
Package ‘BayesSummaryStatLM’
March 3, 2015

Type Package

Title MCMC Sampling of Bayesian Linear Models via Summary Statistics

Version 1.0-1

Date 2015-01-01

Author Evgeny Savel'ev, Alexey Miroshnikov, Erin Conlon

Maintainer Evgeny Savel'ev <savelev@vt.edu>

Description Methods for generating Markov Chain Monte Carlo (MCMC) posterior sam-
ples of Bayesian linear regression model parameters that require only summary statis-
tics of data as input. Summary statistics are useful for systems with very lim-
ited amounts of physical memory. The package provides two functions: one function that com-
putes summary statistics of data and one function that carries out the MCMC posterior sam-
pling for Bayesian linear regression models where summary statistics are used as in-
put. The function read.regress.data.ff utilizes the R package 'ff' to han-
dle data sets that are too large to fit into a user's physical memory, by reading in data in chunks.

Depends R (>= 3.1.1), mvnfast, ff

License GPL (>= 2)

NeedsCompilation no

Repository CRAN

Date/Publication 2015-03-03 01:13:40

R topics documented:

bayes.regress . 2
read.regress.data.ff . 9
regressiondata.nz.all . 14
regressiondata.nz.pt1 . 14
regressiondata.nz.pt2 . 15

Index 16

1

2 bayes.regress

bayes.regress MCMC posterior sampling of Bayesian linear regression model pa-
rameters using only summary statistics

Description

This function generates MCMC posterior samples of the Bayesian linear regression model pa-
rameters, using only summary statistics X ′X , X ′Y and Y ′Y (e.g. calculated by the function
read.regress.data.ff() in this package). The samples are generated according to the user
specified choices of prior distributions, hyperprior distributions and fixed parameter values where
required; the user also specifies starting values for unknown model parameters.

Usage

bayes.regress(data.values=NULL,
beta.prior=list("flat"),
sigmasq.prior=list("inverse.gamma", 1.0, 1.0, 1.0),
Tsamp.out=1000, zero.intercept=FALSE)

Arguments

data.values a list with four (optionally five) components, which are created by the function
read.regress.data.ff() (in this package):

• xtx: a square matrix that stores the productX ′X , whereX is the data from
predictor columns with a leading column of 1’s for the y-intercept term.

• xty: a column vector that stores the product X ′Y , where X is the same as
above and Y is a column of response data values.

• yty: a scalar value that stores the product Y ′Y , where Y is the same as
above.

• numsamp.data: an integer equal to the number of data values of the predic-
tor variables X .

• xtx.inv (optional): the inverse of the matrix xtx that is used for the “Uni-
form” prior distribution for β to speed up computations if the function is
used repeatedly with the same xtx. If omitted, this inverse will be computed
automatically. This component is ignored for other prior distributions.

beta.prior a list that specifies the characteristics of the prior distribution for β, the vector
of coefficients of the Bayesian linear regression model. There are three possible
types:

• flat: Uniform distribution.
• mvnorm.known: Multivariate Normal with known mean vector µ and known

covariance matrix C.
• mvnorm.unknown: Multivariate Normal with unknown mean vector µ and

unknown covariance matrix C. This prior also includes the hyperpriors for
µ and C, where µ˜ Multivariate Normal(η,D), and C−1 ∼Wishart(d.f. =
λ, scale matrix = V); η,D, λ, V assumed known.

bayes.regress 3

In each of these three prior types, the list has a different structure, as follows:
• beta.prior=list(type = "flat"): a Uniform prior distribution for β;

no other specification is necessary. This prior distribution is used by default.
• beta.prior=list(type = "mvnorm.known", mean.mu = ...,
cov.C = ..., prec.Cinv = ...)

– mean.mu: the fixed known prior mean vector µ for the Multivariate
Normal prior of β. The default is a vector of 0’s with length equal to
the length of β.

– cov.C: the fixed known prior covariance matrix C for the Multivariate
Normal prior of β. The default is an identity matrix with dimension
equal to the length of β.

– prec.Cinv: the inverse of the covariance matrix C above. If cov.C
is not specified, prec.Cinv is assigned the identity matrix by default,
with dimension equal to the length of β.

It is advised to supply prec.Cinv matrix and omit cov.C for speeding up
the algorithm. In case both are supplied, the algorithm gives preference to
prec.Cinv.

• beta.prior=list(type = "mvnorm.unknown", mu.hyper.mean.eta = ...,
mu.hyper.prec.Dinv = ..., Cinv.hyper.df.lambda = ...,
Cinv.hyper.invscale.Vinv = ..., mu.init = ..., Cinv.init = ...)

– mu.hyper.mean.eta: the fixed known hyperparameter mean vector η
for the Multivariate Normal hyperprior mean µ. The default is a vector
of 0’s with length equal to the length of β.

– mu.hyper.prec.Dinv: the fixed known hyperparameter precision ma-
trix D−1 for the Multivariate Normal hyperprior mean µ. The default
is an identity matrix with dimension equal to the length of β.

– Cinv.hyper.df.lambda: the fixed known degrees of freedom λ for
the Wishart hyperprior for C−1. The default value is the length of β .

– Cinv.hyper.invscale.Vinv: the fixed known hyperparameter inverse
scale matrix V −1 for the Wishart hyperprior for C−1. The default is an
identity matrix with dimension equal to the length of β.

– mu.init: initial value for µ for the MCMC chain. The default is a
vector of 1’s with length equal to the length of β.

– Cinv.init: initial value for C−1 for the MCMC chain. The default is
an identity matrix with dimension equal to the length of β.

For all three of the above beta.prior distributions, only the type is mandatory;
the remaining parameters are assigned default values if omitted.

sigmasq.prior a list that specifies the characteristics of the prior distribution for σ2 (the variance
of εi, i.e. the variance of the error terms in the Bayesian linear regression model).
There are two types:

• inverse.gamma: Inverse Gamma distribution with known shape and scale
parameters a and b, respectively.

• sigmasq.inverse: inverse sigma-squared distribution.
Similar to beta.prior above, the structure of the list depends on the type of
prior distribution chosen. The list must be supplied in either of the following
structures:

4 bayes.regress

• sigmasq.prior=list(type = "inverse.gamma", inverse.gamma.a = ...,
inverse.gamma.b = ..., sigmasq.init = ...)

– inverse.gamma.a: the shape parameter a for the Inverse Gamma prior
distribution, assumed known; default = 1.

– inverse.gamma.b: the scale parameter b for the Inverse Gamma prior
distribution, assumed known; default = 1.

– sigmasq.init: the initial value for the unknown σ2 parameter for the
MCMC chain; default = 1.

• sigmasq.prior=list(type="sigmasq.inverse", sigmasq.init = ...).
– sigmasq.init: the initial value for the unknown σ2 parameter for the

MCMC chain; default = 1.

Tsamp.out an optional scalar that specifies the number of MCMC samples to generate; de-
fault = 1,000.

zero.intercept an optional logical parameter with default = FALSE. If zero.intercept = TRUE
is specified, the linear regression model sets the y-intercept term β0 to zero; the
corresponding y-intercept terms of the matrices data.values$xtx and data.values$xty
are ignored, and the β vector is revised throughout the models and output auto-
matically by the function.

Details

This function uses the following Bayesian linear regression model:

yi = x′iβ + εi,

where i = 1, ...,numsamp.data; εi ∼ N(0, σ2); k is the number of predictor variables. The
function uses user-supplied prior distributions for β and σ2.

The Gibbs sampler is used to sample from all full conditional posterior distributions, which only
depend on the summary statistics X ′X , X ′Y and Y ′Y (and Y ′X = (X ′Y)′); these summary
statistics are calculated by the function read.regress.data.ff() (in this package), or can be
provided by the user. Starting values are not needed for the vector β, since this vector is updated
first, conditioned on all other unknown model parameters and the data.

• The full conditional posterior distributions are the following for each prior specification of β;
these depend on the data only through summary statistics X ′X and X ′Y :

– beta.prior=list(type = "flat"):

β|σ2, X, Y ∼ Normalk+1(mean = ((X ′X)−1(X ′Y), covariance = (σ2(X ′X)−1)))

– beta.prior=list(type = "mvnorm.known"):

β|σ2, X, Y ∼Normalk+1(mean = (C−1 + σ−2(X ′X))−1(C−1µ+ σ−2X ′Y),
covariance = (C−1 + σ−2(X ′X)−1))

– beta.prior=list(type = "mvnorm.unknown"):

bayes.regress 5

β|σ2, µ, C−1, X, Y ∼Normalk+1(mean = (C−1 + σ−2(X ′X))−1(C−1µ+ σ−2X ′Y),

covariance = (C−1 + σ−2(X ′X)−1))

µ|β, σ2, C−1, X, Y ∼Normalk+1(mean = (D−1 + C−1)−1(C−1β +D−1η),

covariance = (D−1 + C−1)−1)

C−1|β, σ2, µ,X, Y ∼Wishartk+1(d.f. = (1 + λ), scalematrix = (V −1 + (β − µ)(β − µ)′)−1)

• The full conditional posterior distributions are the following for each prior specification of σ2;
these depend on the data only through summary statistics X ′X , X ′Y and Y ′Y :

– sigmasq.prior=list(type = "inverse.gamma"):

σ2|β,X, Y ∼ Inv−Gamma

(
numsamp.data

2
+ a,

(
1

2
(Y ′Y − β′X ′Y − Y ′Xβ + β′X ′Xβ) + 1/b

)−1)

– sigmasq.prior=list(type = "sigmasq.inverse"):

σ2|β,X, Y ∼ Inv−Gamma

(
numsamp.data

2
,

(
1

2
(Y ′Y − β′X ′Y − Y ′Xβ + β′X ′Xβ)

)−1)

Value

The returned value is a list containing the MCMC samples of the unknown Bayesian linear regres-
sion model parameters; the number of MCMC samples is equal to the argument Tsamp.out. Further
analysis, including plotting and creating summary statistics, can be carried out using the 'coda' R
package (see References).

References

Carlin, B.P. and Louis, T.A. (2009) Bayesian Methods for Data Analysis, 3rd ed., Boca Raton, FL:
Chapman and Hall/CRC Press.

Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A. and Rubin, D.B. (2013) Bayesian
Data Analysis, 3rd ed., Boca Raton, FL: Chapman and Hall/CRC Press.

Plummer, M., Best, N., Cowles, K. and Vines, K. (2006) CODA: Convergence diagnosis and output
analysis for MCMC. R News, 6(1), 7-11.

Adler, D., Glaser, C., Nenadic, O., Oehlschlagel, J. and Zucchini, W. (2013) ff: memory-efficient
storage of large data on disk and fast access functions. R package: http://CRAN.R-project.org/
package=ff.

Fasiolo, M. (2014) An introduction to mvnfast. R package: http://CRAN.R-project.org/package=
mvnfast.

http://CRAN.R-project.org/package=ff
http://CRAN.R-project.org/package=ff
http://CRAN.R-project.org/package=mvnfast
http://CRAN.R-project.org/package=mvnfast

6 bayes.regress

Examples

##
Simulate data
##

set.seed(284698)

num.samp <- 100 # number of data values to simulate

The first value of the beta vector is the y-intercept:
beta <- c(-0.33, 0.78, -0.29, 0.47, -1.25)

Calculate the number of predictor variables:
num.pred <- length(beta)-1

rho <- 0.0 # correlation between predictors
mean.vec <- rep(0,num.pred)
sigma.mat <- matrix(rho,num.pred,num.pred) + diag(1-rho,num.pred)
sigmasq.sim <- 0.05

Simulate predictor variables:
x.pre <- rmvn(num.samp, mu=mean.vec, sigma=sigma.mat)

Add leading column of 1's to x.pre for y-intercept:
x <- cbind(rep(1,num.samp),x.pre)

epsilon <- rnorm(num.samp, mean=0, sd=sqrt(sigmasq.sim))

y <- as.numeric(x %*% as.matrix(beta) + epsilon)

Compute summary statistics (alternatively, the
"read.regress.data.ff() function (in this package) can be
used to calculate summary statistics; see example below).

xtx <- t(x)%*%x
xty <- t(x)%*%y
yty <- t(y)%*%y

data.values<-list(xtx=xtx, xty=xty, yty=yty,
numsamp.data = num.samp,
xtx.inv = chol2inv(chol(xtx)))

##
Bayesian linear regression analysis
##

Tsamp.out <- 100 # number of MCMC samples to produce

Choose priors for beta and sigma-squared. Here,
beta: Uniform prior; sigma-squared: Inverse Gamma prior.

beta.prior <- list(type = "flat")

bayes.regress 7

sigmasq.prior <- list(type = "inverse.gamma", inverse.gamma.a = 1.0,
inverse.gamma.b = 1.0, sigmasq.init = 1.0)

set.seed(284698)

Run the "bayes.regress" function using the data simulated above.

MCMC.out <- bayes.regress(data.values,
beta.prior,
sigmasq.prior = sigmasq.prior,
Tsamp.out = Tsamp.out)

Next, print the posterior means of the unknown model parameters.
Alternatively, the "coda" package can be used for analysis.

print(c(colMeans(MCMC.out$beta), mean(MCMC.out$sigmasq)))

Check that output is close to simulated values (although num.samp and
Tsamp.out are small here); note that the output includes both beta and
sigmasq:
c(-0.33, 0.78, -0.29, 0.47, -1.25, 0.05)

Run all 6 combinations of priors for 3 "beta.prior" choices and
2 "sigmasq.prior" choices:

beta.priors <- list(
list(type = "flat"),

list(type = "mvnorm.known",
mean.mu = rep(0.0, (num.pred+1)),
prec.Cinv = diag(1.0, (num.pred+1))),

list(type = "mvnorm.unknown",
mu.hyper.mean.eta = rep(0.0,(num.pred+1)),
mu.hyper.prec.Dinv = diag(1.0, (num.pred+1)),
Cinv.hyper.df.lambda = (num.pred+1),
Cinv.hyper.invscale.Vinv = diag(1.0, (num.pred+1)),
mu.init = rep(1.0, (num.pred+1)),
Cinv.init = diag(1.0,(num.pred+1)))

)

sigmasq.priors <- list(
list(type = "inverse.gamma",

inverse.gamma.a = 1.0,
inverse.gamma.b = 1.0,
sigmasq.init = 0.1),

list(type="sigmasq.inverse", sigmasq.init = 0.1)
)

for (beta.prior in beta.priors)
{

for(sigmasq.prior in sigmasq.priors)
{

8 bayes.regress

set.seed(284698)
MCMC.out <- bayes.regress(data.values,

beta.prior,
sigmasq.prior = sigmasq.prior,
Tsamp.out = Tsamp.out)

print(c(colMeans(MCMC.out$beta), mean(MCMC.out$sigmasq)))
}

}

Check that output is close to simulated values (although num.samp and
Tsamp.out are small here); note that the output includes both beta and
sigmasq:
c(-0.33, 0.78, -0.29, 0.47, -1.25, 0.05):

###
Read the data from a file, calculate the summary statistics and run
the Bayesian linear regression analysis
###

Tsamp.out <- 100

Assume non-zero y-intercept data.

Read the files and compute summary statistics using the "read.regress.data.ff()"
function (in this package).

filename <- system.file('data/regressiondata.nz.all.csv.gz', package='BayesSummaryStatLM')
data.values <- read.regress.data.ff(filename)

Calculate the number of predictors.

num.pred <- length(data.values$xty)-1

Run all 6 combinations of priors for 3 "beta.prior" choices and
2 "sigmasq.prior" choices:

beta.priors <- list(
list(type = "flat"),

list(type = "mvnorm.known",
mean.mu = rep(0.0, (num.pred+1)),
prec.Cinv = diag(1.0, (num.pred+1))),

list(type="mvnorm.unknown",
mu.hyper.mean.eta = rep(0.0, (num.pred+1)),
mu.hyper.prec.Dinv = diag(1.0, (num.pred+1)),
Cinv.hyper.df.lambda = (num.pred+1),
Cinv.hyper.invscale.Vinv = diag(1.0, (num.pred+1)),
mu.init = rep(1.0, (num.pred+1)),
Cinv.init = diag(1.0,(num.pred+1)))

)

read.regress.data.ff 9

sigmasq.priors <- list(
list(type = "inverse.gamma", inverse.gamma.a = 1.0,

inverse.gamma.b = 1.0, sigmasq.init = 0.5),
list(type = "sigmasq.inverse", sigmasq.init = 0.5)

)

for (beta.prior in beta.priors)
{

for(sigmasq.prior in sigmasq.priors)
{

set.seed(284698)
MCMC.out <- bayes.regress(data.values,

beta.prior,
sigmasq.prior = sigmasq.prior,
Tsamp.out = Tsamp.out)

print(c(colMeans(MCMC.out$beta), mean(MCMC.out$sigmasq)))
}

}

Check that output is close to simulated values (although num.samp and
Tsamp.out are small here); note that the output includes both beta and
sigmasq:
c(0.76, -0.92, 0.64, 0.57, -1.65, 0.25)

read.regress.data.ff Read in Tabulated Data and Compute Summary Statistics

Description

This function reads in tabulated data sets and produces summary statistics needed for Bayesian
linear regression models for use in the function bayes.regress() (in this package). Big data sets
that are too large to fit into R memory are handled using functions from package ff. The function
takes as input data files with the predictor variables X and response values Y , and returns the
summary statistics X ′X , X ′Y and Y ′Y that are used as an input to the function bayes.regress()
(in this package) for Bayesian linear regression models. The function supports reading data sets
that are split across multiple files.

Usage

read.regress.data.ff(filename=NULL,predictor.cols=NA,response.col=NA,update.summaries=NULL
, fileEncoding = "", nrows = -1, first.rows = 1e5, next.rows = 1e5
, levels = NULL, appendLevels = TRUE,FUN = "read.table",transFUN = NULL

, asffdf_args = list(), BATCHBYTES = getOption("ffbatchbytes")
, VERBOSE = FALSE, header = FALSE, sep = ",", quote = "\"'", dec = "."

10 read.regress.data.ff

, numerals = c("allow.loss", "warn.loss", "no.loss")
, na.strings = "NA", colClasses = "numeric", skip = 0
, check.names = TRUE, fill = TRUE, strip.white = FALSE

, blank.lines.skip = TRUE, comment.char = "#", allowEscapes = FALSE
, flush = FALSE, skipNul = FALSE)

Arguments

filename the name of a file or a list of file names, from which the data will be read. By
default it is assumed that the file(s) contain data in comma separated format;
this can be changed using the sep argument. File names must be in the format
acceptable by standard functions such as read.table. Default = NULL.

predictor.cols a vector of integers that specifies the columns to treat as predictor variables, to
create the design matrix X . By default, all columns after the first are treated as
columns with predictor variables. Default = NA.

response.col an integer that specifies the column that contains the response variable values,
to create the response vector Y . By default, the first column that is not used as a
predictor variable column is selected as the response values column. Default =
NA.

update.summaries

The name of the R object containing previously-calculated summary statistics
(if applicable), to be updated with new data. This must be a list similar in struc-
ture to the returned value, containing entries xtx, xty, yty and numsamp.data
of appropriate dimensions and class that match the data contained in filename.
Default = NULL. The remaining arguments are passed directly to the function
read.table.ffdf(). Below is a short description of the arguments we recom-
mend to set manually in accordance with memory limitations and data structure:

first.rows the number of rows to read in the first chunk of data. Default = 100,000.

next.rows the number of rows to read in the remaining chunks of data. Default = 100,000.

sep the character that separates the columns of data. Default = ",". For the arguments
below the default settings should perform well. However, in some situations
adjusting these arguments may improve memory use and running time.

fileEncoding a string that describes the file’s character encoding

nrows an integer specifying how many rows should be read from the file

levels an optional list of items with col.names or factor columns. See read.table.ffdf().

appendLevels a logical vector of permission to expand levels

FUN specifies which standard R function is used to read the data.

transFUN an optional filtering function to be applied to each chunk of data. See read.table.ffdf().

asffdf_args an optional list of parameters to be passed to as.ffdf() function.

BATCHBYTES an integer limiting the size of the data.frame used to store each chunk of the
data

VERBOSE See read.table.ffdf().

header a logical value indicating if the first row is the header row

read.regress.data.ff 11

quote a character string specifying which character will be treated as quoting charac-
ters

dec a character used for decimal dot
numerals see read.table().
na.strings strings treated as NA values
colClasses a vector that describes the data types in each column. Numeric by default.
skip how many first lines in the file should be skipped
check.names see read.table().
fill logical value that turns on automatic padding of the rows in case they have dif-

ferent lengths
strip.white affects the processing of the columns with declared character type. See scan().
blank.lines.skip

logical value, indicating whether empty lines should be ignored
comment.char character specifying the comment marker
allowEscapes logical. If TRUE, the escaped strings will be parsed. See scan().
flush see read.table().
skipNul logical: should nuls be skipped?

Details

The function reads in data and computes summary statistics to be used in Bayesian linear regres-
sion by the function bayes.regress() (in this package). The function assumes the linear regres-
sion model will have a non-zero y-intercept; this option can be changed in the bayes.regress()
function (see bayes.regress() help for details).

Value

The returned value for the read.regress.data.ff() function is a list containing the summary
statistics named xtx (for X ′X), xty (for X ′Y), yty (for Y ′Y) and the total number of data values
numsamp.data. The summary statistic xtx contains a square matrix obtained by computing a dot
product of the predictor variables data X with itself; a leading column of 1’s is added to X for the
y-intercept term. xty contains the vector obtained by computing the dot product of the transposed
predictor variables data X with response variable data Y ; a leading column of 1’s is added to
X for the y-intercept term. yty contains the dot product of the response variable data Y with
itself. numsamp.data is the number of data values read from the data file(s); this number may be
smaller than the number of rows in the data file, since some of the rows with missing data may be
skipped according to specified function arguments. The summary statistics X ′X , X ′Y and Y ′Y
are summed over data chunks by the following, for m = 1, ...,M chunks:

X ′X = sumM
m=1(X

′
m)(Xm)

X ′Y = sumM
m=1(X

′
m)(Ym)

Y ′Y = sumM
m=1(Y

′
m)(Ym)

The returned values are used as input to the function bayes.regress() (in this package). Note that
the matrix X is given a leading column of 1’s by default, for the y-intercept term of the Bayesian
linear regression model. This can be removed by specifying a model with zero intercept in the
function bayes.regress() (see bayes.regress() help for details).

12 read.regress.data.ff

References

Carlin, B.P. and Louis, T.A. (2009) Bayesian Methods for Data Analysis, 3rd ed., Boca Raton, FL:
Chapman and Hall/CRC Press.

Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A. and Rubin, D.B. (2013) Bayesian
Data Analysis, 3rd ed., Boca Raton, FL: Chapman and Hall/CRC Press.

Adler, D., Glaser, C., Nenadic, O., Oehlschlagel, J. and Zucchini, W. (2013) ff: memory-efficient
storage of large data on disk and fast access functions. R package: http://CRAN.R-project.org/
package=ff.

Examples

The package includes several example data files, illustrated here.

###########
Example 1
###########
The following command finds the location of the data file
that includes 4 predictor variables and 20,000 simulated data values.

filename <- system.file('data/regressiondata.nz.all.csv.gz', package='BayesSummaryStatLM')

The file is formatted so that the simulated response variable is in the
first column, and columns 2 to 5 contain simulated predictor variables.
The simulated coefficients are: beta <- c(0.76, -0.92, 0.64, 0.57, -1.65),
where the first value is the y-intercept term in the Bayesian linear
regression model. The sigma-squared term, i.e. the variance of the normally
distributed error terms, is simulated as: sigmasq <- 0.25

Next, read the data and compute the summary statistics using the
"read.regress.data.ff()" function. By default, the first column is assumed
to be the response variable, and the remaining columns are assumed to contain
predictor variable values. The function will check if the file exists and
can be read.

data.values <- read.regress.data.ff(filename)
data.values

###########
Example 2
###########
Several files can be given in a list to be read sequentially, as follows.

filenames <- list(
system.file('data/regressiondata.nz.pt1.csv.gz', package='BayesSummaryStatLM'),
system.file('data/regressiondata.nz.pt2.csv.gz', package='BayesSummaryStatLM')

)
data.values <- read.regress.data.ff(filenames)
data.values

The above results can be compared to the "data.values" obtained previously. They
are the same, since the current files are just copies of the same data split

http://CRAN.R-project.org/package=ff
http://CRAN.R-project.org/package=ff

read.regress.data.ff 13

between two files.

###########
Example 3
###########
The two files can be read progressively through time, and the summary statistics
are then updated with data in each file, as follows.

filenames <- list(
system.file('data/regressiondata.nz.pt1.csv.gz', package='BayesSummaryStatLM'),
system.file('data/regressiondata.nz.pt2.csv.gz', package='BayesSummaryStatLM')

)
data.values <- read.regress.data.ff(filenames[[1]])
data.values
data.values2 <- read.regress.data.ff(filenames[[2]], update.summaries = data.values)
data.values2

###########
Example 4
###########
If not all columns are to be used in regression analysis, one can specify
which columns to use in the "predictor.cols" and "response.col" options;
the order of "predictor.cols" can also be changed. The following command
reads in predictors from a subset of 3 columns, and changes their order.

filename <- system.file('data/regressiondata.nz.all.csv.gz', package='BayesSummaryStatLM')
data.values <- read.regress.data.ff(filename, predictor.cols=c(4,2,3), response.col=5)
data.values

###########
Example 5
###########
If the R session must be terminated, the summary statistics can be saved and then
loaded using standard methods in R, as follows:

filenames <- list(
system.file('data/regressiondata.nz.pt1.csv.gz', package='BayesSummaryStatLM'),
system.file('data/regressiondata.nz.pt2.csv.gz', package='BayesSummaryStatLM')

)
data.values <- read.regress.data.ff(filenames[[1]])

tmpfname <- tempfile()
save(data.values, file = tmpfname)
rm(data.values)

Now the R session can be terminated. Note that the filename "tmpfname"
must be recorded so that it can be used for updating in a later R session.
Upon starting a new R session, the state of the previously-calculated
summary statistics in the file named "tmpfname" can be restored and
then updated, as follows:

load(tmpfname)
unlink(tmpfname)

14 regressiondata.nz.pt1

If a new portion of a data set arrives, the summary statistics are updated
as follows:

data.values2 <- read.regress.data.ff(filenames[[2]], update.summaries = data.values)
data.values2

regressiondata.nz.all Simulated data for Bayesian linear regression models, for use in pack-
age examples.

Description

20,000 samples of simulated data. The response values yi are simulated according to the following:

yi = 0.76− 0.92 ∗ xi1 + 0.64 ∗ xi2 + 0.57 ∗ xi3 − 1.65 ∗ xi4 + εi.

Here, each predictor variable is simulated from a Normal distribution with mean = 0 and variance
= 1.0, and each εi is simulated from a Normal distribution with mean = 0 and variance = 0.25; the
predictor variables are assumed to be independent.

Usage

data("regressiondata.nz.all")

Format

A data frame with 20,000 observations for five variables: y, x1, x2, x3, x4

regressiondata.nz.pt1 Simulated data for Bayesian linear regression models, for use in pack-
age examples.

Description

10,000 samples of simulated data. The response values yi are simulated according to the following:

yi = 0.76− 0.92 ∗ xi1 + 0.64 ∗ xi2 + 0.57 ∗ xi3 − 1.65 ∗ xi4 + εi.

Here, each predictor variable is simulated from a Normal distribution with mean = 0 and variance
= 1.0, and each εi is simulated from a Normal distribution with mean = 0 and variance = 0.25; the
predictor variables are assumed to be independent.

This file is a copy of the first 10,000 entries from the file regressiondata.nz.all, for illustration
in the package examples of using multiple files.

regressiondata.nz.pt2 15

Usage

data("regressiondata.nz.pt1")

Format

A data frame with 10,000 observations for five variables: y, x1, x2, x3, x4

regressiondata.nz.pt2 Simulated data for Bayesian linear regression models, for use in pack-
age examples.

Description

10,000 samples of simulated data. The response values yi are simulated according to the following:

yi = 0.76− 0.92 ∗ xi1 + 0.64 ∗ xi2 + 0.57 ∗ xi3 − 1.65 ∗ xi4 + εi.

Here, each predictor variable is simulated from a Normal distribution with mean = 0 and variance
= 1.0, and each εi is simulated from a Normal distribution with mean = 0 and variance = 0.25; the
predictor variables are assumed to be independent.

This file is a copy of the last 10,000 entries from the file regressiondata.nz.all, for illustration
in the package examples of using multiple files.

Usage

data("regressiondata.nz.pt1")

Format

A data frame with 10,000 observations for five variables: y, x1, x2, x3, x4

Index

∗Topic combine
bayes.regress, 2

∗Topic consensus
bayes.regress, 2

∗Topic datasets
regressiondata.nz.all, 14
regressiondata.nz.pt1, 14
regressiondata.nz.pt2, 15

∗Topic multilinear
read.regress.data.ff, 9

∗Topic parallel
bayes.regress, 2

∗Topic posterior
bayes.regress, 2

∗Topic regression
read.regress.data.ff, 9

∗Topic subposterior
bayes.regress, 2

as.ffdf, 10

bayes.regress, 2

read.regress.data.ff, 9
read.table, 10, 11
read.table.ffdf, 10
regressiondata.nz.all, 14
regressiondata.nz.pt1, 14
regressiondata.nz.pt2, 15

scan, 11

16

	bayes.regress
	read.regress.data.ff
	regressiondata.nz.all
	regressiondata.nz.pt1
	regressiondata.nz.pt2
	Index

