Package 'BNSP'

May 8, 2020
Title Bayesian Non- And Semi-Parametric Model Fitting
Version 2.1.4
Date 2020-05-08
Author Georgios Papageorgiou
Maintainer Georgios Papageorgiou gpapageo@gmail.com
Description MCMC algorithms \& processing functions for: 1. multivariate (and univariate) regression, with nonparametric models for the means, the variances and the correlation matrix, with variable selection, and 2 . Dirichlet process mixtures.
Depends R (>=3.1.0)
Imports coda, ggplot2, plot3D, threejs, gridExtra, cubature, Formula, plyr, mgcv, corrplot, label.switching
LinkingTo cubature
Suggests mvtnorm, np
License GPL (>= 2)
URL http://www.bbk.ac.uk/ems/faculty/papageorgiou/BNSP
NeedsCompilation yes
Repository CRAN
Date/Publication 2020-05-08 08:40:17 UTC

R topics documented:

BNSP-package . 2
chol . 3
clustering . 4
continue . 5
dpmj . 6
histCorr . 13
mvrm . 14
mvrm2mcmc . 19
plot.mvrm . 20
plotCorr . 21
predict.mvrm 22
print.mvrm 23
s 24
simD 25
sm 26
summary.mvrm 27
te 28
ti 29
Index 31
BNSP-package Bayesian non- and semi-parametric model fitting

Description

Markov chain Monte Carlo algorithms for non- and semi-parametric models: 1. spike-slab variable selection in multivariate mean/variance regression models with function mvrm, and 2. Dirichlet process mixture models with function dpmj.

Details

Package:	BNSP
Type:	Package
Version:	2.1 .4
Date:	$2020-05-08$
License:	GPL (>=2)

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

For details on the GNU General Public License see http://www.gnu.org/copyleft/gpl.html or write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 021101301, USA.

Acknowledgments

This work was partly supported by the Medical Research Council grant number G09018401.

Author(s)

Georgios Papageorgiou (2014)
Maintainer: Georgios Papageorgiou gpapageo@gmail.com

References

Papageorgiou, G. and Marshall, B.C. (2020). Bayesian semiparametric analysis of multivariate continuous responses, with variable selection. Journal of Computational and Graphical Statistics, DOI: 10.1080/10618600.2020.1739534
Papageorgiou, G. (2018). BNSP: an R Package for fitting Bayesian semiparametric regression models and variable selection. The R Journal, 10(2):526-548.

Papageorgiou, G. (2018). Bayesian density regression for discrete outcomes. Australian and New Zealand Journal of Statistics, arXiv:1603.09706v3 [stat.ME].
Papageorgiou, G., Richardson, S. and Best, N. (2015). Bayesian nonparametric models for spatially indexed data of mixed type. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 77:973-999.

chol The Cholesky and modified Cholesky decompositions

Description

Computes the Cholesky factorization and modified Cholesky factorizations of a real symmetric positive-definite square matrix.

Usage

chol $(x, \bmod =$ TRUE, $p=1, \ldots)$

Arguments

x
mod
p Relevant only when mod = TRUE. It determines the size of the blocks of the block diagonal matrix.
... other arguments.

Details

The function computes the modified Cholesky decomposition of a real symmetric positive-definite square matrix Σ. This is given by

$$
L \Sigma L^{\top}=D
$$

where L is a lower tringular matrix with ones on its main diagonal and D is a block diagonal matrix with block size determined by argument p.

Value

The function returns matrices L and D.

Author(s)

Georgios Papageorgiou <gpapageo@gmail. com>

See Also

The default function from base, chol

Examples

```
Sigma <- matrix(c(1.21,0.18,0.13,0.41,0.06,0.23,
    0.18,0.64,0.10,-0.16,0.23,0.07,
    0.13,0.10,0.36,-0.10,0.03,0.18,
    0.41,-0.16,-0.10,1.05,-0.29,-0.08,
    0.06,0.23,0.03,-0.29,1.71,-0.10,
    0.23,0.07,0.18,-0.08,-0.10,0.36),6,6)
LD <- chol(Sigma)
L <- LD$L
D <- LD$D
round(L,5)
round(D,5)
solve(L) %*% D %*% solve(t(L))
LD <- chol(Sigma, p = 2)
L <- LD$L
D <- LD$D
round(L, 5)
round(D, 5)
solve(L) %*% D %*% solve(t(L))
```

 clustering Computes the similarity matrix

Description

Computes the similarity matrix.

Usage

clustering(object, ...)

Arguments

object an object of class "mvrm", usually a result of a call to mvrm. ... other arguments.

Details

The function computes the similarity matrix for clustering based on corrrelations or variables.

Value

Similarity matrix.

Author(s)

Georgios Papageorgiou gpapageo@gmail.com

See Also

mvrm

Examples

```
#see \code{mvrm} example
```

```
continue Continues the sampler from where it stopped
```


Description

Allows the user to continue the sampler from the state it stopped in the previous call to mvrm.

Usage

continue(object, sweeps, discard = FALSE,...)

Arguments

object An object of class "mvrm", usually a result of a call to mvrm.
sweeps The number of additional sweeps, maintaining the same thinning interval as specified in the original call to mvrm.
discard If set to true, the previous samples are discarded.
... other arguments.

Details

The function allows the sampler to continue from the state it last stopped.

Value

The function returns an object of class mvrm.

Author(s)

Georgios Papageorgiou gpapageo@gmail.com

See Also

mvrm

Examples

```
#see \code{mvrm} example
```

dpmj Dirichlet process mixtures of joint models

Description

Fits Dirichlet process mixtures of joint response-covariate models, where the covariates are of mixed type while the discrete responses are represented utilizing continuous latent variables. See 'Details' section for a full model description and Papageorgiou (2018) for all technical details.

Usage
 dpmj(formula, Fcdf, data, offset, sampler = "truncated", Xpred, offsetPred, StorageDir, ncomp, sweeps, burn, thin = 1, seed, H, Hdf, d, D, Alpha.xi, Beta.xi, Alpha.alpha, Beta.alpha, Trunc.alpha, ...)

Arguments

formula a formula defining the response and the covariates e.g. $\mathrm{y} \sim \mathrm{x}$.
Fcdf a description of the kernel of the response variable. Currently five options are supported: 1. "poisson", 2. "negative binomial", 3. "generalized poisson", 4. "binomial" and 5. "beta binomial". The first three kernels are used for count data analysis, where the third kernel allows for both over- and under-dispersion relative to the Poisson distribution. The last two kernels are used for binomial data analysis. See 'Details' section for some of the kernel details.
data an optional data frame, list or environment (or object coercible by 'as.data.frame' to a data frame) containing the variables in the model. If not found in 'data', the variables are taken from 'environment(formula)'.
offset this can be used to specify an a priori known component to be included in the model. This should be 'NULL' or a numeric vector of length equal to the sample size. One 'offset' term can be included in the formula, and if more are required, their sum should be used.
sampler the MCMC algorithm to be utilized. The two options are sampler = "slice" which implements a slice sampler (Walker, 2007; Papaspiliopoulos, 2008) and sampler = "truncated" which proceeds by truncating the countable mixture at ncomp components (see argument ncomp).
Xpred an optional design matrix the rows of which include the values of the covariates x for which the conditional distribution of $Y \mid x, D$ (where D denotes the data) is calculated. These are treated as 'new' covariates i.e. they do not contribute to the likelihood. The matrix shouldn't include a column of 1's. NA's can be included to obtain averaged effects.

offsetPred	the offset term associated with the new covariates Xpred. It is of dimension one i.e. the same offset term is used for all rows of Xpred. If Fcdf is one of "poisson" or "negative binomial" or "generalized poisson", then offsetPred is the Poisson offset term. If Fcdf is one of "binomial" or "beta binomial", then offsetPred is the number of Binomial trials. If offsetPred is missing, it is taken to be the mean of offset, rounded to the nearest integer.
StorageDir	a directory to store files with the posterior samples of models parameters and other quantities of interest. If a directory is not provided, files are created in the current directory and removed when the sampler completes.
ncomp	number of mixture components. It defines where the countable mixture of densities [in (1) below] is truncated. Even if sampler="slice" is chosen, ncomp needs to be specified as it is used in the initialization process.
sweeps	total number of posterior samples, including those discarded in burn-in period (see argument burn) and those discarded by the thinning process (see argument thin).
burn	length of burn-in period.
thin	thinning parameter.
seed	optional seed for the random generator.
H	optional scale matrix of the Wishart-like prior assigned to the restricted covariance matrices Σ_{h}^{*}. See 'Details' section.
Hdf	optional degrees of freedom of the prior Wishart-like prior assigned to the restricted covariance matrices Σ_{h}^{*}. See 'Details' section.
d	optional prior mean of the mean vector μ_{h}. See 'Details' section.
D	optional prior covariance matrix of the mean vector μ_{h}. See 'Details' section.
Alpha.xi	an optional parameter that depends on the specified Fcdf argument.
	1. If Fcdf = "poisson", this argument is parameter α_{ξ} of the prior of the Poisson rate: $\xi \sim \operatorname{Gamma}\left(\alpha_{\xi}, \beta_{\xi}\right)$. 2. If Fcdf = "negative binomial", this argument is a two-dimensional vector that includes parameters $\alpha_{1 \xi}$ and $\alpha_{2 \xi}$ of the priors: $\xi_{1} \sim \operatorname{Gamma}\left(\alpha_{1 \xi}, \beta_{1 \xi}\right)$ and $\xi_{2} \sim \operatorname{Gamma}\left(\alpha_{2 \xi}, \beta_{2 \xi}\right)$, where ξ_{1} and ξ_{2} are the two parameters of the Negative Binomial pmf.
	3. If $\mathrm{Fcdf}=$ "generalized poisson", this argument is a two-dimensional vector that includes parameters $\alpha_{1 \xi}$ and $\alpha_{2 \xi}$ of the priors: $\xi_{1} \sim \operatorname{Gamma}\left(\alpha_{1 \xi}, \beta_{1 \xi}\right)$ and $\xi_{2} \sim \mathrm{~N}\left(\alpha_{2 \xi}, \beta_{2 \xi}\right) I\left[\xi_{2} \in R_{\xi_{2}}\right]$, where ξ_{1} and ξ_{2} are the two parameters of the Generalized Poisson pmf. Parameter ξ_{2} is restricted in the range $R_{\xi_{2}}=(0.05, \infty)$ as it is a dispersion parameter.
	4. If $\mathrm{Fcdf}=$ "binomial", this argument is parameter α_{ξ} of the prior of the Binomial probability: $\xi \sim \operatorname{Beta}\left(\alpha_{\xi}, \beta_{\xi}\right)$.
	5. If Fcdf = "beta binomial", this argument is a two-dimensional vector that includes parameters $\alpha_{1 \xi}$ and $\alpha_{2 \xi}$ of the priors: $\xi_{1} \sim \operatorname{Gamma}\left(\alpha_{1 \xi}, \beta_{1 \xi}\right)$ and $\xi_{2} \sim \operatorname{Gamma}\left(\alpha_{2 \xi}, \beta_{2 \xi}\right)$, where ξ_{1} and ξ_{2} are the two parameters of the Beta Binomial pmf.
	See 'Details' section.
Beta.xi	an optional parameter that depends on the specified family.

1. If Fcdf = "poisson", this argument is parameter β_{ξ} of the prior of the Poisson rate: $\xi \sim \operatorname{Gamma}\left(\alpha_{\xi}, \beta_{\xi}\right)$.
2. If $\mathrm{Fcdf}=$ "negative binomial", this argument is a two-dimensional vector that includes parameters $\beta_{1 \xi}$ and $\beta_{2 \xi}$ of the priors: $\xi_{1} \sim \operatorname{Gamma}\left(\alpha_{1 \xi}, \beta_{1 \xi}\right)$ and $\xi_{2} \sim \operatorname{Gamma}\left(\alpha_{2 \xi}, \beta_{2 \xi}\right)$, where ξ_{1} and ξ_{2} are the two parameters of the Negative Binomial pmf.
3. If Fcdf = "generalized poisson", this argument is a two-dimensional vector that includes parameters $\beta_{1 \xi}$ and $\beta_{2 \xi}$ of the priors: $\xi_{1} \sim \operatorname{Gamma}\left(\alpha_{1 \xi}, \beta_{1 \xi}\right)$ and $\xi_{2} \sim \operatorname{Normal}\left(\alpha_{2 \xi}, \beta_{2 \xi}\right) I\left[\xi_{2} \in R_{\xi_{2}}\right]$, where ξ_{1} and ξ_{2} are the two parameters of the Generalized Poisson pmf. Parameter ξ_{2} is restricted in the range $R_{\xi_{2}}=(0.05, \infty)$ as it is a dispersion parameter. Note that $\beta_{2 \xi}$ is a standard deviation.
4. If Fcdf = "binomial", this argument is parameter β_{ξ} of the prior of the Binomial probability: $\xi \sim \operatorname{Beta}\left(\alpha_{\xi}, \beta_{\xi}\right)$.
5. If $\mathrm{Fcdf}=$ "beta binomial", this argument is a two-dimensional vector that includes parameters $\beta_{1 \xi}$ and $\beta_{2 \xi}$ of the priors: $\xi_{1} \sim \operatorname{Gamma}\left(\alpha_{1 \xi}, \beta_{1 \xi}\right)$ and $\xi_{2} \sim \operatorname{Gamma}\left(\alpha_{2 \xi}, \beta_{2 \xi}\right)$, where ξ_{1} and ξ_{2} are the two parameters of the Beta Binomial pmf.
See 'Details' section.
Alpha.alpha optional shape parameter α_{α} of the Gamma prior assigned to the concentration parameter α. See 'Details' section.
Beta.alpha optional rate parameter β_{α} of the Gamma prior assigned to concentration parameter α. See 'Details' section.
Trunc.alpha optional truncation point c_{α} of the Gamma prior assigned to concentration parameter α. See 'Details' section.
Other options that will be ignored.

Details

Function dpmj returns samples from the posterior distributions of the parameters of the model:

$$
\begin{equation*}
f\left(y_{i}, x_{i}\right)=\sum_{h=1}^{\infty} \pi_{h} f\left(y_{i}, x_{i} \mid \theta_{h}\right) \tag{1}
\end{equation*}
$$

where y_{i} is a univariate discrete response, x_{i} is a p-dimensional vector of mixed type covariates, and $\pi_{h}, h \geq 1$, are obtained according to Sethuraman's (1994) stick-breaking construction: $\pi_{1}=v_{1}$, and for $l \geq 2, \pi_{l}=v_{l} \prod_{j=1}^{l-1}\left(1-v_{j}\right)$, where v_{k} are iid samples $v_{k} \sim \operatorname{Beta}(1, \alpha), k \geq 1$.
Let Z denote a discrete variable (response or covariate). It is represented as discretized version of a continuous latent variable Z^{*}. Observed discrete Z and continuous latent variable Z^{*} are connected by:

$$
z=q \Longleftrightarrow c_{q-1}<z^{*}<c_{q}, q=0,1,2, \ldots
$$

where the cut-points are obtained as: $c_{-1}=-\infty$, while for $q \geq 0, c_{q}=c_{q}(\lambda)=\Phi^{-1}\{F(q ; \lambda)\}$. Here $\Phi($.$) is the cumulative distribution function (cdf) of a standard normal variable and F()$ denotes an appropriate cdf. Further, latent variables are assumed to independently follow a $N(0,1)$ distribution, where the mean and variance are restricted to be zero and one as they are non-identifiable by the data. Choices for $F()$ are described next.

For counts, three options are supported. First, $F\left(. ; \lambda_{i}\right)$ can be specified as the cdf of a Poisson $\left(H_{i} \xi_{h}\right)$ variable. Here $\lambda_{i}=\left(\xi_{h}, H_{i}\right)^{T}, \xi_{h}$ denotes the Poisson rate associated with cluster h, and H_{i} the offset term associated with sampling unit i. Second, $F\left(. ; \lambda_{i}\right)$ can be specified as the negative binomial cdf, where $\lambda_{i}=\left(\xi_{1 h}, \xi_{2 h}, H_{i}\right)^{T}$. This option allows for overdispersion within each cluster relative to the Poisson distribution. Third, $F\left(. ; \lambda_{i}\right)$ can be specified as the Generalized Poisson cdf, where, again, $\lambda_{i}=\left(\xi_{1 h}, \xi_{2 h}, H_{i}\right)^{T}$. This option allows for both over- and under-dispersion within each cluster.
For Binomial data, two options are supported. First, $F\left(. ; \lambda_{i}\right)$ may be taken to be the cdf of a $\operatorname{Binomial}\left(H_{i}, \xi_{h}\right)$ variable, where ξ_{h} denotes the success probability of cluster h and H_{i} the number of trials associated with sampling unit i. Second, $F\left(. ; \lambda_{i}\right)$ may be specified to be the beta-binomial cdf, where $\lambda=\left(\xi_{1 h}, \xi_{2 h}, H_{i}\right)^{T}$.
The special case of Binomial data is treated as

$$
Z=0 \Longleftrightarrow z^{*}<0, z^{*} \sim N\left(\mu_{z}^{*}, 1\right)
$$

Details on all kernels are provided in the two tables below. The first table provides the probability mass functions and the mean in the presence of an offset term (which may be taken to be one). The column 'Sample' indicates for which parameters the routine provides posterior samples. The second table provides information on the assumed priors along with the default values of the parameters of the prior distributions and it also indicates the function arguments that allow the user to alter these.

Kernel	PMF	Offset	Mean	Sample
Poisson	$\exp (-H \xi)(H \xi)^{y} / y!$	H	$H \xi$	ξ
Negative Binomial	$\frac{\Gamma\left(y+\xi_{1}\right)}{\Gamma\left(\xi_{1}\right) \Gamma(y+1)}\left(\frac{\xi_{2}}{H+\xi_{2}}\right)^{\xi_{1}}\left(\frac{H}{H+\xi_{2}}\right)^{y}$	H	$H \xi_{1} / \xi_{2}$	ξ_{1}, ξ_{2}
Generalized Poisson	$\xi_{1}\left\{\xi_{1}+\left(\xi_{2}-1\right) y\right\}^{y-1} \xi_{2}^{-y} \times$	H	$H \xi_{1}$	ξ_{1}, ξ_{2}
	$\exp \left\{-\left[\xi_{1}+\left(\xi_{2}-1\right) y\right] / \xi_{2}\right\} / y!$			
Binomial	$\binom{N}{y} \xi^{y}(1-\xi)^{N-y}$	N	$N \xi$	ξ
Beta Binomial	$\binom{N}{y} \frac{\operatorname{Beta}\left(y+\xi_{1}, N-y+\xi_{2}\right)}{\operatorname{Beta}\left(\xi_{1}, \xi_{2}\right)}$	N	$N \xi_{1} /\left(\xi_{1}+\xi_{2}\right)$	ξ_{1}, ξ_{2}

Kernel	Priors	Default Values
Poisson	$\xi \sim \operatorname{Gamma}\left(\alpha_{\xi}, \beta_{\xi}\right)$	Alpha.xi $=1.0$, Beta.xi $=0.1$
Negative Binomial	$\xi_{i} \sim \operatorname{Gamma}\left(\alpha_{\xi_{i}}, \beta_{\xi_{i}}\right), i=1,2$	Alpha.xi $=\mathrm{c}(1.0,1.0)$, Beta.xi $=\mathrm{c}(0.1,0.1)$
Generalized Poisson	$\xi_{1} \sim \operatorname{Gamma}\left(\alpha_{\xi_{1}}, \beta_{\xi_{1}}\right)$	
	$\xi_{2} \sim \mathrm{~N}\left(\alpha_{\xi_{2}}, \beta_{\xi_{2}}\right) I\left[\xi_{2}>0.05\right]$	Alpha.xi $=\mathrm{c}(1.0,1.0)$, Beta.xi $=\mathrm{c}(0.1,1.0)$
	where $\beta_{\xi_{2}} \operatorname{denotes}$ st.dev.	
Binomial	$\xi \sim \operatorname{Beta}\left(\alpha_{\xi}, \beta_{\xi}\right)$	Alpha.xi $=1.0$, Beta.xi $=1.0$
Beta Binomial	$\xi_{i} \sim \operatorname{Gamma}\left(\alpha_{\xi_{i}}, \beta_{\xi_{i}}\right), i=1,2$	Alpha.xi $=\mathrm{c}(1.0,1.0)$, Beta.xi $=\mathrm{c}(0.1,0.1)$

Let $z_{i}=\left(y_{i}, x_{i}^{T}\right)^{T}$ denote the joint vector of observed continuous and discrete variables and z_{i}^{*} the corresponding vector of continuous observed and latent variables. With θ_{h} denoting model parameters associated with the h th cluster, the joint density $f\left(z_{i} \mid \theta_{h}\right)$ takes the form

$$
f\left(z_{i} \mid \theta_{h}\right)=\int_{R(y)} \int_{R\left(x_{d}\right)} N_{q}\left(z_{i}^{*} ; \mu_{h}^{*}, \Sigma_{h}^{*}\right) d x_{d}^{*} d y^{*}
$$

where

$$
\mu_{h}^{*}=\binom{0}{\mu_{h}}, \quad \Sigma_{h}^{*}=\left[\begin{array}{ll}
C_{h} & \nu_{h}^{T} \\
\nu_{h} & \Sigma_{h}
\end{array}\right]
$$

where C_{h} is the covariance matrix of the latent continuous variables and it has diagonal elements equal to one i.e. it is a correlation matrix.

In addition to the priors defined in the table above, we specify the following:

1. The restricted covariance matrix Σ_{h}^{*} is assigned a prior distribution that is based on the Wishart distribution with degrees of freedom set by default to dimension of matrix plus two and diagonal scale matrix, with the sub-matrix that corresponds to discrete variables taken to be the identity matrix and with sub-matrix that corresponds to continuous variables having entries equal to $1 / 8$ of the square of the observed data range. Default values can be changed using arguments H and Hdf .
2. The prior on μ_{h}, the non-zero part of μ_{h}^{*}, is taken to be multivariate normal $\mu_{h} \sim N(d, D)$. The mean d is taken to be equal to the center of the dataset. The covariance matrix D is taken to be diagonal. Its elements that correspond to continuous variables are set equal to $1 / 8$ of the square of the observed data range while the elements that correspond to binary variables are set equal to 5. Arguments Mu.mu and Sigma.mu allow the user to change the default values.
3. The concentration parameter α is assigned a $\operatorname{Gamma}\left(\alpha_{\alpha}, \beta_{\alpha}\right)$ prior over the range $\left(c_{\alpha}, \infty\right)$, that is, $f(\alpha) \propto \alpha^{\alpha_{\alpha}-1} \exp \left\{-\alpha \beta_{\alpha}\right\} I\left[\alpha>c_{\alpha}\right]$, where $I[$.$] is the indicator function. The$ default values are $\alpha_{\alpha}=2.0, \beta_{\alpha}=5.0$, and $c_{\alpha}=0.25$. Users can alter the default using using arguments Alpha.alpha, Beta.alpha and Turnc.alpha.

Value

Function dpmj returns the following:

call	the matched call.
seed	the seed that was used (in case replication of the results is needed).
meanReg	if Xpred is specified, the function returns the posterior mean of the conditional expectation of the response y given each new covariate x.
medianReg	if Xpred is specified, the function returns the posterior mean of the conditional 50% quantile of the response y given each new covariate x.
q1Reg	if Xpred is specified, the function returns the posterior mean of the conditional 25% quantile of the response y given each new covariate x.
q3Reg	if Xpred is specified, the function returns the posterior mean of the conditional 75% quantile of the response y given each new covariate x.
modeReg	if Xpred is specified, the function returns the posterior mean of the conditional mode of the response y given each new covariate x.
denReg	if Xpred is specified, the function returns the posterior mean conditional density of the response y given each new covariate x. Results are presented in a matrix the rows of which correspond to the different x s.
denVar	if Xpred is specified, the function returns the posterior variance of the conditional density of the response y given each new covariate x. Results are presented in a matrix the rows of which correspond to the different x s.

Further, function dpmj creates files where the posterior samples are written. These files are (with all file names preceded by 'BNSP.'):

alpha.txt	this file contains samples from the posterior of the concentration parameters α. The file is arranged in (sweeps-burn)/thin lines and one column, each line including one posterior sample.
compAlloc.txt	
this file contains the allocations to clusters obtained during posterior sampling.	
It consists of (sweeps-burn)/thin lines, that represent the posterior samples,	
and n columns, that represent the sampling units. Clusters are represented by	
integers ranging from 0 to ncomp-1.	

Abstract

xih.txt this file contains samples from the posteriors of parameters $\xi_{h}, h=1,2, \ldots$,ncomp. The file is arranged in ((sweeps-burn)/thin)*ncomp lines and one or two columns, depending on the number of parameters in the selected Fcdf. Sweeps write in the file ncomp lines representing samples $\xi_{h}^{(s w)}, h=1, \ldots$, ncomp, where superscript $s w$ represents a particular sweep.

Updated.txt this file contains (sweeps-burn)/thin lines with the number of components updated at each iteration of the sampler (relevant for slice sampling).

Author(s)

Georgios Papageorgiou gpapageo@gmail.com

References

Consul, P. C. \& Famoye, G. C. (1992). Generalized Poisson regression model. Communications in Statistics - Theory and Methods, 1992, 89-109.

Papageorgiou, G. (2018). Bayesian density regression for discrete outcomes. arXiv:1603.09706v3 [stat.ME].

Papaspiliopoulos, O. (2008). A note on posterior sampling from Dirichlet mixture models. Technical report, University of Warwick.

Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statistica Sinica, 4, 639-650.
Walker, S. G. (2007). Sampling the Dirichlet mixture model with slices. Communications in Statistics Simulation and Computation, 36(1), 45-54.

Examples

```
#Bayesian nonparametric joint model with binomial response Y and one predictor X
data(simD)
pred<-seq(with(simD,min(X))+0.1, with(simD,max(X))-0.1, length.out=30)
npred<-length(pred)
# fit1 and fit2 define the same model but with different numbers of
# components and posterior samples
fit1 <- dpmj(cbind(Y,(E-Y))~X, Fcdf="binomial", data=simD, ncomp=10, sweeps=20,
    burn=10, sampler="truncated", Xpred=pred, offsetPred=30)
fit2 <- dpmj(cbind(Y,(E-Y))~X, Fcdf="binomial", data=simD, ncomp=50, sweeps=5000,
    burn=1000, sampler="truncated", Xpred=pred, offsetPred=30)
plot(with(simD,X),with(simD,Y)/with(simD,E))
lines(pred,fit2$medianReg/30,col=3,lwd=2)
# with discrete covariate
simD<-data.frame(simD,Xd=sample(c(0,1),300,replace=TRUE))
pred<-c(0,1)
fit3 <- dpmj(cbind(Y,(E-Y))~Xd, Fcdf="binomial", data=simD, ncomp=10, sweeps=20,
    burn=10, sampler="truncated", Xpred=pred, offsetPred=30)
```

```
histCorr Creates plots of correlation matrices
```


Description

This function plots the posterior distribution of the elements of correlation matrices.

Usage

```
    histCorr(x, term = "R", plotOptions = list(),...)
```


Arguments

x	an object of class 'mvrm', as generated by function mvrm.
term	Admits two possible values: "R" to plot samples from the posterior of the cor- relation matrix R, and "muR" to plot samples from the posterior of the means μ_{R}.
plotOptions	ggplot type options.
\ldots	other arguments.

Details

Use this function to visualize the elements of a correlation matrix.

Value

Posterior distributions of elements of correlation matrices.

Author(s)

Georgios Papageorgiou gpapageo@gmail.com

See Also

mvrm

Examples

```
#see \code{mvrm} example
```


Description

Implements an MCMC algorithm for posterior sampling based on a semiparametric model for continuous multivariate responses and additive models for the mean and variance functions. The model utilizes spike-slab priors for variable selection and regularization. See 'Details' section for a full description of the model.

Usage

mvrm(formula, data = list(), sweeps, burn = 0, thin = 1, seed, StorageDir, c.betaPrior $=" I G(0.5,0.5 * n * p) ", ~ p i . m u P r i o r ~=~ " B e t a(1, ~ 1) ", ~$
c.alphaPrior $=" I G(1.1,1.1) "$, sigmaPrior $=" H N(2) "$, pi.sigmaPrior $=" \operatorname{Beta}(1,1) "$, mu. RPrior = "N(0, 1)", sigma.RPrior = "HN(1)", corr.Model = c("common", nClust =1), DP.concPrior = "Gamma $(5,2) "$, tuneAlpha, tuneSigma2, tuneCb, tuneCa, tuneR, tuneSigma2R, tau, $\mathrm{FT}=1, \ldots$)

Arguments

formula	a formula defining the responses and the covariates in the mean and variance models e.g. $\mathrm{y} 1\|\mathrm{y} 2 \sim \mathrm{x}\| \mathrm{z}$ or for smooth effects $\mathrm{y} 1\|\mathrm{y} 2 \sim \mathrm{sm}(\mathrm{x})\| \mathrm{sm}(\mathrm{z})$. The package uses the extended formula notation, where the responses are defined on the left of \sim and the mean and variance models on the right.
data	a data frame.
sweeps	total number of posterior samples, including those discarded in burn-in period (see argument burn) and those discarded by the thinning process (see argument thin).
burn	length of burn-in period.
thin	thinning parameter.
seed	optional seed for the random generator.
StorageDir	a required directory to store files with the posterior samples of models parameters.
c. betaPrior	The inverse Gamma prior of c_{β}. The default is " $\operatorname{IG}(0.5,0.5 * \mathrm{n} * \mathrm{p})$ ", that is, an inverse Gamma with parameters $1 / 2$ and $n p / 2$, where n is the number of sampling units and p is the length of the response vector.
pi.muPrior	The Beta prior of π_{μ}. The default is " $\operatorname{Beta}(1,1)$ ". It can be of dimension 1 , of dimension K (the number of effects that enter the mean model), or of dimension $p K$
c.alphaPrior	The inverse Gamma prior of c_{α}. The default is " $\operatorname{IG}(1.1,1.1)$ ". Half-normal priors for $\sqrt{c_{\alpha}}$ are also available, declared using " $\mathrm{HN}(\mathrm{a})$ ", where "a" is a positive number. It can be of dimension 1 or p (the length of the multivariate response).

sigmaPrior	The prior of σ. The default is " $\mathrm{HN}(2)$ ", a half-normal prior for σ with variance equal to two, $\sigma \sim N(0,2) I[\sigma>0]$. Inverse Gamma priors for σ^{2} are also available, declared using "IG(a,b)". It can be of dimension 1 or p (the length of the multivariate response).
pi.sigmaPrior	The Beta prior of π_{σ}. The default is "Beta(1,1)". It can be of dimension 1, of dimension Q (the number of effects that enter the variance model), or of dimension $p Q$
mu.RPrior	The normal prior for μ_{R}. The
sigma.RPrior	The half normal prior for σ_{R}. The default is the half normal distribution with variance one.
corr. Model	Specifies the model for the correlation matrix R. The three choices supported are "common", that specifies a common correlations model, "groupC", that specifies a grouped correlations model, and "groupV", that specifies a grouped variables model. When the model chosen is either "groupC" or "groupV", the upper limit on the number of clusters can also be specified, using corr.Model $=\mathrm{c}($ "groupC", $\mathrm{nClust}=\mathrm{d})$ or corr.Model $=\mathrm{c}($ "groupV", $\mathrm{nClust}=\mathrm{p})$. If the number of clusters is left unspecified, for the "groupV" model, it is taken to be p, the number of responses. For the "groupC" model, it is taken to be $d=p(p-1) / 2$, the number of free elements in the correlation matrix.
DP.concPrior	The Gamma prior for the Dirichlet process concentration parameter.
tuneAlpha	Starting value of the tuning parameter for sampling regression coefficients of the variance model α. Defaults at 5 .
tuneSigma2	Starting value of the tuning parameter for sampling variances σ_{j}^{2}. Defaults at 1 .
tuneCb	Starting value of the tuning parameter for sampling c_{β}. Defaults at 10.
tuneCa	Starting value of the tuning parameter for sampling c_{α}. Defaults at 1.
tuneR	Starting value of the tuning parameter for sampling correlation matrices. Defaults at $100(p+2)$.
tuneSigma2R	Starting value of the tuning parameter for sampling σ_{R}^{2}. Defaults at 1 .
tau	The tau of the shadow prior. Defaults at 0.01.
FT	Binary indicator. If set equal to 1 , the Fisher's z transform of the correlations is modelled, otherwise if set equal to 0 , the untransformed correlations are modelled.

Details

Function mmvrm returns samples from the posterior distributions of the parameters of a regression model with normally distributed multivariate responses and mean and variance functions modeled in terms of covariates. For instance, in the presence of two responses (y_{1}, y_{2}) and two covariates in the mean model $\left(u_{1}, u_{2}\right)$ and two in the variance model $\left(w_{1}, w_{2}\right)$, we may choose to fit

$$
\begin{gathered}
\mu_{u}=\beta_{0}+\beta_{1} u_{1}+f_{\mu}\left(u_{2}\right) \\
\log \left(\sigma_{W}^{2}\right)=\alpha_{0}+\alpha_{1} w_{1}+f_{\sigma}\left(w_{2}\right)
\end{gathered}
$$

parametrically modelling the effects of u_{1} and w_{1} and non-parametrically modelling the effects of u_{2} and w_{2}. Smooth functions, such as f_{μ} and f_{σ}, are represented by basis function expansion,

$$
\begin{aligned}
f_{\mu}\left(u_{2}\right) & =\sum_{j} \beta_{j} \phi_{j}\left(u_{2}\right) \\
f_{\sigma}\left(w_{2}\right) & =\sum_{j} \alpha_{j} \phi_{j}\left(w_{2}\right),
\end{aligned}
$$

where ϕ are the basis functions and β and α are regression coefficients.
The variance model can equivalently be expressed as

$$
\sigma_{W}^{2}=\exp \left(\alpha_{0}\right) \exp \left(\alpha_{1} w_{1}+f_{\sigma}\left(w_{2}\right)\right)=\sigma^{2} \exp \left(\alpha_{1} w_{1}+f_{\sigma}\left(w_{2}\right)\right)
$$

where $\sigma^{2}=\exp \left(\alpha_{0}\right)$. This is the parameterization that we adopt in this implementation.
Positive prior probability that the regression coefficients in the mean model are exactly zero is achieved by defining binary variables γ that take value $\gamma=1$ if the associated coefficient $\beta \neq 0$ and $\gamma=0$ if $\beta=0$. Indicators δ that take value $\delta=1$ if the associated coefficient $\alpha \neq 0$ and $\delta=0$ if $\alpha=0$ for the variance function are defined analogously. We note that all coefficients in the mean and variance functions are subject to selection except the intercepts, β_{0} and α_{0}.

Prior specification:

For the vector of non-zero regression coefficients β_{γ} we specify a g-prior

$$
\beta_{\gamma} \mid c_{\beta}, \sigma^{2}, \gamma, \alpha, \delta \sim N\left(0, c_{\beta} \sigma^{2}\left(\tilde{X}_{\gamma}^{\top} \tilde{X}_{\gamma}\right)^{-1}\right)
$$

where \tilde{X} is a scaled version of design matrix X of the mean model.
For the vector of non-zero regression coefficients α_{δ} we specify a normal prior

$$
\alpha_{\delta} \mid c_{\alpha}, \delta \sim N\left(0, c_{\alpha} I\right)
$$

Independent priors are specified for the indicators variables γ and δ as $P\left(\gamma=1 \mid \pi_{\mu}\right)=\pi_{\mu}$ and $P\left(\delta=1 \mid \pi_{\sigma}\right)=\pi_{\sigma}$. Further, Beta priors are specified for π_{μ} and π_{σ}

$$
\pi_{\mu} \sim \operatorname{Beta}\left(c_{\mu}, d_{\mu}\right), \pi_{\sigma} \sim \operatorname{Beta}\left(c_{\sigma}, d_{\sigma}\right)
$$

We note that blocks of regression coefficients associated with distinct covariate effects have their own probability of selection (π_{μ} or π_{σ}) and this probability has its own prior distribution.
Further, we specify inverse Gamma priors for c_{β} and c_{α}

$$
c_{\beta} \sim I G\left(a_{\beta}, b_{\beta}\right), c_{\alpha} \sim I G\left(a_{\alpha}, b_{\alpha}\right)
$$

For σ^{2} we consider inverse Gamma and half-normal priors

$$
\sigma^{2} \sim I G\left(a_{\sigma}, b_{\sigma}\right),|\sigma| \sim N\left(0, \phi_{\sigma}^{2}\right)
$$

Lastly, for the elements of the correlation matrix, we specify normal distributions with mean μ_{R} and variance σ_{R}^{2}, with the priors on these two parameters being normal and half-normal, respectively. This is the common correlations model. Further, the grouped correlations model can be specified. It considers a mixture of normal distributions for the means μ_{R}. The grouped correlations model can also be specified. It clusters the variables instead of the correlations.

Value

Function mmvrm returns the following:

call	the matched call.
formula	model formula.
seed	the seed that was used (in case replication of the results is needed).
data	the dataset
X	the mean model design matrix.
Z	the variance model design matrix.
LG	the length of the vector of indicators γ.
LD	the length of the vector of indicators δ.
mcpar	the MCMC parameters: length of burn in period, total number of samples, thin-
ning period.	
nSamples	total number of posterior samples DIR

Further, function mvrm creates files where the posterior samples are written. These files are (with all file names preceded by 'BNSP.'):
\(\left.$$
\begin{array}{ll}\text { alpha.txt } & \begin{array}{l}\text { contains samples from the posterior of vector } \alpha . \text { Rows represent posterior sam- } \\
\text { ples and columns represent the regression coefficient, and they are in the same } \\
\text { order as the columns of design matrix } \mathrm{Z} .\end{array} \\
\text { beta.txt } & \begin{array}{l}\text { contains samples from the posterior of vector } \beta . \text { Rows represent posterior sam- } \\
\text { ples and columns represent the regression coefficients, and they are in the same } \\
\text { order as the columns of design matrix X. }\end{array}
$$

contains samples from the posterior of the vector of the indicators \gamma . Rows

represent posterior samples and columns represent the indicator variables, and

they are in the same order as the columns of design matrix X.\end{array}\right]\)| contains samples from the posterior of the vector of the indicators δ. Rows |
| :--- |
| represent posterior samples and columns represent the indicator variables, and |
| they are in the same order as the columns of design matrix Z. |

In addition to the above, for models that cluster the correlations we have
compAlloc.txt The cluster at which the correlations were allocated, $\lambda_{k l}$. These are integers from zero to the specified number of clusters minus one.
nmembers.txt The numbers of correlations assigned to each cluster.
DPconc.txt Contains samples from the posterior of the Dirichlet process concentration parameter.

In addition to the above, for models that cluster the variables we have
compAllocV.txt The cluster at which the variables were allocated, λ_{k}. These are integers from zero to the specified number of clusters minus one.
nmembersV.txt The numbers of variables assigned to each cluster.

Author(s)

Georgios Papageorgiou gpapageo@gmail.com

References

Papageorgiou, G. and Marshall, B.C. (2019). Bayesian semiparametric analysis of multivariate continuous responses, with variable selection. arXiv.
Papageorgiou, G. (2018). BNSP: an R Package for fitting Bayesian semiparametric regression models and variable selection. The R Journal, 10(2):526-548.
Chan, D., Kohn, R., Nott, D., \& Kirby, C. (2006). Locally adaptive semiparametric estimation of the mean and variance functions in regression models. Journal of Computational and Graphical Statistics, 15(4), 915-936.

Examples

```
# Fit a mean/variance regression model on the cps71 dataset from package np
require(np)
require(ggplot2)
data(cps71)
model <- logwage ~ sm(age,k=30,bs="rd") | sm(age,k=30,bs="rd")
DIR<-getwd()
## Not run: m1 <- mvrm(formula=model,data=cps71, sweeps=10000,burn=5000, thin=2, seed=1,StorageDir=DIR)
#Print information and summarize the model
print(m1)
summary(m1)
#Summarize and plot one parameter of interest
alpha<-mvrm2mcmc(m1,"alpha")
summary(alpha)
plot(alpha)
#Obtain a plot of a term in the mean model
wagePlotOptions<-list(geom_point(data=cps71, aes(x=age, y=logwage)))
plot(x=m1,model="mean",term="sm(age)",plotOptions=wagePlotOptions)
plot(m1)
#Obtain predictions for new values of the predictor "age"
predict(m1,data.frame(age=c(21,65)),interval="credible")
# Fit a bivariate mean/variance model on the marks dataset from package ggm
```

```
# two responses: marks mechanics and vectors, and one covariate: marks on algebra
model2 <- mechanics | vectors ~ sm(algebra,k=5) | sm(algebra,k=3)
m2 <- mvrm(formula=model2, data=marks, sweeps = 100000, burn = 50000,
                        thin = 2, seed = 1, StorageDir = DIR)
plot(m2)
## End(Not run)
```

mvrm2mcmc

Convert posterior samples from function mvrm into an object of class 'memc'

Description

Reads in files where the posterior samples were written and creates an object of class 'mcmc' so that functions like summary and plot from package coda can be used

Usage

mvrm2mcmc(mvrmObj, labels)

Arguments

mvrmObj An object of class 'mvrm' as created by a call to function mvrm.
labels The labels of the files to be read in. These can be one or more of: "alpha", "beta", "gamma", "delta", "sigma2", "cbeta", "calpha", "R", "muR", "sigma2R", "nmembers", "nmembersV", "compAlloc", "compAllocV", and "DPconc" and they correspond to the parameters of the model that a call to functions mvrm fits. In addition, "deviance" can be read in. If left unspecified, all files are read in.

Value

An object of class 'mcmc' that holds the samples from the posterior of the selected parameter.

Author(s)

Georgios Papageorgiou gpapageo@gmail.com

See Also

mvrm

Examples

```
#see \code{mvrm} example
```


Description

This function plots estimated terms that appear in the mean and variance models.

Usage

```
## S3 method for class 'mvrm'
plot(x, model, term, response, response2, intercept = TRUE, grid = 30,
centre = mean, quantiles = c(0.1, 0.9), contour = TRUE, static = TRUE,
centreEffects = FALSE, plotOptions = list(), nrow, ask = FALSE,
plotEmptyCluster = FALSE, ...)
```


Arguments

x
model one of "mean", "stdev", or "both", specifying which model to be visualized.
term the term in the selected model to be plotted.
response integer number denoting the response variable to be plotted (in case there is more than one).
response2 only relevant for multivariate longitudinal data.
intercept specifies if an intercept should be included in the calculations.
grid the length of the grid on which the term will be evaluated.
centre a description of how the centre of the posterior should be measured. Usually mean or median.
quantiles the quantiles to be used when plotting credible regions. Plots without credible intervals may be obtained by setting this argument to NULL.
contour relevant for 3D plots only. If contour=TRUE then plot.mvrm creates contour plots. contour $=$ FALSE is allowed only for creating one plot at a time. The plot can be static or dynamic. See argument 'static'.
static relevant for 3D plots only. If static=TRUE then plot.mvrm calls function ribbon3D from package plot3D to create the plot. If static=FALSE then plot.mvrm calls function scatterplot3js from package threejs to create the plot.
centreEffects if TRUE then the effects in the mean functions are centred around zero over the range of the predictor while the effects in the variance function are scaled around one.
plotOptions for plots of univariate smooth terms or for plots of bivariate smooth terms where one of the two covariates is discrete, this is a list of plot elements to give to ggplot. For smooths of bivariate continuous covariates, this is a list of plot elements to give to ribbon3D (if static=FALSE) or to scatterplot3js (if static=TRUE).

```
nrow the number of rows in the figure with the plots.
ask if set to TRUE, plots will be displayed one at a time.
plotEmptyCluster
    if set to TRUE, plots of empty clusters will be displayed. Relevant for multivari-
    ate longitudinal datasets.
... other arguments.
```


Details

Use this function to obtain predictions.

Value

Predictions along with credible/pediction intervals

Author(s)

Georgios Papageorgiou <gpapageo@gmail. com>

See Also

mvrm

Examples

```
#see \code{mvrm} example
```

plotCorr Creates plots of the correlation matrices

Description

This function plots the posterior mean and credible intervals of the elements of correlation matrices.

Usage

plotCorr $(x$, term $=" R "$, centre $=$ mean, quantiles $=c(0.1,0.9), \ldots)$

Arguments

x
term
centre a description of how the centre of the posterior should be measured. Usually mean or median.
quantiles the quantiles to be used when plotting credible regions. Plots without credible intervals may be obtained by setting this argument to NULL.
... other arguments.

Details

Use this function to visualize the elements of a correlation matrix.

Value

Posterior means and credible intervals of elements of correlation matrices.

Author(s)

Georgios Papageorgiou gpapageo@gmail.com

See Also

mvrm

Examples

```
#see \code{mvrm} example
```

predict.mvrm
Model predictions

Description

Provides predictions and posterior credible/prediction intervals for given feature vectors.

Usage

```
## S3 method for class 'mvrm'
predict(object, newdata, interval = c("none", "credible", "prediction"),
    level = 0.95, nSamples = 100, ...)
```


Arguments

object an object of class "mvrm", usually a result of a call to mvrm.
newdata data frame of feature vectors to obtain predictions for. If newdata is missing, the function will use the feature vectors in the data frame used to fit the mvrm object.
interval type of interval calculation.
level tolerance level.
nSamples number of samples to obtain from the posterior predictive distribution (for each sweep of the MCMC). Only relevant for "prediction intervals".
... other arguments.

Details

The function returns predictions of new responses or the means of the responses for given feature vectors. Predictions for new responses or the means of new responses are the same. However, the two differ in the associated level of uncertainty: response predictions are associated with wider (prediction) intervals than mean response predictions. To obtain prediction intervals (for new responses) the function samples from the normal distributions with means and variances as sampled during the MCMC run.

Value

Predictions for given covariate/feature vectors.

Author(s)

Georgios Papageorgiou gpapageo@gmail.com

See Also

mvrm

Examples

```
#see \code{mvrm} example
```

print.mvrm Prints an mvrm fit

Description

Provides basic information from an mvrm fit.

Usage

\#\# S3 method for class 'mvrm'
print(x, digits = 5, ...)

Arguments

$x \quad$ an object of class "mvrm", usually a result of a call to mvrm.
digits the number of significant digits to use when printing.
... other arguments.

Details

The function prints information about mvrm fits.

Value

The function provides a matched call, the number of posterior samples obtained and marginal inclusion probabilities of the terms in the mean and variance models.

Author(s)

Georgios Papageorgiou gpapageo@gmail.com

See Also

mvrm

Examples

$$
\text { \#see \code\{mvrm\} example }
$$

Description

Provides interface between mgcv::s and BNSP. s(...) calls mgcv: : smoothCon(mgcv: :s(...), ...

Usage

s(..., data, knots = NULL, absorb.cons = FALSE, scale.penalty = TRUE, $\mathrm{n}=$ nrow(data), dataX = NULL, null.space.penalty = FALSE, sparse.cons = 0, diagonal.penalty = FALSE, apply.by = TRUE, modCon = 0, k = -1, fx = FALSE, bs = "tp", m = NA, by = NA, xt = NULL, id = NULL, $s p=N U L L, ~ p c ~=~ N U L L) ~$

Arguments

\ldots	a list of variables. See mgcv::s
data	see mgcv::smoothCon
knots	see mgcv::knots
absorb.cons	see mgcv::smoothCon
scale.penalty	see mgcv::smoothCon
n	see mgcv::smoothCon
dataX	see mgcv::smoothCon
null.space.penalty	
	see mgcv::smoothCon
sparse.cons	see mgcv::smoothCon
diagonal.penalty	see mgcv::smoothCon
	see mgcv::smoothCon

modCon	see mgcv::smoothCon
k	see mgcv::s
fx	see mgcv::s
bs	see mgcv::s
m	see mgcv::s
by	see mgcv::s
xt	see mgcv::s
id	see mgcv::s
sp	see mgcv::s
pc	see mgcv::s

Details

The most relevant arguments for BNSP users are the list of variables . . ., knots, absorb.cons, bs, and by.

Value

A design matrix that specifies a smooth term in a model.

Author(s)

Georgios Papageorgiou gpapageo@gmail.com

```
simD Simulated dataset
```


Description

Just a simulated dataset to illustrate the model. The success probability and the covariate have a non-linear relationship.

Usage
 data(simD)

Format

A data frame with 300 independent observations. Three numerical vectors contain information on
Y number of successes.
E number of trials.
X explanatory variable.

Description

Function used to define smooth effects in the mean and variance formulae of function mvrm. The function is used internally to construct the design matrices.

Usage

sm(..., k = 10, knots = NULL, bs = "rd")

Arguments

... one or two covariates that the smooth term is a function of. If two covariates are used, they may be both continuous or one continuous and one discrete. Discrete variables should be defined as factor in the data argument of the calling mvrm function.
$k \quad$ the number of knots to be utilized in the basis function expansion.
knots the knots to be utilized in the basis function expansion.
bs a two letter character indicating the basis functions to be used. Currently, the options are "rd" that specifies radial basis functions and is available for univariate and bivariate smooths, and " pl " that specifies thin plate splines that are available for univariate smooths.

Details

Use this function within calls to function mvrm to specify smooth terms in the mean and/or variance function of the regression model.
Univariate radial basis functions with q basis functions or $q-1$ knots are defined by
$\mathcal{B}_{1}=\left\{\phi_{1}(u)=u, \phi_{2}(u)=\left\|u-\xi_{1}\right\|^{2} \log \left(\left\|u-\xi_{1}\right\|^{2}\right), \ldots, \phi_{q}(u)=\left\|u-\xi_{q-1}\right\|^{2} \log \left(\left\|u-\xi_{q-1}\right\|^{2}\right)\right\}$,
where $\|u\|$ denotes the Euclidean norm of u and $\xi_{1}, \ldots, \xi_{q-1}$ are the knots that are chosen as the quantiles of the observed values of explanatory variable u, with $\xi_{1}=\min \left(u_{i}\right), \xi_{q-1}=\max \left(u_{i}\right)$ and the remaining knots chosen as equally spaced quantiles between ξ_{1} and ξ_{q-1}.
Thin plate splines are defined by

$$
\mathcal{B}_{2}=\left\{\phi_{1}(u)=u, \phi_{2}(u)=\left(u-\xi_{1}\right)_{+}, \ldots, \phi_{q}(u)=\left(u-\xi_{q}\right)_{+}\right\}
$$

where $(a)_{+}=\max (a, 0)$.
Radial basis functions for bivariate smooths are defined by

$$
\mathcal{B}_{3}=\left\{u_{1}, u_{2}, \phi_{3}(u)=\left\|u-\xi_{1}\right\|^{2} \log \left(\left\|u-\xi_{1}\right\|^{2}\right), \ldots, \phi_{q}(u)=\left\|u-\xi_{q-1}\right\|^{2} \log \left(\left\|u-\xi_{q-1}\right\|^{2}\right)\right\}
$$

Value

Specifies the design matrices of an mvrm call

Author(s)

Georgios Papageorgiou gpapageo@gmail.com

See Also

mvrm

Examples

```
#see \code{mvrm} example
```

summary.mvrm Summary of an mvrm fit

Description

Provides basic information from an mvrm fit.

Usage

\#\# S3 method for class 'mvrm'
summary (object, nModels $=5$, digits $=5$, printTuning $=$ FALSE, \ldots)

Arguments

object	an object of class "mvrm", usually a result of a call to mvrm.
nModels	integer number of models with the highest posterior probability to be displayed.
digits	the number of significant digits to use when printing.
printTuning	if set to TRUE, the starting and finishig values of the tuninf parameters are dis- played. other arguments.
\ldots	

Details

Use this function to summarize mvrm fits.

Value

The functions provides a detailed description of the specified model and priors. In addition, the function provides information about the Markov chain ran (length, burn-in, thinning) and the folder where the files with posterior samples are stored. Lastly, the function provides the mean posterior and null deviance and the mean/variance models visited most often during posterior sampling.

Author(s)

Georgios Papageorgiou gpapageo@gmail.com

See Also

mvrm

Examples

\#see \code\{mvrm\} example

te

 $m g c v$ constructor te
Description

Provides interface between mgcv::te and BNSP. te (...) calls mgcv: : smoothCon(mgcv: :te(...), ..

Usage

```
te(..., data, knots = NULL, absorb.cons = FALSE, scale.penalty = TRUE,
\(\mathrm{n}=\) nrow(data), dataX \(=\) NULL, null.space. penalty \(=\) FALSE, sparse.cons \(=0\),
diagonal.penalty = FALSE, apply.by = TRUE, modCon = 0, k = NA, bs = "cr",
\(m=N A, d=N A, b y=N A, f x=F A L S E, n p=T R U E, x t=N U L L, i d=N U L L\),
\(\mathrm{sp}=\mathrm{NULL}, \mathrm{pc}=\mathrm{NULL})\)
```


Arguments

\ldots	a list of variables. See mgcv::te
data	see mgcv::smoothCon
knots	see mgcv::knots
absorb.cons	see mgcv::smoothCon
scale.penalty	see mgcv::smoothCon
n	see mgcv::smoothCon
dataX	see mgcv::smoothCon
null.space.penalty	
	see mgcv::smoothCon
sparse.cons	see mgcv::smoothCon
diagonal.penalty	
apply.by	see mgcv::smoothCon
modCon	see mgcv::smoothCon
k	see mgcv::smoothCon
bs	see mgcv::te
m	see mgcv::te
d	see mgcv::te

by	see mgcv::te
$f x$	see mgcv::te
$n p$	see mgcv::te
$x t$	see mgcv::te
id	see mgcv::te
sp	see mgcv::te
pc	see mgcv::te

Details

The most relevant arguments for BNSP users are the list of variables . .., knots, absorb. cons, bs, and by.

Value

A design matrix that specifies a smooth term in a model.

Author(s)

Georgios Papageorgiou <gpapageo@gmail. com>

ti

mgcv constructor ti

Description

Provides interface between mgcv::ti and BNSP. ti (. . .) calls mgcv: : smoothCon(mgcv: :ti(...), ...

Usage

```
ti(..., data, knots = NULL, absorb.cons = FALSE, scale.penalty = TRUE,
\(\mathrm{n}=\mathrm{nrow}(d a t a)\), dataX \(=\) NULL, null.space.penalty \(=\) FALSE, sparse.cons = 0,
diagonal.penalty \(=\) FALSE, apply.by \(=\) TRUE, modCon \(=0, k=N A, b s=" c r "\),
\(m=N A, d=N A, b y=N A, f x=F A L S E, n p=T R U E, x t=N U L L, i d=N U L L\),
\(\mathrm{sp}=\mathrm{NULL}, \mathrm{mc}=\mathrm{NULL}, \mathrm{pc}=\mathrm{NULL})\)
```


Arguments

\ldots	a list of variables. See mgcv::ti
data	see mgcv::smoothCon
knots	see mgcv::knots
absorb.cons	see mgcv::smoothCon
scale.penalty	see mgcv::smoothCon
n	see mgcv::smoothCon


```dataX see mgcv::smoothCon null.space.penalty```	
	see mgcv::smoothCon
sparse.cons	see mgcv::smoothCon
diagonal.penalty	
	see mgcv::smoothCon
apply.by	see mgcv::smoothCon
modCon	see mgcv::smoothCon
k	see mgcv::ti
bs	see mgcv::ti
m	see mgcv::ti
d	see mgcv: ti
by	see mgcv: ti
$f x$	see mgcv::ti
np	see mgcv::ti
xt	see mgcv::ti
id	see mgcv::ti
sp	see mgcv::ti
mc	see mgcv: ti
pc	see mgcv::ti

## Details

The most relevant arguments for BNSP users are the list of variables . . ., knots, absorb. cons, bs, and by.

## Value

A design matrix that specifies a smooth term in a model.

## Author(s)

Georgios Papageorgiou [gpapageo@gmail.com](mailto:gpapageo@gmail.com)

## Index

```
*Topic cluster
 dpmj, }
*Topic datasets
 simD,25
*Topic models
 sm, 26
*Topic nonparametric
 dpmj, }
 mvrm, 14
*Topic regression
 mvrm,14
 sm, 26
*Topic Smooth
 mvrm, 14
 sm,26
BNSP (BNSP-package), 2
BNSP-package, 2
chol, 3, 4
clustering,4
continue, 5
dpmj, 6
histCorr,13
mvrm, 5, 6, 13, 14, 19, 21-24, 27, 28
mvrm2mcmc, 19
plot.mvrm, 20
plotCorr,21
predict.mvrm, 22
print.mvrm, 23
s,24
simD, 25
sm, 26
summary.mvrm, 27
te, 28
ti,29
```

