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BayesFM BayesFM: Package for Bayesian Factor Modeling

Description

The long-term goal of this package is to provide a collection of procedures to perform Bayesian
inference on a variety of factor models.

Details

Currently, this package includes: Bayesian Exploratory Factor Analysis (befa), as developed in
Conti et al. (2014), an approach to dedicated factor analysis with stochastic search on the struc-
ture of the factor loading matrix. The number of latent factors, as well as the allocation of the
observed variables to the factors, are not fixed a priori but determined during MCMC sampling.
More approaches will be included in future releases of this package.

Note

This package is under development. You are very welcome to send me any comments or suggestions
for improvements, and to share with me any problems you may encounter with the use of this
package.

Author(s)

Rémi Piatek <remi.piatek@econ.ku.dk>

References

G. Conti, S. Frühwirth-Schnatter, J.J. Heckman, R. Piatek (2014): “Bayesian Exploratory Fac-
tor Analysis”, Journal of Econometrics, 183(1), pages 31-57, http://dx.doi.org/10.1016/j.
jeconom.2014.06.008.

http://dx.doi.org/10.1016/j.jeconom.2014.06.008
http://dx.doi.org/10.1016/j.jeconom.2014.06.008
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befa Bayesian Exploratory Factor Analysis

Description

This function implements the Bayesian Exploratory Factor Analysis (befa) approach developed in
Conti et al. (CFSHP, 2014). It runs a MCMC sampler for a factor model with dedicated factors,
where each manifest variable is allowed to load on at most one latent factor. The allocation of the
manifest variables to the latent factors is not fixed a priori but determined stochastically during
sampling. The minimum number of variables dedicated to each factor can be controlled by the
user to achieve the desired level of identification. The manifest variables can be continuous or
dichotomous, and control variables can be introduced as covariates.

Usage

befa(model, data, burnin = 1000, iter = 10000, Nid = 3, Kmax, A0 = 10,
B0 = 10, c0 = 2, C0 = 1, HW.prior = TRUE, nu0 = Kmax + 1, S0 = 1,
kappa0 = 2, xi0 = 1, kappa = 1/Kmax, indp.tau0 = TRUE,
rnd.step = TRUE, n.step = 5, search.delay = min(burnin, 10),
R.delay = min(burnin, 100), dedic.start, alpha.start, sigma.start,
beta.start, R.start, verbose = TRUE)

Arguments

model This argument specifies the manifest variables and the covariates used in the
model (if any). It can be specified in two different ways:

• A numeric matrix or a data frame containing the manifest variables. This
corresponds to a model without covariates, and the argument data is not
required.

• A list of model formulas. Each element of the list specifies a manifest vari-
able and its corresponding control variables (e.g., ’Y1 ~ X1 + X2’ to use X1
and X2 as control variables for Y1). If a formula has no left-hand side vari-
able, covariates on the right-hand side are included in all equations (e.g.,
’~ X3’ means that X3 is used as a control variable for all the manifest vari-
ables). Argument data can be passed to the function in that case, otherwise
parent data frame is used.

Binary manifest variables should be specified as logical vectors in the data frame
to be treated as dichotomous. NA values are accepted in manifest variables only.

data Data frame. If missing, parent data frame if used.

burnin Burn-in period of the MCMC sampler.

iter Number of MCMC iterations saved for posterior inference (after burn-in).

Nid Minimum number of manifest variables dedicated to each latent factor for iden-
tification.
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Kmax Maximum number of latent factors. If missing, the maximum number of factors
that satisfies the identification condition determined by Nid and the Ledermann
bound is specified (see CFSHP, section 2.2).

A0 Scaling parameters of the variance of the Normal prior on the nonzero factor
loadings. Either a scalar or a numeric vector of length equal to the number of
manifest variables.

B0 Variances of the Normal prior on the regression coefficients. Either a scalar or a
numeric vector of length equal to the number of manifest variables.

c0 Shape parameters of the Inverse-Gamma prior on the idiosyncratic variances.
Either a scalar or a numeric vector of length equal to the number of manifest
variables.

C0 Scale parameters of the Inverse-Gamma prior on the idiosyncratic variances.
Either a scalar or a numeric vector of length equal to the number of manifest
variables.

HW.prior If TRUE, implement Huang-Wand (2013) prior on the covariance matrix of the
factors in the expanded model, otherwise use an Inverse-Wishart prior if FALSE,
see CFSHP section 2.3.5.

nu0 Degrees of freedom of the Inverse-Wishart prior on the covariance matrix of the
latent factors in the expanded model.

S0 Scale parameters of the Inverse-Wishart prior on the covariance matrix of latent
factors in the expanded model:

• if HW.prior = TRUE, scale parameter of the Gamma hyperprior distribution
on the individual scales of the Inverse-Wishart prior.

• if HW.prior = FALSE, diagonal elements of the scale matrix of the Inverse-
Wishart prior on the covariance matrix of the latent factors in the expanded
model.

Either a scalar or a numeric vector of length equal to Kmax.

kappa0 First shape parameter of the Beta prior distribution on the probability τ0 that a
manifest variable does not load on any factor.

xi0 Second shape parameter of the Beta prior distribution on the probability τ0 that
a manifest variable does not load on any factor.

kappa Concentration parameters of the Dirichlet prior distribution on the indicators.
Either a scalar or a numeric vector of length equal to Kmax.

indp.tau0 If TRUE, specify the alternative prior specification with independent parameters
τ0m across manifest variablesm = 1, ...,M , otherwise use a common parameter
τ0 if FALSE.

rnd.step If TRUE, select randomly the number of intermediate steps in non-identified mod-
els at each MCMC iteration, otherwise use a fixed number of steps if FALSE.

n.step Controls the number of intermediate steps in non-identified models:

• if rnd.step = TRUE, average number of steps. The number of steps is sam-
pled at each MCMC iteration from 1+Poisson(n.step-1).

• if rnd.step = FALSE, fixed number of steps.

search.delay Number of MCMC iterations run with fixed indicator matrix (specified in dedic.start)
at beginning of MCMC sampling.
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R.delay Number of MCMC iterations run with fixed correlation matrix (specified in
dedic.start) at beginning of MCMC sampling.

dedic.start Starting values for the indicators. Vector of integers of length equal to the num-
ber of manifest variables. Each element takes a value among 0, 1, ..., Kmax. If
missing, random allocation of the manifest variables to the maximum number of
factors Kmax, with a minimum of Nid manifest variables loading on each factor.

alpha.start Starting values for the factor loadings. Numeric vector of length equal to the
number of manifest variables. If missing, sampled from a Normal distribution
with zero mean and variance A0.

sigma.start Starting values for the idiosyncratic variances. Numeric vector of length equal
to the number of manifest variables. Sampled from prior if missing.

beta.start Starting values for the regression coefficients. Numeric vector of length equal
to the total number of regression coefficients, concatenated for all the manifest
variables. Sampled from prior if missing.

R.start Starting values for the correlation matrix of the latent factors. Numeric matrix
with Kmax rows and columns, and unit diagonal elements. If missing, identity
matrix is used.

verbose If TRUE, display information on the progress of the function.

Details

Model specification. The model is specified as follows, for each observation i = 1, ..., N :

Y ∗
i = βXi + αθi + εi

θi ∼ N (0, R)

εi ∼ N (0,Σ)

Σ = diag(σ2
1 , ..., σ

2
M )

where Y ∗
i is the M -vector containing the latent variables underlying the corresponding M manifest

variables Yi, which can be continuous such that Yim = Y ∗
im, or binary with Yim = 1[Y ∗

im > 0], for
m = 1, ...,M . The K-vector θi contains the latent factors, and α is the (M ×K)-matrix of factor
loadings. The M -vector εi is the vector of error terms. Covariates can be included in the Q-vector
Xi and are related to the manifest variables through the (M ×Q)-matrix of regression coefficients
β. Intercept terms are automatically included, but can be omitted in some or all equations using the
usual syntax for R formulae (e.g., ’Y1 ~ X1 - 1’ specifies that that Y1 is regressed on X1 and no
intercept is included in the corresponding equation).

The number of latent factorsK is specified as Kmax. However, during MCMC sampling the stochas-
tic search process on the matrix αmay produce zero columns, thereby reducing the number of active
factors.

The covariance matrixR of the latent factors is assumed to be a correlation matrix for identification.

Each row of the factor loading matrix α contains at most one nonzero element (dedicated factor
model). The allocation of the manifest variables to the latent factors is indicated by the binary
matrix ∆ with same dimensions as α, such that each row ∆m indicates which factor loading is
different from zero, e.g.:

∆m = (0, .., 0, 1, 0, ..., 0) ≡ ek
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indicates that variable m loads on the kth factor, where ek is a K-vector that contains only zeros,
besides its kth element that equals 1.

Identification. The function verifies that the maximum number of latent factors Kmax does not
exceed the Ledermann bound. It also checks that Kmax is consistent with the identification restric-
tion specified with Nid (enough variables should be available to load on the factors when Kmax is
reached). The default value for Kmax is the minimum between the Ledermann bound and the max-
imum number of factors that can be loaded by Nid variables. The user is free to select the level of
identification, see CFSHP section 2.2 (non-identified models are allowed with Nid = 1).

Note that identification is achieved only with respect to the scale of the latent factors. Non-
identifiability problems may affect the posterior sample because of column switching and sign
switching of the factor loadings. These issues can be addressed a posteriori with the functions
post.column.switch and post.sign.switch.

Prior specification. The indicators are assumed to have the following probabilities, for k =
1, ...,K:

Prob(∆m = ek | τk) = τk

τ = (τ0, τ1, ..., τK)

If indp.tau0 = FALSE, the probabilities are specified as:

τ = [τ0, (1− τ0)τ∗1 , ..., (1− τ0)τ∗K ]

τ0 ∼ Beta(κ0, ξ0)

τ∗ = (τ∗1 , ..., τ
∗
K) ∼ Dir(κ)

with κ0 = kappa0, ξ0 = xi0 and κ = kappa. Alternatively, if indp.tau0 = TRUE, the probabilities
are specified as:

τm = [τ0m, (1− τ0m)τ∗1 , ..., (1− τ0m)τ∗K ]

τ0m ∼ Beta(κ0, ξ0)

for each manifest variable m = 1, ...,M .

A normal-inverse-Gamma prior distribution is assumed on the nonzero factor loadings and on the
idiosyncratic variances:

σ2
m ∼ Inv − Gamma(c0m, C0m)

α∆
m | σ2

m ∼ N (0, A0mσ
2
m)

where α∆
m denotes the only nonzero loading in the mth row of α.

For the regression coefficients, a multivariate Normal prior distribution is assumed on each row
m = 1, ...,M of β:

βm ∼ N (0, B0IQ)

The covariates can be different across manifest variables, implying zero restrictions on the matrix
β. To specify covariates, use a list of formulas as model (see example below). Intercept terms can
be introduced using

To sample the correlation matrixR of the latent factors, marginal data augmentation is implemented
(van Dyk and Meng, 2001), see CFSHP section 2.2. Using the transformation Ω = Λ1/2RΛ1/2, the
parameters Λ = diag(λ1, ..., λK) are used as working parameters. These parameters correspond to
the variances of the latent factors in an expanded version of the model where the factors do not have
unit variances. Two prior distributions can be specified on the covariance matrix Ω in the expanded
model:
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• If HW.prior = FALSE, inverse-Wishart distribution:

Ω ∼ Inv −Wishart(ν0, diag(S0))

with ν0 = nu0 and S0 = S0.

• If HW.prior = TRUE, Huang-Wand (2013) prior:

Ω ∼ Inv −Wishart(ν0,W ), W = diag(w1, ..., wK)

wk ∼ Gamma
(

1

2
,

1

2ν∗S0k

)
with ν∗ = nu0 - Kmax + 1, and the shape and rate parameters are specified such that the mean
of the gamma distribution is equal to ν∗S0k, for each k = 1, ...,K.

Missing values. Missing values (NA) are allowed in the manifest variables. They are drawn from
their corresponding conditional distributions during MCMC sampling. Control variables with miss-
ing values can be passed to the function. However, all the observations with at least one missing
value in the covariates are discarded from the sample (a warning message is issued in that case).

Value

The function returns an object of class ’befa’ containing the MCMC draws of the model parameters
saved in the following matrices (each matrix has ’iter’ rows):

• alpha: Factor loadings.

• sigma: Idiosyncratic variances.

• R: Correlation matrix of the latent factors (off-diagonal elements only).

• beta: regression coefficients (if any).

• dedic: indicators (integers indicating on which factors the manifest variable load).

The returned object also contains:

• nfac: Vector of number of ’active’ factors across MCMC iterations (i.e., factors loaded by at
least Nid manifest variables).

• MHacc: Logical vector indicating accepted proposals of Metropolis-Hastings algorithm.

The parameters Kmax and Nid are saved as object attributes, as well as the function call and the
number of mcmc iterations (burnin and iter), and two logical variables indicating if the returned
object has been post processed to address the column switching problem (post.column.switch)
and the sign switching problem (post.sign.switch).

Author(s)

Rémi Piatek <remi.piatek@econ.ku.dk>
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References

G. Conti, S. Frühwirth-Schnatter, J.J. Heckman, R. Piatek (2014): “Bayesian Exploratory Fac-
tor Analysis”, Journal of Econometrics, 183(1), pages 31-57, http://dx.doi.org/10.1016/j.
jeconom.2014.06.008.

A. Huang, M.P. Wand (2013): “Simple Marginally Noninformative Prior Distributions for Covari-
ance Matrices”, Bayesian Analysis, 8(2), pages 439-452, http://dx.doi.org/10.1214/13-BA815.

D.A. van Dyk, X.-L. Meng (2001): “The Art of Data Augmentation”, Journal of Computational
and Graphical Statistics, 10(1), pages 1-50, http://dx.doi.org/10.1198/10618600152418584.

See Also

post.column.switch and post.sign.switch for column switching and sign switching of the
factor loading matrix and of the correlation matrix of the latent factors to restore identification a
posteriori.

summary.befa and plot.befa to summarize and plot the posterior results.

simul.R.prior and simul.nfac.prior to simulate the prior distribution of the correlation matrix
of the factors and the prior distribution of the indicator matrix, respectively. This is useful to perform
prior sensitivity analysis and to understand the role of the corresponding parameters in the factor
search.

Examples

#### model without covariates

set.seed(6)

# generate fake data with 15 manifest variables and 3 factors
N <- 100 # number of observations
Y <- simul.dedic.facmod(N, dedic = rep(1:3, each = 5))

# run MCMC sampler
# notice: 1000 MCMC iterations for illustration purposes only,
# increase this number to obtain reliable posterior results!
mcmc <- befa(Y, Kmax = 5, iter = 1000)

# post process MCMC draws to restore identification
mcmc <- post.column.switch(mcmc)
mcmc <- post.sign.switch(mcmc)

summary(mcmc) # summarize posterior results
plot(mcmc) # plot posterior results

# summarize highest posterior probability (HPP) model
summary(mcmc, what = 'hppm')

#### model with covariates

# generate covariates and regression coefficients
Xcov <- cbind(1, matrix(rnorm(4*N), ncol = 4))

http://dx.doi.org/10.1016/j.jeconom.2014.06.008
http://dx.doi.org/10.1016/j.jeconom.2014.06.008
http://dx.doi.org/10.1214/13-BA815
http://dx.doi.org/10.1198/10618600152418584
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colnames(Xcov) <- c('(Intercept)', paste0('X', 1:4))
beta <- rbind(rnorm(15), rnorm(15), diag(3) %x% t(rnorm(5)))

# add covariates to previous model
Y <- Y + Xcov %*% beta

# specify model
model <- c('~ X1', # X1 covariate in all equations

paste0('Y', 1:5, ' ~ X2'), # X2 covariate for Y1-Y5 only
paste0('Y', 6:10, ' ~ X3'), # X3 covariate for Y6-Y10 only
paste0('Y', 11:15, ' ~ X4')) # X4 covariate for Y11-Y15 only

model <- lapply(model, as.formula) # make list of formulas

# run MCMC sampler, post process and summarize
mcmc <- befa(model, data = data.frame(Y, Xcov), Kmax = 5, iter = 1000)
mcmc <- post.column.switch(mcmc)
mcmc <- post.sign.switch(mcmc)
mcmc.sum <- summary(mcmc)
mcmc.sum

# compare posterior mean of regression coefficients to true values
beta.comp <- cbind(beta[beta != 0], mcmc.sum$beta[, 'mean'])
colnames(beta.comp) <- c('true', 'mcmc')
print(beta.comp, digits = 3)

plot.befa Plot object of class ’befa’

Description

This function makes different plots that are useful to assess the posterior results: a trace plot of
the number of latent factors (also showing Metropolis-Hastings acceptance across MCMC replica-
tions), a histogram of the posterior probabilities of the number of factors, heatmaps for the inficator
probabilities, the factor loading matrix, and the correlation matrix of the latent factors.

Usage

## S3 method for class 'befa'
plot(x, ...)

Arguments

x Object of class ’befa’.

... The following extra arguments can be specified:

• what: How to summarize the posterior distribution?
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– what = 'maxp' (default): Only factor loadings with highest posterior
probability of being different from zero or discarded from the model (if
dedic = 0) are summarized.

– what = 'all': All factor loadings with corresponding posterior prob-
ability to be allocated to a given factor (or to be discarded from the
model) larger than min.prob are summarized.

– what = 'hppm': Highest posterior probability models with probability
larger than min.prob are summarized.

• byfac: Sort factor loadings by factors if TRUE, otherwise by manifest vari-
ables if FALSE (default).

• hpd.prob: Probability used to compute the highest posterior density inter-
vals of the posterior distribution of the model parameters (default: 0.95).

• min.prob: If what = 'all', only factor loadings with posterior probability
of being dedicated to a given factor (or discarded from the model) larger
than this value are displayed. If what = 'hppm', only highest posterior
probability models with probability larger than this value are displayed.
(default: 0.20)

Details

This function makes graphs based on the summary results returned by summary.befa. It therefore
accepts the same optional arguments as this function.

Author(s)

Rémi Piatek <remi.piatek@econ.ku.dk>

See Also

summary.befa to summarize posterior results.

Examples

set.seed(6)

# generate fake data with 15 manifest variables and 3 factors
Y <- simul.dedic.facmod(N = 100, dedic = rep(1:3, each = 5))

# run MCMC sampler and post process output
# notice: 1000 MCMC iterations for illustration purposes only,
# increase this number to obtain reliable posterior results!
mcmc <- befa(Y, Kmax = 5, iter = 1000)
mcmc <- post.column.switch(mcmc)
mcmc <- post.sign.switch(mcmc)

# plot results for highest posterior probability model
plot(mcmc, what = 'hppm')
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post.column.switch Perform column switchting on posterior MCMC sample

Description

This function reorders the columns of the factor loading matrix for each MCMC draw, as well as the
rows and columns of the correlation matrix of the factors, to restore the identification of the model
a posteriori with respect to the column switching problem.

Usage

post.column.switch(mcmc)

Arguments

mcmc Object of class ’befa’.

Details

The reordering of the columns of the factor loading matrix is based on the top elements of the
columns (i.e., the first row containing a nonzero factor loading in each nonzero column of α, starting
from the top of the matrix). At each MCMC iteration, the nonzero columns of α are reordered such
that the top elements appear in increasing order. The rows and columns of the correlation matrix R
of the factors are switched accordingly. See section 4.3 of CFSHP (p.42) for more details.

Value

Same ’befa’ object as the one passed to the function, where the indicators in the matrix dedic,
as well as the rows and columns of the correlation matrix of the factors saved in draws, have
been switched appropriately to restore the identification of the factor model with respect to column
switching.

Author(s)

Rémi Piatek <remi.piatek@econ.ku.dk>

References

G. Conti, S. Frühwirth-Schnatter, J.J. Heckman, R. Piatek (2014): “Bayesian Exploratory Fac-
tor Analysis”, Journal of Econometrics, 183(1), pages 31-57, http://dx.doi.org/10.1016/j.
jeconom.2014.06.008.

See Also

post.sign.switch to restore identification a posteriori with respect to the sign switching problem.

http://dx.doi.org/10.1016/j.jeconom.2014.06.008
http://dx.doi.org/10.1016/j.jeconom.2014.06.008


12 post.sign.switch

Examples

set.seed(6)
Y <- simul.dedic.facmod(N = 100, dedic = rep(1:3, each = 5))
mcmc <- befa(Y, Kmax = 5, iter = 1000)
mcmc <- post.column.switch(mcmc)

post.sign.switch Perform sign switchting on posterior MCMC sample

Description

This function performs a sign switch on the MCMC draws to restore the consistency of the signs of
the factors loadings and of the correlations of the latent factors a posteriori.

Usage

post.sign.switch(mcmc, benchmark = NULL, benchmark.threshold = 0.5)

Arguments

mcmc Object of class ’befa’.

benchmark Vector of integers of length equal to the maximum number of latent factors.
Each element indicates which factor loading is used as a benchmark for the sign
switch. If NULL, the factor loadings with the highest posterior probabilities of
being different from zero in each column of the factor loading matrix are used
as benchmarks.

benchmark.threshold

Minimum posterior probability for a factor loading to be considered as a bench-
mark.

Details

The signs of the factor loadings, as well as of the corresponding correlations of the latent factors, are
switched for each MCMC iteration such that the factor loadings defined as benchmarks are positive.
The sign switch can only be performed if post.column.switch has been run before. See section
4.3 (p.42) of CFSHP for more details.

If a latent factor has no benchmarks, or if its benchmark is equal to zero at some MCMC iteration,
then no sign switch is performed on the corresponding loadings and correlations for this particular
factor or MCMC iteration.

Note that in complicated models where the sampler visits several models with different numbers
of latent factors, it may not be relevant to use the default value of benchmark, as the posterior
probabilities that the factor loadings are different from zero would be computed across models.
Instead, the user might consider finding the highest posterior probability model first, and use its top
elements in each column of the factor loading matrix as benchmarks to perform the sign switch.
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Value

This function returns the same ’befa’ object, where the signs of the factor loadings and of the factor
correlations have been switched appropriately to restore the identification of the factor model with
respect to sign switching.

Author(s)

Rémi Piatek <remi.piatek@econ.ku.dk>

References

G. Conti, S. Frühwirth-Schnatter, J.J. Heckman, R. Piatek (2014): “Bayesian Exploratory Fac-
tor Analysis”, Journal of Econometrics, 183(1), pages 31-57, http://dx.doi.org/10.1016/j.
jeconom.2014.06.008.

See Also

post.column.switch for column switching of the factor loading matrix and of the correlation
matrix of the latent factors to restore identification a posteriori.

Examples

set.seed(6)
Y <- simul.dedic.facmod(N = 100, dedic = rep(1:3, each = 5))
mcmc <- befa(Y, Kmax = 5, iter = 1000)
mcmc <- post.column.switch(mcmc)

# factor loadings corresponding to variables 1, 6, 11, 12 and 13 are
# used as benchmarks:
mcmc1 <- post.sign.switch(mcmc, benchmark = c(1, 6, 11, 12, 13))

# factor loadings with the highest posterior probability of being different
# from zero in each column are used as benchmark:
mcmc2 <- post.sign.switch(mcmc)

simul.dedic.facmod Generate synthetic data from a dedicated factor model

Description

This function simulates data from a dedicated factor model. The parameters of the model are either
passed by the user or simulated by the function.

Usage

simul.dedic.facmod(N, dedic, alpha, sigma, R, R.corr = TRUE,
max.corr = 0.85, R.max.trial = 1000)

http://dx.doi.org/10.1016/j.jeconom.2014.06.008
http://dx.doi.org/10.1016/j.jeconom.2014.06.008
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Arguments

N Number of observations in data set.

dedic Vector of indicators. The number of manifest variables is equal to the length of
this vector, and the number of factors is equal to the number of unique nonzero
elements. Each integer element indicates on which latent factor the correspond-
ing variable loads uniquely.

alpha Vector of factor loadings, should be of same length as dedic. If missing, values
are simulated (see details below).

sigma Idiosyncratic variances, should be of same length as dedic. If missing, values
are simulated (see details below).

R Covariance matrix of the latent factors. If missing, values are simulated (see
details below).

R.corr If TRUE, covariance matrix R is rescaled to be a correlation matrix.

max.corr Maximum correlation allowed between the latent factors.

R.max.trial Maximum number of trials allowed to sample from the truncated distribution
of the covariance matrix of the latent factors (accept/reject sampling scheme, to
make sure max.corr is not exceeded).

Details

The function simulates data from the following dedicated factor model, for i = 1, ..., N :

Yi = αθi + εi

θi ∼ N (0, R)

εi ∼ N (0,Σ)

where the K-vector θi contains the latent factors, and α is the (M ×K)-matrix of factor loadings.
Each row m of α contains only zeros, besides its element indicated by the mth element of dedic
that is equal to the mth element of alpha (denoted α∆

m below). The M -vector εi is the vector of
error terms, with Σ = diag(sigma). M is equal to the length of the vector dedic, and K is equal
to the maximum value of this vector.

Only N and dedic are required, all the other parameters can be missing, completely or partially.
Missing values (NA) are independently sampled from the following distributions, for each manifest
variable m = 1, ...,M :

Factor loadings:
α∆
m = (−1)φm

√
am

φm ∼ Ber(0.5)

am ∼ Unif(0.04, 0.64)

Idiosyncratic variances:
σ2
m ∼ Unif(0.2, 0.8)

For the variables that do not load on any factors (i.e., for which the corresponding elements of dedic
are equal to 0), it is specified that α∆

m = 0 and σ2
m = 1.
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Covariance matrix of the latent factors:

Ω ∼ Inv −Wishart(K + 5, IK)

which is rescaled to be a correlation matrix if R.corr = TRUE:

R = Λ−1/2ΩΛ−1/2

Λ = diag(Ω)

Note that the distribution of the covariance matrix is truncated such that all the off-diagonal elements
of the implied correlation matrix R are below max.corr in absolute value. The truncation is also
applied if the covariance matrix is used instead of the correlation matrix (i.e., if R.corr = FALSE).

The distributions and the corresponding default values used to simulate the model parameters are
specified as in the Monte Carlo study of CFSHP, see section 4.1 (p.43).

Value

The function returns a data frame with N observations simulated from the corresponding dedicated
factor model. The parameters used to generate the data are saved as attributes: dedic, alpha, sigma
and R.

Author(s)

Rémi Piatek <remi.piatek@econ.ku.dk>

References

G. Conti, S. Frühwirth-Schnatter, J.J. Heckman, R. Piatek (2014): “Bayesian Exploratory Fac-
tor Analysis”, Journal of Econometrics, 183(1), pages 31-57, http://dx.doi.org/10.1016/j.
jeconom.2014.06.008.

Examples

# generate 1000 observations from model with 4 factors and 20 variables
# (5 variables loading on each factor)
dat <- simul.dedic.facmod(N = 1000, dedic = rep(1:4, each = 5))

# generate data set with 5000 observations from the following model:
dedic <- rep(1:3, each = 4) # 3 factors and 12 manifest variables
alpha <- rep(c(1, NA, NA, NA), 3) # set first loading to 1 for each factor,

# sample remaining loadings from default
sigma <- rep(0.5, 12) # idiosyncratic variances all set to 0.5
R <- toeplitz(c(1, .6, .3)) # Toeplitz matrix
dat <- simul.dedic.facmod(N = 5000, dedic, alpha, sigma, R)

http://dx.doi.org/10.1016/j.jeconom.2014.06.008
http://dx.doi.org/10.1016/j.jeconom.2014.06.008
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simul.nfac.prior Simulate prior distribution of number of latent factors

Description

This function produces a sample from the prior distribution of the number of latent factors. It
depends on the prior parameters used for the distribution of the indicators, on the size of the model
(number of manifest variables and maximum number of latent factors), and on the identification
restriction (minimum number of manifest variables dedicated to each factor).

Usage

simul.nfac.prior(nvar, Kmax, Nid = 3, kappa = 1/Kmax, nrep = 10^6)

Arguments

nvar Number of manifest variables.

Kmax Maximum number of latent factors.

Nid Minimum number of manifest variables dedicated to each latent factor for iden-
tification.

kappa Concentration parameter of the Dirichlet prior distribution on the indicators.

nrep Number of Monte Carlo replications.

Details

This function simulates the prior distribution of the number of latent factors for models that fulfill
the identification restriction restriction that at least Nid manifest variables (or no variables) are
loading on each latent factor. Several (scalar) parameters kappa can be passed to the function to
simulate the prior for different prior parameter values and compare the results.

An accept/reject sampling scheme is used: a vector of probabilities is drawn from a Dirichlet distri-
bution with concentration parameter kappa, and the nvar manifest variables are randomly allocated
to the Kmax latent factors. If each latent factor has at least Nid dedicated variables or no variables
at all, the identification requirement is fulfilled and the draw is accepted. The number of factors
loaded by at least Nid manifest variables is returned as a draw from the prior distribution.

Note that this function does not use the two-level prior distribution implemented in CFSHP, where
manifest variables can be discarded from the model according to a given probability. Therefore, this
function only help understand the prior distribution conditional on all the manifest variables being
included into the model.

Value

A list of length equal to the number of parameters specified in kappa is returned, where each element
of the list contains:

• nfac: Vector of integers of length equal to the number of accepted draws.

• acc: Acceptance rate of the accept/reject sampling scheme.
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Author(s)

Rémi Piatek <remi.piatek@econ.ku.dk>

References

G. Conti, S. Frühwirth-Schnatter, J.J. Heckman, R. Piatek (2014): “Bayesian Exploratory Fac-
tor Analysis”, Journal of Econometrics, 183(1), pages 31-57, http://dx.doi.org/10.1016/j.
jeconom.2014.06.008.

Examples

# replicate first row of table 2 in CFSHP (p.44)
# note: use larger number of replications nrep to improve accuracy
prior.nfac <- simul.nfac.prior(nvar = 15, Kmax = 5, kappa = c(.3, .7, 1),

nrep = 10000)
summary(prior.nfac)
plot(prior.nfac)

simul.R.prior Simulate prior distribution of factor correlation matrix

Description

This function produces a sample of correlation matrices drawn from their prior distribution induced
in the identified version of the factor model, given the prior distribution specified on the correspond-
ing covariance matrices of the factors in the expanded model.

Usage

simul.R.prior(Kmax, nu0 = Kmax + 1, S0 = 1, HW.prior = TRUE,
nrep = 10^5, verbose = TRUE)

Arguments

Kmax Maximum number of latent factors.

nu0 Degrees of freedom of the Inverse-Wishart prior on the covariance matrix of the
latent factors in the expanded model.

S0 Scale parameters of the Inverse-Wishart prior on the covariance matrix of latent
factors in the expanded model:

• if HW.prior = TRUE, scale parameter of the Gamma hyperprior distribution
on the individual scales of the Inverse-Wishart prior.

• if HW.prior = FALSE, diagonal elements of the scale matrix of the Inverse-
Wishart prior on the covariance matrix of the latent factors in the expanded
model.

Either a scalar or a numeric vector of length equal to Kmax.

http://dx.doi.org/10.1016/j.jeconom.2014.06.008
http://dx.doi.org/10.1016/j.jeconom.2014.06.008
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HW.prior If TRUE, implement Huang-Wand (2013) prior on the covariance matrix of the
factors in the expanded model, otherwise use an Inverse-Wishart prior if FALSE,
see CFSHP section 2.3.5.

nrep Number of Monte Carlo replications.

verbose If TRUE, display information on the progress of the function.

Details

Covariance matrices are sampled from the prior distribution in the expanded model, and transformed
to produce the corresponding correlation matrices. See section 2.3.5 of CFSHP (p.36-37), as well
as the details of the function befa.

To compare several prior specifications, different values of the parameters nu0 and S0 can be speci-
fied. The function then simulates for each pair of these parameters. nu0 and S0 should therefore be
scalars or vectors of same length.

Value

A list of length equal to the number of pairs of parameters nu0 and S0, where each element of the
list is an array of dimension (Kmax, Kmax, nrep) that contains the correlation matrices of the latent
factors drawn from the prior.

Author(s)

Rémi Piatek <remi.piatek@econ.ku.dk>

References

G. Conti, S. Frühwirth-Schnatter, J.J. Heckman, R. Piatek (2014): “Bayesian Exploratory Fac-
tor Analysis”, Journal of Econometrics, 183(1), pages 31-57, http://dx.doi.org/10.1016/j.
jeconom.2014.06.008.

Examples

# partial reproduction of figure 1 in CFSHP (p.38)
# note: use larger number of replications nrep to increase smoothness
Kmax <- 10
Rsim <- simul.R.prior(Kmax, nu0 = Kmax + c(1, 2, 5), S0 = .5, nrep = 1000)
summary(Rsim)
plot(Rsim)

http://dx.doi.org/10.1016/j.jeconom.2014.06.008
http://dx.doi.org/10.1016/j.jeconom.2014.06.008
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summary.befa Summarize ’befa’ object

Description

Generic function summarizing the posterior results of a ’befa’ object. Optional arguments can be
specified to customize the summary.

Usage

## S3 method for class 'befa'
summary(object, ...)

Arguments

object Object of class ’befa’.

... The following extra arguments can be specified:

• what: How to summarize the posterior distribution?
– what = 'maxp' (default): Only factor loadings with highest posterior

probability of being different from zero or discarded from the model (if
dedic = 0) are summarized.

– what = 'all': All factor loadings with corresponding posterior prob-
ability to be allocated to a given factor (or to be discarded from the
model) larger than min.prob are summarized.

– what = 'hppm': Highest posterior probability models with probability
larger than min.prob are summarized.

• byfac: Sort factor loadings by factors if TRUE, otherwise by manifest vari-
ables if FALSE (default).

• hpd.prob: Probability used to compute the highest posterior density inter-
vals of the posterior distribution of the model parameters (default: 0.95).

• min.prob: If what = 'all', only factor loadings with posterior probability
of being dedicated to a given factor (or discarded from the model) larger
than this value are displayed. If what = 'hppm', only highest posterior
probability models with probability larger than this value are displayed.
(default: 0.20)

Details

This function summarizes the posterior distribution of the parameters. The algorithm may visit
different configurations of the indicator matrix ∆ during sampling, where the manifest variables
are allocated to different latent factors. When the posterior distribution of the factor loadings is
summarized separately for each manifest variable (what = 'maxp' or what = 'all'), the function
provides the latent factor each manifest variable is allocated to (dedic), and the corresponding pos-
terior probability (prob). If dedic = 0, then prob corresponds to the posterior probability that the
manifest variable is discarded. Discarded variables are listed last if byfac = TRUE. Low probability
cases can be discarded by setting min.prob appropriately (default is 0.20).
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Idiosyncratic variances, factor correlation matrix and regression coefficients (if any) are summa-
rized across all MCMC iterations if what = 'all' or what = 'maxp', and within each HPP model
if what = 'hppm'.

Highest posterior probability model. The HPP model is the model with a given allocation of the
measurements to the latent factors (i.e., a given indicator matrix ∆) that is visited most often by the
algorithm.

When specifying what = 'hppm', the function sorts the models according to the posterior frequen-
cies of their indicator matrices in decreasing order. Therefore, the first model returned (labeled
’m1’) corresponds to the HPP model. Low probability models can be discarded by setting min.prob
appropriately(default is 0.20, implying that only models with a posterior probability larger than 0.20
are displayed).

HPP models can only be found if identification with respect to column switching has been restored
a posteriori. An error message is returned if this is not the case.

Value

If called directly, the summary is formatted and displayed on the standard output. Otherwise if
saved in an object, a list of the following elements is returned:

• MHacc: Metropolis-Hastings acceptance rate.

• alpha: Data frame (or list of data frames if what = 'hppm') containing posterior summary
statistics for the factor loadings.

• sigma: Data frame (or list of matrices if what = 'hppm') containing posterior summary statis-
tics for the idiosyncratic variances.

• R: Data frame (or list of data frames if what = 'hppm') containing posterior summary statistics
for the factor correlations.

• beta: Data frame (or list of data frames if what = 'hppm') containing posterior summary
statistics for the regression coefficients (if any).

• nfac (only if what = 'maxp' or what = 'all'): Table of posterior frequencies of numbers of
factors.

• hppm (only if what = 'hppm'): List of the following elements summarizing the different HPP
models, sorted in decreasing order of their posterior probabilities:

– prob: Vector of posterior probabilities.
– nfac: Vector of numbers of factors.
– dedic: Data frame of factor indicators.

Data frames of posterior summary statistics include the means (mean), standard deviations (sd) and
highest posterior density intervals (hpd.lo and hpd.up, for the probability specified in hpd.prob)
of the corresponding parameters.

For the factor loadings, the matrix may also include a column labeled ’dedic’ indicating to which
factors the corresponding manifest variables are dedicated (a zero value means that the manifest
variable does not load on any factor), as well as a column labeled ’prob’ showing the corresponding
posterior probabilities that the manifest variables load on these factors.

Summary results are returned as lists of data frames for HPP models, where the elements of the list
are labeled as ’m1, ’m2’, etc.
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Author(s)

Rémi Piatek <remi.piatek@econ.ku.dk>

See Also

plot.befa to plot posterior results.

Examples

set.seed(6)

# generate fake data with 15 manifest variables and 3 factors
Y <- simul.dedic.facmod(N = 100, dedic = rep(1:3, each = 5))

# run MCMC sampler and post process output
# notice: 1000 MCMC iterations for illustration purposes only,
# increase this number to obtain reliable posterior results!
mcmc <- befa(Y, Kmax = 5, iter = 1000)
mcmc <- post.column.switch(mcmc)
mcmc <- post.sign.switch(mcmc)

# summarize posterior results
summary(mcmc)

# summarize highest posterior probability (HPP) model
hppm.sum <- summary(mcmc, what = 'hppm')

# print summary with 6-digit precision
print(hppm.sum, digits = 6)

# extract posterior means of the factor loadings in HPP model
alpha.mean <- hppm.sum$alpha$m1$mean
print(alpha.mean)
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