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Abstract

We present BGPhazard, an R package which computes hazard rates from a Bayesian nonpara-
metric view. This is achieved by computing the posterior distribution of a gamma or a beta
process through a Gibbs sampler. The purpose of this document is to guide the user on how
to use the package rather than conducting a thorough analysis of the theoretical results. Nev-
ertheless, section 2 briefly discuss the main results of the models proposed by Nieto-Barajas
and Walker (2002) and by Nieto-Barajas (2003). These results will be helpful to understand
the usage of the functions contained in the package. In section 3 we show some examples to
illustrate the models.
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1 Introduction

Survival analysis focuses on studying data related to the occurrence time of an event. A typical
function is the survival function, which in nonparametric statistics is estimated through the
product limit estimator (Kaplan & Meier, 1958). This estimator is used as an approximation
to the survival function. In some cases, its stair-step nature can return misleading estimators
in a neighborhood of the steps: just before and after each we will have significant differences
between estimators.

Lack of smoothness on nonparametric estimations give rise to methods whose outputs are
smooth functions. One of many approaches is given by Nieto-Barajas and Walker (2002) for
the survival function. The theory behind these models combines Bayesian Statistics and Sur-
vival Analysis to obtain hazard rate estimates. Bayesian Statistics let us introduce previous
knowledge to a data set to improve estimations. Nieto-Barajas & Walker (2002) estimate the
hazard function in segments by introducing dependence between each other so that information
is shared and a smooth hazard rate is obtained. We review the three models contained in the
package: beta model for discrete data, gamma model for continuous data and cox-gamma model
for continuous data in a proportional hazards model.

A consequence of using a nonparametric Bayesian model with a dependence structure is that
the resulting estimators are smoother than those obtained with a frequentist nonparametric
model.

2 Hazard rate estimation

In this brief review, we examine a generalization of the independent gamma process of Walker
and Mallick (1997) –gamma model–; then, a generalization of the beta process introduced by
Hjort (1990) –beta model– which is often used to model discrete failure times, and lastly, the
proportional risk model extension to the gamma process that copes with explanatory variables
that remain constant during time (Nieto-Barajas, 2003).

We provide nonparametric prior distributions for the hazard rate based on the dependence
processes previously defined and we obtain the posterior distributions through a Bayesian up-
date.

2.1 Markov beta and gamma prior processes

Let λk represent the gamma process and let πk represent the beta process. Let θk represent
both λk and πk. For interpretation of the Markov model, the main priority is to ensure

E[θk+1|θk] = a+ bθk

where (a, b) are fixed parameters and will typically depend on k. A latent process {uk} is
introduced in order to obtain {θk} from

θ1 → u1 → θ2 → u2 → · · ·

Gamma Process

Walker & Mallick (1997) consider {λk} as independent gamma variables, i.e., λk ∼ Ga(αk, βk)
independent for k = 1, 2, ... Nieto-Barajas & Walker (2002) consider a dependent process for
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{λk}. They start with λ1 ∼ Ga(α1, β1) and take uk|λk ∼ Po(ckλk) and λk+1|uk ∼ Ga(αk+1 +
uk, βk+1 + ck) and so on. These updates arise from the joint density

f(u, λ) = Ga(λ|α, β)Po(u|cλ)

and so constitute a Gibbs type update. The difference is that they are changing the parameters
(α, β, c) at each update so the chain is not stationary and marginally the {λk} are not gamma.

However,

E[λk+1|λk] =
αk+1 + ckλk
βk+1 + ck

If ck = 0, then P (uk = 0) = 1 and hence the {λk} are independent gamma and we have the
prior process of Walker and Mallick (1997).

An important result is that if we take αk = α1 and βk = β1 to be constant for all k, then
the process {uk} is a Poisson-gamma process with implied marginals λk ∼ Ga(α1, β1). One
can note that if u1 is Poisson distributed and λ2|u1 is conditionally gamma, then λ2 is never
gamma.

Beta Process

Nieto-Barajas and Walker (2002) start with π1 ∼ Be(α1, β1) and take uk|πk ∼ Bi(ck, πk),
πk+1|uk ∼ Be(αk+1 +uk, βk+1 +ck−uk) and so on. These arise from a binomial-beta conjugate
set-up, from the joint density

f(u, π) = Be(π|α, β)Bi(u|c, π)

Clearly

E[πk+1|πk] =
αk+1 + ckπk

αk+1 + βk+1 + ck

As with the gamma process, if we choose ck = 0, then P (uk = 0) = 1 and so the {uk}
become independent beta and we obtain the prior of Hjort (1990).

A significant result is that if we take αk = α1 and βk = β1 to be constant for all k, then the
process {uk} is a binomial-beta process with marginals uk ∼ BiBe(α1, β1, ck). Moreover, the
process {πk} becomes strictly stationary and marginally πk ∼ Be(α1, β1).

2.2 Prior to posterior analysis

We use the gamma and beta processes to define nonparametric prior distributions. In order
to obtain f(θ|data), we introduce the latent variable u and so constitute a Gibbs update for
f(θ|u, data) and f(u|θ, data). As we generate a sample from f(θ, u|data), we automatically
obtain a sample from f(θ|data). Therefore, given u from f(u|θ, data), we can obtain a sample
from f(θ, u|data) by simulating from θ ∼ f(θ|u, data).

It can be shown that
f(θ|u, data) ∝ f(data|θ)× f(θ|u)

and
f(u|θ, data) ∝ f(data|θ, u)× f(u|θ) ∝ f(u|θ)

because u and data are conditionally independent given θ.
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Gamma process

Let T be a continuous random variable with cumulative distribution function F (t) = P (T ≤ t)
on [0,∞). Consider the time axis partition 0 = τ0 < τ1 < τ2 < · · · , and let λk be the hazard
rate in the interval (τk−1, τk], then the hazard function is given by

h(t) =

∞∑
k=1

λkI(τk−1,τk](t)

So, the cumulative distribution and density functions, given {λk}, are F (t|{λk}) = 1−e−H(t),

f(t|{λk}) = h(t)e−H(t), where H(t) =
∫ t

0
h(s)ds. We also have that

f(λk|uk−1, uk) = Ga(αk + uk−1 + uk, βk + ck−1 + ck)

Therefore, given a sample T1, T2, ..., Tn from f(t{λk}), it is straightforward to derive

f(λk|uk−1, uk, data) = Ga(αk + uk−1 + uk + nk, βk + ck−1 + ck +mk),

where nk = number of uncensored observations in (τk−1, τk], mk =
∑
i rki, and

rki =

 τk − τk−1 ti > τk
ti − τk−1 t∈ (τk−1, τk]
0 otherwise

Additionally,

P (uk = u|λk, λk+1, data) ∝ f(u|λ) ∝ [ck(ck + βk+1)λkλk+1]u

Γ(u+ 1)Γ(αk+1 + u)

with u = 0, 1, 2, .... Hence, with these full conditional distributions, a Gibbs sampler is straight-
forward to implement in order to obtain posterior summaries.

We can learn about the {ck} by assigning an independent exponential distribution with
mean ε for each ck, k = 1, ..,K − 1. The Gibbs sampler can be extended to include the full
conditional densities for each ck. It is not difficult to derive that a ck from f(ck|u, λ, data) can
be taken from the density

f(ck|uk, λk, λk+1) ∝ (βk+1 + ck)αk+1+ukcuk

k exp

{
−ck

(
λk+1 + λk +

1

ε

)}
for ck > 0.

Dependence between c′ks can be introduced through a hierarchical model via assigning a
distribution to ε ∼ Ga(a0, b0). The update would be given by:

f(ε|{ck}) = Ga

(
ε|a0 +K, b0 +

K∑
k=1

ck

)

where K is the number of intervals generated by the time axis partition. This hierarchical
specification of the initial distribution for ck let us assign a better value for ck.

Simulating from this distribution is not so straightforward. However, we construct a hybrid
algorithm using a Metropolis-Hastings scheme taking advantage of the Markov chain generated
by the Gibbs sampling.
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Beta process

Let T be a discrete random variable taking values in the set {τ1, τ2, ...} with probability density
function f(τk) = P (T = τk). Let πk be the hazard rate at τk, then the cumulative distribution

and the density functions, given {πk}, are F (τj |{πk}) = 1 −
∏j
k=1(1 − πk) and f(τj |{πk}) =

πj
∏j−1
k=1(1− πk)

The conditional distribution of πk is

f(πk|uk−1, uk) = Be(πk|αk + uk−1 + uk, βk + ck−1 − uk−1 + ck − uk),

Thus, given a sample T1, T2, ..., Tn form f(·|{πk}) it is straightforward to derive

f(πk|uk−1, uk, data) = Be(πk|αk + uk−1 + uk + nk, βk + ck−1 − uk−1 + ck − uk +mk),

where nk = number of failures at τk, mk =
∑
i rki and

rki =

{
1 ti > τk
0 otherwise

Additionally,

P (uk = u|πk, πk+1, data) ∝ θuk
Γ(u+ 1)Γ(ck − u+ 1)Γ(αk+1 + u)Γ(βk+1 + ck − u)

with u = 0, 1, ..., ck and

θk =
πkπk+1

(1− πk)(1− πk+1)

As before, obtaining posterior summaries via Gibbs sampler is simple.
We can learn about the {ck} via assigning each ck an independent Poisson distribution with

mean ε. The Gibbs sampler can be extended to include the full conditional densities for each
ck. A ck from f(ck|u, π, data) can be taken from the density

f(ck|uk, πk, πk+1) ∝ Γ(αk+1 + βk+1 + ck)

Γ(βk+1 + ck − uk)Γ(ck − uk + 1)
[ε(1− πk+1)(1− πk)]

ck

with ck ∈ {uk, uk + 1, uk + 2, ...}.
Dependence between ck’s can be introduced through a hierarchical model via assigning a

distribution to ε ∼ Ga(a0, b0). So the update would be given by:

f(ε|{ck}) = Ga

(
ε|a0 +K, b0 +

K∑
k=1

ck

)

where K is the number of discrete values in random variable T .

Cox-gamma model

Differing from most of the previous Bayesian analysis of the proportional hazards model, Nieto-
Barajas (2003) models the baseline hazard rate function with a stochastic process. Let Ti be a
non negative random variable which represents the failure time of i and Zi = (Zi1, ..., Zip) the
vector containing its p explanatory variables. Therefore, the hazard function for individual i is:

λi(t) = λ0(t)exp{Z ′iθ}
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where λ0(t) is the baseline hazard rate and θ is regression’s coefficient vector. The cumulative
hazard function for individual i becomes

Hi(t) =

∞∑
k=1

λkWi,k(t, λ),

where,

Wi,k(t, θ) =

 (τk − τk−1) exp{Z ′iθ} ti > τk
(ti − τk−1) exp{Z ′iθ} ti ∈ (τk−1, τk]
0 otherwise

Given a sample of possible right-censored observations where T1, ..., Tn are uncensored and
Tnu+1, ..., Tn are right-censored, the conditional posterior distributions for the parameters of
the semi-parametric model are:

• f(λk|uk−1, uk, data, θ) = Ga(λk|αk + uk−1 + uk + nk, βk + ck−1 + ck +mk(θ))

• P (uk = u|λk, λk+1, data) ∝ f(u|λ) ∝ [ck(ck+βk+1)λkλk+1]u

Γ(u+1)Γ(αk+1+u)

• f(θ|λ, data) ∝ f(θ) exp {
∑nu

i=1 θ
′Zi −

∑∞
k=1 λkmk(θ)}

where nk =
∑nu

i=1 I(τk−1,τk](ti) and mk(θ) =
∑n
i=1Wi,k(ti, θ).

Similarly as we pointed out in the previous two cases, we incorporate a hyper prior process
for the {ck} such that ck ∼ Ga(1, εk). The set of full conditional posterior distributions can
then be extended to include

f(ck|uk, λk, λk+1) ∝ (βk+1 + ck)αk+1+ukcuk

k exp

{
−ck

(
λk+1 + λk +

1

ε

)}
Dependence between ck’s can be introduced through a hierarchical model via assigning a

distribution to ε ∼ Ga(a0, b0). So the update would be given by:

f(ε|{ck}) = Ga

(
ε|a0 +K, b0 +

K∑
k=1

ck

)

where K is the number of intervals generated by the time axis partition. This hierarchical
specification of the initial distribution for ck let us assign a better value for ck.

3 Examples

We present some of the examples contained in the documentation of the package to illustrate
some of the effects of setting different parameters –how to define the partition or how ck vector
is obtained–. First, we start showing examples for the Gamma model, then for the Beta model
and finally for the Cox-Gamma model.
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3.1 Gamma model examples

For this model, we will be using the control observations of the 6-MP data set (Freireich, E.
J., et al., 1963) –data from a trial of 42 leukemia patients organised by pairs in which the first
element of the pair is treated with a drug and the other is control–. For examples 1 to 4,
we use a partition of unitary length intervals; for the last three examples –5, 6 & 7–, we use
uniformly-dense intervals. The "time" column is taken as the observed times vector –times–
and the "cens" column as the censoring status vector –delta–:

> data(gehan)

> times <- gehan$time[gehan$treat == "6-MP"]

> delta <- gehan$cens[gehan$treat == "6-MP"]

Now that we have a time and censoring status vector, we can run several examples for
this model. Default values are used for each function unless otherwise noted. Every example
shows our estimate overlapped with the Nelson-Aalen / Kaplan-Meier estimator, so the user
can compare them.

3.1.1 Example 1. Independence case. Unitary length intervals

We obtain with our model the Nelson-Aalen and Kaplan-Meier estimators by defining ck as a
null vector –through fixing type.c = 1–. A unitary partitioned axis is obtained by fixing type.t

= 2. In Figure 1 we show that our estimators –under independence– return the same results as
the Nelson-Aalen and Kaplan-Meier estimators.

> ExG1 <- GaMRes(times, delta, type.t = 2, K = 35, type.c = 1,

+ iterations = 3000)

> GaPloth(ExG1, confint = FALSE)

3.1.2 Example 2. Introducing dependence through c. Unitary length intervals

The influence of c –or c.r– can be understood as a dependence parameter: the greater the
value of each ck, k = 0, 1, 2, ...,K − 1, the higher the dependence between intervals k and k+ 1.
For this example, we assign a fixed value to vector c, so we use type.c = 2. Comparing with
the previous example, we see that the estimates that were zero, now have a positive value –see
Figures 1 and 2–. Note how this model compares to Example 5 –see Figure 6–. The difference
between those examples is how the partition is defined.

> ExG2 <- GaMRes(times, delta, type.t = 2, K = 35, type.c = 2,

+ c.r = rep(50, 34), iterations = 3000)

> GaPloth(ExG2)

Additionally, we can get further detail on the Gibbs sampler with a diagnosis of the resulting
Markov chain. We can run this diagnosis for each entry of λ, u, c or ε. In Figure 3 we show
the diagnosis for λ6 which includes the trace, the ergodic mean, the ACF function and the
histogram for the generated chain.

> GaPlotDiag(ExG2, variable = "lambda", pos = 6)
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(a) Hazard rates

(b) Survival function

Figure 1: Gamma Example 1 - Independence case. Unitary length intervals
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(a) Hazard rates

(b) Survival function

Figure 2: Gamma Example 2 - Introducing dependence through c (ck = 50,∀k). Unitary length
intervals
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Figure 3: Gamma Example 2 - Diagnosis for λ6

3.1.3 Example 3. Varying c through a distribution. Unitary length intervals

As we reviewed, we can learn about the {ck} via assigning an exponential distribution with
mean ε. The estimates using ε = 1 –type.c = 3– and unitary length intervals –type.t = 2– are
shown in Figure 4. We can compare the hazard function with the previous example, where c was
fixed, and observe that because of the variability given to c, the change on the estimated values
between two contiguous intervals are greater in this example. The survival function echoes the
shape of the Kaplan-Meier with higher decrease rates.

Comparing this example with Example 6 –Figure 7–, as with the previous example, the main
difference is given by the partition of the time axis. This affects the estimates as we will note
later.

> ExG3 <- GaMRes(times, delta, type.t = 2, K = 35, type.c = 3, epsilon = 1,

+ iterations = 3000)

> GaPloth(ExG3)

3.1.4 Example 4. Using a hierarchical model to estimate c. Unitary intervals

Previous example can be extended with a hierarchical model, assigning a distribution to ε ∼
Ga(a0, b0) with a0 = b0 = 0.01. In order to set up the model we should set type.c = 4. The
result displayed on Figure 5 is a soft hazard function and a survival function that decreases
faster than the Kaplan-Meier estimate.

> ExG4 <- GaMRes(times, delta, type.t = 2, K = 35, type.c = 4,

+ iterations = 3000)

> GaPloth(ExG4)
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(a) Hazard rates

(b) Survival function

Figure 4: Gamma Example 3 - Varying c through a distribution ck ∼ Ga(1, ε = 1). Unitary
length intervals
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(a) Hazard rates

(b) Survival function

Figure 5: Gamma Example 4 - Using a hierarchical model to estimate c. Unitary intervals
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3.1.5 Example 5. Introducing dependence through c. Equally dense intervals

This example illustrates the same concept as Example 2 –how c introduces dependence–, but
with a different partition of the time axis. To get this partition we set type.t = 1. Figure 6
shows that the survival function is close to the Kaplan-Meier estimate. The fact that it gets
closer to the K-M estimates does not makes it a better estimate, we only could say that this
partition yields, in average, a smaller hazard rate than the Example 2 built with a unitary
length partition.

> ExG5 <- GaMRes(times, delta, type.t = 1, K = 8, type.c = 2,

+ c.r = rep(50, 7), iterations = 3000)

> GaPloth(ExG5)

3.1.6 Example 6. Varying c through a distribution. Equally dense intervals

We can compare this example on Figure 7 with Example 3 –Figure 4–. We use less intervals,
so the survival function is smoother. Our estimate decreases faster than the Kaplan-Meier
estimate.

> ExG6 <- GaMRes(times, delta, type.t = 1, K = 8, type.c = 3,

+ iterations=3000)

> GaPloth(ExG6)

3.1.7 Example 7. Using a hierarchical model to estimate c. Equally dense intervals

The survival curve for this particular example results in a smoothed version of the Kaplan-Meier
estimate (Figure 8). As with previous examples, it can be compared with the unitary partition
example (see Example 4, Figure 5).

> ExG7 <- GaMRes(times, delta, type.t = 1, K = 8, type.c = 4,

+ iterations = 3000)

> GaPloth(ExG7)

3.2 Beta model examples

For this model, we use survival data on 26 psychiatric inpatients admitted to the University of
Iowa hospitals during the years 1935-1948. This sample is part of a larger study of psychiatric
inpatients discussed by Tsuang and Woolson (1977). We take the "time" column as the observed
times vector –times– and the "death" column as the censoring status vector –delta–:

> data(psych)

> times <- psych$time

> delta <- psych$death
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(a) Hazard rates

(b) Survival function

Figure 6: Gamma Example 5 - Introducing dependence through c (ck = 50,∀k). Equally dense
intervals
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(a) Hazard rates

(b) Survival function

Figure 7: Gamma Example 6 - Varying c through a distribution ck ∼ Ga(1, ε = 1). Equally
dense intervals
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(a) Hazard rates

(b) Survival function

Figure 8: Gamma Example 7 - Using a hierarchical model to estimate c. Equally dense intervals
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3.2.1 Example 1. Independence case

As with the Gamma Example, we obtain the Nelson-Aalen and Kaplan-Meier estimators by
defining ck as a null vector through fixing type.c = 1 –see Figure 9– The conclusion does not
change: the independence case of our model results on the N-A and K-M estimators.

> ExB1 <- BeMRes(times, delta, type.c = 1, iterations = 3000)

> BePloth(ExB1, confint = FALSE)

3.2.2 Example 2. Introducing dependence through c

The influence of c –or c.r– can be also understood as a dependence parameter: the greater the
value of each ck, k = 0, 1, 2, ...,K − 1, the higher the dependence between intervals k and k+ 1.
In this example, we fix each c entry at 100. As we are defining vector c with fixed values, we
should fix type.c = 2. We see on Figure 10 that the hazard function estimate turns smoother
than on the previous example. The steps on the survival function appear to be more uniform
than on the Kaplan-Meier estimate.

> ExB2 <- BeMRes(times, delta, type.c = 2, c.r = rep(100, 39),

+ iterations = 3000)

> BePloth(ExB2)

Additionally, we can get further detail on the Gibbs sampler with a diagnosis of the resulting
Markov chain. We can run this diagnosis for each entry from π, u, c or ε. In Figure 11 we show
the diagnosis for π10 which includes plot of the trace, the ergodic mean, the ACF function and
the histogram of the chain.

> BePlotDiag(ExB2, variable = "Pi", pos = 6)

3.2.3 Example 3. Varying c through a distribution

As with the gamma model, we can learn about the {ck} via assigning an exponential distribution
with mean ε. The estimates using ε = 1 and unitary length intervals are shown on Figure 12.
Note that the confidence intervals have widen: it is a signal that we have introduced variability
to the model –because of the distribution assigned to c–.

> ExB3 <- BeMRes(times, delta, type.c = 3, epsilon = 1, iterations = 3000)

> BePloth(ExB3)

3.2.4 Example 4. Using a hierarchical model to estimate c

The previous example can be extended with a hierarchical model, assigning a distribution to
ε ∼ Ga(a0, b0), with a0 = b0 = 0.01. In order to set up the model we should set type.c =

4. The result displayed on Figure 13 is a soft hazard function and a survival function that
decreases faster than the Kaplan-Meier estimate.

> ExB4 <- BeMRes(times, delta, type.c = 4, iterations = 3000)

> BePloth(ExB4)
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(a) Hazard rates

(b) Survival function

Figure 9: Beta Example 1 - Independence case
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(a) Hazard rates

(b) Survival function

Figure 10: Beta Example 2 - Introducing dependence through c (ck = 100,∀k)
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Figure 11: Beta Example 2 - Diagnosis for π10
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(a) Hazard rates

(b) Survival function

Figure 12: Beta Example 3 - Varying c through a distribution ck ∼ Ga(1, ε = 1)
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(a) Hazard rates

(b) Survival function

Figure 13: Beta Example 4 - Using a hierarchical model to estimate c
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i ti Zi1 ∼ U(0, 1) Zi2 ∼ U(0, 1) ci ∼ Exp(1) δi = I(ti > ci) min{ti, ci}
1 t1 Z11 Z12 c1 δ1 min{t1, c1}
2 t2 Z21 Z22 c2 δ2 min{t2, c2}
...

...
...

...
...

...
...

n tn Zn1 Zn2 cn δn min{tn, cn}

Table 1: Weibull simulation model

3.3 Cox-gamma model example

In this example, we simulate the data from a Weibull model, frequently used with continuous
and non negative data. The advantage of setting a model is that we know in advance the results,
so we can compare the estimates with the exact values from model. The Weibull model has the
probability functions:

h0(t) = abtb−1, S0(t) = e−at
b

We construct the proportional hazard model as:

hi(ti|Zi) = h0(t)eθ
′Zibtb−1, Si(ti|Zi) = exp

{
−H0(ti)e

θ′Zi

}
Note that this Weibull proportional hazard model is also another Weibull model with pa-

rameters (a∗i = aeθ
′Zi , b). Based on the previous densities and on fixed parameters a, b, θ1 and

θ2 -these last two covariates are simulated from uniform distributions on the interval (0,1)-
, we simulate n observations. We gather the results of the model in a table –see Table 1–.
ti|Zi ∼Weibull(a∗i , b) and Zi = (Zi1, Zi2) are the explanatory variables; ci, the censoring time;
δi, censoring indicator, and min{ti, ci} represents observed values deeming censorship time.

We generate a size n = 100 sample based on the simulation model with parameters a =0.1,
b = 1, θ = (1, 1) y Zi ∼ U(0, 1), i = 1, 2. The result is a table with n = 100 observations.

On the other hand, we use almost every default parameter from CGaMRes excluding K = 10,
iterations = 3000 and thpar = 10. Theoretically, our model should estimate a constant risk
function at a× b = 0.1.

Below, we show the code for the Weibull model and the calls for the plots for the hazard
and survival functions –command CGaPloth(M)–, the predictive distribution for an observation
defined as the median of the data –CGaPred(M)–, and the plots for θ1 and θ2 –PlotTheta(M)–.

> SampWeibull <- function(n, a = 10, b = 1, beta = c(1, 1)) {

+ M <- matrix(0, ncol = 7, nrow = n)

+ for(i in 1:n){

+ M[i, 1] <- i

+ M[i, 2] <- x1 <- runif(1)

+ M[i, 3] <- x2 <- runif(1)

+ M[i, 4] <- rweibull(1, shape = b,

+ scale = 1 / (a * exp(cbind(x1, x2) %*% beta)))

+ M[i, 5] <- rexp(1)

+ M[i, 6] <- M[i, 4] > M[i, 5]

+ M[i, 7] <- min(M[i, 4], M[i, 5])

+ }

+ colnames(M) <- c("i", "x_i1", "x_i2", "t_i", "c_i", "delta",

+ "min{c_i, d_i}")
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+ return(M)

+ }

> dat <- SampWeibull(100, 0.1, 1, c(1, 1))

> dat <- cbind(dat[, c(4, 6)], dat[, c(2, 3)])

> CG <- CGaMRes(dat, K = 10, iterations = 3000, thpar = 10)

> CGaPloth(CG)

> PlotTheta(CG)

> CGaPred(CG)

Because of the way we built the model, we can compare against theoretical results on the
Weibull model. In Figure 14 we see that the hazard rate estimate is practically the same from t
= 8 to t = 37. The estimate for the survival functions gets very close to the real value. Plots and
histograms for θ from Figure 15 show estimated values for the regression coefficients (θ1, θ2) and
they are consistently near to 1. Finally, the plots from Figure 16 show the hazard rate estimate
over a equally dense partition for a future individual where its explanatory variable is equal to
the median of the observations –xF –. Note that the effect over the hazard function is given by
the product of the baseline hazard function and exp{x′F θ}.
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(a) Hazard rate estimate

(b) Survival function estimate

Figure 14: Cox-gamma example
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(a) θ1 estimate

(b) θ2 estimate

Figure 15: θ estimate on the Cox-gamma example
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Figure 16: Hazard rate estimate for the median on the Cox-gamma example
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