1987). “Atomic physicochemical parameters for three-dimensional-
structure-directed quantitative structure-activity relationships. 2. Modeling dispersive and
hydrophobic interactions.” Journal of chemical information and computer sciences, 27(1),
21–35.

Grantham R (1974). “Amino Acid Difference Formula to Help Explain Protein Evolution.”
Science, 185, 862–864.

Guha R, Jurs P (2005). “Integrating R with the CDK for QSAR modeling.” In 230th American
Chemical Society Meeting & Conference, Washington DC, volume 32.

Guo SH, Deng EZ, Xu LQ, Ding H, Lin H, Chen W, Chou KC (2014). “iNuc-PseKNC: a
sequence-based predictor for predicting nucleosome positioning in genomes with pseudo
k-tuple nucleotide composition.” Bioinformatics, p. btu083.

Gupta S, Dennis J, Thurman RE, Kingston R, Stamatoyannopoulos JA, Noble WS (2008).
“Predicting human nucleosome occupancy from primary sequence.” PLoS Comput Biol,
4(8), e1000134.

Hellberg S, Sjoestroem M, Skagerberg B, Wold S (1987). “Peptide quantitative structure-
activity relationships, a multivariate approach.” Journal of medicinal chemistry, 30(7),
1126–1135.

Hopp-Woods (1981). “Prediction of Protein Antigenic Determinants from Amino Acid Se-
quences.” Proceedings of the National Academy of Sciences, 78, 3824–3828.

Horan K, Girke T (2013). ChemmineOB: R interface to a subset of OpenBabel function-
alities. R package version 1.0.1, URL http://manuals.bioinformatics.ucr.edu/home/

chemminer.

75

http://manuals.bioinformatics.ucr.edu/home/chemminer
http://manuals.bioinformatics.ucr.edu/home/chemminer

BioMedR Manual

Jarvis RA, Patrick EA (1973). “Clustering using a similarity measure based on shared near
neighbors.” IEEE Transactions on Computers, 100(11), 1025–1034.

Kawashima S, Kanehisa M (2000). “AAindex: Amino Acid Index Database.” Nucleic Acids
Research, 28, 374.

Kawashima S, Ogata H, Kanehisa M (1999). “AAindex: Amino Acid Index Database.”Nucleic
Acids Research, 27, 368–369.

Kawashima S, Pokarowski P, Pokarowska M, Kolinski A, Katayama T, Kanehisa M (2008).
“AAindex: Amino Acid Index Database (Progress Report).” Nucleic Acids Research, 36,
D202–D205.

Kohonen T (2001). “Self-organizing maps, vol. 30 of Springer Series in Information Sciences.”
ed: Springer Berlin.

Lee D, Karchin R, Beer MA (2011). “Discriminative prediction of mammalian enhancers from
DNA sequence.” Genome research, 21(12), 2167–2180.

Li Z, Lin H, Han Y, Jiang L, Chen X, Chen Y (2006). “PROFEAT: A Web Server for
Computing Structural and Physicochemical Features of Proteins and Peptides from Amino
Acid Sequence.” Nucleic Acids Research, 34, 32–37.

Liu G, Liu J, Cui X, Cai L (2012). “Sequence-dependent prediction of recombination hotspots
in Saccharomyces cerevisiae.” Journal of theoretical biology, 293, 49–54.

Lu J, Luo L (2008). “Prediction for human transcription start site using diversity measure
with quadratic discriminant.” Bioinformation, 2(7), 316–321.

Mei H, Liao ZH, Zhou Y, Li SZ (2005). “A new set of amino acid descriptors and its application
in peptide QSARs.” Peptide Science, 80(6), 775–786.

Noble WS, Kuehn S, Thurman R, Yu M, Stamatoyannopoulos J (2005). “Predicting the in
vivo signature of human gene regulatory sequences.”Bioinformatics, 21(suppl 1), i338–i343.

Pages H, Aboyoun P, Gentleman R, DebRoy S (2013). Biostrings: String objects representing
biological sequences, and matching algorithms. R package version 2.30.1.

Pearlman RS, Smith KM (1999). “Metric validation and the receptor-relevant subspace con-
cept.” Journal of Chemical Information and Computer Sciences, 39(1), 28–35.

Rangwala H, Karypis G (2005). “Profile-based direct kernels for remote homology detection
and fold recognition.” Bioinformatics, 21(23), 4239–4247.

Rao H, Zhu F, Yang G, Li Z, Chen Y (2011). “Update of PROFEAT: A Web Server for
Computing Structural and Physicochemical Features of Proteins and Peptides from Amino
Acid Sequence.” Nucleic Acids Research, 39, 385–390.

Sandberg M, Eriksson L, Jonsson J, Sjöström M, Wold S (1998). “New chemical descriptors
relevant for the design of biologically active peptides. A multivariate characterization of 87
amino acids.” Journal of medicinal chemistry, 41(14), 2481–2491.

76

BioMedR Manual

Schneider G, Wrede P (1994). “The Rational Design of Amino Acid Sequences by Artificial
Neural Networks and Simulated Molecular Evolution: Do Novo Design of an Idealized
Leader Cleavage Site.” Biophysical Journal, 66, 335–344.

Shen J, Zhang J, Luo X, Zhu W, Yu K, Chen K, Li Y, Jiang H (2007). “Predicting Protein-
protein Interactions Based Only on Sequences Information.” Proceedings of the National
Academy of Sciences, 104, 4337–4341.

Sjöström M, Rännar S, Wieslander Å (1995). “Polypeptide sequence property relationships in
Escherichia coli based on auto cross covariances.” Chemometrics and intelligent laboratory
systems, 29(2), 295–305.

Steinbeck C, Han Y, Kuhn S, Horlacher O, Luttmann E, Willighagen E (2003). “The Chem-
istry Development Kit (CDK): An open-source Java library for chemo-and bioinformatics.”
Journal of chemical information and computer sciences, 43(2), 493–500.

Tian F, Zhou P, Li Z (2007). “T-scale as a novel vector of topological descriptors for amino
acids and its application in QSARs of peptides.” Journal of molecular structure, 830(1),
106–115.

van Westen GJ, Swier RF, Cortes-Ciriano I, Wegner JK, Overington JP, IJzerman AP, van
Vlijmen HW, Bender A (2013a). “Benchmarking of protein descriptor sets in proteochemo-
metric modeling (part 2): modeling performance of 13 amino acid descriptor sets.” Journal
of cheminformatics, 5(1), 42.

van Westen GJ, Swier RF, Wegner JK, IJzerman AP, van Vlijmen HW, Bender A (2013b).
“Benchmarking of protein descriptor sets in proteochemometric modeling (part 1): com-
parative study of 13 amino acid descriptor sets.” Journal of cheminformatics, 5(1), 41.

van Westen GJ, van den Hoven OO, van der Pijl R, Mulder-Krieger T, de Vries H, Wegner
JK, IJzerman AP, van Vlijmen HW, Bender A (2012). “Identifying novel adenosine receptor
ligands by simultaneous proteochemometric modeling of rat and human bioactivity data.”
Journal of Medicinal Chemistry, 55(16), 7010–7020.

van Westen GJ, Wegner JK, Geluykens P, Kwanten L, Vereycken I, Peeters A, IJzerman
AP, van Vlijmen HW, Bender A (2011). “Which compound to select in lead optimization?
Prospectively validated proteochemometric models guide preclinical development.” PloS
one, 6(11), e27518.

Venkatarajan MS, Braun W (2001). “New quantitative descriptors of amino acids based on
multidimensional scaling of a large number of physical–chemical properties.” Molecular
modeling annual, 7(12), 445–453.

Wang JB, Cao DS, Zhu MF, Yun YH, Xiao N, Liang YZ (2015). “In silico evaluation of
logD7. 4 and comparison with other prediction methods.” Journal of Chemometrics, 29(7),
389–398.

Wang Y, Backman TW, Horan K, Girke T (2013). “fmcsR: mismatch tolerant maximum
common substructure searching in R.” Bioinformatics, 29(21), 2792–2794.

Wiener H (1947). “Structural determination of paraffin boiling points.” Journal of the Amer-
ican Chemical Society, 69(1), 17–20.

77

BioMedR Manual

Wikberg JE, Lapinsh M, Prusis P (2004). “Proteochemometrics: a tool for modeling the
molecular interaction space.” Chemogenomics in drug discovery, pp. 289–309.

Xiao N, Cao D, Xu Q (2014a). Rcpi: Toolkit for Compound-Protein Interaction in Drug
Discovery. R package version 1.0.0, URL http://www.bioconductor.org/packages/

release/bioc/html/Rcpi.html.

Xiao N, Xu Q, Cao D (2014b). protr: Protein Sequence Descriptor Calculation and Simi-
larity Computation with R. R package version 0.2-1, URL http://CRAN.R-project.org/

package=protr.

Yamanishi Y, Araki M, Gutteridge A, Honda W, Kanehisa M (2008). “Prediction of drug–
target interaction networks from the integration of chemical and genomic spaces.” Bioin-
formatics, 24(13), i232–i240.

Ye X, Wang G, Altschul SF (2011). “An assessment of substitution scores for protein profile–
profile comparison.” Bioinformatics, 27(24), 3356–3363.

Yu G, Li F, Qin Y, Bo X, Wu Y, Wang S (2010). “GOSemSim: an R package for measuring
semantic similarity among GO terms and gene products.” Bioinformatics, 26(7), 976–978.

Zaliani A, Gancia E (1999). “MS-WHIM scores for amino acids: a new 3D-description for
peptide QSAR and QSPR studies.” Journal of chemical information and computer sciences,
39(3), 525–533.

Zhang L, Luo L (2003). “Splice site prediction with quadratic discriminant analysis using
diversity measure.” Nucleic Acids Research, 31(21), 6214–6220.

Zhang QC, Petrey D, Deng L, Qiang L, Shi Y, Thu CA, Bisikirska B, Lefebvre C, Accili D,
Hunter T, et al. (2012). “Structure-based prediction of protein-protein interactions on a
genome-wide scale.” Nature, 490(7421), 556–560.

Zhu M, Jie D, Cao D (2016a). BioMedR: Toolkit for Compound, Protein and DNA/RNA
Interaction. R package version 1.0.0, URL http://www.bioconductor.org/packages/

release/bioc/html/BioMedR.html.

Zhu M, Jie D, Cao D (2016b). redness: DNA/RNA Sequence Descriptor Calculation and
Similarity Computation with R. R package version 0.1-1, URL http://CRAN.R-project.

org/package=rDNAse.

Affiliation:

Min-feng Zhu
the third xiangya hospital
School of Pharmaceutical Sciences
Central South University
Changsha, Hunan, P. R. China
E-mail: wind2zhu@163.com

78

http://www.bioconductor.org/packages/release/bioc/html/Rcpi.html
http://www.bioconductor.org/packages/release/bioc/html/Rcpi.html
http://CRAN.R-project.org/package=protr
http://CRAN.R-project.org/package=protr
http://www.bioconductor.org/packages/release/bioc/html/BioMedR.html
http://www.bioconductor.org/packages/release/bioc/html/BioMedR.html
http://CRAN.R-project.org/package=rDNAse
http://CRAN.R-project.org/package=rDNAse
mailto:wind2zhu@163.com

BioMedR Manual

Jie Dong
School of Pharmaceutical Sciences
Central South University
Changsha, Hunan, P. R. China
E-mail: biomed@csu.edu.cn

Dongsheng Cao
School of Pharmaceutical Sciences
Central South University
Changsha, Hunan, P. R. China
E-mail: oriental-cds@163.com
URL: http://cbdd.csu.edu.cn

79

mailto:biomed@csu.edu.cn
mailto:oriental-cds@163.com
http://cbdd.csu.edu.cn

	Introduction
	1. Introduction
	Miscellaneous Tools
	2. Miscellaneous Tools
	Retrieve small molecules from PubChem, ChEMBL, CAS, KEGG, DrugBank
	2.1 Retrieve small molecules from PubChem, ChEMBL, CAS, KEGG, DrugBank
	Retrieve protein Sequences from Uniprot, KEGG, RCSBPDB
	2.2 Retrieve protein Sequences from Uniprot, KEGG, RCSBPDB
	Retrieve DNA/RNA Sequences from GenBank
	2.3 Retrieve DNA/RNA Sequences from GenBank
	Read FASTA, PDB Format files
	2.4 Read FASTA, PDB Format files
	Sanity Check of the Deoxyribonucleic Acid Types
	2.5 Sanity Check of the Deoxyribonucleic Acid Types
	Protein Sequence Partition
	2.6 Protein Sequence Partition
	Molecular data manipulation
	2.7 Molecular data manipulation
	Summary
	2.8 Summary

	Calculating Drug Molecular Descriptors and Fingerprints
	3. Calculating Drug Molecular Descriptors and Fingerprints
	Calculating Drug Molecular Descriptors
	3.1 Calculating Drug Molecular Descriptors
	logP
	WienerNumbers
	BCUT

	Calculating Drug Molecular Fingerprints
	3.2 Calculating Drug Molecular Fingerprints
	Estate
	MACCS

	Summary
	3.3 Summary

	Calculating Commonly Used Protein Descriptors
	4. Calculating Commonly Used Protein Descriptors
	Amino Acid Composition (AAC)
	4.1 Amino Acid Composition (AAC)
	Dipeptide Composition (DC)
	4.2 Dipeptide Composition (DC)
	Tripeptide Composition (TC)
	4.3 Tripeptide Composition (TC)
	Autocorrelation Descriptors
	4.4 Autocorrelation Descriptors
	Normalized Moreau-Broto Autocorrelation Descriptors
	Moran Autocorrelation Descriptors
	Geary Autocorrelation Descriptors

	Composition / Transition / Distribution
	4.5 Composition / Transition / Distribution
	Composition
	Transition
	Distribution

	Conjoint Triad Descriptors
	4.6 Conjoint Triad Descriptors
	Quasi-sequence-order Descriptors
	4.7 Quasi-sequence-order Descriptors
	Sequence-order-coupling Number
	Quasi-sequence-order Descriptors

	Pseudo-Amino Acid Composition (PAAC)
	4.8 Pseudo-Amino Acid Composition (PAAC)
	Profile-based Descriptors
	4.9 Profile-based Descriptors
	Descriptors for Proteochemometric Modeling
	4.10 Descriptors for Proteochemometric Modeling
	Summary
	4.11 Summary

	Calculating DNA/RNA Commonly Used Descriptors
	5. Calculating DNA/RNA Commonly Used Descriptors
	Kmer
	5.1 Kmer
	Increment of diversity
	Dinucleotide-based auto covariance
	5.2 Dinucleotide-based auto covariance
	Dinucleotide-based cross covariance
	Dinucleotide-based auto-cross covariance
	Trinucleotide-based auto covariance
	5.3 Trinucleotide-based auto covariance
	Trinucleotide-based cross covariance
	Trinucleotide-based auto-cross covariance
	Pseudo dinucleotide composition
	5.4 Pseudo dinucleotide composition
	Pseudo k-tupler composition
	Summary
	5.5 Summary

	Generating Interaction Descriptors between Drug, Protein and DNA/RNA
	6. Generating Interaction Descriptors between Drug, Protein and DNA/RNA
	Generating Drug-Target Interaction Descriptors
	6.1 Generating Drug-Target Interaction descriptors
	Summary
	6.2 Summary

	Clustering
	7. Clustering
	Binning Clustering
	7.1 Binning Clustering
	Jarvis-Patrick Clustering
	7.2 Jarvis-Patrick Clustering
	Multi-Dimensional Scaling (MDS)
	7.3 Multi-Dimensional Scaling (MDS)
	Kohonen's self-organising map (SOM)
	7.4 Kohonen's self-organising map (SOM)
	Summary
	7.5 Summary

	Similarity
	8. Similarity
	Structure-Based Chemical Similarity Searching
	8.1 Structure-Based Chemical Similarity Searching
	Similarity Calculation by Sequence Alignment
	8.2 Similarity Calculation by Sequence Alignment
	Similarity Calculation by GO Semantic Similarity Measures
	8.3 Similarity Calculation by GO Semantic Similarity Measures
	Summary
	8.4 Summary

	Applications
	9. Applications
	Regression Modeling in QSRR Study of logD
	9.1 Regression Modeling in QSRR Study of logD
	Classification Modeling in QSRR Study of hERG
	9.2 Classification Modeling in QSRR Study of hERG
	Chemical Similarity Searching
	9.3 Chemical Similarity Searching
	Clustering of Molecules Based on Structural Similarities
	9.4 Clustering of Molecules Based on Structural Similarities
	Predicting Protein Subcellular Localization
	9.5 Predicting Protein Subcellular Localization
	Predicting nucleosome positioning in genomes
	9.6 Predicting nucleosome positioning in genomes
	Predicting Drug-Target Interaction by Integrating Chemical and Genomic Spaces
	9.7 Predicting Drug-Target Interaction by Integrating Chemical and Genomic Spaces

	Acknowledgments
	References

