Estimation of hierarchical Bayesian vector autoregressive models. Implements hierarchical prior selection for conjugate priors in the fashion of Giannone, Lenza & Primiceri (2015) <doi:10.1162/REST_a_00483>. Functions to compute and identify impulse responses, calculate forecasts, forecast error variance decompositions and scenarios are available. Several methods to print, plot and summarise results facilitate analysis.
Version: | 1.0.0 |
Depends: | R (≥ 3.3.0) |
Imports: | mvtnorm, stats, graphics, utils, grDevices |
Suggests: | coda, vars, tinytest |
Published: | 2020-05-05 |
Author: | Nikolas Kuschnig |
Maintainer: | Nikolas Kuschnig <nikolas.kuschnig at wu.ac.at> |
BugReports: | https://github.com/nk027/bvar/issues |
License: | GPL-3 | file LICENSE |
URL: | https://github.com/nk027/bvar |
NeedsCompilation: | no |
Citation: | BVAR citation info |
Materials: | NEWS |
In views: | Bayesian, TimeSeries |
CRAN checks: | BVAR results |
Reference manual: | BVAR.pdf |
Vignettes: |
BVAR: Bayesian Vector Autoregressions with Hierarchical Prior Selection in R |
Package source: | BVAR_1.0.0.tar.gz |
Windows binaries: | r-devel: BVAR_1.0.0.zip, r-release: BVAR_1.0.0.zip, r-oldrel: BVAR_1.0.0.zip |
macOS binaries: | r-release: BVAR_1.0.0.tgz, r-oldrel: BVAR_1.0.0.tgz |
Old sources: | BVAR archive |
Please use the canonical form https://CRAN.R-project.org/package=BVAR to link to this page.