
Package ‘BinQuasi’
July 27, 2018

Version 0.1-6

Date 2018-07-26

Title Analyzing Replicated ChIP Sequencing Data Using Quasi-Likelihood

Imports edgeR, mgcv, pracma, quadprog, Rsamtools, GenomicAlignments,
GenomicRanges, IRanges, csaw(>= 1.12.0), SummarizedExperiment,
BiocGenerics, S4Vectors, RMySQL

Suggests nleqslv, knitr, rmarkdown

Description Identify peaks in ChIP-seq data with biological replicates using a one-sided quasi-
likelihood ratio test in quasi-Poisson or quasi-negative binomial models.

License GPL (>= 2)

NeedsCompilation yes

Maintainer Emily Goren <emily.goren@gmail.com>

URL https://github.com/emilygoren/BinQuasi

BugReports https://github.com/emilygoren/BinQuasi/issues

Author Emily Goren [aut, cre],
Steve Lund [aut] (The author of the QuasiSeq package, from which all
functions were modified to produce this package.),
Long Qu [aut] (The author of the QuasiSeq package, from which all
functions were modified to produce this package.),
Ian Marschner [aut] (The author of glm2::glm.fit2, which was modified
slightly leading to glm.fit3 in this package.),
Daniel Gerhard [aut] (The author of mcprofile::orglm.fit, which was
modified slightly and used under the same name in this package.),
R Core Team [aut] (The author of stats::glm.fit, which was modified
slightly leading to glm.fit3 in this package.)

RoxygenNote 6.0.1

VignetteBuilder knitr

Repository CRAN

Date/Publication 2018-07-27 08:00:03 UTC

1

https://github.com/emilygoren/BinQuasi
https://github.com/emilygoren/BinQuasi/issues

2 BQ

R topics documented:

BinQuasi . 2
BQ . 2
call.peaks . 5
coef.glm . 6
count.table . 7
NBDev . 9
PoisDev . 11
QL.fit . 13
QL.results . 16

Index 19

BinQuasi Analyzing Replicated ChIP Sequencing Data Using Quasi-Likelihood

Description

Identify peaks in ChIP-seq data with biological replicates.

Details

Identify peaks in ChIP-seq data with biological replicates using a one-sided quasi-likelihood ratio
test in quasi-Poisson or quasi-negative binomial models.

BQ Call peaks in replicated ChIP-seq data using BinQuasi

Description

Use the BinQuasi algorithm to call peaks using ChIP-seq data with biological replicates.

Usage

BQ(dir, ChIP.files, control.files, alpha = 0.05, bin.size = NULL,
frag.length = NULL, minimum.count = 20, Model = "NegBin",
print.progress = TRUE, method = "QLShrink", p.window.adjust = "BY",
Dispersion = "Deviance", log.offset = NULL, NBdisp = "trend",
bias.fold.tolerance = 1.1)

BQ 3

Arguments

dir Directory where the sorted bam files (and their corresponding bam indices) are
saved.

ChIP.files File names (with file extensions) of the ChIP sample files in sorted bam format.

control.files File names (with file extensions) of the control/input sample files in sorted bam
format.

alpha The desired significance threshold used to call peaks. Must be in (0, 0.5).

bin.size Window size (constant across all samples) used to generate a partition for counts.
If NULL, it will be estimated based on Shimazaki and Shinomoto (2007).

frag.length Average length of the ChIP fragments in each sample provided. Reads are ex-
tended to this length in the 5’-to-3’ direction. If NULL, cross correlation will be
used to estimate the fragment

minimum.count The count threshold used for filtering out windows with sparse counts. Any
genomic window with a total count, across all samples, less than this value will
be removed.

Model Must be one of "Poisson" or "NegBin", specifying use of a quasi-Poisson or
quasi-negative binomial model, respectively.

print.progress logical. If TRUE, updates are provided regarding which window (row number) is
being analyzed. Updates occur frequently to start then eventually occur every
5000 windows.

method Must be one of "QL", "QLShrink", or "QLSpline", specifying which method
of Lund, Nettleton, McCarthy and Smyth (2012) should be used to compute
p-values.

p.window.adjust

FDR control method applied to the windows. Must be either "BH" or "BY" to
specify the procedure of Benjamini-Hochberg or Benjamini-Yekutieli, respec-
tively.

Dispersion Must be one of "Deviance" or "Pearson", specifying which type of estimator
should be used for estimating the quasi-likelihood dispersion parameters.

log.offset A vector of log-scale, additive factors used to adjust estimated log-scale means
for differences in library sizes across samples. Commonly used offsets include
log.offset=log(colSums(counts)) and log.offset=log(apply(counts[rowSums(counts)!=0,],2,quantile,.75)).
If NULL, the later offset is used.

NBdisp Used only when Model="NegBin". Must be one of "trend", "common", or a
vector of non-negative real numbers with length equal to nrow(counts). Spec-
ifying NBdisp="trend" or NBdisp="common" will use estimateGLMTrended-
Disp or estimateGLMCommonDisp, respectively, from the package edgeR to es-
timate negative binomial dispersion parameters for each window. Estimates ob-
tained from other sources can be used by entering NBdisp as a vector containing
the negative binomial dispersion value to use for each window when fitting the
quasi-likelihood model.

bias.fold.tolerance

A numerical value no smaller than 1. If the bias reduction of maximum likeli-
hood estimates of (log) fold change is likely to result in a ratio of fold changes

4 BQ

greater than this value, then bias reduction will be performed on such windows.
Setting bias.fold.tolerance=Inf will completely disable bias reduction; set-
ting bias.fold.tolerance=1 will always perform bias reduction. See NBDev
or PoisDev for details.

Details

This function calls peaks in replicated ChIP-seq data using the BinQuasi algorithm of Goren, Liu,
Wang, and Wang.

Value

A list containing:

peaks Dataframe of the called peaks with columns for the start and end location, width,
chromosome, p-value, and q-value computed using the Benjamini and Hochberg
method.

bin.size The window width used to create the counts dataframe.
fragment.length

Vector of the fragment lengths used to extend the reads in each sample.

filter The count threshold used to create the counts dataframe. Windows with counts
below this value were removed.

Author(s)

Emily Goren (<emily.goren@gmail.com>)

References

Goren, Liu, Wang and Wang (2018) "BinQuasi: a peak detection method for ChIP-sequencing data
with biological replicates" Bioinformatics.

Shimazaki and Shinomoto (2007) "A method for selecting the bin size of a time histogram" Neural
computation, 19(6), 1503-27.

Ramachandran, Palidwor, Porter, and Perkins (2013) "MaSC: mappability-sensitive cross-correlation
for estimating mean fragment length of single-end short-read sequencing data" Bioinformatics
29(4), 444-50.

Benjamini and Hochberg (1995) "Controlling the false discovery rate: a practical and powerful
approach to multiple testing" Journal of the Royal Statistical Society Series B, 57: 289-300.

Benjamini and Yekutieli (2001) "The control of the false discovery rate in multiple testing under
dependency" Annals of Statistics. 29: 1165-1188.

Lund, Nettleton, McCarthy and Smyth (2012) "Detecting differential expression in RNA-sequence
data using quasi-likelihood with shrunken dispersion estimates" SAGMB, 11(5).

call.peaks 5

Examples

Not run:
Fit a quasi-negative binomial model using all default settings.
fpath <- paste0(system.file(package = 'BinQuasi'), '/extdata/')
fpath
results <- BQ(fpath, ChIP.files = c('C1.bam', 'C2.bam'), control.files = c('I1.bam', 'I2.bam'))
head(results$peaks)

End(Not run)

call.peaks Call peaks from a list of window-level p-values

Description

Call peaks from a list of p-values corresponding to window-level tests on a genomic partition of
ChIP-seq counts. Used within the main peak calling function, BQ.

Usage

call.peaks(window.pvals, method = c("BY", "BH", "none"), start, end,
chromosomes, alpha = 0.05)

Arguments

window.pvals Vector of p-values, with each element corresponding to a window of a genomic
partition. Typically obtained from the QL.fit and QL.results functions.

method Correction method applied to window.pvals. Must be one of "BH", "BY", or
"none" to specify Benjamini-Hochberg, Benjamini-Yekutieli, or no adjustment,
respectively.

start Vector of the genomic start locations corresponding to the supplied p-values.

end Vector of the genomic end locations corresponding to the supplied p-values.

chromosomes Vector of the chromosome names corresponding to the supplied p-values.

alpha The desired significance threshold in (0, 0.5).

Details

After correcting for multiple testing using the adjustment specified by method, windows that are
significant according to the threshold alpha are merged if adjacent and retained as candidate re-
gions. Simes’ procedure is used to combine the window-level p-values in each candidate region
into a region-level p-value. The Benjamini-Hochberg procedure is applied to the resulting candi-
date regions and those that exceed the significance threshold alpha are returned as peaks.

6 coef.glm

Value

The called peaks as a dataframe with variables:

start Genomic start locations of the called peaks.

end Genomic end locations of the called peaks.

width Width of the called peaks.

chr Chromosomes of the called peaks.

P.val p-values of the called peaks (aggregated from the windows comprising the peak
using Simes’ procedure).

Q.val q-values of the called peaks (computing using the Benjamini-Hochberg proce-
dure).

Author(s)

Emily Goren (<emily.goren@gmail.com>).

References

Benjamini and Hochberg (1995) "Controlling the false discovery rate: a practical and powerful
approach to multiple testing" Journal of the Royal Statistical Society Series B, 57: 289-300.

Benjamini and Yekutieli (2001) "The control of the false discovery rate in multiple testing under
dependency" Annals of Statistics. 29: 1165-1188.

Simes (1986) "An improved Bonferroni procedure for multiple tests of significance" Biometrika,
73(3): 751-754.

Examples

Example for a single chromosome.
start <- seq(1, 1e6, by = 200)
end <- start + 200 - 1
chromosomes <- rep('chr1', length(start))
p <- c(runif(length(start) - 10), rep(1e-12, 10))
called <- call.peaks(p, "BH", start, end, chromosomes)
called

coef.glm Extract model coefficients

Description

Extract model coefficients.

Usage

S3 method for class 'glm'
coef(object, type = c("raw", "bias", "corrected"), ...)

count.table 7

Arguments

object The fitted model.

type Must be one of raw, bias, or corrected.

... Additional arguments.

count.table Create a matrix of ChIP-seq count data

Description

Create a matrix of ChIP-seq count data from sorted bam files using a non-overlapping genomic
partition. Used within the main peak calling function, BQ.

Usage

count.table(dir, ChIP.files, control.files, bin.size = NULL,
frag.length = NULL, minimum.count = 20)

Arguments

dir Directory where the sorted bam files (and their corresponding bam indices) are
saved.

ChIP.files File names (with file extensions) of the ChIP sample files in sorted bam format.

control.files File names (with file extensions) of the input/control sample files in sorted bam
format.

bin.size Window size, constant across all samples, used to generate a non-overlapping
partition for counts. If NULL, an estimate will be used (see details).

frag.length Average length of the ChIP fragments in each sample provided. Reads are ex-
tended to this length from their 3’ ends. If NULL, cross correlation will be used
to estimate the fragment length of each sample (see details).

minimum.count The count threshold used for filtering out windows with sparse counts. Any
genomic window with counts less than this value across all samples will be
removed.

Details

This function creates a count table of ChIP sequencing data (supplied as sorted bam files) using a
non-overlapping partition across the genome.

The fragment length (if not provided) is estimated using the cross-correlation method of Ramachan-
dran et al (2013). A fragment length is estimated for each sample, after removing duplicate reads, by
taking the average over all chromosomes in the sample. Estimation is performed at 5 bp resolution
and restricted to a minimum fragment length of 50 bp and maximum of 600 bp.

The bin size (if not provided) is selected using a procedure by Shimazaki and Shinomoto (2007)
based on minimizing the mean-integrated squared error for a time-dependent Poisson point process.

8 count.table

This procedure is applied to each ChIP sample (at 5 bp resolution, restricted to a minimum of 50 bp
and maximum of 1000 bp), and the minimum across all ChIP samples is returned as the bin size.

For a given sample and window, the count is determined as the number of fragments overlapping
the window.

Value

A list containing:

counts Data frame with rows corresponding to genomic windows and columns for the
chromosomes, start and end locations, as well as a column for the counts of each
sample.

bin.size The bin size used to create the genomic partition.

fragment.length

Vector of the fragment lengths used to extend the reads in each sample.

filter Count threshold used to create the counts data frame. Windows with counts
summed across all samples that fall below this value were removed.

Author(s)

Emily Goren (<emily.goren@gmail.com>).

References

Shimazaki and Shinomoto (2007) "A method for selecting the bin size of a time histogram" Neural
computation, 19(6), 1503-27.

Ramachandran, Palidwor, Porter, and Perkins (2013) "MaSC: mappability-sensitive cross-correlation
for estimating mean fragment length of single-end short-read sequencing data" Bioinformatics
29(4), 444-50.

Examples

Not run:
fpath <- paste0(system.file(package = 'BinQuasi'), '/extdata/')
d <- count.table(dir = fpath,

ChIP.files = c('C1.bam', 'C2.bam'),
control.files = c('I1.bam', 'I2.bam'),
bin.size = 60, frag.length = c(101, 300, 150, 10),
minimum.count = 20)
head(d$counts)

End(Not run)

NBDev 9

NBDev Fit a negative binomial GLM for a given design matrix

Description

A function called within QL.fit to fit a negative binomial GLM to each window for a given design
matrix.

Usage

NBDev(counts, design, log.offset, nb.disp, print.progress = TRUE,
bias.fold.tolerance = 1.1, chip.col.indicator)

Arguments

counts A matrix of integers obtained by counting reads across a genomic partition.
Each row contains observations from a single window of the genomic partition.
Each column contains observations from a single sample (either ChIP or con-
trol/input).

design A design matrix for the full model, including a column that indicates whether
the observation is a ChIP sample (1) or control/input (0). The number of rows
must be ncol(counts). Means are modeled with a log link function.

log.offset A vector of log-scale, additive factors used to adjust estimated log-scale means
for differences in library sizes across samples. Commonly used offsets include
log.offset=log(colSums(counts)) and log.offset=log(apply(counts[rowSums(counts)!=0,],2,quantile,.75)).
If NULL, the later offset is used.

nb.disp Estimated negative binomial dispersion parameters obtained from either estimateGLMTrendedDisp
or estimateGLMCommonDisp in package edgeR. These estimates are treated as
known and are used to compute deviances.

print.progress logical. If TRUE, the function will provide an update on what window (row
number) is being analyzed. Updates occur frequently to start then eventually
occur every 5000 windows.

bias.fold.tolerance

A numerical value no smaller than 1. If the bias reduction of maximum likeli-
hood estimates of (log) fold change is likely to result in a ratio of fold changes
greater than this value, then bias reduction will be performed on such windows.
Setting bias.fold.tolerance=Inf will completely disable bias reduction; set-
ting bias.fold.tolerance=1 will always perform bias reduction (see details).
If the constrained estimate differs from the unconstrained estimate, bias reduc-
tion is not performed.

chip.col.indicator

A binary vector of length ncol(design.matrix) that indicates which column
of the full design matrix corresponds to the ChIP indicator.

10 NBDev

Details

This functions fits, for each row of counts, a negative binomial log-linear model through the GLM
framework with the over-dispersion parameter fixed.

Asymptotic biases of regression coefficients (i.e., log fold changes) are then estimated by a plug-
in estimate [eqn. (15.4) of McCullagh and Nelder, 1989] from the last iteration of iteratively
reweighted least squares (IWLS) procedure. The fitted response values are then compared with or
without such a bias term. If the ratio of fitted response values are larger than bias.fold.tolerance
for any observation and the unconstrained estimate equals the constrained estimate, then the bias-
reduction (not bias-correction) procedure according to Firth (1993) and Kosmidis & Firth (2009) is
applied to such rows of counts, by adjusting the score equation with a term based on the observed
information. Such bias-reduced estimates are more advantageous than directly subtracting the esti-
mated bias from the maximum likelihood estimates as the latter may not exist (e.g., when all counts
in the control/input group are zero).

Value

A list containing:

dev Vector containing the deviance for each window under a negative binomial model
fit to design matrix specified by design. This vector is passed along within the
QL.fit function.

means Matrix of fitted mean values for each window.

parms Matrix of estimated coefficients for each window. Note that these are given
on the log scale. (i.e., intercept coefficient reports log(average count) and non-
intercept coefficients report estimated (and bias reduced, when appropriate) log
fold-changes.)

dev.constrained

Same as dev, subject to the constraint that the ChIP coefficient is non-negative.
If fitting a reduced model with no ChIP coefficient, this will be NA.

means.constrained

Same as means, subject to the constraint that the ChIP coefficient is non-negative.
If fitting a reduced model with no ChIP coefficient, this will be NA.

parms.constrained

Same as parms, subject to the constraint that the ChIP coefficient is non-negative.
If fitting a reduced model with no ChIP coefficient, this will be NA.

Author(s)

Emily Goren (<emily.goren@gmail.com>) based on modifications of code by Steve Lund and
Long Qu.

References

Firth (1993) "Bias reduction of maximum likelihood estimates" Biometrika, 80, 27–38.

Kosmidis and Firth (2009) "Bias reduction in exponential family nonlinear models" Biometrika, 96,
793–804.

PoisDev 11

Lund, Nettleton, McCarthy and Smyth (2012) "Detecting differential expression in RNA-sequence
data using quasi-likelihood with shrunken dispersion estimates" emphSAGMB, 11(5).

McCullagh and Nelder (1989) "Generalized Linear Models", 2nd edition. London: Chapman and
Hall.

PoisDev Compute Poisson deviances for a given design matrix

Description

A function called within QL.fit to compute Poisson deviances of each window for a given design
matrix.

Usage

PoisDev(counts, design, log.offset, print.progress = TRUE,
bias.fold.tolerance = 1.1, chip.col.indicator)

Arguments

counts A matrix of integer counts obtained by counting reads across a genomic par-
tition. Each row contains observations from a single window of the genomic
partition. Each column contains observations from a single sample (either ChIP
or control/input).

design A design matrix for the full model, including a column that indicates whether
the observation is a ChIP sample (1) or control/input (0). The number of rows
must be ncol(counts). Means are modeled with a log link function.

log.offset A vector of log-scale, additive factors used to adjust estimated log-scale means
for differences in library sizes across samples. Commonly used offsets include
log.offset=log(colSums(counts)) and log.offset=log(apply(counts[rowSums(counts)!=0,],2,quantile,.75)).
If NULL, the later offset is used.

print.progress logical. If TRUE, the function will provide an update on which window (row
number) is being analyzed. Updates occur frequently to start then eventually
occur every 5000 windows.

bias.fold.tolerance

A numerical value no smaller than 1. If the bias reduction of maximum likeli-
hood estimates of (log) fold change is likely to result in a ratio of fold changes
greater than this value, then bias reduction will be performed on such windows.
Setting bias.fold.tolerance=Inf will completely disable bias reduction; set-
ting bias.fold.tolerance=1 will always perform bias reduction (see details).
If the constrained estimate differs from the unconstrained estimate, bias reduc-
tion is not performed.

chip.col.indicator

A binary vector of length ncol(design.matrix) that indicates which column
of the full design matrix corresponds to the ChIP indicator.

12 PoisDev

Details

This functions fits, for each row of counts, a Poisson log-linear model.

Asymptotic biases of regression coefficients (i.e., log fold changes) are then estimated by a plug-
in estimate [eqn. (15.4) of McCullagh and Nelder, 1989] from the last iteration of iteratively
reweighted least squares (IWLS) procedure. The fitted response values are then compared with or
without such a bias term. If the ratio of fitted response values are larger than bias.fold.tolerance
for any observation and the unconstrained estimate equals the constrained estimate, then the bias-
reduction (not bias-correction) procedure according to Firth (1993) and Kosmidis & Firth (2009) is
applied to such rows of counts, by adjusting the score equation with a term based on the observed
information. Such bias-reduced estimates are more advantageous than directly subtracting the esti-
mated bias from the maximum likelihood estimates as the latter may not exist (e.g., when all counts
in one treatment group are zeros).

When the ChIP coefficient is constrained to be non-negative, quadratic programming is applied
during IWLS using solve.QP. Note that if the constrained estimate of the regression coefficient
differs from the unconstrained estimate for a given window, bias reduction is not performed for that
window.

Value

A list containing:

dev Vector containing the deviance for each window under a Poisson model fit to de-
sign matrix specified by design. This vector is passed along within the QL.fit
function.

means Matrix of fitted mean values for each window.

parms Matrix of estimated coefficients for each window.
dev.constrained

Same as dev, subject to the constraint that the ChIP coefficient is non-negative.
If fitting a reduced model with no ChIP coefficient, this will be NA.

means.constrained

Same as means, subject to the constraint that the ChIP coefficient is non-negative.
If fitting a reduced model with no ChIP coefficient, this will be NA.

parms.constrained

Same as parms, subject to the constraint that the ChIP coefficient is non-negative.
If fitting a reduced model with no ChIP coefficient, this will be NA.

Author(s)

Emily Goren (<emily.goren@gmail.com>) based on modifications of code by Steve Lund.

References

Firth (1993) "Bias reduction of maximum likelihood estimates" Biometrika, 80, 27–38.

Kosmidis and Firth (2009) "Bias reduction in exponential family nonlinear models" Biometrika, 96,
793–804.

Lund, Nettleton, McCarthy and Smyth (2012) "Detecting differential expression in RNA-sequence
data using quasi-likelihood with shrunken dispersion estimates" emphSAGMB, 11(5).

QL.fit 13

McCullagh and Nelder (1989) "Generalized Linear Models", 2nd edition. London: Chapman and
Hall.

QL.fit Fit quasi-likelihood models to replicated ChIP-seq data partitioned
into a count matrix

Description

Fit constrained quasi-likelihood models to ChIP-seq data partitioned into a count matrix.

Usage

QL.fit(counts, design.matrix, chip.col.indicator, log.offset = NULL,
Model = "NegBin", print.progress = TRUE, NBdisp = "trend",
bias.fold.tolerance = 1.1, ...)

Arguments

counts A matrix of integers obtained by counting reads across a genomic partition.
Each row contains observations from a single window of the genomic partition.
Each column contains observations from a single sample (either ChIP or con-
trol/input).

design.matrix A design matrix for the full model, including a column that indicates whether the
observation is a ChIP sample. The number of rows must be ncol(counts). The
number of columns must be at least two, usually an intercept and an indicator
whether the sample is ChIP (1) or input/control (0). Means are modeled with a
log link function.

chip.col.indicator

A binary vector of length ncol(design.matrix) that indicates which column
of design.matrix corresponds to the ChIP indicator.

log.offset A vector of log-scale, additive factors used to adjust estimated log-scale means
for differences in library sizes across samples. Commonly used offsets include
log.offset=log(colSums(counts)) and log.offset=log(apply(counts[rowSums(counts)!=0,],2,quantile,.75)).
If NULL, the later offset is used.

Model Must be one of "Poisson" or "NegBin", specifying use of a quasi-Poisson or
quasi-negative binomial model, respectively.

print.progress logical. If TRUE, updates are provided regarding which window (row number) is
being analyzed. Updates occur frequently to start then eventually occur every
5000 windows.

NBdisp Used only when Model="NegBin". Must be one of "trend", "common" or a
vector of non-negative real numbers with length equal to nrow(counts). Spec-
ifying NBdisp="trend" or NBdisp="common" will use estimateGLMTrended-
Disp or estimateGLMCommonDisp, respectively, from the package edgeR to es-
timate negative binomial dispersion parameters for each window. Estimates ob-
tained from other sources can be used by entering NBdisp as a vector containing

14 QL.fit

the negative binomial dispersion value to use for each window when fitting the
quasi-likelihood model.

bias.fold.tolerance

A numerical value no smaller than 1. If the bias reduction of maximum likeli-
hood estimates of (log) fold change is likely to result in a ratio of fold changes
greater than this value, then bias reduction will be performed on such windows.
Setting bias.fold.tolerance=Inf will completely disable bias reduction; set-
ting bias.fold.tolerance=1 will always perform bias reduction. Estimates
that are projected into the constrained space are not bias-reduced.

... Arguments to be passed to the function estimateGLMTrendedDisp or estimateGLMCommonDisp
from the package edgeR.

Details

A wrapper for PoisDev or NBDev, depending on whether quasi-Poisson or quasi-negative binomial
models are requested. See the respective functions for details. Used within the main BQ peak calling
function.

Value

A list containing:

LRT Matrix providing unadjusted two-sided likelihood ratio test statistics. Each col-
umn contains statistics from a single hypothesis test that the ChIP coefficient is
equal to zero versus not equal to zero, applied separately to each window.

phi.hat.dev Vector providing unshrunken, deviance-based estimates of the quasi-dispersion
parameter for each window.

phi.hat.pearson

Vector providing unshrunken, Pearson estimates of the quasi-dispersion param-
eter for each window.

mn.cnt Vector of the average count for each window.

den.df Denominator degrees of freedom. Equal to the number of samples minus the
number of fitted parameters in the full model.

num.df Vector of numerator degrees of freedom for each test, computed as the difference
in the number of fitted parameters between the full and reduced models.

Model Either "Poisson" or "NegBin", specifying which model (quasi-Poisson or quasi-
negative binomial, respectively) was used.

nb.disp Only appears when Model="NegBin". Vector providing negative binomial dis-
persion parameter estimates used during fitting of quasi-negative binomial model
for each window.

fitted.values Matrix of fitted mean values without constraints.

coefficients Matrix of estimated coefficients for each window. Note that these are given
on the log scale. (i.e., intercept coefficients report log(average count) and non-
intercept coefficients report estimated (and bias reduced, when appropriate) log
fold-changes.)

QL.fit 15

LRT.constrained

Same as LRT, but uses the constrained MLE in the full model. Each column
contains statistics from a single hypothesis test that the ChIP coefficient is equal
to zero versus greater than zero, applied separately to each window.

phi.hat.dev.constrained

Same as phi.hat.dev, but subject to the constraint that the ChIP coefficient is
non-negative.

phi.hat.pearson.constrained

Same as phi.hat.pearson, but subject to the constraint that the ChIP coeffi-
cient is non-negative.

fitted.values.constrained

Same as fitted.values, but subject to the constraint that the ChIP coefficient
is non-negative.

coefficients.constrained

Same as coefficients, but subject to the constraint that the ChIP coefficient is
non-negative.

Author(s)

Emily Goren (<emily.goren@gmail.com>) based on modifications of code by Steve Lund.

References

Goren, Liu, Wang and Wang (2018) "BinQuasi: a peak detection method for ChIP-sequencing data
with biological replicates" Bioinformatics.

Kosmidis and Firth (2009) "Bias reduction in exponential family nonlinear models" Biometrika, 96,
793–804.

Lund, Nettleton, McCarthy and Smyth (2012) "Detecting differential expression in RNA-sequence
data using quasi-likelihood with shrunken dispersion estimates" SAGMB, 11(5).

McCarthy, Chen and Smyth (2012) "Differential expression analysis of multifactor RNA-Seq ex-
periments with respect to biological variation" Nucleic Acids Res. 40(10), 4288–97.

Examples

set.seed(5)
##
Simulate data three replicates with one chromosome
##
reps <- 3
chr.length <- 1e5
window.width <- 200
K <- chr.length / window.width
start <- seq(1, chr.length, by = window.width)
end <- start + window.width - 1
n.peaks <- 100 # No. of true peaks
peak.idx <- sample.int(K, n.peaks)
samples <- c(paste0('C', 1:reps), paste0('I', 1:reps))
Set parameters
beta0 <- runif(K, log(10), log(100))

16 QL.results

beta1 <- rep(0, K); beta1[peak.idx] <- log(5) / runif(n.peaks)^(1/5)
Set means
mu.ChIP <- exp(beta0 + beta1)
mu.input <- exp(beta0)
Negative binomial dispersion parameter
phi <- 1/rchisq(K, df = 5)
Draw read counts using a negative binomial distribution
C <- lapply(1:reps, function(r) rpois(K, (mu.ChIP * rgamma(K, 1/phi))/(1/phi)))
I <- lapply(1:reps, function(r) rpois(K, (mu.input * rgamma(K, 1/phi))/(1/phi)))
counts <- do.call('cbind', append(C, I))
colnames(counts) <- samples
rownames(counts) <- start
head(counts)

##
Fit quasi-negative binomial model to each window.
##
design.matrix <- cbind(rep(1, reps*2), # Intercept

rep(c(1,0), each = reps)) # Indicates ChIP sample
chip.col.indicator <- c(0,1) # Second column of design matrix indicates ChIP sample
fit <- QL.fit(counts, design.matrix, chip.col.indicator,

log.offset = rep(1, ncol(counts)), Model = 'NegBin')
Look at fitted values
counts.fitted <- fit$fitted.values.constrained
head(round(counts.fitted, 2))

QL.results Obtain p- and q-values using results from QL.fit

Description

Obtain significance results for quasi-likelihood models fit to ChIP-seq data partitioned into counts.

Usage

QL.results(fit, Dispersion = "Deviance", one.sided = TRUE,
spline.df = NULL, Plot = FALSE, padj = TRUE)

Arguments

fit The list returned by the function QL.fit.

Dispersion Must be one of "Deviance" or "Pearson", specifying which type of estimator
should be used for estimating the quasi-likelihood dispersion parameter.

one.sided logical. If TRUE, a one-sided test for the ChIP coefficient is reported. Other-
wise, if FALSE, a two-sided test is reported.

spline.df Optional. User may specify the degrees of freedom to use when fitting a cubic
spline to log-scale(estimated dispersion) versus the log(average count). Default
uses cross-validation in sreg function to pick appropriate degrees of freedom.

QL.results 17

Plot logical. If TRUE, the estimated dispersion versus the average count are plotted
on a log-scale with the corresponding cubic spline fit overlaid.

padj logical. If TRUE, Benjamini & Hochberg’s adjustment for multiple comparisons
is applied.

Details

Obtain significance results from an object fitted using QL.fit. Used within the main peak calling
function, BQ.

Value

A list containing:

P.values List of matrices providing p-values for the QL, QLShrink and QLSpline meth-
ods, respectively. The i-th column of each element of pvals corresponds to the
hypothesis test assigned in the i-th window.

Q.values List of matrices providing q-values for the QL, QLShrink and QLSpline meth-
ods, respectively. The i-th column of each element of qvals corresponds to the
hypothesis test assigned in the i-th window.

F.stat List of matrices providing F-statistics for the QL, QLShrink and QLSpline meth-
ods, respectively. The i-th column of each element of F.stat corresponds to the
hypothesis test assigned in the i-th window.

d0 Vector containing estimated additional denominator degrees of freedom gained
from shrinking dispersion estimates in the QLShrink and QLSpline procedures,
respectively.

Author(s)

Emily Goren (<emily.goren@gmail.com>) based on modifications of code by Steve Lund.

References

Goren, Liu, Wang and Wang (2018) "BinQuasi: a peak detection method for ChIP-sequencing data
with biological replicates" Bioinformatics.

Benjamini and Hochberg (1995) "Controlling the false discovery rate: a practical and powerful
approach to multiple testing" Journal of the Royal Statistical Society Series B, 57: 289-300.

Lund, Nettleton, McCarthy and Smyth (2012) "Detecting differential expression in RNA-sequence
data using quasi-likelihood with shrunken dispersion estimates" SAGMB, 11(5).

Examples

set.seed(5)
##
Simulate data three replicates with one chromosome
##
reps <- 3
chr.length <- 1e5
window.width <- 200

18 QL.results

K <- chr.length / window.width
start <- seq(1, chr.length, by = window.width)
end <- start + window.width - 1
n.peaks <- 100 # No. of true peaks
peak.idx <- sample.int(K, n.peaks)
samples <- c(paste0('C', 1:reps), paste0('I', 1:reps))
Set parameters
beta0 <- runif(K, log(10), log(100))
beta1 <- rep(0, K); beta1[peak.idx] <- log(5) / runif(n.peaks)^(1/5)
Set means
mu.ChIP <- exp(beta0 + beta1)
mu.input <- exp(beta0)
Negative binomial dispersion parameter
phi <- 1/rchisq(K, df = 5)
Draw read counts using a negative binomial distribution
C <- lapply(1:reps, function(r) rpois(K, (mu.ChIP * rgamma(K, 1/phi))/(1/phi)))
I <- lapply(1:reps, function(r) rpois(K, (mu.input * rgamma(K, 1/phi))/(1/phi)))
counts <- do.call('cbind', append(C, I))
colnames(counts) <- samples
rownames(counts) <- start

##
Fit quasi-negative binomial model to each window.
##
design.matrix <- cbind(rep(1, reps*2), # Intercept

rep(c(1,0), each = reps)) # Indicates ChIP sample
chip.col.indicator <- c(0,1) # Second column of design matrix indicates ChIP sample
fit <- QL.fit(counts, design.matrix, chip.col.indicator,

log.offset = rep(1, ncol(counts)), Model = 'NegBin')
window.results <- QL.results(fit)

Number of significant windows.
sum(window.results$Q.values$QLShrink < 0.05)

Compare significant windows to truth.
res <- as.numeric(window.results$Q.values$QLShrink < 0.05)
Number of true positives
TP <- sum(res[peak.idx] == 1)
TP
Number of false negatives
FN <- n.peaks - TP
FN
Number of false positives
FP <- sum(res) - TP
FP
Number of true negatives
TN <- (K - sum(res)) - FN
TN

Index

BinQuasi, 2
BQ, 2, 5, 7, 14, 17

call.peaks, 5
coef.glm, 6
count.table, 7

edgeR, 3, 9, 13, 14
estimateGLMCommonDisp, 3, 9, 13, 14
estimateGLMTrendedDisp, 3, 9, 13, 14

NBDev, 4, 9, 14

PoisDev, 4, 11, 14

QL.fit, 5, 9–11, 13, 17
QL.results, 5, 16

solve.QP, 12

19

	BinQuasi
	BQ
	call.peaks
	coef.glm
	count.table
	NBDev
	PoisDev
	QL.fit
	QL.results
	Index

